/* $NetBSD: cpu_acpi.c,v 1.18 2025/01/30 00:43:56 jmcneill Exp $ */ /*- * Copyright (c) 2018 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jared McNeill . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "tprof.h" #include "opt_multiprocessor.h" #include __KERNEL_RCSID(0, "$NetBSD: cpu_acpi.c,v 1.18 2025/01/30 00:43:56 jmcneill Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LPI_IDLE_FACTOR 3 #if NTPROF > 0 #include #endif static int cpu_acpi_match(device_t, cfdata_t, void *); static void cpu_acpi_attach(device_t, device_t, void *); static void cpu_acpi_probe_lpi(device_t, struct cpu_info *ci); void cpu_acpi_lpi_idle(void); #if NTPROF > 0 static void cpu_acpi_tprof_init(device_t); #endif CFATTACH_DECL2_NEW(cpu_acpi, 0, cpu_acpi_match, cpu_acpi_attach, NULL, NULL, cpu_rescan, cpu_childdetached); #ifdef MULTIPROCESSOR static register_t cpu_acpi_mpstart_pa(void) { return (register_t)KERN_VTOPHYS((vaddr_t)cpu_mpstart); } #endif /* MULTIPROCESSOR */ static int cpu_acpi_match(device_t parent, cfdata_t cf, void *aux) { ACPI_SUBTABLE_HEADER *hdrp = aux; ACPI_MADT_GENERIC_INTERRUPT *gicc; if (hdrp->Type != ACPI_MADT_TYPE_GENERIC_INTERRUPT) return 0; gicc = (ACPI_MADT_GENERIC_INTERRUPT *)hdrp; return (gicc->Flags & ACPI_MADT_ENABLED) != 0; } static void cpu_acpi_attach(device_t parent, device_t self, void *aux) { prop_dictionary_t dict = device_properties(self); ACPI_MADT_GENERIC_INTERRUPT *gicc = aux; const uint64_t mpidr = gicc->ArmMpidr; const int unit = device_unit(self); struct cpu_info *ci = &cpu_info_store[unit]; struct acpisrat_node *node; #ifdef MULTIPROCESSOR if (cpu_mpidr_aff_read() != mpidr && (boothowto & RB_MD1) == 0) { const u_int cpuindex = device_unit(self); int error; cpu_mpidr[cpuindex] = mpidr; cpu_dcache_wb_range((vaddr_t)&cpu_mpidr[cpuindex], sizeof(cpu_mpidr[cpuindex])); /* XXX support spin table */ error = psci_cpu_on(mpidr, cpu_acpi_mpstart_pa(), 0); if (error != PSCI_SUCCESS) { aprint_error_dev(self, "failed to start CPU\n"); return; } sev(); for (u_int i = 0x10000000; i > 0; i--) { if (cpu_hatched_p(cpuindex)) break; } } #endif /* MULTIPROCESSOR */ /* Assume that less efficient processors are faster. */ prop_dictionary_set_uint32(dict, "capacity_dmips_mhz", gicc->EfficiencyClass); /* Store the ACPI Processor UID in cpu_info */ ci->ci_acpiid = gicc->Uid; /* Scan SRAT for NUMA info. */ if (cpu_mpidr_aff_read() == mpidr) { acpisrat_init(); } node = acpisrat_get_node(gicc->Uid); if (node != NULL) { ci->ci_numa_id = node->nodeid; } /* Attach the CPU */ cpu_attach(self, mpidr); if (ci->ci_dev == NULL) { /* Not configured */ return; } /* Probe for low-power idle states. */ cpu_acpi_probe_lpi(self, ci); #if NTPROF > 0 if (cpu_mpidr_aff_read() == mpidr && armv8_pmu_detect()) config_interrupts(self, cpu_acpi_tprof_init); #endif } static void cpu_acpi_probe_lpi(device_t dev, struct cpu_info *ci) { ACPI_HANDLE hdl; ACPI_BUFFER buf; ACPI_OBJECT *obj, *lpi; ACPI_STATUS rv; uint32_t levelid; uint32_t numlpi; uint32_t n; int enable_lpi; if (get_bootconf_option(boot_args, "nolpi", BOOTOPT_TYPE_BOOLEAN, &enable_lpi) && !enable_lpi) { return; } hdl = acpi_match_cpu_info(ci); if (hdl == NULL) { return; } rv = AcpiGetHandle(hdl, "_LPI", &hdl); if (ACPI_FAILURE(rv)) { return; } rv = acpi_eval_struct(hdl, NULL, &buf); if (ACPI_FAILURE(rv)) { return; } obj = buf.Pointer; if (obj->Type != ACPI_TYPE_PACKAGE || obj->Package.Count < 3 || obj->Package.Elements[1].Type != ACPI_TYPE_INTEGER || obj->Package.Elements[2].Type != ACPI_TYPE_INTEGER) { goto out; } levelid = obj->Package.Elements[1].Integer.Value; if (levelid != 0) { /* We depend on platform coordination for now. */ goto out; } numlpi = obj->Package.Elements[2].Integer.Value; if (obj->Package.Count < 3 + numlpi || numlpi == 0) { goto out; } ci->ci_lpi = kmem_zalloc(sizeof(*ci->ci_lpi) * numlpi, KM_SLEEP); for (n = 0; n < numlpi; n++) { lpi = &obj->Package.Elements[3 + n]; if (lpi->Type != ACPI_TYPE_PACKAGE || lpi->Package.Count < 10 || lpi->Package.Elements[0].Type != ACPI_TYPE_INTEGER || lpi->Package.Elements[1].Type != ACPI_TYPE_INTEGER || lpi->Package.Elements[2].Type != ACPI_TYPE_INTEGER || lpi->Package.Elements[3].Type != ACPI_TYPE_INTEGER || !(lpi->Package.Elements[6].Type == ACPI_TYPE_BUFFER || lpi->Package.Elements[6].Type == ACPI_TYPE_INTEGER)) { continue; } if ((lpi->Package.Elements[2].Integer.Value & 1) == 0) { /* LPI state is not enabled */ continue; } ci->ci_lpi[ci->ci_nlpi].min_res = lpi->Package.Elements[0].Integer.Value; ci->ci_lpi[ci->ci_nlpi].wakeup_latency = lpi->Package.Elements[1].Integer.Value; ci->ci_lpi[ci->ci_nlpi].save_restore_flags = lpi->Package.Elements[3].Integer.Value; if (ci->ci_lpi[ci->ci_nlpi].save_restore_flags != 0) { /* Not implemented yet */ continue; } if (lpi->Package.Elements[6].Type == ACPI_TYPE_INTEGER) { ci->ci_lpi[ci->ci_nlpi].reg_addr = lpi->Package.Elements[6].Integer.Value; } else { ACPI_GENERIC_ADDRESS addr; KASSERT(lpi->Package.Elements[6].Type == ACPI_TYPE_BUFFER); if (lpi->Package.Elements[6].Buffer.Length < sizeof(AML_RESOURCE_GENERIC_REGISTER)) { continue; } memcpy(&addr, lpi->Package.Elements[6].Buffer.Pointer + sizeof(AML_RESOURCE_LARGE_HEADER), sizeof(addr)); ci->ci_lpi[ci->ci_nlpi].reg_addr = addr.Address; } if (lpi->Package.Elements[9].Type == ACPI_TYPE_STRING) { ci->ci_lpi[ci->ci_nlpi].name = kmem_asprintf("LPI state %s", lpi->Package.Elements[9].String.Pointer); } else { ci->ci_lpi[ci->ci_nlpi].name = kmem_asprintf("LPI state %u", n + 1); } aprint_verbose_dev(ci->ci_dev, "%s: min res %u, wakeup latency %u, flags %#x, " "register %#x\n", ci->ci_lpi[ci->ci_nlpi].name, ci->ci_lpi[ci->ci_nlpi].min_res, ci->ci_lpi[ci->ci_nlpi].wakeup_latency, ci->ci_lpi[ci->ci_nlpi].save_restore_flags, ci->ci_lpi[ci->ci_nlpi].reg_addr); evcnt_attach_dynamic(&ci->ci_lpi[ci->ci_nlpi].events, EVCNT_TYPE_MISC, NULL, ci->ci_cpuname, ci->ci_lpi[ci->ci_nlpi].name); ci->ci_nlpi++; } if (ci->ci_nlpi > 0) { extern void (*arm_cpu_idle)(void); arm_cpu_idle = cpu_acpi_lpi_idle; } out: ACPI_FREE(buf.Pointer); } static inline void cpu_acpi_idle(uint32_t addr) { if (addr == LPI_REG_ADDR_WFI) { asm volatile("dsb sy; wfi"); } else { psci_cpu_suspend(addr); } } void cpu_acpi_lpi_idle(void) { struct cpu_info *ci = curcpu(); struct timeval start, end; int n; DISABLE_INTERRUPT(); microuptime(&start); for (n = ci->ci_nlpi - 1; n >= 0; n--) { if (ci->ci_last_idle > LPI_IDLE_FACTOR * ci->ci_lpi[n].min_res) { cpu_acpi_idle(ci->ci_lpi[n].reg_addr); ci->ci_lpi[n].events.ev_count++; break; } } if (n == -1) { /* Nothing in _LPI, let's just WFI. */ cpu_acpi_idle(LPI_REG_ADDR_WFI); } microuptime(&end); timersub(&end, &start, &end); ci->ci_last_idle = end.tv_sec * 1000000 + end.tv_usec; ENABLE_INTERRUPT(); } #if NTPROF > 0 static struct cpu_info * cpu_acpi_find_processor(UINT32 uid) { CPU_INFO_ITERATOR cii; struct cpu_info *ci; for (CPU_INFO_FOREACH(cii, ci)) { if (ci->ci_acpiid == uid) return ci; } return NULL; } static ACPI_STATUS cpu_acpi_tprof_intr_establish(ACPI_SUBTABLE_HEADER *hdrp, void *aux) { device_t dev = aux; ACPI_MADT_GENERIC_INTERRUPT *gicc; struct cpu_info *ci; char xname[16]; kcpuset_t *set; int error; void *ih; if (hdrp->Type != ACPI_MADT_TYPE_GENERIC_INTERRUPT) return AE_OK; gicc = (ACPI_MADT_GENERIC_INTERRUPT *)hdrp; if ((gicc->Flags & ACPI_MADT_ENABLED) == 0) return AE_OK; const bool cpu_primary_p = cpu_info_store[0].ci_cpuid == gicc->ArmMpidr; const bool intr_ppi_p = gicc->PerformanceInterrupt < 32; const int type = (gicc->Flags & ACPI_MADT_PERFORMANCE_IRQ_MODE) ? IST_EDGE : IST_LEVEL; if (intr_ppi_p && !cpu_primary_p) return AE_OK; ci = cpu_acpi_find_processor(gicc->Uid); if (ci == NULL) { aprint_error_dev(dev, "couldn't find processor %#x\n", gicc->Uid); return AE_OK; } if (intr_ppi_p) { strlcpy(xname, "pmu", sizeof(xname)); } else { snprintf(xname, sizeof(xname), "pmu %s", cpu_name(ci)); } ih = intr_establish_xname(gicc->PerformanceInterrupt, IPL_HIGH, type | IST_MPSAFE, armv8_pmu_intr, NULL, xname); if (ih == NULL) { aprint_error_dev(dev, "couldn't establish %s interrupt\n", xname); return AE_OK; } if (!intr_ppi_p) { kcpuset_create(&set, true); kcpuset_set(set, cpu_index(ci)); error = interrupt_distribute(ih, set, NULL); kcpuset_destroy(set); if (error) { aprint_error_dev(dev, "failed to distribute %s interrupt: %d\n", xname, error); return AE_OK; } } aprint_normal("%s: PMU interrupting on irq %d\n", cpu_name(ci), gicc->PerformanceInterrupt); return AE_OK; } static void cpu_acpi_tprof_init(device_t self) { int err = armv8_pmu_init(); if (err) { aprint_error_dev(self, "failed to initialize PMU event counter\n"); return; } if (acpi_madt_map() != AE_OK) { aprint_error_dev(self, "failed to map MADT, performance counters not available\n"); return; } acpi_madt_walk(cpu_acpi_tprof_intr_establish, self); acpi_madt_unmap(); } #endif