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Overview

● Boolean Satisfiability (SAT) problem

● SAT solvers: basic algorithms, enhancements

● Limitations of SAT

● SMT solvers: overview

● Examples of SMT solvers (implementations)

● Practical applications of SMT
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● Some ideas and definitions from ECE750T28 (Computer-
Aided Reasoning for SE) notes
– https://ece.uwaterloo.ca/~vganesh/TEACHING/W2015/ECE750-T28/index.html

● An example borrowed from another talk: “SAT Solving, 
SMT Solving and Program Verification”
– http://www.win.tue.nl/mdseminar/pres/zantema-17-02-11.pdf

– but the example was incorrect in that talk! I have fixed it

● An exampled borrowed from a dReal benchmark
– dreal.github.io

● An example borrowed from “Reverse Engineering for 
Beginners” by Dennis Yurichev
– beginners.re

https://ece.uwaterloo.ca/~vganesh/TEACHING/W2015/ECE750-T28/index.html
http://www.win.tue.nl/mdseminar/pres/zantema-17-02-11.pdf
http://dreal.github.io/
https://beginners.re/


  

Introduction to Logic

● Logic is fundamental to computer science

– constraint satisfaction problems

– compilers: type-checking

– hardware verification

– software verification
● Comes in many forms:

– propositional logic

– first-order logic

– higher-order logic



  

● Informally, “Boolean expressions”

● Simplest terms: “atoms”

– truth symbols (1 = true, 0 = false)

– variables (p, q, r, p1, q1, ...)

● Next level up: “literals”

– either an atom (A) or its negation (!A)
● Finally: “formulas”

– either a literal (L) or an application of a logical connective to 
some formulas

– connectives: !F (negation), F1 & F2 (conjunction), F1 | F2 
(disjunction), F1 -> F2 (implication), F1 <-> F2 (if and only if)

Propositional Logic



  

What Does “Solve” Mean?

● Make an “interpretation” (assign either 1 or 0 to every 
variable in the formula)

● Substitute assignments for variables

● Evaluate each expression

– 0 & 1 = 0; 0 | 1 = 1; 1 -> 1 = 1...
● Under an interpretation, every propositional formula 

evaluates to either 1 (true) or 0 (false)



  

What Does “Solve” Mean?

● A formula F is satisfiable iff there exists an interpretation 
such that F is true.

● If no such interpretation exists, F is unsatisfiable.

● If every possible interpretation makes F true, then F is 
valid.

– Exercise: prove duality between satisfiability and 
validity, i.e. “F is valid iff !F is unsatisfiable”.



  

What Does “Solve” Mean?

● We can now define the SAT problem:

– Given a Boolean (propositional) formula F, decide 
whether F is satisfiable.

● Sometimes we know the answer and want the 
interpretation; sometimes we just want to know whether a 
solution exists

● The job of a SAT solver is to find a satisfying interpretation, 
or discover that none exist



  

Easy Way Out

● Why do we need special solvers?

● Try brute force!

● For a formula with N variables, how many interpretations?

– Each variable can be either 0 or 1, so 2 possibilities

– For N variables, 2N interpretations to check
● Oops, this is exponential in the worst case.



  

Not So Fast

● In fact, SAT is NP-complete

● This means that all of our current algorithms to solve SAT 
are worst-case exponential

● How do we solve these things at all?

● SAT solvers are very interesting

– they're still exponential-time in the worst case

– but for many “practical” problems they are efficient!



  

How Do You Solve Sudoku?

● A lot of people have a very similar strategy:

– Figure out which squares have only one possible value, 
and write those values there

– Then repeat this until you can't do it any more

– Now guess a (possible) value for some square

– Repeat this until you solve the puzzle

– If you get stuck, go back, make a different guess



  

How Do You Solve Sudoku?

● This can be expressed as an algorithm:

– Davis-Putnam-Logemann-Loveland (DPLL)
● DPLL is a search algorithm for solving SAT!

● First incarnation as Davis-Putnam algorithm in 1962; 
refined to become DPLL



  

The DPLL Algorithm

● Unit resolution

– deduce new information

– a restricted form of a general procedure called “resolution”
● Given two clauses:

– C1 : p (a single literal, called a unit clause)

– C2 : (L1 | L2 | ... | !p | ... | Ln)

● Remove !p term from C2 and rewrite to obtain resolvent

– C2 : (L1 | L2 | ... | Ln)

● Performing all possible applications of unit resolution is called 
Boolean Constraint Propagation (BCP)

● (I'm glossing over one detail: normal forms / CNF)



  

The DPLL Algorithm

bool DPLL (Formula F):
  F' = BCP(F)
  if F' = 1:
    return SAT
  else if F' = 0:
    return UNSAT
  else:
    p = ChooseVariable(F')
    if DPLL(F'[p := 1]):
      return SAT
    else:
      return DPLL(F'[p := 0])



  

Some Refinements to DPLL

● What is “ChooseVariable”?

– How do we choose?
● Random guess
● Use a heuristic

– Many different heuristics

– A good one: Variable State Independent Decaying Sum (VSIDS)

– Each variable has an “activity” that is increased if the variable is 
involved in a conflict (unsatisfiable clause)

– Activity is periodically decayed by multiplying by some constant 
k, 0 < k < 1

– ChooseVariable picks the variable with highest activity



  

Some Refinements to DPLL

● Conflict-Driven Clause Learning

– Guessing an assignment can lead to a conflict – 
unsatisfiable under the guess we made

– Avoid making the same mistake again!

– We can “learn” a new clause that must also be satisfied

– e.g. first guess is “p = 1”, but formula is UNSAT before 
we guess again; learn the clause “p = 0”

– This prunes the search space



  

Solving Sudoku with a SAT Solver

● We need to formalize the puzzle as a Boolean formula

– A set of constraints, all of which must be satisfied

– C1 & C2 & ... & Cn

● Encode the value in each square as nine variables:

– The square in row i, column j has value v (for 
1 <= v <= 9) iff xi,j:v = 1



  

Solving Sudoku with a SAT Solver

● Every square holds some value

– x1,1:1 | x1,1:2 | ... | x1,1:9

● Every square holds exactly one value

– x1,1:1 -> !x1,1:2 ...

● Every square in the same row is different

– x1,1:1 -> !x1,2:1 ...

● Every square in the same column is different

– x1,1:1 -> !x2,1:1 ...

● Every square in a 3x3 subgrid is different

– x1,1:1 -> !x3,3:1 ...

● Some squares have known values (from the puzzle)

– x1,1:1 (if the puzzle gives us a 1 in row 1, column 1)



  

Solving Sudoku with a SAT Solver

● We can give this to a SAT solver, and solve Sudoku every 
time!

● The interpretation we find will give us the actual solution

● It will also tell us if a puzzle can't be solved!



  

Can We Do “Better”?

● Lots of clauses just to specify the range of legal values for 
one square (x81)

● Lots of clauses to say “these two squares aren't equal”

● This is correct...but not very elegant

● Converting to propositional logic is clunky

– and hard to maintain / debug
● Something with more expressive power...



  

Something Worse

● Find natural numbers a, b, c, d such that

– 2a > b + c

– 2b > c + d

– 2c > 3d

– 3d > a + c

● Apply the same strategy again:

– a has value n iff an = 1

● Then convert > and + to propositional terms

● What could possibly go wrong?!



  

Something Worse

● There are infinitely many natural numbers.

● We need an infinite number of variables.

● This is not allowed in Boolean logic.



  

Something Even Worse

This is a modified benchmark from the Flyspeck Project (formal proof of the Kepler Conjecture):

Notice that this is a (first-order) nonlinear inequality over the real numbers.
In general, the satisfiability/validity of such formulas is undecidable.



  

SMT



  

What is SMT?

● Satisfiability Modulo Theories

– theory of integers, bit-vectors, arrays, reals...
● Combine a SAT solver with theory solvers

– similar to a constraint solver, with SAT capabilities
● Motivations

– Easier to encode problems

– Easier to exploit logic structure / optimize
● DPLL(T) architecture

– “Purify” each literal into a single theory

– Set up shared variables to link theories

– Check satisfiability in each theory

– Exchange equalities over shared variables



  

Sudoku in SMT

● Use operations from theory of integers

– Equality

– Less than

– Greater than
● Generate code in SMT-LIBv2 format

– portable representation for SMT instances
● Try it yourself!

https://github.com/mtrberzi/sudoku2smt



  

Sudoku in SMT

● Variables: x11, x12, x19, x21, ...
– (declare­const x11 Int)

● Value specified by puzzle?
– (assert (= x11 4))

● Value not specified?
– (assert (>= x11 1)) (assert (<= x11 9))

● For each pair of values u, v in (same row, same column, 
same 3x3 square):
– (assert (not (= u, v)))



  

Sudoku in SMT

● Generate SMT2 expressions for a puzzle

– November 21, 2008 issue of Imprint, 24 givens

● Statistics:

– 1517 SMT2 expressions (40KB of text)

– Solver (Z3) finds the solution in 0.44 seconds
● For an “extremely difficult” puzzle (28 givens):

– HoDoKu heuristic solver takes >10 seconds

– Z3 solves in 0.45 seconds



  

The Z3 SMT Solver

● High-performance general purpose solver

● Microsoft Research

– z3.codeplex.com
● Free for personal/academic use

● Many theories

– Linear real/integer arithmetic

– Bitvectors

– Uninterpreted functions

– Arrays

– Quantifiers
● C/C++, .NET, OCaml, Python, Java, F# APIs

● Program verification: Spec#, HAVOC, VCC, Boogie

● Part of the Static Driver Verifier in the Windows 7 DDK

https://z3.codeplex.com/


  

STP: Bitvector/Array Solver
● Project founder: Dr. Vijay Ganesh (UWaterloo!)

– V. Ganesh and D.L. Dill. A decision procedure for bit-vectors and arrays. Computer Aided Verification 2007: 519-531.

– stp.github.io/stp

● Solves constraints generated by program analysis tools

– Naturally applicable to bug finding and verification
● Very widely used

– KLEE symbolic fuzzer

– Stanford, Berkeley, MIT, NVIDIA, “a major microprocessor company”, Certain 
Government Agencies

– Has found bugs in mplayer, evince, coreutils, crypto hash implementations
● Extremely high performance

– 2nd place in the bitvector category at SMT-Comp 2014

– 1st place in the bitvector category at SMT-Comp 2010 and 2006

– On a 412 MB input formula with 2.12 million 32-bit variables, array write terms that 
are tens of thousands of levels deep, array reads with non-constant indices, STP 
solves in 2 minutes

● MIT License

http://stp.github.io/stp


  

dReal: Real Formula Solver

● An SMT solver for first-order (quantified) nonlinear formulas over 
real numbers
– dreal.github.io

● dReal uses a trick called “delta-completeness”:

– Satisfied to within a small error perturbation

– Can use numerical techniques and symbolic approaches
● GPL license

● Remember this formula from earlier?

– It's unsatisfiable; dReal proves this in less than one second 

http://dreal.github.io/


  

Finding Hash Collisions

● Quick review

– map data of arbitrary size to a fixed-size value called 
the “hash”

– changing the original data will change the hash

– used in crypto for data validation, etc.
● This example from “Reverse Engineering for Beginners” by 

Dennis Yurichev

– beginners.re

– we skip some of the decompilation and reversing

https://beginners.re/


  

Finding Hash Collisions

#define C1 0x5d7e0d1f2e0f1f84
#define C2 0x388d76aee8cb1500
#define C3 0xd2e9ee7e83c4285b
uint64_t hash(uint64_t v) {
  v = v * C1;
  v = _lrotr(v, v&0xf); // rotate right
  v = v ^ C2;
  v = _lrotl(v, v&0xf); // rotate left
  v = v + C3;
  v = _lrotl(v, v%60); // rotate left
  return v;
}

● We want to find two different values for v so that hash(v1) = hash(v2)
● We're not cryptanalysts, so we won't try to break the hash that way
● Brute-force is out of the question, since values are 64 bits
● Can represent this with theory of bitvectors



  

Finding Hash Collisions
from z3 import *
C1=0x5D7E0D1F2E0F1F84
C2=0x388D76AEE8CB1500
C3=0xD2E9EE7E83C4285B
inp, i1, i2, i3, i4, i5, i6, outp = BitVecs('inp i1 i2 i3 i4 i5 i6 
outp', 64)
s = Solver()
s.add(i1==inp*C1)
s.add(i2==RotateRight (i1, i1 & 0xF))
s.add(i3==i2 ^ C2)
s.add(i4==RotateLeft(i3, i3 & 0xF))
s.add(i5==i4 + C3)
s.add(outp==RotateLeft (i5, URem(i5, 60)))
s.add(outp==10816636949158156260)
print s.check()
m=s.model()
print m
print (" inp=0x%X" % m[inp].as_long())
print ("outp=0x%X" % m[outp].as_long())

● Implement the algorithm directly in Z3 Python API
● Determine satisfiability and find a satisfying model (given output, find input)
● Z3 finds a model in 0.326 seconds



  

Finding Hash Collisions
from z3 import *
C1=0x5D7E0D1F2E0F1F84
C2=0x388D76AEE8CB1500
C3=0xD2E9EE7E83C4285B
inp, i1, i2, i3, i4, i5, i6, outp = BitVecs('inp i1 i2 i3 i4 i5 i6 
outp', 64)
s = Solver()
s.add(i1==inp*C1)
s.add(i2==RotateRight (i1, i1 & 0xF))
s.add(i3==i2 ^ C2)
s.add(i4==RotateLeft(i3, i3 & 0xF))
s.add(i5==i4 + C3)
s.add(outp==RotateLeft (i5, URem(i5, 60)))
s.add(outp==10816636949158156260)
s.add(inp!=0x12EE577B63E80B73)
print s.check()
m=s.model()
print m
print (" inp=0x%X" % m[inp].as_long())
print ("outp=0x%X" % m[outp].as_long())
● Use the input we found last time as a constraint (inp != ...) to find a different input
● Now this will find a collision
● Z3 finds one in 0.328 seconds



  

Finding Hash Collisions
from z3 import *
C1=0x5D7E0D1F2E0F1F84
C2=0x388D76AEE8CB1500
C3=0xD2E9EE7E83C4285B
inp, i1, i2, i3, i4, i5, i6, outp = BitVecs('inp i1 i2 i3 i4 i5 i6 outp', 64)
s = Solver()
s.add(i1==inp*C1)
s.add(i2==RotateRight (i1, i1 & 0xF))
s.add(i3==i2 ^ C2)
s.add(i4==RotateLeft(i3, i3 & 0xF))
s.add(i5==i4 + C3)
s.add(outp==RotateLeft (i5, URem(i5, 60)))
s.add(outp==10816636949158156260)
result=[]
while True:
    if s.check() == sat:
        m = s.model()
        print m[inp]
        result.append(m)
        block = []
        for d in m:
            c=d()
            block.append(c != m[d])
        s.add(Or(block))
    else:
            print "results total=",len(result)
            break

● Iteratively find all inputs that map to this 
output

● Essentially, after finding a satisfying input, 
disallow it and run again, until UNSAT

● Z3 finds all 16 inputs that map to this output 
in 0.689 seconds



  

Finding Hash Collisions

● This was an example of “symbolic execution”

● Many tools to do this

– KLEE: symbolic virtual machine

– EXE: automatically generates inputs of death

– CATCHCONV: finds type mismatch bugs
● All of these tools use SAT/SMT



  

Timsort: There Is A Bug

● Broken implementation of sorting algorithm

– Affects Java, Python, Android

– Invariant is not maintained during sort
● Formally proven incorrect using KeY (object-oriented 

verification)
– http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

– Uses a SAT or SMT solver as its backend...but there's no documentation

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/


  

Microfluidic Circuit Design

● Chemical synthesis/analysis with small volumes of fluid

● Currently designed by hand, trial and error

● Design automation

– Specify the behaviour

– Generate constraints

– Use SMT solver
● Relies heavily on nonlinear theories of reals

● For more info, come to our FYDP talk...



  

Combined Hardware/Software 
Embedded Systems Analysis

● Model hardware and software together

● Bit-level behaviour of CPU, memory

– Theory of bitvectors and bitvector operations

– Theory of arrays
● “Simulate” hardware as it executes a program

● Find an input sequence with desired behaviour

● Exploit hardware bugs or deep internal state



  

Combined Hardware/Software 
Embedded Systems Analysis

● Definitions of some terms:

– speedrun: a playthrough of a video game with the intent of 
completing it as fast as possible

– tool-assisted speedrun: a speedrun that is produced by 
means of emulation such as slow-motion, frame advance, and 
re-recording

● The TAS problem: given a video game and an integer n, find a 
sequence of inputs that completes the game in at most n frames 
(or find that this is not possible)

● This reduces to the bounded halting problem

– NP-complete



  

TAS is SAT Spelled Backwards

● Ultimate goal: solve the TAS problem for some game(s)

– construct representation of game hardware and software for SMT solver

– look for a satisfying input over n input frames

● Side goals: improve state of the art for this problem

– find new optimizations for this class of instances

– develop tools that are usable for more general embedded systems

– produce useful results or difficult benchmarks

● motivates SAT and SMT solver improvements

● Could have huge implications for:

– formal methods / program checking

– symbolic execution / automated bug detection

– hardware verification



  

Conclusion

● SAT is a fundamental problem in CS

– a “classic” hard problem
● SMT is the next generation of SAT

● Many solvers and tools

● Widely applicable to many problem domains
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