

SAT and SMT
Murphy Berzish

Overview

● Boolean Satisfiability (SAT) problem

● SAT solvers: basic algorithms, enhancements

● Limitations of SAT

● SMT solvers: overview

● Examples of SMT solvers (implementations)

● Practical applications of SMT

Acknowledgements

● Some ideas and definitions from ECE750T28 (Computer-
Aided Reasoning for SE) notes
– https://ece.uwaterloo.ca/~vganesh/TEACHING/W2015/ECE750-T28/index.html

● An example borrowed from another talk: “SAT Solving,
SMT Solving and Program Verification”
– http://www.win.tue.nl/mdseminar/pres/zantema-17-02-11.pdf

– but the example was incorrect in that talk! I have fixed it

● An exampled borrowed from a dReal benchmark
– dreal.github.io

● An example borrowed from “Reverse Engineering for
Beginners” by Dennis Yurichev
– beginners.re

https://ece.uwaterloo.ca/~vganesh/TEACHING/W2015/ECE750-T28/index.html
http://www.win.tue.nl/mdseminar/pres/zantema-17-02-11.pdf
http://dreal.github.io/
https://beginners.re/

Introduction to Logic

● Logic is fundamental to computer science

– constraint satisfaction problems

– compilers: type-checking

– hardware verification

– software verification
● Comes in many forms:

– propositional logic

– first-order logic

– higher-order logic

● Informally, “Boolean expressions”

● Simplest terms: “atoms”

– truth symbols (1 = true, 0 = false)

– variables (p, q, r, p1, q1, ...)

● Next level up: “literals”

– either an atom (A) or its negation (!A)
● Finally: “formulas”

– either a literal (L) or an application of a logical connective to
some formulas

– connectives: !F (negation), F1 & F2 (conjunction), F1 | F2
(disjunction), F1 -> F2 (implication), F1 <-> F2 (if and only if)

Propositional Logic

What Does “Solve” Mean?

● Make an “interpretation” (assign either 1 or 0 to every
variable in the formula)

● Substitute assignments for variables

● Evaluate each expression

– 0 & 1 = 0; 0 | 1 = 1; 1 -> 1 = 1...
● Under an interpretation, every propositional formula

evaluates to either 1 (true) or 0 (false)

What Does “Solve” Mean?

● A formula F is satisfiable iff there exists an interpretation
such that F is true.

● If no such interpretation exists, F is unsatisfiable.

● If every possible interpretation makes F true, then F is
valid.

– Exercise: prove duality between satisfiability and
validity, i.e. “F is valid iff !F is unsatisfiable”.

What Does “Solve” Mean?

● We can now define the SAT problem:

– Given a Boolean (propositional) formula F, decide
whether F is satisfiable.

● Sometimes we know the answer and want the
interpretation; sometimes we just want to know whether a
solution exists

● The job of a SAT solver is to find a satisfying interpretation,
or discover that none exist

Easy Way Out

● Why do we need special solvers?

● Try brute force!

● For a formula with N variables, how many interpretations?

– Each variable can be either 0 or 1, so 2 possibilities

– For N variables, 2N interpretations to check
● Oops, this is exponential in the worst case.

Not So Fast

● In fact, SAT is NP-complete

● This means that all of our current algorithms to solve SAT
are worst-case exponential

● How do we solve these things at all?

● SAT solvers are very interesting

– they're still exponential-time in the worst case

– but for many “practical” problems they are efficient!

How Do You Solve Sudoku?

● A lot of people have a very similar strategy:

– Figure out which squares have only one possible value,
and write those values there

– Then repeat this until you can't do it any more

– Now guess a (possible) value for some square

– Repeat this until you solve the puzzle

– If you get stuck, go back, make a different guess

How Do You Solve Sudoku?

● This can be expressed as an algorithm:

– Davis-Putnam-Logemann-Loveland (DPLL)
● DPLL is a search algorithm for solving SAT!

● First incarnation as Davis-Putnam algorithm in 1962;
refined to become DPLL

The DPLL Algorithm

● Unit resolution

– deduce new information

– a restricted form of a general procedure called “resolution”
● Given two clauses:

– C1 : p (a single literal, called a unit clause)

– C2 : (L1 | L2 | ... | !p | ... | Ln)

● Remove !p term from C2 and rewrite to obtain resolvent

– C2 : (L1 | L2 | ... | Ln)

● Performing all possible applications of unit resolution is called
Boolean Constraint Propagation (BCP)

● (I'm glossing over one detail: normal forms / CNF)

The DPLL Algorithm

bool DPLL (Formula F):
 F' = BCP(F)
 if F' = 1:
 return SAT
 else if F' = 0:
 return UNSAT
 else:
 p = ChooseVariable(F')
 if DPLL(F'[p := 1]):
 return SAT
 else:
 return DPLL(F'[p := 0])

Some Refinements to DPLL

● What is “ChooseVariable”?

– How do we choose?
● Random guess
● Use a heuristic

– Many different heuristics

– A good one: Variable State Independent Decaying Sum (VSIDS)

– Each variable has an “activity” that is increased if the variable is
involved in a conflict (unsatisfiable clause)

– Activity is periodically decayed by multiplying by some constant
k, 0 < k < 1

– ChooseVariable picks the variable with highest activity

Some Refinements to DPLL

● Conflict-Driven Clause Learning

– Guessing an assignment can lead to a conflict –
unsatisfiable under the guess we made

– Avoid making the same mistake again!

– We can “learn” a new clause that must also be satisfied

– e.g. first guess is “p = 1”, but formula is UNSAT before
we guess again; learn the clause “p = 0”

– This prunes the search space

Solving Sudoku with a SAT Solver

● We need to formalize the puzzle as a Boolean formula

– A set of constraints, all of which must be satisfied

– C1 & C2 & ... & Cn

● Encode the value in each square as nine variables:

– The square in row i, column j has value v (for
1 <= v <= 9) iff xi,j:v = 1

Solving Sudoku with a SAT Solver

● Every square holds some value

– x1,1:1 | x1,1:2 | ... | x1,1:9

● Every square holds exactly one value

– x1,1:1 -> !x1,1:2 ...

● Every square in the same row is different

– x1,1:1 -> !x1,2:1 ...

● Every square in the same column is different

– x1,1:1 -> !x2,1:1 ...

● Every square in a 3x3 subgrid is different

– x1,1:1 -> !x3,3:1 ...

● Some squares have known values (from the puzzle)

– x1,1:1 (if the puzzle gives us a 1 in row 1, column 1)

Solving Sudoku with a SAT Solver

● We can give this to a SAT solver, and solve Sudoku every
time!

● The interpretation we find will give us the actual solution

● It will also tell us if a puzzle can't be solved!

Can We Do “Better”?

● Lots of clauses just to specify the range of legal values for
one square (x81)

● Lots of clauses to say “these two squares aren't equal”

● This is correct...but not very elegant

● Converting to propositional logic is clunky

– and hard to maintain / debug
● Something with more expressive power...

Something Worse

● Find natural numbers a, b, c, d such that

– 2a > b + c

– 2b > c + d

– 2c > 3d

– 3d > a + c

● Apply the same strategy again:

– a has value n iff an = 1

● Then convert > and + to propositional terms

● What could possibly go wrong?!

Something Worse

● There are infinitely many natural numbers.

● We need an infinite number of variables.

● This is not allowed in Boolean logic.

Something Even Worse

This is a modified benchmark from the Flyspeck Project (formal proof of the Kepler Conjecture):

Notice that this is a (first-order) nonlinear inequality over the real numbers.
In general, the satisfiability/validity of such formulas is undecidable.

SMT

What is SMT?

● Satisfiability Modulo Theories

– theory of integers, bit-vectors, arrays, reals...
● Combine a SAT solver with theory solvers

– similar to a constraint solver, with SAT capabilities
● Motivations

– Easier to encode problems

– Easier to exploit logic structure / optimize
● DPLL(T) architecture

– “Purify” each literal into a single theory

– Set up shared variables to link theories

– Check satisfiability in each theory

– Exchange equalities over shared variables

Sudoku in SMT

● Use operations from theory of integers

– Equality

– Less than

– Greater than
● Generate code in SMT-LIBv2 format

– portable representation for SMT instances
● Try it yourself!

https://github.com/mtrberzi/sudoku2smt

Sudoku in SMT

● Variables: x11, x12, x19, x21, ...
– (declare­const x11 Int)

● Value specified by puzzle?
– (assert (= x11 4))

● Value not specified?
– (assert (>= x11 1)) (assert (<= x11 9))

● For each pair of values u, v in (same row, same column,
same 3x3 square):
– (assert (not (= u, v)))

Sudoku in SMT

● Generate SMT2 expressions for a puzzle

– November 21, 2008 issue of Imprint, 24 givens

● Statistics:

– 1517 SMT2 expressions (40KB of text)

– Solver (Z3) finds the solution in 0.44 seconds
● For an “extremely difficult” puzzle (28 givens):

– HoDoKu heuristic solver takes >10 seconds

– Z3 solves in 0.45 seconds

The Z3 SMT Solver

● High-performance general purpose solver

● Microsoft Research

– z3.codeplex.com
● Free for personal/academic use

● Many theories

– Linear real/integer arithmetic

– Bitvectors

– Uninterpreted functions

– Arrays

– Quantifiers
● C/C++, .NET, OCaml, Python, Java, F# APIs

● Program verification: Spec#, HAVOC, VCC, Boogie

● Part of the Static Driver Verifier in the Windows 7 DDK

https://z3.codeplex.com/

STP: Bitvector/Array Solver
● Project founder: Dr. Vijay Ganesh (UWaterloo!)

– V. Ganesh and D.L. Dill. A decision procedure for bit-vectors and arrays. Computer Aided Verification 2007: 519-531.

– stp.github.io/stp

● Solves constraints generated by program analysis tools

– Naturally applicable to bug finding and verification
● Very widely used

– KLEE symbolic fuzzer

– Stanford, Berkeley, MIT, NVIDIA, “a major microprocessor company”, Certain
Government Agencies

– Has found bugs in mplayer, evince, coreutils, crypto hash implementations
● Extremely high performance

– 2nd place in the bitvector category at SMT-Comp 2014

– 1st place in the bitvector category at SMT-Comp 2010 and 2006

– On a 412 MB input formula with 2.12 million 32-bit variables, array write terms that
are tens of thousands of levels deep, array reads with non-constant indices, STP
solves in 2 minutes

● MIT License

http://stp.github.io/stp

dReal: Real Formula Solver

● An SMT solver for first-order (quantified) nonlinear formulas over
real numbers
– dreal.github.io

● dReal uses a trick called “delta-completeness”:

– Satisfied to within a small error perturbation

– Can use numerical techniques and symbolic approaches
● GPL license

● Remember this formula from earlier?

– It's unsatisfiable; dReal proves this in less than one second

http://dreal.github.io/

Finding Hash Collisions

● Quick review

– map data of arbitrary size to a fixed-size value called
the “hash”

– changing the original data will change the hash

– used in crypto for data validation, etc.
● This example from “Reverse Engineering for Beginners” by

Dennis Yurichev

– beginners.re

– we skip some of the decompilation and reversing

https://beginners.re/

Finding Hash Collisions

#define C1 0x5d7e0d1f2e0f1f84
#define C2 0x388d76aee8cb1500
#define C3 0xd2e9ee7e83c4285b
uint64_t hash(uint64_t v) {
 v = v * C1;
 v = _lrotr(v, v&0xf); // rotate right
 v = v ^ C2;
 v = _lrotl(v, v&0xf); // rotate left
 v = v + C3;
 v = _lrotl(v, v%60); // rotate left
 return v;
}

● We want to find two different values for v so that hash(v1) = hash(v2)
● We're not cryptanalysts, so we won't try to break the hash that way
● Brute-force is out of the question, since values are 64 bits
● Can represent this with theory of bitvectors

Finding Hash Collisions
from z3 import *
C1=0x5D7E0D1F2E0F1F84
C2=0x388D76AEE8CB1500
C3=0xD2E9EE7E83C4285B
inp, i1, i2, i3, i4, i5, i6, outp = BitVecs('inp i1 i2 i3 i4 i5 i6
outp', 64)
s = Solver()
s.add(i1==inp*C1)
s.add(i2==RotateRight (i1, i1 & 0xF))
s.add(i3==i2 ^ C2)
s.add(i4==RotateLeft(i3, i3 & 0xF))
s.add(i5==i4 + C3)
s.add(outp==RotateLeft (i5, URem(i5, 60)))
s.add(outp==10816636949158156260)
print s.check()
m=s.model()
print m
print (" inp=0x%X" % m[inp].as_long())
print ("outp=0x%X" % m[outp].as_long())

● Implement the algorithm directly in Z3 Python API
● Determine satisfiability and find a satisfying model (given output, find input)
● Z3 finds a model in 0.326 seconds

Finding Hash Collisions
from z3 import *
C1=0x5D7E0D1F2E0F1F84
C2=0x388D76AEE8CB1500
C3=0xD2E9EE7E83C4285B
inp, i1, i2, i3, i4, i5, i6, outp = BitVecs('inp i1 i2 i3 i4 i5 i6
outp', 64)
s = Solver()
s.add(i1==inp*C1)
s.add(i2==RotateRight (i1, i1 & 0xF))
s.add(i3==i2 ^ C2)
s.add(i4==RotateLeft(i3, i3 & 0xF))
s.add(i5==i4 + C3)
s.add(outp==RotateLeft (i5, URem(i5, 60)))
s.add(outp==10816636949158156260)
s.add(inp!=0x12EE577B63E80B73)
print s.check()
m=s.model()
print m
print (" inp=0x%X" % m[inp].as_long())
print ("outp=0x%X" % m[outp].as_long())
● Use the input we found last time as a constraint (inp != ...) to find a different input
● Now this will find a collision
● Z3 finds one in 0.328 seconds

Finding Hash Collisions
from z3 import *
C1=0x5D7E0D1F2E0F1F84
C2=0x388D76AEE8CB1500
C3=0xD2E9EE7E83C4285B
inp, i1, i2, i3, i4, i5, i6, outp = BitVecs('inp i1 i2 i3 i4 i5 i6 outp', 64)
s = Solver()
s.add(i1==inp*C1)
s.add(i2==RotateRight (i1, i1 & 0xF))
s.add(i3==i2 ^ C2)
s.add(i4==RotateLeft(i3, i3 & 0xF))
s.add(i5==i4 + C3)
s.add(outp==RotateLeft (i5, URem(i5, 60)))
s.add(outp==10816636949158156260)
result=[]
while True:
 if s.check() == sat:
 m = s.model()
 print m[inp]
 result.append(m)
 block = []
 for d in m:
 c=d()
 block.append(c != m[d])
 s.add(Or(block))
 else:
 print "results total=",len(result)
 break

● Iteratively find all inputs that map to this
output

● Essentially, after finding a satisfying input,
disallow it and run again, until UNSAT

● Z3 finds all 16 inputs that map to this output
in 0.689 seconds

Finding Hash Collisions

● This was an example of “symbolic execution”

● Many tools to do this

– KLEE: symbolic virtual machine

– EXE: automatically generates inputs of death

– CATCHCONV: finds type mismatch bugs
● All of these tools use SAT/SMT

Timsort: There Is A Bug

● Broken implementation of sorting algorithm

– Affects Java, Python, Android

– Invariant is not maintained during sort
● Formally proven incorrect using KeY (object-oriented

verification)
– http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

– Uses a SAT or SMT solver as its backend...but there's no documentation

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

Microfluidic Circuit Design

● Chemical synthesis/analysis with small volumes of fluid

● Currently designed by hand, trial and error

● Design automation

– Specify the behaviour

– Generate constraints

– Use SMT solver
● Relies heavily on nonlinear theories of reals

● For more info, come to our FYDP talk...

Combined Hardware/Software
Embedded Systems Analysis

● Model hardware and software together

● Bit-level behaviour of CPU, memory

– Theory of bitvectors and bitvector operations

– Theory of arrays
● “Simulate” hardware as it executes a program

● Find an input sequence with desired behaviour

● Exploit hardware bugs or deep internal state

Combined Hardware/Software
Embedded Systems Analysis

● Definitions of some terms:

– speedrun: a playthrough of a video game with the intent of
completing it as fast as possible

– tool-assisted speedrun: a speedrun that is produced by
means of emulation such as slow-motion, frame advance, and
re-recording

● The TAS problem: given a video game and an integer n, find a
sequence of inputs that completes the game in at most n frames
(or find that this is not possible)

● This reduces to the bounded halting problem

– NP-complete

TAS is SAT Spelled Backwards

● Ultimate goal: solve the TAS problem for some game(s)

– construct representation of game hardware and software for SMT solver

– look for a satisfying input over n input frames

● Side goals: improve state of the art for this problem

– find new optimizations for this class of instances

– develop tools that are usable for more general embedded systems

– produce useful results or difficult benchmarks

● motivates SAT and SMT solver improvements

● Could have huge implications for:

– formal methods / program checking

– symbolic execution / automated bug detection

– hardware verification

Conclusion

● SAT is a fundamental problem in CS

– a “classic” hard problem
● SMT is the next generation of SAT

● Many solvers and tools

● Widely applicable to many problem domains

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

