[comment {-*- tcl -*- doctools manpage}]
[manpage_begin simulation::montecarlo n 0.1]
[keywords math]
[keywords {montecarlo simulation}]
[keywords {stochastic modelling}]
[copyright {2008 Arjen Markus <arjenmarkus@users.sourceforge.net>}]
[moddesc   {Tcl Simulation Tools}]
[titledesc {Monte Carlo simulations}]
[category  Mathematics]
[require Tcl [opt 8.4]]
[require simulation::montecarlo 0.1]
[require simulation::random]
[require math::statistics]

[description]
[para]
The technique of [emph "Monte Carlo simulations"] is basically simple:

[list_begin itemized]
[item]
generate random values for one or more parameters.
[item]
evaluate the model of some system you are interested in and record the
interesting results for each realisation of these parameters.
[item]
after a suitable number of such trials, deduce an overall characteristic
of the model.
[list_end]

You can think of a model of a network of computers, an ecosystem of some
kind or in fact anything that can be quantitatively described and has
some stochastic element in it.
[para]

The package [term simulation::montecarlo] offers a basic framework for
such a modelling technique:

[example {
#
# MC experiments:
# Determine the mean and median of a set of points and compare them
#
::simulation::montecarlo::singleExperiment -init {
    package require math::statistics

    set prng [::simulation::random::prng_Normal 0.0 1.0]
} -loop {
    set numbers {}
    for { set i 0 } { $i < [getOption samples] } { incr i } {
        lappend numbers [$prng]
    }
    set mean   [::math::statistics::mean $numbers]
    set median [::math::statistics::median $numbers] ;# ? Exists?
    setTrialResult [list $mean $median]
} -final {
    set result [getTrialResults]
    set means   {}
    set medians {}
    foreach r $result {
        foreach {m M} $r break
        lappend means   $m
        lappend medians $M
    }
    puts [getOption reportfile] "Correlation: [::math::statistics::corr $means $medians]"

} -trials 100 -samples 10 -verbose 1 -columns {Mean Median}
}]

This example attemps to find out how well the median value and the mean
value of a random set of numbers correlate. Sometimes a median value is
a more robust characteristic than a mean value - especially if you have
a statistical distribution with "fat" tails.

[section "PROCEDURES"]

The package defines the following auxiliary procedures:

[list_begin definitions]

[call [cmd ::simulation::montecarlo::getOption] [arg keyword]]

Get the value of an option given as part of the [term singeExperiment] command.

[list_begin arguments]
[arg_def string keyword] Given keyword (without leading minus)
[list_end]

[para]

[call [cmd ::simulation::montecarlo::hasOption] [arg keyword]]

Returns 1 if the option is available, 0 if not.

[list_begin arguments]
[arg_def string keyword] Given keyword (without leading minus)
[list_end]

[para]

[call [cmd ::simulation::montecarlo::setOption] [arg keyword] [arg value]]

Set the value of the given option.

[list_begin arguments]
[arg_def string keyword] Given keyword (without leading minus)
[arg_def string value] (New) value for the option
[list_end]

[para]

[call [cmd ::simulation::montecarlo::setTrialResult] [arg values]]

Store the results of the trial for later analysis

[list_begin arguments]
[arg_def list values] List of values to be stored
[list_end]

[para]

[call [cmd ::simulation::montecarlo::setExpResult] [arg values]]

Set the results of the entire experiment (typically used in the final
phase).

[list_begin arguments]
[arg_def list values] List of values to be stored
[list_end]

[para]

[call [cmd ::simulation::montecarlo::getTrialResults]]

Get the results of all individual trials for analysis (typically used in
the final phase or after completion of the command).

[para]

[call [cmd ::simulation::montecarlo::getExpResult]]

Get the results of the entire experiment (typically used in the final
phase or even after completion of the [term singleExperiment] command).

[para]

[call [cmd ::simulation::montecarlo::transposeData] [arg values]]

Interchange columns and rows of a list of lists and return the result.

[list_begin arguments]
[arg_def list values] List of lists of values
[list_end]

[list_end]

There are two main procedures: [term integral2D] and [term singleExperiment].

[list_begin definitions]

[call [cmd ::simulation::montecarlo::integral2D] [arg ...]]

Integrate a function over a two-dimensional region using a Monte Carlo
approach.
[para]
Arguments PM

[para]

[call [cmd ::simulation::montecarlo::singleExperiment] [arg args]]

Iterate code over a number of trials and store the results. The
iteration is gouverned by parameters given via a list of
keyword-value pairs.

[list_begin args]
[arg_def int n] List of keyword-value pairs, all of which are available
during the execution via the [term getOption] command.
[list_end]

[list_end]

The [term singleExperiment] command predefines the following
options:

[list_begin itemized]
[item]
[term "-init code"]: code to be run at start up
[item]
[term "-loop body"]: body of code that defines the computation to
be run time and again. The code should use [term setTrialResult]
to store the results of each trial (typically a list of numbers,
but the interpretation is up to the implementation). Note: Required keyword.
[item]
[term "-final code"]: code to be run at the end
[item]
[term "-trials n"]: number of trials in the experiment (required)
[item]
[term "-reportfile file"]: opened file to send the output to (default: stdout)
[item]
[term "-verbose"]: write the intermediate results (1) or not (0) (default: 0)
[item]
[term "-analysis proc"]: either "none" (no automatic analysis), standard
(basic statistics of the trial results and a correlation matrix) or the
name of a procedure that will take care of the analysis.
[item]
[term "-columns list"]: list of column names, useful for verbose output
and the analysis
[list_end]
Any other options can be used via the getOption procedure
in the body.

[section TIPS]
The procedure [term singleExperiment] works by constructing a
temporary procedure that does the actual work. It loops for the given
number of trials.
[para]
As it constructs a temporary procedure, local variables defined at the
start continue to exist in the loop.
[manpage_end]