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Rubik’s cube
diameter = 20

Shortest Paths in Huge Graphs

social network
6 degrees of separation
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6 Degrees of Separation (Small World)
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PERMANENT LINK TO THIS COMIC: HTTP://XKCD.COM/1010/
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Erdős Number

I have Erdos number 2
(along with 9266 other people)

Erdos wrote papers with these 3
(and 508 others)

Paul Erdős

Jeffrey Shallit
Jaroslav Nešetřil Dieter Kratsch
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Motion Planning
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Shortest Paths

linear programming
simplex method network routing
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Shortest Path Algorithms

• in a graph

• in a geometric space 

types of questions

•given start point, end point, find shortest path

•“single source”: given start point, find shortest paths to all 
end points 

•“all pairs”: find shortest path for all start points, all end 
points

Also “query” versions.
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Shortest Paths in Graphs
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Shortest Paths in Graphs
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Finding Shortest Paths in Graphs
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Driving Distance Between Cities (/driving-distance-between-cities/)

Driving Distance Between Cities 
Source: http://www.zapmash.com/DrivingMileagebetweenCities.html

(http://www.zapmash.com/DrivingMileagebetweenCities.html)

 Visit Site (http://www.zapmash.com/DrivingMileagebetweenCities.html)

 View Image (http://transcanadahighway.net/images/bc11.jpg)   Report (/contact/)

(/driving-distance-between-
cities/pyktulum.com*wp-

content*uploads*2011*07*DrivingDistances.png/pyktulum.com*2011*08*07*gettingaroundintheyucatan/)

Driving Distance Between Cities

(/driving-distance-between-
cities/)

(/mapquest-distance-between-
cities/o.aolcdn.com*os*mapquest*help*help-

topic-
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MapQuest Distance Between

Cities

(/mapquest-distance-between-
cities/)

(/driving-distance-between-
cities/www.villamarinelifestylescalifornia.com*UserFiles*Driving
20Distances.jpg/www.villamarinelifestylescalifornia.com*page*Driving_Distances.../)

Driving Distance Between Cities

(/driving-distance-between-
cities/)

(/driving-

 

Animals (/animals/), Architecture
(/architecture/), Art (/art/), Beauty (/beauty/),

Books (/books/), Crafts (/crafts/), Cute
(/cute/), Design (/design/), DIY (/diy/), Drink
(/drink/), Fashion (/fashion/), Films (/films/),

Food (/food/), Hairstyles (/hairstyles/), Home
Decor (/home-decor/), Humor (/humor/),

Illusions (/illusions/), Movie (/movie/), Music
(/music/), Nature (/nature/), People

(/people/), Personal (/personal/), Places
(/places/), Products (/products/), Science

(/science/), Technology (/technology/),
Weddings (/weddings/),



 

17 × 17 = 289

Can we store all the answers?

n × n = n2
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Quadratic Growth

y =n

y =n2

n

y
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How to Find Shortest Paths

Try all paths and see which is shortest?

How many shortest paths are there?
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How to Find Shortest Paths

Try all paths and see which is shortest?

How many shortest paths are there?

2n paths 

graph with 2n+2 vertices

Thursday, 16 July, 15



Exponential Growth

y =n

y =n2

n

y

y =2n

polynomial O(n2)exponential  O(2n)
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Shortest Paths - String Computer4 The Quest for the Shortest Route 91

Fig. 4.1 (a) Ingredients and tools used for realizing a graph: balls, strings, scissors and a Swiss
army knife. (b) A graph with six vertices and nine edges built with balls and strings. (c) A shortest
path is given by a sequence of strings in tension

gunpowder until all of the graph is completely burnt out. The time at which a
particular ball v burns will be proportional to the distance from s to v, i.e., to the
length of the shortest path from s to v. Furthermore, the predecessor of v in this
shortest path is given by the line of gunpowder .u; v/ which caused v to light up.
Once again, Nature computes shortest routes!

4.5 A Simple Idea

Dijkstra thought about his algorithm on a sunny morning in 1956, while drinking
coffee with his wife in a cafe terrace in Amsterdam. To find the shortest path
between two vertices, he considered the more general problem of finding the shortest
path from a given source vertex to all other vertices. As we saw in the previous
chapters, an algorithm is defined by a finite sequence of basic operations, which a
particular executor (such as the CPU of a computer) is able to perform in order to
produce a final result starting from some input data. In our setting, the input is given
by a weighted graph and a starting vertex s. The final result that we would like to
obtain as output is, for any vertex v, its distance from vertex s (denoted by d.v/) and
its predecessor in a shortest path from s to v (denoted by p.v/). As we will see next,
once all distances d.v/ are available, then also the predecessors p.v/ can be easily
computed. In the following, we will thus restrict ourselves only to the computation
of the distances d.v/.

single source
shortest paths

Thursday, 16 July, 15



Dijkstra’s Algorithm, 1959

The question of whether Machines Can Think is about as 
relevant as the question of whether Submarines Can Swim.

The first challenge for computing 
science is to discover how to maintain 
order in a finite, but very large, discrete 
universe that is intricately intertwined.

Edsger W. Dijkstra

Thursday, 16 July, 15
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Dijkstra’s Algorithm
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Find the shortest path from Toronto to Philadelphia.
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Dijkstra’s Algorithm

running time  O(m + n log n) using Fibonacci heaps      

   m = number of edges
   n = number of vertices

(Fredmand and Tarjan, 1987)
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Paths through Space

desire paths
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Paths through Space
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Paths through Space

Map data ©2014 Google 100 m 
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Shortest Paths in 2D

Thursday, 16 July, 15



T

S

S

T
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Shortest Paths in 2D

O(n) O(n log n)
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Funnel Algorithm, O(n)

Shortest Paths in a Polygon

Idea:
• triangulate the polygon
• find path in triangulation
• narrow it down

S

T
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Funnel Algorithm, O(n)

Shortest Paths in a Polygon

Idea:
• triangulate the polygon
• find path in triangulation
• narrow it down

S

T

S

T
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Shortest Paths in the Plane with Obstacles
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S
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T

S

two locally shortest (“geodesic”) paths

Shortest Paths in the Plane with Obstacles
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Make a graph out of visible corners.
Apply Dijkstra’s graph algorithm. 

Using Dijkstra’s graph algorithm.
Shortest Paths in the Plane with Obstacles

Too many edges!
O(n2)
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Continuous Dijkstra   
Shortest Paths in the Plane
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Continuous Dijkstra   
Shortest Paths in the Plane
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Continuous Dijkstra   
Shortest Paths in the Plane
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Continuous Dijkstra   
Shortest Paths in the Plane
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Continuous Dijkstra   
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Continuous Dijkstra   
Shortest Paths in the Plane
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Continuous Dijkstra   
Shortest Paths in the Plane
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Continuous Dijkstra   
Shortest Paths in the Plane
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Continuous Dijkstra   
Shortest Paths in the Plane
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Continuous Dijkstra   
Shortest Paths in the Plane

  O(n log n)  Mitchell,  Hershberger & Suri, ‘93  
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Moving Away from Flatland
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Shortest Paths in 3D ‒ Polyhedral Surfaces

Paul Bourke

Rineau and Yvinec
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why does this generalize 2D with obstacles?

T

S

Shortest Paths in 3D ‒ Polyhedral Surfaces
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why does this generalize 2D with obstacles?

T

S

Shortest Paths in 3D ‒ Polyhedral Surfaces
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                 Dudeney, The Canterbury Puzzles, 1958

?

The spider and the fly problem
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A puzzle from Dudeney’s, 
!e Canterbury Puzzles (1908)

Inside a rectangular room, measuring 30 feet in length and 12 feet in width and height, a spider is at a 
point on the middle of one of the end walls, 1 foot from the ceiling, as at A, and a "y is on the opposite 
wall, 1 foot from the "oor in the centre, as shown at B. What is the shortest distance that the spider must 
crawl in order to reach the "y, which remains stationary? Of course the spider never drops or uses its web, 
but crawls fairly.

What is the shortest path among the possibilities below?  Sketch the shortest path on the box above.

A A

A

A

B

BB

B

Lubiw, CS4U, 2014

locally shortest 
paths are 
straight lines in 
unfoldings
      

The spider and the fly problem
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The spider and the fly problem
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the spider and the fly problem
                

Shortest Paths on Polyhedon
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Shortest Paths on Polyhedon

Shortest paths on a convex polyhedron
  O(n log n) Schreiber and Sharir `08

Shortest paths on a general polyhedron/polyhedral terrain
   O(n2)  Chen and Han `96

running times of algorithms

Thursday, 16 July, 15



Shortest Paths on Polyhedral Surfaces

Copyright © 2005 by the Association for Computing Machinery, Inc. 
Permission to make digital or hard copies of part or all of this work for personal or classroom 
use is granted without fee provided that copies are not made or distributed for commercial 
advantage and that copies bear this notice and the full citation on the first page. Copyrights 
for components of this work owned by others than ACM must be honored. Abstracting with 
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to 
lists, requires prior specific permission and/or a fee. Request permissions from Permissions 
Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org. 
© 2005 ACM 0730-0301/05/0700-0553 $5.00 

Fast Exact and Approximate Geodesics on Meshes
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Abstract
The computation of geodesic paths and distances on triangle
meshes is a common operation in many computer graphics applica-
tions. We present several practical algorithms for computing such
geodesics from a source point to one or all other points efficiently.
First, we describe an implementation of the exact “single source,
all destination” algorithm presented by Mitchell, Mount, and Pa-
padimitriou (MMP). We show that the algorithm runs much faster
in practice than suggested by worst case analysis. Next, we extend
the algorithm with a merging operation to obtain computationally
efficient and accurate approximations with bounded error. Finally,
to compute the shortest path between two given points, we use a
lower-bound property of our approximate geodesic algorithm to ef-
ficiently prune the frontier of the MMP algorithm, thereby obtain-
ing an exact solution even more quickly.

Keywords: shortest path, geodesic distance.

1 Introduction
In this paper we present practical methods for computing both exact
and approximate shortest (i.e. geodesic) paths on a triangle mesh.
These geodesic paths typically cut across faces in the mesh and are
therefore not found by the traditional graph-based Dijkstra algo-
rithm for shortest paths.
The computation of geodesic paths is a common operation in many
computer graphics applications. For example, parameterizing a
mesh often involves cutting the mesh into one or more charts
(e.g. [Krishnamurthy and Levoy 1996; Sander et al. 2003]), and
the result generally has less distortion and better packing efficiency
if the cuts are geodesic. Geodesic paths are used in segmenting a
mesh into subparts, as done in [Katz and Tal 2003; Funkhouser et al.
2004]. Mesh editing systems such as [Kobbelt et al. 1998] also use
geodesics to delineate the extents of editing operations. Simulating
fire on a mesh [Lee et al. 2001] also benefits from geodesics.
In addition, geodesic paths establish a surface distance metric,
which is an essential building block for many other techniques. For
example, radial-basis interpolation over a mesh requires calcula-
tion of geodesic distances, and is used in numerous applications
such as skinning [Sloan et al. 2001], mesh watermarking [Praun
et al. 1999], and the definition of surface vector fields [Praun et al.
2000]. Shape classification algorithms such as [Hilaga et al. 2001]
use Morse analysis of a geodesic distance field. Parameterization
metrics based on isomaps [Zigelman et al. 2002; Zhou et al. 2004;
Peyré and Cohen 2005] are also driven by geodesic distances.
In this paper we explore the problem of producing both exact and
approximate solutions for geodesic paths (and hence distances) on
triangle meshes (Figure 1). We present three contributions:
Exact algorithm We first present an efficient implementation of
the exact geodesic algorithm by Mitchell, Mount, and Papadim-
itriou (MMP) [1987]. Using a simple parameterization of the dis-

Figure 1: Geodesic paths from a source vertex, and isolines of the
geodesic distance function.

tance function over the edges, the implementation is actually prac-
tical even though, to our knowledge, it has never been done pre-
viously. We demonstrate that the algorithm’s worst case running
time of O(n2 log n) is pessimistic, and that in practice, the algo-
rithm runs in sub-quadratic time. For instance, we can compute
the exact geodesic distance from a source point to all vertices of a
400K-triangle mesh in about one minute.
Approximation algorithm We extend the algorithm with a merg-
ing operation to obtain computationally efficient and accurate ap-
proximations with bounded error. In practice, the algorithm runs in
O(n log n) time even for small error thresholds.
Exact geodesic path between two points We show how to
efficiently obtain the exact solution to the “single source, single
destination” problem, by using a lower-bound property of our ap-
proximation algorithm to prune the frontier of the MMP algorithm.
In practice, we compute the shortest path between two points on a
1M-triangle mesh in just a few seconds.

2 Related work
The MMP algorithm [Mitchell et al. 1987] provides an exact solu-
tion for the “single source, all destination” shortest path problem
on a triangle mesh. Their algorithm partitions each mesh edge into
a set of intervals (windows) over which the exact distance compu-
tation can be performed atomically. These windows are propagated
in a “continuous Dijkstra”-like manner. They prove a worst case
running time of O(n2 log n). Unfortunately, as far as we know the
MMP algorithm has not been implemented previously and thus has
not made its way into practice.
An exact geodesic algorithm with worst case time complexity of
O(n2) was described by Chen and Han [1996] and partially imple-
mented by Kaneva and O’Rourke [2000]. We show that our MMP
implementation runs many times faster than that implementation.
Kapoor [1999] describes an algorithm for the “single source, sin-
gle destination” geodesic path between two given mesh vertices,
in O(n log2 n) time. This is a complicated method which calls as
subroutines many other complicated computational geometry algo-
rithms; it is unclear if this algorithm will ever be realized.
Approximate geodesics with guaranteed error bounds can be ob-
tained by adding extra edges into the mesh and running Dijkstra
on the one-skeleton of this augmented mesh [Lanthier et al. 1997].

553

Fast Exact and Approximate Geodesics on Meshes
SIGRAPH 2005
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Shortest Paths on Convex Polyhedron
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F igure 9: (a) 2 � 1 � 1 box , wi t h cu t locus C ( x ) marked. (b) Source unfolding
wi t h respect to x .

answer is unknown: t here is nei t her a counterexample, nor a general algori t hm.
P rogress has been made recent ly on or t hogonal polyhedra.

3.2.1 O r t hogon al P ol y hed r a

We saw one special class of or t hogonal polyhedra t ha t can be edge unfolded,
and one example ( F igure 3(b)) of an or t hogonal polyhedron t ha t cannot be edge
unfolded. However, if we permi t ourselves arbi t rary cu ts, i t is not di  cul t to
unfold t his edge-ununfoldable example into a number of t hin, connected st rips.
See F igure 10 for one way, t he resul t of applying a varia t ion on t he algori t hm
from Sect ion 1 for or t hogonal terrains.

T he idea of slicing an or t hogonal polyhedron into st rips was explored in a
series of papers handling special classes (summarized in [ O ’ R08]), finally culmi-
na t ing in an algori t hm t ha t unfolds any or t hogonal polyhedron P (of genus zero)
into a single, non-overlapping piece [ D F O 07]. T his algori t hm “ peels” t he sur-
face into a t hin st rip, following a recursively-nested helical pa t h on t he surface
of P . A l t hough t he cu ts are arbi t rary, t hey are parallel to polyhedron edges,
which is na t ural in t his contex t . U nfor t una tely, t he resul t ing unfolding can be
exponent ially t hin and exponent ially long: if P has n ver t ices and has longest
dimension 1, st rips might have wid t h 1 / 2 O ( n ) and st retch ou t to lengt h 2 O ( n ) .

4 Su m m ar y & P rosp ects
Table 1 summarizes t he st a t us of t he main quest ions on unfolding.

O f course t here are many topics we have not discussed. For exam-
ple, t he source and st ar unfoldings have been generalized to “quasigeodesic”

8

O’Rourke

Shortest paths from point x to all points on the surface.
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An aside:  Folding and Unfolding

unfolding

folding
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Unfolding Polyhedra—Durer 1400’s

Durer, 1498
snub cube
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Open Question
Can every convex polyhedron be unfolded into one piece 
without overlap by cutting edges? 

overlap

good examples

bad example

but there is a better way to cut this polyhedron
Thursday, 16 July, 15



314 Chapter 22. Edge Unfolding of Polyhedra

Figure 22.11. rightmost-ascending-
edge-unfold. [Figure 40c of Schlicken-
rieder 1997.]

Figure 22.12. normal-order-unfold. [Figure 42b of Schlick-
enrieder 1997.] Overlap circled.

not cutting the flattest edges, which seems equally natural, was found to be less effective
(Figure 22.14).

Although steepest-edge-unfold was effective, it failed to avoid overlap for all explored

definite methods of selecting c. However, similar to the situation with shortest-paths-
unfold, no polyhedron was found that completely thwarted steepest-edge-unfold: each

of the 60,000 polyhedra in his test suite could be unfolded without overlap for some ob-
jective function c. Indeed, the simple strategy of choosing c randomly and retrying when

the unfolding overlapped always succeeded (indeed, in no more than six iterations). This

led Schlickenrieder to conjecture that there is always a c for any polyhedron that leads to
overlap. However, recently this was shown to fail on a particular constructed counterexam-

ple (Lucier 2004).

We are left, then, with several procedures for finding a nonoverlapping unfolding, but
none are definitive algorithms, guaranteed to succeed in all cases.

22.4 Unfoldable Polyhedra

As mentioned earlier (p. 307), dropping the stipulation that the polyhedron is convex leads

to examples that have no nonoverlapping edge unfolding to a single piece (see Figure 22.4).
However, the examples in these figures use nonconvex faces. The question of whether there

is a (genus-zero) polyhedron, all of whose faces are convex polygons, was raised by Schevon

(1987) and by Dobilin (Grünbaum 2001). A positive answer was provided by several re-

Open Question
Can every convex polyhedron be unfolded into one piece 
without overlap by cutting edges? 

every example tried 
succeeds
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Shortest Paths so far

polynomial time algorithms for shortest paths in

• graph

• polygon

• plane with polygonal obstacles

• polyhedron
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problems with 
polynomial-time 

algorithms

P

problems that require 
exponential-time 

algorithms

EXP

NP

NP-complete
problems

?
Clay Math Institute offers $1M prize to solve  P = NP?

Hard and Easy Problems

?

Thursday, 16 July, 15

http://en.wikipedia.org/wiki/Clay_Mathematics_Institute
http://en.wikipedia.org/wiki/Clay_Mathematics_Institute


NP-complete
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Harder Shortest Path Problems
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Snell’s law

• Ibn Sahl, (Baghdad), On Burning Mirrors and Lenses, 984
• Willebrord Snellius, 1621
• René Descartes, 1637
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The ?4>ighted Region Problem

Road

...

FIG. 1. A map of varied terrain.

nodes are joined by an edge if the corresponding regions are adjacent. We then

assign costs to arcs according to the weighted distance between adjacent nodes.

Searching this graph for shortest paths yields a “region path” from the source to

the destination, giving a sequence of regions through which a “good” path should

pass. We could then do some post-processing (e.g., using the local optimality

criterion of Snell’s Law of Refraction from optics, which we discuss later) to make

the path locally optimal at region boundaries. The problem with this approach is

that it can produce paths that are not guaranteed to be optimal, or even close to

optimal. for the optimal path need not have any relationship to the shortest region-

path. Mitchell [19] contains a brief discussion of this method.

Instead of applying heuristics to solve the problem, our goal in this paper is to

compute paths that are guaranteed to be optimal (within a user-specified error

percentage ~). Our approach is to apply the continuous Dijkstm technique, which

was originally developed in [16] and [20] as a means of solving the Discrete

Geodesic Problem (DGP): Find a shortest path between two points on a polyhedral

surface, subject to the constraint that the path remain on the surface. Although

there are many similarities between the algorithm we give here and that of Mitchell

et al. [20], there are many significant differences due to the complications involved

in our problem. Our presentation will attempt to make clear where the details of

our weighted region algorithm differ significantly from the algorithm of [20] for

discrete geodesic paths on a surface.

2. Definii ion qf-the Problem

We are given a straight-line planar (polygonal) subdivision. .&, specified by a set

of faces, edges, and vertices, with each edge occurring in two faces and two faces

intersecting either at a common edge, a vertex, or not at all. We consider faces to

be closed polygons (they include their boundaries) and edges to be closed line

segments (they include their endpoints, which are vertices). The edge e shared by

faces .f’and f‘ and o~ietued so that .f is on the right will be denoted e = n(.fl f‘ );

when we wish to speak of an undirected edge e, we write e =, f fl jr’, without regard

for the order off and f“. We use int (. ) to denote relative intenor of an edge

or face.

Harder Shortest Path Problems

The Weighted Region Problem -- Mitchell and Papadimitriou ’91

OPEN: is this problem in P?  NP-complete?
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Shortest Anisotropic Paths

OPEN: is this problem in P?  NP-complete?
Thursday, 16 July, 15



Approximation Algorithm (Steiner Point Approach)

Approximating SDPs

Idea: D iscret ize space by adding Steiner points [Papadimitriou ’85]

t

s

Shortest path through the space ⇥ Shortest path in the graph

 D ijkstra-like algorithms can be used
(we use the Bushwhack algorithm)

M ust aq A hmed ( U niversity of W a terloo) Constrained Shortest Pa ths 14 O ctober 2009 14 / 34

for weighted region and some special cases of anisotropic

add many “Steiner” points and model as shortest path in a graph
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Shortest Descending Paths on Terrains

Shortest Gently Descending Paths

Given two points s and t in a terrain, we want to find a shortest path from
s to t which is:

descending
i.e., never goes upward from s to t
not too steep
i.e. follows “gent le” direct ions only

t
s

A hmed et al. ( W a terloo & C arleton) Shortest Gent ly D escending Pa ths WA L C O M ’09 2 / 22

joint work with Mustaq Ahmed
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Shortest Descending Paths on Terrains
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Shortest Gently Descending Paths

Given two points s and t in a terrain, we want to find a shortest path from
s to t which is:

descending
i.e., never goes upward from s to t
not too steep
i.e. follows “gent le” direct ions only

t
s

A hmed et al. ( W a terloo & C arleton) Shortest Gent ly D escending Pa ths WA L C O M ’09 2 / 22

Shortest Descending Paths on Terrains
joint work with Mustaq Ahmed

OPEN: is this problem in P?  NP-complete?
Thursday, 16 July, 15



Find a shortest path that
descends, but not too 
steeply.

Shortest Gently Descending Paths on Terrains
joint work with Mustaq Ahmed

Problem 2: Shortest gently descending paths

Given: two points s and t in a terrain
Want: a shortest path from s to t that is

descending, i.e., never goes upward from s to t
not too steep

A direct ion is steep if it
makes an angle less than  
with a vert ical line

 

M ust aq A hmed ( U niversity of W a terloo) Constrained Shortest Pa ths 14 O ctober 2009 16 / 34

θ

steep = lies in this cone

OPEN: is this problem in P?  NP-complete?
Thursday, 16 July, 15



Approximation Algorithm (Steiner Point Approach)

add many “Steiner” points and model as shortest path in a graph
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problems with 
polynomial-time 

algorithms

P

problems that require 
exponential-time 

algorithms

EXP

NP

NP-complete
problems

?
Clay Math Institute offers $1M prize to solve  P = NP?

Hard and Easy Problems

?
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Shortest Paths in 3D Space
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Shortest Paths in 3D Space

This problem is NP-hard.
Canny & Reif, 1987
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Add many Steiner points and model as shortest path in a graph.

Papadimitriou ’85

Approximation Algorithm (Steiner Point Approach)
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New Results on Shortest Paths

center of a polygon612 R. Pollack, M. Sharir, and G. Rote 

rig. t 

emergency service on a polygonal island or a nurses station on a polygonal 
hospital floor. See Fig. 1 for an illustration of  the geodesic center problem. The 
standard Euclidean facility location problem can be solved in time O(n) [Mel ], 
[Dy2], but its extension to the problem of finding the geodesic center of  a simple 
polygon appears to be more difficult. 

The problem of computing the geodesic center of  a simple polygon has been 
considered by Asano and Toussaint [AT]. They show that the geodesic center is 
unique and present an algorithm to compute it in time O(n 4 log n), where n is 
the number of vertices in the given polygon. The main idea of  their algorithm is 
to construct the geodesic furthest-point Voronoi diagram of  the vertices of the 
polygon and then to locate the geodesic center at either a vertex of the Voronoi 
diagram or at the midpoint of  a geodesic diameter (i.e., a shortest path inside 
the polygon joining two vertices which has maximal length over all choices of 
pairs of vertices). We will also use the term "geodesic diameter" to denote the 
length of  that path. There have been many algorithms to find the geodesic diameter 
of  a simple polygon. The best result at the present time is an O(n log n)-time 
and O(n)-space  algorithm due to Suri [Sul] .  

A related problem is to compute the link diameter and the link center of a 
simple polygon, where the link distance between two points is the minimum 
number of  edges in a polygonal path joining them inside the polygon and where 
the link center and diameter are defined in an analogous manner to the definition 
of  geodesic center and diameter. In this case the link center is no longer unique 
but consists of  a polygon which may be as large as the entire given polygon. Suri 
[Su2] has an O(n log n)-time and O(n)-space algorithm which computes the 
link diameter o f  a simple polygon and Lenhart etal. [Lea] presents an O(n 2) 
algorithm for computing the link center of  a simple polygon. E1-Gindy (private 
communication) also reports similarly efficient algorithms for computing the link 
center. 

Our algorithm proceeds as follows. We start with a triangulation of the polygon 
P, then perform something like a binary search through the diagonals of the 
triangulation, determining at each tested diagonal, via the algorithm RELCEN 
to be described in Section 3 below, on which side of  that diagonal the geodesic 
center lies. In this way we locate a triangle which contains the geodesic center. 

find a point to minimize the 
maximum distance to any point

O(n) time algorithm, June 2015
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Research Topics

• practical shortest path methods for large graphs/maps

• shortest paths as graphs change (“dynamic” graphs)

• center and diameter
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More Information

shortest paths course https://cs.uwaterloo.ca/~alubiw/CS860.html

book on folding

Geometric Shortest Paths and Network Optimization, 
survey by Joseph Mitchell

chapter on shortest paths:

Thursday, 16 July, 15

http://www.amazon.com/How-Fold-It-Mathematics-Polyhedra/dp/0521767350/ref=tmm_hrd_title_0?ie=UTF8&qid=1437071054&sr=8-2
http://www.amazon.com/How-Fold-It-Mathematics-Polyhedra/dp/0521767350/ref=tmm_hrd_title_0?ie=UTF8&qid=1437071054&sr=8-2
http://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCIQFjAAahUKEwjZwtjmo-DGAhVBFj4KHXntC5c&url=http%3A%2F%2Fwww.ams.sunysb.edu%2F~jsbm%2Fpapers%2Fsurvey.ps.gz&ei=zPenVdmsBsGs-AH52q-4CQ&usg=AFQjCNHCL8ulWSMfuc8HxEozXUl017OCsA&sig2=QJzCJNlx2W4nyzbvSw6vEA&bvm=bv.97949915,d.cWw
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http://www.amazon.com/Algorithms-Data-Structures-Basic-Toolbox/dp/3642096824/ref=sr_1_1?ie=UTF8&qid=1437071904&sr=8-1&keywords=algorithms+and+data+structures+the+basic+toolbox
http://www.amazon.com/Algorithms-Data-Structures-Basic-Toolbox/dp/3642096824/ref=sr_1_1?ie=UTF8&qid=1437071904&sr=8-1&keywords=algorithms+and+data+structures+the+basic+toolbox


I offer a free copy of “How to Fold It” to the first person who 
solves this folding puzzle (which has nothing to do with shortest 
paths)

Cut out this shape (with 9 unit squares) and fold it into a cube 
only folding on the dashed lines.
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THE END
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