
Salt Documentation
Release 2014.7.6

SaltStack, Inc.

May 19, 2015

Contents

1 Introduction to Salt 1
1.1 e 30 second summary . 1
1.2 Simplicity . 1
1.3 Parallel execution . 1
1.4 Building on proven technology . 2
1.5 Python client interface . 2
1.6 Fast, flexible, scalable . 2
1.7 Open . 2
1.8 Salt Community . 2
1.9 Mailing List . 2
1.10 IRC . 3
1.11 Follow on Github . 3
1.12 Blogs . 3
1.13 Example Salt States . 3
1.14 Follow on ohloh . 3
1.15 Other community links . 4
1.16 Hack the Source . 4

2 Installation 5
2.1 ick Install . 5
2.2 Platform-specific Installation Instructions . 5
2.3 Dependencies . 26
2.4 Optional Dependencies . 27
2.5 Upgrading Salt . 27

3 Tutorials 29
3.1 Introduction . 29
3.2 Basics . 31
3.3 States . 44
3.4 Advanced Topics . 71
3.5 Salt Virt . 111
3.6 Halite . 115
3.7 Using Salt at scale . 118

4 Targeting Minions 123
4.1 Matching the minion id . 123
4.2 Grains . 124
4.3 Subnet/IP Address Matching . 127

i

4.4 Compound matchers . 128
4.5 Node groups . 129
4.6 Batch Size . 129
4.7 SECO Range . 129

5 Storing Static Data in the Pillar 131
5.1 Declaring the Master Pillar . 131
5.2 Pillar namespace flaened . 132
5.3 Pillar Namespace Merges . 133
5.4 Including Other Pillars . 134
5.5 Viewing Minion Pillar . 134
5.6 Pillar ``get'' Function . 134
5.7 Refreshing Pillar Data . 135
5.8 Targeting with Pillar . 135
5.9 Set Pillar Data at the Command Line . 135
5.10 Master Config In Pillar . 135

6 Reactor System 137
6.1 Event System . 137
6.2 Mapping Events to Reactor SLS Files . 137
6.3 Fire an event . 138
6.4 Knowing what event is being fired . 138
6.5 Debugging the Reactor . 139
6.6 Understanding the Structure of Reactor Formulas . 139
6.7 A Complete Example . 142
6.8 Syncing Custom Types on Minion Start . 143

7 e Salt Mine 145
7.1 Mine Functions . 145
7.2 Mine Interval . 146
7.3 Example . 146

8 External Authentication System 147
8.1 Access Control System . 147
8.2 Tokens . 148
8.3 LDAP and Active Directory . 149

9 Job Management 151
9.1 e Minion proc System . 151
9.2 Functions in the saltutil Module . 151
9.3 e jobs Runner . 151
9.4 Scheduling Jobs . 152
9.5 States . 154
9.6 Highstates . 154
9.7 Runners . 154
9.8 Scheduler With Returner . 155

10 Salt Event System 159
10.1 Event types . 159
10.2 Listening for Events . 162
10.3 Firing Events . 164
10.4 Firing Events from Python . 164

11 Salt Syndic 167
11.1 Configuring the Syndic . 167

ii

11.2 Running the Syndic . 167
11.3 Topology . 168
11.4 Syndic and the CLI . 168

12 Salt Proxy Minion Documentation 169
12.1 Geing Started . 169
12.2 e __proxyenabled__ directive . 173

13 Windows Soware Repository 175
13.1 Operation . 175
13.2 Usage . 176
13.3 Generate Repo Cache File . 177
13.4 Install Windows Soware . 178
13.5 Uninstall Windows Soware . 178
13.6 Standalone Minion Salt Windows Repo Module . 178
13.7 Git Hosted Repo . 178
13.8 Troubleshooting . 179

14 Windows-specific Behaviour 181
14.1 Group parameter for files . 181
14.2 Dealing with case-insensitive but case-preserving names . 181
14.3 Dealing with various username forms . 182
14.4 Specifying the None group . 182
14.5 Symbolic link loops . 182
14.6 Modifying security properties (ACLs) on files . 182

15 Salt Cloud 183
15.1 Geing Started . 183
15.2 Using Salt Cloud . 183
15.3 Core Configuration . 188
15.4 Windows Configuration . 198
15.5 Cloud Provider Specifics . 199
15.6 Miscellaneous Options . 254
15.7 Troubleshooting Steps . 258
15.8 Extending Salt Cloud . 261
15.9 Using Salt Cloud from Salt . 270
15.10 Feature Comparison . 274

16 netapi modules 279
16.1 Writing netapi modules . 279
16.2 Introduction to netapi modules . 280
16.3 Client interfaces . 280

17 Salt Virt 283
17.1 Salt Virt Tutorial . 283
17.2 e Salt Virt Runner . 283
17.3 Based on Live State Data . 284
17.4 Deploy from Network or Disk . 284

18 Understanding YAML 287
18.1 Rule One: Indentation . 287
18.2 Rule Two: Colons . 287
18.3 Rule ree: Dashes . 288
18.4 Learning More . 288

iii

19 Master Tops System 289

20 Salt SSH 291
20.1 Salt SSH Roster . 291
20.2 Calling Salt SSH . 292
20.3 States Via Salt SSH . 292
20.4 Targeting with Salt SSH . 292
20.5 Configuring Salt SSH . 292
20.6 Running Salt SSH as non-root user . 293
20.7 Define CLI Options with Saltfile . 293

21 Salt Rosters 295
21.1 How Rosters Work . 295

22 Reference 297
22.1 Full list of builtin auth modules . 297
22.2 Command Line Reference . 300
22.3 Client ACL system . 324
22.4 Python client API . 324
22.5 Full list of Salt Cloud modules . 334
22.6 Configuration file examples . 376
22.7 Configuring Salt . 398
22.8 Configuring the Salt Master . 401
22.9 Configuring the Salt Minion . 429
22.10 Running the Salt Master/Minion as an Unprivileged User . 442
22.11 Logging . 443
22.12 External Logging Handlers . 444
22.13 Salt File Server . 447
22.14 Full list of builtin fileserver modules . 452
22.15 Salt code and internals . 459
22.16 Full list of builtin execution modules . 465
22.17 Full list of netapi modules . 915
22.18 Full list of builtin output modules . 941
22.19 Peer Communication . 947
22.20 Pillars . 949
22.21 Full list of builtin pillar modules . 949
22.22 Renderers . 963
22.23 Returners . 987
22.24 Full list of builtin roster modules . 1005
22.25 Salt Runners . 1006
22.26 State Enforcement . 1025
22.27 Full list of builtin state modules . 1074
22.28 Execution Modules . 1245
22.29 Master Tops . 1249
22.30 Full list of builtin master tops modules . 1249
22.31 Full list of builtin wheel modules . 1252

23 Salt Best Practices 1255
23.1 General rules . 1255
23.2 Structuring States and Formulas . 1255
23.3 Structuring Pillar Files . 1256
23.4 Variable Flexibility . 1257
23.5 Modularity Within States . 1258
23.6 Storing Secure Data . 1261

iv

24 Troubleshooting 1263
24.1 Troubleshooting the Salt Master . 1263
24.2 Troubleshooting the Salt Minion . 1263
24.3 Running in the Foreground . 1263
24.4 What Ports do the Master and Minion Need Open? . 1263
24.5 Using salt-call . 1264
24.6 Too many open files . 1264
24.7 Salt Master Stops Responding . 1264
24.8 Salt and SELinux . 1265
24.9 Red Hat Enterprise Linux 5 . 1266
24.10 Common YAML Gotchas . 1266
24.11 Live Python Debug Output . 1266
24.12 Salt 0.16.x minions cannot communicate with a 0.17.x master . 1266
24.13 Debugging the Master and Minion . 1266

25 Developing Salt 1267
25.1 Overview . 1267
25.2 Salt Client . 1267
25.3 Salt Master . 1267
25.4 Salt Minion . 1269
25.5 A Note on ClearFuncs vs. AESFuncs . 1270
25.6 Contributing . 1271
25.7 Deprecating Code . 1274
25.8 Dunder Dictionaries . 1275
25.9 External Pillars . 1277
25.10 Installing Salt for development . 1280
25.11 Logging Internals . 1284
25.12 Modular Systems . 1284
25.13 Package Providers . 1286
25.14 Community Projects at Use Salt . 1290
25.15 Salt Topology . 1291
25.16 Translating Documentation . 1291
25.17 Running e Tests . 1292
25.18 Automated Test Runs . 1295
25.19 Writing Tests . 1295
25.20 raet . 1308
25.21 SaltStack Git Policy . 1312
25.22 Salt Conventions . 1313

26 Release notes 1347
26.1 Latest Stable Release . 1347
26.2 Previous Releases . 1347

27 Salt Based Projects 1451
27.1 Salt Sandbox . 1451

28 Security disclosure policy 1453
28.1 Security response procedure . 1454
28.2 Receiving security announcemnts . 1454

29 Frequently Asked estions 1455
29.1 Is Salt open-core? . 1455
29.2 What ports should I open on my firewall? . 1455
29.3 I'm seeing weird behavior (including but not limited to packages not installing their users properly) 1456
29.4 My script runs every time I run a state.highstate. Why? . 1456

v

29.5 When I run test.ping, why don't the Minions that aren't responding return anything? Returning
False would be helpful. 1456

29.6 How does Salt determine the Minion's id? . 1457
29.7 I'm trying to manage packages/services but I get an error saying that the state is not available. Why?1457
29.8 I'm using gitfs and my custom modules/states/etc are not syncing. Why? 1457
29.9 Why aren't my custom modules/states/etc. available on my Minions? 1457
29.10 Module X isn't available, even though the shell command it uses is installed. Why? 1457
29.11 Can I run different versions of Salt on my Master and Minion? . 1458
29.12 Does Salt support backing up managed files? . 1458
29.13 What is the best way to restart a Salt daemon using Salt? . 1458
29.14 Salting the Salt Master . 1459

30 Glossary 1461

Salt Module Index 1465

Index 1471

vi

CHAPTER 1

Introduction to Salt

We’re not just talking about NaCl.

1.1 The 30 second summary

Salt is:

• a configuration management system, capable of maintaining remote nodes in defined states (for example,
ensuring that specific packages are installed and specific services are running)

• a distributed remote execution system used to execute commands and query data on remote nodes, either
individually or by arbitrary selection criteria

It was developed in order to bring the best solutions found in the world of remote execution together and make them
beer, faster, and more malleable. Salt accomplishes this through its ability to handle large loads of information, and
not just dozens but hundreds and even thousands of individual servers quickly through a simple and manageable
interface.

1.2 Simplicity

Providing versatility between massive scale deployments and smaller systems may seem daunting, but Salt is very
simple to set up and maintain, regardless of the size of the project. e architecture of Salt is designed to work with
any number of servers, from a handful of local network systems to international deployments across different data
centers. e topology is a simple server/client model with the needed functionality built into a single set of daemons.
While the default configuration will work with lile to no modification, Salt can be fine tuned to meet specific needs.

1.3 Parallel execution

e core functions of Salt:

• enable commands to remote systems to be called in parallel rather than serially

• use a secure and encrypted protocol

• use the smallest and fastest network payloads possible

• provide a simple programming interface

Salt also introduces more granular controls to the realm of remote execution, allowing systems to be targeted not
just by hostname, but also by system properties.

1

Salt Documentation, Release 2014.7.6

1.4 Building on proven technology

Salt takes advantage of a number of technologies and techniques. e networking layer is built with the excellent
ZeroMQ networking library, so the Salt daemon includes a viable and transparent AMQ broker. Salt uses public
keys for authentication with the master daemon, then uses faster AES encryption for payload communication; au-
thentication and encryption are integral to Salt. Salt takes advantage of communication via msgpack, enabling fast
and light network traffic.

1.5 Python client interface

In order to allow for simple expansion, Salt execution routines can be wrien as plain Python modules. e data
collected from Salt executions can be sent back to the master server, or to any arbitrary program. Salt can be called
from a simple Python API, or from the command line, so that Salt can be used to execute one-off commands as well
as operate as an integral part of a larger application.

1.6 Fast, flexible, scalable

e result is a system that can execute commands at high speed on target server groups ranging from one to very
many servers. Salt is very fast, easy to set up, amazingly malleable and provides a single remote execution architec-
ture that can manage the diverse requirements of any number of servers. e Salt infrastructure brings together the
best of the remote execution world, amplifies its capabilities and expands its range, resulting in a system that is as
versatile as it is practical, suitable for any network.

1.7 Open

Salt is developed under the Apache 2.0 license, and can be used for open and proprietary projects. Please submit
your expansions back to the Salt project so that we can all benefit together as Salt grows. Please feel free to sprinkle
Salt around your systems and let the deliciousness come forth.

1.8 Salt Community

Join the Salt!

ere are many ways to participate in and communicate with the Salt community.

Salt has an active IRC channel and a mailing list.

1.9 Mailing List

Join the salt-users mailing list. It is the best place to ask questions about Salt and see whats going on with Salt
development! e Salt mailing list is hosted by Google Groups. It is open to new members.

hps://groups.google.com/forum/#!forum/salt-users

2 Chapter 1. Introduction to Salt

http://zeromq.org/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://msgpack.org/
http://www.apache.org/licenses/LICENSE-2.0.html
https://groups.google.com/forum/#!forum/salt-users
https://groups.google.com/forum/#!forum/salt-users

Salt Documentation, Release 2014.7.6

1.10 IRC

e #salt IRC channel is hosted on the popular Freenode network. You can use the Freenode webchat client right
from your browser.

Logs of the IRC channel activity are being collected courtesy of Moritz Lenz.

If you wish to discuss the development of Salt itself join us in #salt-devel.

1.11 Follow on Github

e Salt code is developed via Github. Follow Salt for constant updates on what is happening in Salt development:

hps://github.com/saltstack/salt

1.12 Blogs

SaltStack Inc. keeps a blog with recent news and advancements:

hp://www.saltstack.com/blog/

omas Hatch also shares news and thoughts on Salt and related projects in his personal blog e Red45:

hp://red45.wordpress.com/

1.13 Example Salt States

e official salt-states repository is: hps://github.com/saltstack/salt-states

A few examples of salt states from the community:

• hps://github.com/blast-hardcheese/blast-salt-states

• hps://github.com/kevingranade/kevingranade-salt-state

• hps://github.com/uggedal/states

• hps://github.com/mamcclean/salt-openstack/tree/master/salt

• hps://github.com/rentalita/ubuntu-setup/

• hps://github.com/brutasse/states

• hps://github.com/bclermont/states

• hps://github.com/pcrews/salt-data

1.14 Follow on ohloh

hps://www.ohloh.net/p/salt

1.10. IRC 3

http://freenode.net/irc_servers.shtml
http://webchat.freenode.net/?channels=salt&uio=Mj10cnVlJjk9dHJ1ZSYxMD10cnVl83
http://irclog.perlgeek.de/salt/
https://github.com/saltstack/salt
http://www.saltstack.com/blog/
http://www.saltstack.com/blog/
http://red45.wordpress.com/
http://red45.wordpress.com/
https://github.com/saltstack/salt-states
https://github.com/blast-hardcheese/blast-salt-states
https://github.com/kevingranade/kevingranade-salt-state
https://github.com/uggedal/states
https://github.com/mattmcclean/salt-openstack/tree/master/salt
https://github.com/rentalita/ubuntu-setup/
https://github.com/brutasse/states
https://github.com/bclermont/states
https://github.com/pcrews/salt-data
https://www.ohloh.net/p/salt

Salt Documentation, Release 2014.7.6

1.15 Other community links

• Salt Stack Inc.

• Subreddit

• Google+

• YouTube

• Facebook

• Twier

• Wikipedia page

1.16 Hack the Source

If you want to get involved with the development of source code or the documentation efforts, please review the
hacking section!

4 Chapter 1. Introduction to Salt

http://www.saltstack.com
http://www.reddit.com/r/saltstack
https://plus.google.com/114449193225626631691/posts
http://www.youtube.com/user/SaltStack
https://www.facebook.com/SaltStack
https://twitter.com/SaltStackInc
http://en.wikipedia.org/wiki/Salt_(software)

CHAPTER 2

Installation

See also:

Installing Salt for development and contributing to the project.

2.1 ick Install

On most distributions, you can set up a Salt Minion with the Salt Bootstrap.

2.2 Platform-specific Installation Instructions

ese guides go into detail how to install Salt on a given platform.

2.2.1 Arch Linux

Installation

Salt (stable) is currently available via the Arch Linux Official repositories. ere are currently -git packages available
in the Arch User repositories (AUR) as well.

Stable Release

Install Salt stable releases from the Arch Linux Official repositories as follows:

pacman -S salt-zmq

To install Salt stable releases using the RAET protocol, use the following:

pacman -S salt-raet

Tracking develop

To install the bleeding edge version of Salt (may include bugs!), use the -git package. Installing the -git package as
follows:

5

https://github.com/saltstack/salt-bootstrap

Salt Documentation, Release 2014.7.6

wget https://aur.archlinux.org/packages/sa/salt-git/salt-git.tar.gz
tar xf salt-git.tar.gz
cd salt-git/
makepkg -is

Note: yaourt
If a tool such as Yaourt is used, the dependencies will be gathered and built automatically.

e command to install salt using the yaourt tool is:

yaourt salt-git

Post-installation tasks

systemd

Activate the Salt Master and/or Minion via systemctl as follows:

systemctl enable salt-master.service
systemctl enable salt-minion.service

Start the Master

Once you've completed all of these steps you're ready to start your Salt Master. You should be able to start your Salt
Master now using the command seen here:

systemctl start salt-master

Now go to the Configuring Salt page.

2.2.2 Debian Installation

Currently the latest packages for Debian Old Stable, Stable and Unstable (Squeeze, Wheezy and Sid) are published
in our (saltstack.com) Debian repository.

Configure Apt

Squeeze (Old Stable)

For squeeze, you will need to enable the Debian backports repository as well as the debian.saltstack.com repository.
To do so, add the following to /etc/apt/sources.list or a file in /etc/apt/sources.list.d:

deb http://debian.saltstack.com/debian squeeze-saltstack main
deb http://backports.debian.org/debian-backports squeeze-backports main contrib non-free

Wheezy (Stable)

For wheezy, the following line is needed in either /etc/apt/sources.list or a file in
/etc/apt/sources.list.d:

deb http://debian.saltstack.com/debian wheezy-saltstack main

6 Chapter 2. Installation

https://aur.archlinux.org/packages.php?ID=5863

Salt Documentation, Release 2014.7.6

Jessie (Testing)

For jessie, the following line is needed in either /etc/apt/sources.list or a file in
/etc/apt/sources.list.d:

deb http://debian.saltstack.com/debian jessie-saltstack main

Sid (Unstable)

For sid, the following line is needed in either /etc/apt/sources.list or a file in
/etc/apt/sources.list.d:

deb http://debian.saltstack.com/debian unstable main

Import the repository key.

You will need to import the key used for signing.

wget -q -O- "http://debian.saltstack.com/debian-salt-team-joehealy.gpg.key" | apt-key add -

Note: You can optionally verify the key integrity with sha512sum using the public key signature shown here. E.g:
echo "b702969447140d5553e31e9701be13ca11cc0a7ed5fe2b30acb8491567560ee62f834772b5095d735dfcecb2384a5c1a20045f52861c417f50b68dd5ff4660e6 debian-salt-team-joehealy.gpg.key" | sha512sum -c

Update the package database

apt-get update

Install packages

Install the Salt master, minion, or syndic from the repository with the apt-get command. ese examples each install
one daemon, but more than one package name may be given at a time:

apt-get install salt-master

apt-get install salt-minion

apt-get install salt-syndic

Post-installation tasks

Now, go to the Configuring Salt page.

Notes

1. ese packages will be backported from the packages intended to be uploaded into Debian unstable. is means
that the packages will be built for unstable first and then backported over the next day or so.

2.2. Platform-specific Installation Instructions 7

Salt Documentation, Release 2014.7.6

2. ese packages will be tracking the released versions of salt rather than maintaining a stable fixed feature set. If
a fixed version is what you desire, then either pinning or manual installation may be more appropriate for you.

3. e version numbering and backporting process should provide clean upgrade paths between Debian versions.

If you have any questions regarding these, please email the mailing list or look for joehh on IRC.

2.2.3 Fedora

Beginning with version 0.9.4, Salt has been available in the primary Fedora repositories and EPEL. It is installable
using yum. Fedora will have more up to date versions of Salt than other members of the Red Hat family, which
makes it a great place to help improve Salt!

WARNING: Fedora 19 comes with systemd 204. Systemd has known bugs fixed in later revisions that prevent the
salt-master from starting reliably or opening the network connections that it needs to. It's not likely that a salt-
master will start or run reliably on any distribution that uses systemd version 204 or earlier. Running salt-minions
should be OK.

Installation

Salt can be installed using yum and is available in the standard Fedora repositories.

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

yum install salt-master
yum install salt-minion

Installing from updates-testing

When a new Salt release is packaged, it is first admied into the updates-testing repository, before being
moved to the stable repo.

To install from updates-testing, use the enablerepo argument for yum:

yum --enablerepo=updates-testing install salt-master
yum --enablerepo=updates-testing install salt-minion

Post-installation tasks

Master

To have the Master start automatically at boot time:

systemctl enable salt-master.service

To start the Master:

systemctl start salt-master.service

8 Chapter 2. Installation

http://fedoraproject.org/wiki/EPEL

Salt Documentation, Release 2014.7.6

Minion

To have the Minion start automatically at boot time:

systemctl enable salt-minion.service

To start the Minion:

systemctl start salt-minion.service

Now go to the Configuring Salt page.

2.2.4 FreeBSD

Salt was added to the FreeBSD ports tree Dec 26th, 2011 by Christer Edwards <christer.edwards@gmail.com>. It has
been tested on FreeBSD 7.4, 8.2, 9.0 and 9.1 releases.

Salt is dependent on the following additional ports. ese will be installed as dependencies of the sysutils/py-
salt port:

/devel/py-yaml
/devel/py-pyzmq
/devel/py-Jinja2
/devel/py-msgpack
/security/py-pycrypto
/security/py-m2crypto

Installation

On FreeBSD 10 and later, to install Salt from the FreeBSD pkgng repo, use the command:

pkg install py27-salt

On older versions of FreeBSD, to install Salt from the FreeBSD ports tree, use the command:

make -C /usr/ports/sysutils/py-salt install clean

Post-installation tasks

Master

Copy the sample configuration file:

cp /usr/local/etc/salt/master.sample /usr/local/etc/salt/master

rc.conf

Activate the Salt Master in /etc/rc.conf or /etc/rc.conf.local and add:

+ salt_master_enable="YES"

Start the Master

Start the Salt Master as follows:

service salt_master start

2.2. Platform-specific Installation Instructions 9

mailto:christer.edwards@gmail.com

Salt Documentation, Release 2014.7.6

Minion

Copy the sample configuration file:

cp /usr/local/etc/salt/minion.sample /usr/local/etc/salt/minion

rc.conf

Activate the Salt Minion in /etc/rc.conf or /etc/rc.conf.local and add:

+ salt_minion_enable="YES"
+ salt_minion_paths="/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin"

Start the Minion

Start the Salt Minion as follows:

service salt_minion start

Now go to the Configuring Salt page.

2.2.5 Gentoo

Salt can be easily installed on Gentoo via Portage:

emerge app-admin/salt

Post-installation tasks

Now go to the Configuring Salt page.

2.2.6 OS X

Dependency Installation

When installing via Homebrew, dependency resolution is handled for you.

brew install saltstack

When using macports, zmq, swig, and pip may need to be installed this way:

sudo port install py-zmq
sudo port install py27-m2crypto
sudo port install py27-crypto
sudo port install py27-msgpack
sudo port install swig-python
sudo port install py-pip

For installs using the OS X system python, pip install needs to use `sudo':

sudo pip install salt

10 Chapter 2. Installation

Salt Documentation, Release 2014.7.6

Salt-Master Customizations

To run salt-master on OS X, the root user maxfiles limit must be increased:

sudo launchctl limit maxfiles 4096 8192

And sudo add this configuration option to the /etc/salt/master file:

max_open_files: 8192

Now the salt-master should run without errors:

sudo /usr/local/share/python/salt-master --log-level=all

Post-installation tasks

Now go to the Configuring Salt page.

2.2.7 RHEL / CentOS / Scientific Linux / Amazon Linux / Oracle Linux

Installation Using pip

Since Salt is on PyPI, it can be installed using pip, though most users prefer to install using RPMs (which can be
installed from EPEL). Installation from pip is easy:

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

Installation from Repository

RHEL/CentOS 5

Due to the removal of some of Salt's dependencies from EPEL5, we have created a repository on Fedora COPR.
Moving forward, this will be the official means of installing Salt on RHEL5-based systems. Information on how to
enable this repository can be found here.

RHEL/CentOS 6 and 7, Scientific Linux, etc.

Beginning with version 0.9.4, Salt has been available in EPEL. It is installable using yum. Salt should work prop-
erly with all mainstream derivatives of RHEL, including CentOS, Scientific Linux, Oracle Linux and Amazon Linux.
Report any bugs or issues on the issue tracker.

On RHEL6, the proper Jinja package `python-jinja2' was moved from EPEL to the ``RHEL Server Optional Channel''.
Verify this repository is enabled before installing salt on RHEL6.

2.2. Platform-specific Installation Instructions 11

https://pypi.python.org/pypi/salt
http://fedoraproject.org/wiki/EPEL
https://copr.fedoraproject.org/
https://copr.fedoraproject.org/coprs/saltstack/salt-el5/
http://fedoraproject.org/wiki/EPEL
https://github.com/saltstack/salt/issues

Salt Documentation, Release 2014.7.6

Enabling EPEL If the EPEL repository is not installed on your system, you can download the RPM from here for
RHEL/CentOS 6 (or here for RHEL/CentOS 7) and install it using the following command:

rpm -Uvh epel-release-X-Y.rpm

Replace epel-release-X-Y.rpm with the appropriate filename.

Installing Stable Release Salt is packaged separately for the minion and the master. It is necessary only to install
the appropriate package for the role the machine will play. Typically, there will be one master and multiple minions.

On the salt-master, run this:

yum install salt-master

On each salt-minion, run this:

yum install salt-minion

Installing from epel-testing When a new Salt release is packaged, it is first admied into the epel-
testing repository, before being moved to the stable repo.

To install from epel-testing, use the enablerepo argument for yum:

yum --enablerepo=epel-testing install salt-minion

ZeroMQ 4

We recommend using ZeroMQ 4 where available. SaltStack provides ZeroMQ 4.0.4 and pyzmq 14.3.1 in a COPR
repository. Instructions for adding this repository (as well as for upgrading ZeroMQ and pyzmq on existing minions)
can be found here.

If this repo is added before Salt is installed, then installing either salt-master or salt-minion will automati-
cally pull in ZeroMQ 4.0.4, and additional states to upgrade ZeroMQ and pyzmq are unnecessary.

Note: For RHEL/CentOS 5 installations, if using the new repository to install Salt (as detailed above), then it is not
necessary to enable the zeromq4 COPR, as the new EL5 repository includes ZeroMQ 4.

Package Management

Salt's interface to yum makes heavy use of the repoquery utility, from the yum-utils package. is package will
be installed as a dependency if salt is installed via EPEL. However, if salt has been installed using pip, or a host is
being managed using salt-ssh, then as of version 2014.7.0 yum-utils will be installed automatically to satisfy this
dependency.

Post-installation tasks

Master

To have the Master start automatically at boot time:

chkconfig salt-master on

To start the Master:

12 Chapter 2. Installation

http://download.fedoraproject.org/pub/epel/6/i386/repoview/epel-release.html
http://download.fedoraproject.org/pub/epel/7/x86_64/repoview/epel-release.html
http://copr.fedoraproject.org/
http://copr.fedoraproject.org/coprs/saltstack/zeromq4/
http://yum.baseurl.org/wiki/YumUtils
http://yum.baseurl.org/wiki/YumUtils

Salt Documentation, Release 2014.7.6

service salt-master start

Minion

To have the Minion start automatically at boot time:

chkconfig salt-minion on

To start the Minion:

service salt-minion start

Now go to the Configuring Salt page.

2.2.8 Solaris

Salt was added to the OpenCSWpackage repository in September of 2012 by Romeoeriault <romeot@hawaii.edu>
at version 0.10.2 of Salt. It has mainly been tested on Solaris 10 (sparc), though it is built for and has been tested
minimally on Solaris 10 (x86), Solaris 9 (sparc/x86) and 11 (sparc/x86). (Please let me know if you're using it on these
platforms!) Most of the testing has also just focused on the minion, though it has verified that the master starts up
successfully on Solaris 10.

Comments and patches for beer support on these platforms is very welcome.

As of version 0.10.4, Solaris is well supported under salt, with all of the following working well:

1. remote execution

2. grain detection

3. service control with SMF

4. `pkg' states with `pkgadd' and `pkgutil' modules

5. cron modules/states

6. user and group modules/states

7. shadow password management modules/states

Salt is dependent on the following additional packages. ese will automatically be installed as dependencies of the
py_salt package:

• py_yaml

• py_pyzmq

• py_jinja2

• py_msgpack_python

• py_m2crypto

• py_crypto

• python

Installation

To install Salt from the OpenCSW package repository you first need to install pkgutil assuming you don't already
have it installed:

On Solaris 10:

2.2. Platform-specific Installation Instructions 13

mailto:romeot@hawaii.edu
http://www.opencsw.org/manual/for-administrators/getting-started.html

Salt Documentation, Release 2014.7.6

pkgadd -d http://get.opencsw.org/now

On Solaris 9:

wget http://mirror.opencsw.org/opencsw/pkgutil.pkg
pkgadd -d pkgutil.pkg all

Once pkgutil is installed you'll need to edit it's config file /etc/opt/csw/pkgutil.conf to point it at the
unstable catalog:

- #mirror=http://mirror.opencsw.org/opencsw/testing
+ mirror=http://mirror.opencsw.org/opencsw/unstable

OK, time to install salt.

Update the catalog
root> /opt/csw/bin/pkgutil -U
Install salt
root> /opt/csw/bin/pkgutil -i -y py_salt

Minion Configuration

Now that salt is installed you can find it's configuration files in /etc/opt/csw/salt/.

You'll want to edit the minion config file to set the name of your salt master server:

- #master: salt
+ master: your-salt-server

If you would like to use pkgutil as the default package provider for your Solaris minions, you can do so using the
providers option in the minion config file.

You can now start the salt minion like so:

On Solaris 10:

svcadm enable salt-minion

On Solaris 9:

/etc/init.d/salt-minion start

You should now be able to log onto the salt master and check to see if the salt-minion key is awaiting acceptance:

salt-key -l un

Accept the key:

salt-key -a <your-salt-minion>

Run a simple test against the minion:

salt '<your-salt-minion>' test.ping

Troubleshooting

Logs are in /var/log/salt

14 Chapter 2. Installation

http://www.opencsw.org/manual/for-administrators/getting-started.html

Salt Documentation, Release 2014.7.6

2.2.9 Ubuntu Installation

Add repository

e latest packages for Ubuntu are published in the saltstack PPA. If you have the add-apt-repository utility,
you can add the repository and import the key in one step:

sudo add-apt-repository ppa:saltstack/salt

add-apt-repository: command not found?

e add-apt-repository command is not always present on Ubuntu systems. is can be fixed by installing
python-soware-properties:

sudo apt-get install python-software-properties

Note that since Ubuntu 12.10 (Raring Ringtail), add-apt-repository is found in the soware-properties-common
package, and is part of the base install. us, add-apt-repository should be able to be used out-of-the-box to
add the PPA.

Alternately, manually add the repository and import the PPA key with these commands:

echo deb http://ppa.launchpad.net/saltstack/salt/ubuntu `lsb_release -sc` main | sudo tee /etc/apt/sources.list.d/saltstack.list
wget -q -O- "http://keyserver.ubuntu.com:11371/pks/lookup?op=get&search=0x4759FA960E27C0A6" | sudo apt-key add -

Aer adding the repository, update the package management database:

sudo apt-get update

Install packages

Install the Salt master, minion, or syndic from the repository with the apt-get command. ese examples each install
one daemon, but more than one package name may be given at a time:

sudo apt-get install salt-master

sudo apt-get install salt-minion

sudo apt-get install salt-syndic

ZeroMQ 4

ZeroMQ 4 is available by default for Ubuntu 14.04 and newer. However, for Ubuntu 12.04 LTS, starting with Salt
version 2014.7.5, ZeroMQ 4 is included with the Salt installation package and nothing additional needs to be
done.

Post-installation tasks

Now go to the Configuring Salt page.

2.2. Platform-specific Installation Instructions 15

Salt Documentation, Release 2014.7.6

2.2.10 Windows

Salt has full support for running the Salt Minion on Windows.

ere are no plans for the foreseeable future to develop a Salt Master on Windows. For now you must run your Salt
Master on a supported operating system to control your Salt Minions on Windows.

Many of the standard Salt modules have been ported to work on Windows and many of the Salt States currently
work on Windows, as well.

Windows Installer

SaltMinionWindows installers can be found here. e output ofmd5sum<salt minion exe> shouldmatch the contents
of the corresponding md5 file.

Download here

• 2014.7.5

• Salt-Minion-2014.7.5-x86-Setup.exe | md5

• Salt-Minion-2014.7.5-AMD64-Setup.exe | md5

• 2014.7.4

• Salt-Minion-2014.7.4-x86-Setup.exe | md5

• Salt-Minion-2014.7.4-AMD64-Setup.exe | md5

• 2014.7.2

• Salt-Minion-2014.7.2-x86-Setup.exe | md5

• Salt-Minion-2014.7.2-AMD64-Setup.exe | md5

• 2014.7.1

• Salt-Minion-2014.7.1-x86-Setup.exe | md5

• Salt-Minion-2014.7.1-AMD64-Setup.exe | md5

• 2014.7.0

• Salt-Minion-2014.7.0-1-win32-Setup.exe | md5

• Salt-Minion-2014.7.0-AMD64-Setup.exe | md5

Note: e 2014.7.0 installers have been removed because of a regression. Please use the 2014.7.1 release instead.

• 2014.1.13

• Salt-Minion-2014.1.13-x86-Setup.exe | md5

• Salt-Minion-2014.1.13-AMD64-Setup.exe | md5

• 2014.1.11

• Salt-Minion-2014.1.11-win32-Setup.exe | md5

• Salt-Minion-2014.1.11-AMD64-Setup.exe | md5

• 2014.1.10

• Salt-Minion-2014.1.10-win32-Setup.exe | md5

• Salt-Minion-2014.1.10-AMD64-Setup.exe | md5

16 Chapter 2. Installation

http://docs.saltstack.com/downloads/Salt-Minion-2014.7.5-x86-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.5-x86-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.5-AMD64-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.5-AMD64-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.4-x86-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.4-x86-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.4-AMD64-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.4-AMD64-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.2-x86-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.2-x86-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.2-AMD64-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.2-AMD64-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.1-x86-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.1-x86-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.1-AMD64-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.1-AMD64-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.1.13-x86-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.1.13-x86-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.1.13-AMD64-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.1.13-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.11-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.11-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.11-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.11-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.10-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.10-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.10-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.10-AMD64-Setup.exe.md5

Salt Documentation, Release 2014.7.6

• 2014.1.7

• Salt-Minion-2014.1.7-win32-Setup.exe | md5

• Salt-Minion-2014.1.7-AMD64-Setup.exe | md5

• 2014.1.5

• Salt-Minion-2014.1.5-win32-Setup.exe | md5

• Salt-Minion-2014.1.5-AMD64-Setup.exe | md5

• 2014.1.4

• Salt-Minion-2014.1.4-win32-Setup.exe | md5

• Salt-Minion-2014.1.4-AMD64-Setup.exe | md5

• 2014.1.3-1 (packaging bugfix)

• Salt-Minion-2014.1.3-1-win32-Setup.exe | md5

• Salt-Minion-2014.1.3-1-AMD64-Setup.exe | md5

• 2014.1.3

• Salt-Minion-2014.1.3-win32-Setup.exe | md5

• Salt-Minion-2014.1.3-AMD64-Setup.exe | md5

• 2014.1.1

• Salt-Minion-2014.1.1-win32-Setup.exe | md5

• Salt-Minion-2014.1.1-AMD64-Setup.exe | md5

• 2014.1.0

• Salt-Minion-2014.1.0-win32-Setup.exe | md5

• Salt-Minion-2014.1.0-AMD64-Setup.exe | md5

• 0.17.5-2 (bugfix release)

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.5-2-win32-Setup.exe

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.5-2-AMD64-Setup.exe

• 0.17.5

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.5-win32-Setup.exe

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.5-AMD64-Setup.exe

• 0.17.4

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.4-win32-Setup.exe

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.4-AMD64-Setup.exe

• 0.17.2

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.2-win32-Setup.exe

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.2-AMD64-Setup.exe

• 0.17.1.1 - Windows Installer bugfix release

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.1.1-win32-Setup.exe

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.1.1-AMD64-Setup.exe

2.2. Platform-specific Installation Instructions 17

https://docs.saltstack.com/downloads/Salt-Minion-2014.1.7-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.7-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.7-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.7-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.5-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.5-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.5-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.5-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.4-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.4-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.4-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.4-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-1-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-1-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-1-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-1-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.1-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.1-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.1-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.1-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.0-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.0-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.0-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.0-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-0.17.5-2-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.5-2-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.5-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.5-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.4-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.4-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.2-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.2-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.1.1-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.1.1-AMD64-Setup.exe

Salt Documentation, Release 2014.7.6

• 0.17.1

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.1-win32-Setup.exe

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.1-AMD64-Setup.exe

• 0.17.0

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.0-win32-Setup.exe

• hps://docs.saltstack.com/downloads/Salt-Minion-0.17.0-AMD64-Setup.exe

• 0.16.3

• hps://docs.saltstack.com/downloads/Salt-Minion-0.16.3-win32-Setup.exe

• hps://docs.saltstack.com/downloads/Salt-Minion-0.16.3-AMD64-Setup.exe

• 0.16.2

• hps://docs.saltstack.com/downloads/Salt-Minion-0.16.2-win32-Setup.exe

• hps://docs.saltstack.com/downloads/Salt-Minion-0.16.2-AMD64-Setup.exe

• 0.16.0

• hps://docs.saltstack.com/downloads/Salt-Minion-0.16.0-win32-Setup.exe

• hps://docs.saltstack.com/downloads/Salt-Minion-0.16.0-AMD64-Setup.exe

• 0.15.3

• hps://docs.saltstack.com/downloads/Salt-Minion-0.15.3-win32-Setup.exe

• hps://docs.saltstack.com/downloads/Salt-Minion-0.15.3-AMD64-Setup.exe

• 0.14.1

• hps://docs.saltstack.com/downloads/Salt-Minion-0.14.1-win32-Setup.exe

• hps://docs.saltstack.com/downloads/Salt-Minion-0.14.1-AMD64-Setup.exe

• 0.14.0

• hps://docs.saltstack.com/downloads/Salt-Minion-0.14.0-win32-Setup.exe

• hps://docs.saltstack.com/downloads/Salt-Minion-0.14.0-AMD64-Setup.exe

Note: e executables above will install dependencies that the Salt minion requires.

e 64bit installer has been tested on Windows 7 64bit and Windows Server 2008R2 64bit. e 32bit installer has
been tested on Windows 2003 Server 32bit. Please file a bug report on our GitHub repo if issues for other platforms
are found.

e installer asks for 2 bits of information; the master hostname and the minion name. e installer will update the
minion config with these options and then start the minion.

e salt-minion service will appear in the Windows Service Manager and can be started and stopped there or with
the command line program sc like any other Windows service.

If the minion won't start, try installing the Microso Visual C++ 2008 x64 SP1 redistributable. Allow all Windows
updates to run salt-minion smoothly.

18 Chapter 2. Installation

https://docs.saltstack.com/downloads/Salt-Minion-0.17.1-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.1-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.0-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.0-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.3-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.3-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.2-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.2-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.0-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.0-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.15.3-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.15.3-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.14.1-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.14.1-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.14.0-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.14.0-AMD64-Setup.exe

Salt Documentation, Release 2014.7.6

Silent Installer option

e installer can be run silently by providing the /S option at the command line. e options /master and /minion-
name allow for configuring the master hostname and minion name, respectively. Here's an example of using the
silent installer:

Salt-Minion-0.17.0-Setup-amd64.exe /S /master=yoursaltmaster /minion-name=yourminionname

Seing up a Windows build environment

is document will explain how to set up a development environment for salt on Windows. e development
environment allows you to work with the source code to customize or fix bugs. It will also allow you to build
your own installation.

The Easy Way

Prerequisite Soware To do this the easy way you only need to install Git for Windows.

Create the Build Environment

1. Clone the Salt-Windows-Dev repo from github.

Open a command line and type:

git clone https://github.com/saltstack/salt-windows-dev

2. Build the Python Environment

Go into the salt-windows-dev directory. Right-click the file named dev_env.ps1 and select Run with Power-
Shell

If you get an error, you may need to change the execution policy.

Open a powershell window and type the following:

Set-ExecutionPolicy RemoteSigned

is will download and install Python with all the dependencies needed to develop and build salt.

3. Build the Salt Environment

Right-click on the file named dev_env_salt.ps1 and select Run with Powershell

is will clone salt into C:\Salt-Dev\salt and set it to the 2015.5 branch. You could optionally run the
command from a powershell window with a -Version switch to pull a different version. For example:

dev_env_salt.ps1 -Version '2014.7'

To view a list of available branches and tags, open a command prompt in your C:Salt-Devsalt directory and
type:

git branch -a
git tag -n

2.2. Platform-specific Installation Instructions 19

https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20150319/Git-1.9.5-preview20150319.exe/
https://github.com/saltstack/salt-windows-dev/

Salt Documentation, Release 2014.7.6

The Hard Way

Prerequisite Soware Install the following soware:

1. Git for Windows

2. Nullso Installer

Download the Prerequisite zip file for your CPU architecture from the SaltStack download site:

• Salt32.zip

• Salt64.zip

ese files contain all sofware required to build and develop salt. Unzip the contents of the file to C:\Salt-
Dev\temp.

Create the Build Environment

1. Build the Python Environment

• Install Python:

Browse to the C:\Salt-Dev\temp directory and find the Python installation file for your CPU Ar-
chitecture under the corresponding subfolder. Double-click the file to install python.

Make sure the following are in your PATH environment variable:

C:\Python27
C:\Python27\Scripts

• Install Pip

Open a command prompt and navigate to C:\Salt-Dev\temp Run the following command:

python get-pip.py

• Easy Install compiled binaries.

M2Crypto, PyCrypto, and PyWin32 need to be installed using Easy Install. Open a command prompt
and navigate to C:\Salt-Dev\temp\<cpuarch>. Run the following commands:

easy_install -Z <M2Crypto file name>
easy_install -Z <PyCrypto file name>
easy_install -Z <PyWin32 file name>

Note: You can type the first part of the file name and then press the tab key to auto-complete the name
of the file.

• Pip Install Additional Prerequisites

All remaining prerequisites need to be pip installed. ese prerequisites are as follow:

– MarkupSafe

– Jinja

– MsgPack

– PSUtil

– PyYAML

– PyZMQ

20 Chapter 2. Installation

https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20150319/Git-1.9.5-preview20150319.exe/
http://downloads.sourceforge.net/project/nsis/NSIS%203%20Pre-release/3.0b1/nsis-3.0b1-setup.exe/
http://docs.saltstack.com/downloads/windows-deps/Salt32.zip/
http://docs.saltstack.com/downloads/windows-deps/Salt64.zip/

Salt Documentation, Release 2014.7.6

– WMI

– Requests

– Certifi

Open a command prompt and navigate to C:\Salt-Dev\temp. Run the following commands:

pip install <cpuarch>\<MarkupSafe file name>
pip install <Jinja file name>
pip install <cpuarch>\<MsgPack file name>
pip install <cpuarch>\<psutil file name>
pip install <cpuarch>\<PyYAML file name>
pip install <cpuarch>\<pyzmq file name>
pip install <WMI file name>
pip install <requests file name>
pip install <certifi file name>

2. Build the Salt Environment

• Clone Salt

Open a command prompt and navigate to C:\Salt-Dev. Run the following command to clone salt:

git clone https://github.com/saltstack/salt

• Checkout Branch

Checkout the branch or tag of salt you want to work on or build. Open a command prompt and navigate
to C:\Salt-Dev\salt. Get a list of available tags and branches by running the following commands:

git fetch --all

To view a list of available branches:
git branch -a

To view a list of availabel tags:
git tag -n

Checkout the branch or tag by typing the following command:

git checkout <branch/tag name>

• Clean the Environment

When switching between branches residual files can be le behind that will interfere with the functional-
ity of salt. erefore, aer you check out the branch you want to work on, type the following commands
to clean the salt environment:

Developing with Salt

ere are two ways to develop with salt. You can run salt's setup.py each time you make a change to source code or
you can use the setup tools develop mode.

Configure the Minion

Both methods require that the minion configuration be in the C:\salt directory. Copy the conf and var directo-
ries from C:\Salt-Dev\salt\pkg\ windows\buildenv to C:\salt. Now go into the C:\salt\conf

2.2. Platform-specific Installation Instructions 21

Salt Documentation, Release 2014.7.6

directory and edit the file name minion (no extension). You need to configure the master and id parameters in this
file. Edit the following lines:

master: <ip or name of your master>
id: <name of your minion>

Setup.py Method

Go into the C:\Salt-Dev\salt directory from a cmd prompt and type:

python setup.py install --force

is will install python into your python installation at C:\Python27. Everytime you make an edit to your source
code, you'll have to stop the minion, run the setup, and start the minion.

To start the salt-minion go into C:\Python27\Scripts from a cmd prompt and type:

salt-minion

For debug mode type:

salt-minion -l debug

To stop the minion press Ctrl+C.

Setup Tools Develop Mode (Preferred Method)

To use the Setup Tools Develop Mode go into C:\Salt-Dev\salt from a cmd prompt and type:

pip install -e .

is will install pointers to your source code that resides at C:\Salt-Dev\salt. When you edit your source
code you only have to restart the minion.

Build the windows installer

is is the method of building the installer as of version 2014.7.4.

Clean the Environment

Make sure you don't have any leover salt files from previous versions of salt in your Python directory.

1. Remove all files that start with salt in the C:\Python27\Scripts directory

2. Remove all files and directorys that start with salt in the C:\Python27\Lib\site-packages directory

Install Salt

Install salt using salt's setup.py. From the C:\Salt-Dev\salt directory type the following command:

python setup.py install --force

22 Chapter 2. Installation

Salt Documentation, Release 2014.7.6

Build the Installer

From cmd prompt go into the C:\Salt-Dev\salt\pkg\windows directory. Type the following command for
the branch or tag of salt you're building:

BuildSalt.bat <branch or tag>

is will copy python with salt installed to the buildenv\bin directory, make it portable, and then create the
windows installer . e .exe for the windows installer will be placed in the installer directory.

Testing the Salt minion

1. Create the directory C:\salt (if it doesn't exist already)

2. Copy the example conf and var directories from pkg/windows/buildenv/ into C:\salt

3. Edit C:\salt\conf\minion

master: ipaddress or hostname of your salt-master

4. Start the salt-minion

cd C:\Python27\Scripts
python salt-minion

5. On the salt-master accept the new minion's key

sudo salt-key -A

is accepts all unaccepted keys. If you're concerned about security just accept the key for this specific minion.

6. Test that your minion is responding

On the salt-master run:

sudo salt '*' test.ping

You should get the following response: {'your minion hostname': True}

Single command bootstrap script

On a 64 bit Windows host the following script makes an unaended install of salt, including all dependencies:

Not up to date.

is script is not up to date. Please use the installer found above

(All in one line.)

"PowerShell (New-Object System.Net.WebClient).DownloadFile('http://csa-net.dk/salt/bootstrap64.bat','C:\bootstrap.bat');(New-Object -com Shell.Application).ShellExecute('C:\bootstrap.bat');"

You can execute the above command remotely from a Linux host using winexe:

winexe -U "administrator" //fqdn "PowerShell (New-Object);"

For more info check hp://csa-net.dk/salt

2.2. Platform-specific Installation Instructions 23

http://csa-net.dk/salt

Salt Documentation, Release 2014.7.6

Packages management under Windows 2003

On windows Server 2003, you need to install optional component ``wmi windows installer provider'' to have full list
of installed packages. If you don't have this, salt-minion can't report some installed sowares.

2.2.11 SUSE Installation

With openSUSE 13.1, Salt 0.16.4 has been available in the primary repositories. e devel:language:python repo will
have more up to date versions of salt, all package development will be done there.

Installation

Salt can be installed using zypper and is available in the standard openSUSE 13.1 repositories.

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

zypper install salt-master
zypper install salt-minion

Post-installation tasks openSUSE

Master

To have the Master start automatically at boot time:

systemctl enable salt-master.service

To start the Master:

systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

systemctl enable salt-minion.service

To start the Minion:

systemctl start salt-minion.service

Post-installation tasks SLES

Master

To have the Master start automatically at boot time:

chkconfig salt-master on

To start the Master:

24 Chapter 2. Installation

Salt Documentation, Release 2014.7.6

rcsalt-master start

Minion

To have the Minion start automatically at boot time:

chkconfig salt-minion on

To start the Minion:

rcsalt-minion start

Unstable Release

openSUSE

For openSUSE Factory run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_Factory/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

For openSUSE 13.1 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_13.1/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

For openSUSE 12.3 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_12.3/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

For openSUSE 12.2 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_12.2/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

For openSUSE 12.1 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_12.1/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

For bleeding edge python Factory run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/bleeding_edge_python_Factory/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

Suse Linux Enterprise

For SLE 12 run the following as root:

2.2. Platform-specific Installation Instructions 25

Salt Documentation, Release 2014.7.6

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/SLE_12/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

For SLE 11 SP3 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/SLE_11_SP3/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

For SLE 11 SP2 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/SLE_11_SP2/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

Now go to the Configuring Salt page.

2.3 Dependencies

Salt should run on any Unix-like platform so long as the dependencies are met.

• Python 2.6 >= 2.6 <3.0

• msgpack-python - High-performance message interchange format

• YAML - Python YAML bindings

• Jinja2 - parsing Salt States (configurable in the master seings)

• MarkupSafe - Implements a XML/HTML/XHTML Markup safe string for Python

• apache-libcloud - Python lib for interacting with many of the popular cloud service providers using a unified
API

• Requests - HTTP library

Depending on the chosen Salt transport, ZeroMQ or RAET, dependencies vary:

• ZeroMQ:

– ZeroMQ >= 3.2.0

– pyzmq >= 2.2.0 - ZeroMQ Python bindings

– PyCrypto - e Python cryptography toolkit

– M2Crypto - ``Me Too Crypto'' - Python OpenSSL wrapper

• RAET:

– libnacl - Python bindings to libsodium

– ioflo - e flo programming interface raet and salt-raet is built on

– RAET - e worlds most awesome UDP protocol

Salt defaults to the ZeroMQ transport, and the choice can be made at install time, for example:

python setup.py install --salt-transport=raet

26 Chapter 2. Installation

http://python.org/download/
https://pypi.python.org/pypi/msgpack-python/0.1.12
http://pyyaml.org/
http://jinja.pocoo.org/
https://pypi.python.org/pypi/MarkupSafe
http://libcloud.apache.org
http://docs.python-requests.org/en/latest
http://zeromq.org/
https://github.com/saltstack/raet
http://zeromq.org/
https://github.com/zeromq/pyzmq
https://www.dlitz.net/software/pycrypto/
http://chandlerproject.org/Projects/MeTooCrypto
https://github.com/saltstack/libnacl
https://github.com/jedisct1/libsodium
https://github.com/ioflo/ioflo
https://github.com/saltstack/raet
http://zeromq.org/

Salt Documentation, Release 2014.7.6

is way, only the required dependencies are pulled by the setup script if need be.

If installing using pip, the --salt-transport install option can be provided like:

pip install --install-option="--salt-transport=raet" salt

2.4 Optional Dependencies

• mako - an optional parser for Salt States (configurable in the master seings)

• gcc - dynamic Cython module compiling

2.5 Upgrading Salt

When upgrading Salt, the master(s) should always be upgraded first. Backward compatibility for minions running
newer versions of salt than their masters is not guaranteed.

Whenever possible, backward compatibility between new masters and old minions will be preserved. Generally, the
only exception to this policy is in case of a security vulnerability.

2.4. Optional Dependencies 27

http://www.makotemplates.org/
http://cython.org/

Salt Documentation, Release 2014.7.6

28 Chapter 2. Installation

CHAPTER 3

Tutorials

3.1 Introduction

3.1.1 Salt Masterless ickstart

Running a masterless salt-minion lets you use Salt's configuration management for a single machine without calling
out to a Salt master on another machine.

Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

• Stand up a master server via States (Salting a Salt Master)

• Use salt-call commands on a system without connectivity to a master

• Masterless States, run states entirely from files local to the minion

It is also useful for testing out state trees before deploying to a production setup.

Bootstrap Salt Minion

e salt-bootstrap script makes bootstrapping a server with Salt simple for any OS with a Bourne shell:

wget -O - https://bootstrap.saltstack.com | sudo sh

See the salt-bootstrap documentation for other one liners. When using Vagrant to test out salt, the salty-vagrant
tool will provision the VM for you.

Telling Salt to Run Masterless

To instruct the minion to not look for a master when running the file_client configuration option needs to be
set. By default the file_client is set to remote so that the minion knows that file server and pillar data are to
be gathered from the master. When seing the file_client option to local the minion is configured to not
gather this data from the master.

file_client: local

Now the salt minion will not look for a master and will assume that the local system has all of the file and pillar
resources.

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will aempt to

29

https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap
http://www.vagrantup.com/
https://github.com/saltstack/salty-vagrant

Salt Documentation, Release 2014.7.6

connect to a master and fail. e salt-call command stands on its own and does not need the salt-minion daemon.

Create State Tree

Following the successful installation of a salt-minion, the next step is to create a state tree, which is where the SLS
files that comprise the possible states of the minion are stored.

e following example walks through the steps necessary to create a state tree that ensures that the server has the
Apache webserver installed.

Note: For a complete explanation on Salt States, see the tutorial.

1. Create the top.sls file:

/srv/salt/top.sls:

base:
'*':

- webserver

2. Create the webserver state tree:

/srv/salt/webserver.sls:

apache: # ID declaration
pkg: # state declaration

- installed # function declaration

e only thing le is to provision our minion using salt-call and the highstate command.

Salt-call

e salt-call command is used to run module functions locally on a minion instead of executing them from the
master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data:

salt-call --local state.highstate

e --local flag tells the salt-minion to look for the state tree in the local file system and not to contact a Salt
Master for instructions.

To provide verbose output, use -l debug:

salt-call --local state.highstate -l debug

eminion first examines the top.sls file and determines that it is a part of the group matched by * glob and that
the webserver SLS should be applied.

It then examines the webserver.sls file and finds the apache state, which installs the Apache package.

e minion should now have Apache installed, and the next step is to begin learning how to write more complex
states.

30 Chapter 3. Tutorials

http://docs.saltstack.org/en/latest/topics/tutorials/states_pt1.html

Salt Documentation, Release 2014.7.6

3.2 Basics

3.2.1 Salt Bootstrap

e Salt Bootstrap script allows for a user to install the Salt Minion or Master on a variety of system distributions
and versions. is shell script known as bootstrap-salt.sh runs through a series of checks to determine
the operating system type and version. It then installs the Salt binaries using the appropriate methods. e Salt
Bootstrap script installs the minimum number of packages required to run Salt. is means that in the event you
run the bootstrap to install via package, Git will not be installed. Installing the minimum number of packages helps
ensure the script stays as lightweight as possible, assuming the user will install any other required packages aer the
Salt binaries are present on the system. e script source is available on GitHub: hps://github.com/saltstack/salt-
bootstrap

Supported Operating Systems

• Amazon Linux 2012.09

• Arch

• CentOS 5/6

• Debian 6.x/7.x/8(git installations only)

• Fedora 17/18

• FreeBSD 9.1/9.2/10

• Gentoo

• Linaro

• Linux Mint 13/14

• OpenSUSE 12.x

• Oracle Linux 5/5

• Red Hat 5/6

• Red Hat Enterprise 5/6

• Scientific Linux 5/6

• SmartOS

• SuSE 11 SP1/11 SP2

• Ubuntu 10.x/11.x/12.x/13.04/13.10

• Elementary OS 0.2

Note: In the event you do not see your distribution or version available please review the develop branch on
Github as it main contain updates that are not present in the stable release: hps://github.com/saltstack/salt-
bootstrap/tree/develop

Example Usage

If you're looking for the one-liner to install salt, please scroll to the boom and use the instructions for Installing via
an Insecure One-Liner

3.2. Basics 31

https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap/tree/develop
https://github.com/saltstack/salt-bootstrap/tree/develop

Salt Documentation, Release 2014.7.6

Note: In every two-step example, you would be well-served to examine the downloaded file and examine it to
ensure that it does what you expect.

Using curl to install latest git:

curl -L https://bootstrap.saltstack.com -o install_salt.sh
sudo sh install_salt.sh git develop

Using wget to install your distribution's stable packages:

wget -O install_salt.sh https://bootstrap.saltstack.com
sudo sh install_salt.sh

Install a specific version from git using wget:

wget -O install_salt.sh https://bootstrap.saltstack.com
sudo sh install_salt.sh -P git v0.16.4

If you already have python installed, python 2.6, then it's as easy as:

python -m urllib "https://bootstrap.saltstack.com" > install_salt.sh
sudo sh install_salt.sh git develop

All python versions should support the following one liner:

python -c 'import urllib; print urllib.urlopen("https://bootstrap.saltstack.com").read()' > install_salt.sh
sudo sh install_salt.sh git develop

On a FreeBSD base system you usually don't have either of the above binaries available. You do havefetch available
though:

fetch -o install_salt.sh https://bootstrap.saltstack.com
sudo sh install_salt.sh

If all you want is to install a salt-master using latest git:

curl -o install_salt.sh.sh -L https://bootstrap.saltstack.com
sudo sh install_salt.sh.sh -M -N git develop

If you want to install a specific release version (based on the git tags):

curl -o install_salt.sh.sh -L https://bootstrap.saltstack.com
sudo sh install_salt.sh.sh git v0.16.4

To install a specific branch from a git fork:

curl -o install_salt.sh.sh -L https://bootstrap.saltstack.com
sudo sh install_salt.sh.sh -g https://github.com/myuser/salt.git git mybranch

Installing via an Insecure One-Liner

e following examples illustrate how to install Salt via a one-liner.

Note: Warning! ese methods do not involve a verification step and assume that the delivered file is trustworthy.

32 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

Examples

Installing the latest develop branch of Salt:

curl -L https://bootstrap.saltstack.com | sudo sh -s -- git develop

Any of the example above which use two-lines can be made to run in a single-line configuration with minor modi-
fications.

Example Usage

e Salt Bootstrap script has a wide variety of options that can be passed as well as several ways of obtaining the
bootstrap script itself.

For example, using curl to install your distribution's stable packages:

curl -L https://bootstrap.saltstack.com | sudo sh

Using wget to install your distribution's stable packages:

wget -O - https://bootstrap.saltstack.com | sudo sh

Installing the latest version available from git with curl:

curl -L https://bootstrap.saltstack.com | sudo sh -s -- git develop

Install a specific version from git using wget:

wget -O - https://bootstrap.saltstack.com | sh -s -- -P git v0.16.4

If you already have python installed, python 2.6, then it's as easy as:

python -m urllib "https://bootstrap.saltstack.com" | sudo sh -s -- git develop

All python versions should support the following one liner:

python -c 'import urllib; print urllib.urlopen("https://bootstrap.saltstack.com").read()' | \
sudo sh -s -- git develop

On a FreeBSD base system you usually don't have either of the above binaries available. You do havefetch available
though:

fetch -o - https://bootstrap.saltstack.com | sudo sh

If all you want is to install a salt-master using latest git:

curl -L https://bootstrap.saltstack.com | sudo sh -s -- -M -N git develop

If you want to install a specific release version (based on the git tags):

curl -L https://bootstrap.saltstack.com | sudo sh -s -- git v0.16.4

Downloading the develop branch (from here standard command line options may be passed):

wget https://bootstrap.saltstack.com/develop

3.2. Basics 33

Salt Documentation, Release 2014.7.6

Command Line Options

Here's a summary of the command line options:

$ sh bootstrap-salt.sh -h

Usage : bootstrap-salt.sh [options] <install-type> <install-type-args>

Installation types:
- stable (default)
- daily (ubuntu specific)
- git

Examples:
$ bootstrap-salt.sh
$ bootstrap-salt.sh stable
$ bootstrap-salt.sh daily
$ bootstrap-salt.sh git
$ bootstrap-salt.sh git develop
$ bootstrap-salt.sh git v0.17.0
$ bootstrap-salt.sh git 8c3fadf15ec183e5ce8c63739850d543617e4357

Options:
-h Display this message
-v Display script version
-n No colours.
-D Show debug output.
-c Temporary configuration directory
-g Salt repository URL. (default: git://github.com/saltstack/salt.git)
-k Temporary directory holding the minion keys which will pre-seed

the master.
-M Also install salt-master
-S Also install salt-syndic
-N Do not install salt-minion
-X Do not start daemons after installation
-C Only run the configuration function. This option automatically

bypasses any installation.
-P Allow pip based installations. On some distributions the required salt

packages or its dependencies are not available as a package for that
distribution. Using this flag allows the script to use pip as a last
resort method. NOTE: This only works for functions which actually
implement pip based installations.

-F Allow copied files to overwrite existing(config, init.d, etc)
-U If set, fully upgrade the system prior to bootstrapping salt
-K If set, keep the temporary files in the temporary directories specified

with -c and -k.
-I If set, allow insecure connections while downloading any files. For

example, pass '--no-check-certificate' to 'wget' or '--insecure' to 'curl'
-A Pass the salt-master DNS name or IP. This will be stored under

${BS_SALT_ETC_DIR}/minion.d/99-master-address.conf
-i Pass the salt-minion id. This will be stored under

${BS_SALT_ETC_DIR}/minion_id
-L Install the Apache Libcloud package if possible(required for salt-cloud)
-p Extra-package to install while installing salt dependencies. One package

per -p flag. You're responsible for providing the proper package name.

34 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

3.2.2 Standalone Minion

Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

• Use salt-call commands on a system without connectivity to a master

• Masterless States, run states entirely from files local to the minion

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will aempt to
connect to a master and fail. e salt-call command stands on its own and does not need the salt-minion daemon.

Telling Salt Call to Run Masterless

e salt-call command is used to run module functions locally on a minion instead of executing them from the
master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data. To instruct the minion to
not look for a master when running salt-call the file_client configuration option needs to be set. By default
the file_client is set to remote so that the minion knows that file server and pillar data are to be gathered
from the master. When seing the file_client option to local the minion is configured to not gather this
data from the master.

file_client: local

Now the salt-call command will not look for a master and will assume that the local system has all of the file and
pillar resources.

Running States Masterless

e state system can be easily run without a Salt master, with all needed files local to the minion. To do this the
minion configuration file needs to be set up to know how to return file_roots information like the master. e
file_roots seing defaults to /srv/salt for the base environment just like on the master:

file_roots:
base:

- /srv/salt

Now set up the Salt State Tree, top file, and SLS modules in the same way that they would be set up on a master.
Now, with the file_client option set to local and an available state tree then calls to functions in the state
module will use the information in the file_roots on the minion instead of checking in with the master.

Remember that when creating a state tree on a minion there are no syntax or path changes needed, SLS modules
wrien to be used from a master do not need to be modified in any way to work with a minion.

is makes it easy to ``script'' deployments with Salt states without having to set up a master, and allows for these
SLS modules to be easily moved into a Salt master as the deployment grows.

e declared state can now be executed with:

salt-call state.highstate

Or the salt-call command can be executed with the --local flag, this makes it unnecessary to change the config-
uration file:

salt-call state.highstate --local

3.2. Basics 35

Salt Documentation, Release 2014.7.6

3.2.3 Opening the Firewall up for Salt

e Salt master communicates with the minions using an AES-encrypted ZeroMQ connection. ese communica-
tions are done over TCP ports 4505 and 4506, which need to be accessible on the master only. is document outlines
suggested firewall rules for allowing these incoming connections to the master.

Note: No firewall configuration needs to be done on Salt minions. ese changes refer to the master only.

RHEL 6 / CentOS 6

e lokkit command packaged with some Linux distributions makes opening iptables firewall ports very simple
via the command line. Just be careful to not lock out access to the server by neglecting to open the ssh port.

lokkit example:

lokkit -p 22:tcp -p 4505:tcp -p 4506:tcp

e system-config-firewall-tui command provides a text-based interface to modifying the firewall.

system-config-firewall-tui:

system-config-firewall-tui

openSUSE

Salt installs firewall rules in /etc/sysconfig/SuSEfirewall2.d/services/salt. Enable with:

SuSEfirewall2 open
SuSEfirewall2 start

If you have an older package of Salt where the above configuration file is not included, the SuSEfirewall2
command makes opening iptables firewall ports very simple via the command line.

SuSEfirewall example:

SuSEfirewall2 open EXT TCP 4505
SuSEfirewall2 open EXT TCP 4506

e firewall module in YaST2 provides a text-based interface to modifying the firewall.

YaST2:

yast2 firewall

iptables

Different Linux distributions store their iptables (also known as netfilter) rules in different places, which makes it
difficult to standardize firewall documentation. Included are some of the more common locations, but your mileage
may vary.

Fedora / RHEL / CentOS:

/etc/sysconfig/iptables

Ar Linux:

36 Chapter 3. Tutorials

https://github.com/saltstack/salt/blob/develop/pkg/suse/salt.SuSEfirewall2
http://www.netfilter.org/

Salt Documentation, Release 2014.7.6

/etc/iptables/iptables.rules

Debian

Follow these instructions: hps://wiki.debian.org/iptables

Once you've found your firewall rules, you'll need to add the two lines below to allow traffic on tcp/4505 and
tcp/4506:

-A INPUT -m state --state new -m tcp -p tcp --dport 4505 -j ACCEPT
-A INPUT -m state --state new -m tcp -p tcp --dport 4506 -j ACCEPT

Ubuntu

Salt installs firewall rules in /etc/ufw/applications.d/salt.ufw. Enable with:

ufw allow salt

pf.conf

e BSD-family of operating systems uses packet filter (p). e following example describes the additions to
pf.conf needed to access the Salt master.

pass in on $int_if proto tcp from any to $int_if port 4505
pass in on $int_if proto tcp from any to $int_if port 4506

Once these additions have been made to the pf.conf the rules will need to be reloaded. is can be done using
the pfctl command.

pfctl -vf /etc/pf.conf

3.2.4 Whitelist communication to Master

ere are situations where you want to selectively allowMinion traffic from specific hosts or networks into your Salt
Master. e first scenario which comes tomind is to prevent unwanted traffic to yourMaster out of security concerns,
but another scenario is to handle Minion upgrades when there are backwards incompatible changes between the
installed Salt versions in your environment.

Here is an example Linux iptables ruleset to be set on the Master:

Allow Minions from these networks
-I INPUT -s 10.1.2.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
-I INPUT -s 10.1.3.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
Allow Salt to communicate with Master on the loopback interface
-A INPUT -i lo -p tcp -m multiport --dports 4505,4506 -j ACCEPT
Reject everything else
-A INPUT -p tcp -m multiport --dports 4505,4506 -j REJECT

Note: e important thing to note here is that the salt command needs to communicate with the listening
network socket of salt-master on the loopback interface. Without this you will see no outgoing Salt traffic from
the master, even for a simple salt '*' test.ping, because the salt client never reached the salt-master
to tell it to carry out the execution.

3.2. Basics 37

https://wiki.debian.org/iptables
https://github.com/saltstack/salt/blob/develop/pkg/salt.ufw
http://openbsd.org/faq/pf/

Salt Documentation, Release 2014.7.6

3.2.5 Using cron with Salt

e Salt Minion can initiate its own highstate using the salt-call command.

$ salt-call state.highstate

is will cause the minion to check in with the master and ensure it is in the correct `state'.

Use cron to initiate a highstate

If you would like the Salt Minion to regularly check in with the master you can use the venerable cron to run the
salt-call command.

PATH=/bin:/sbin:/usr/bin:/usr/sbin

00 00 * * * salt-call state.highstate

e above cron entry will run a highstate every day at midnight.

Note: Be aware that you may need to ensure the PATH for cron includes any scripts or commands that need to be
executed.

3.2.6 Remote execution tutorial

Before continuingmake sure you have a working Salt installation by following the installation and the configuration
instructions.

Stu?

ere are many ways to get help from the Salt community including our mailing list and our IRC channel #salt.

Order your minions around

Now that you have a master and at least one minion communicating with each other you can perform commands on
the minion via the salt command. Salt calls are comprised of three main components:

salt '<target>' <function> [arguments]

See also:

salt manpage

target

e target component allows you to filter which minions should run the following function. e default filter is a
glob on the minion id. For example:

salt '*' test.ping
salt '*.example.org' test.ping

Targets can be based on minion system information using the Grains system:

38 Chapter 3. Tutorials

https://groups.google.com/forum/#!forum/salt-users
http://webchat.freenode.net/?channels=salt

Salt Documentation, Release 2014.7.6

salt -G 'os:Ubuntu' test.ping

See also:

Grains system

Targets can be filtered by regular expression:

salt -E 'virtmach[0-9]' test.ping

Targets can be explicitly specified in a list:

salt -L 'foo,bar,baz,quo' test.ping

Or Multiple target types can be combined in one command:

salt -C 'G@os:Ubuntu and webser* or E@database.*' test.ping

function

A function is some functionality provided by a module. Salt ships with a large collection of available functions. List
all available functions on your minions:

salt '*' sys.doc

Here are some examples:

Show all currently available minions:

salt '*' test.ping

Run an arbitrary shell command:

salt '*' cmd.run 'uname -a'

See also:

the full list of modules

arguments

Space-delimited arguments to the function:

salt '*' cmd.exec_code python 'import sys; print sys.version'

Optional, keyword arguments are also supported:

salt '*' pip.install salt timeout=5 upgrade=True

ey are always in the form of kwarg=argument.

3.2.7 Pillar Walkthrough

Note: is walkthrough assumes that the reader has already completed the initial Salt walkthrough.

3.2. Basics 39

Salt Documentation, Release 2014.7.6

Pillars are tree-like structures of data defined on the Salt Master and passed through to minions. ey allow confi-
dential, targeted data to be securely sent only to the relevant minion.

Note: Grains and Pillar are sometimes confused, just remember that Grains are data about a minion which is stored
or generated from the minion. is is why information like the OS and CPU type are found in Grains. Pillar is
information about a minion or many minions stored or generated on the Salt Master.

Pillar data is useful for:

Highly Sensitive Data: Information transferred via pillar is guaranteed to only be presented to the minions that are
targeted, making Pillar suitable for managing security information, such as cryptographic keys and passwords.

Minion Configuration: Minionmodules such as the executionmodules, states, and returners can oen be configured
via data stored in pillar.

Variables: Variables which need to be assigned to specific minions or groups of minions can be defined in pillar and
then accessed inside sls formulas and template files.

Arbitrary Data: Pillar can contain any basic data structure, so a list of values, or a key/value store can be defined
making it easy to iterate over a group of values in sls formulas

Pillar is therefore one of the most important systems when using Salt. is walkthrough is designed to get a simple
Pillar up and running in a few minutes and then to dive into the capabilities of Pillar and where the data is available.

Seing Up Pillar

e pillar is already running in Salt by default. To see the minion's pillar data:

salt '*' pillar.items

Note: Prior to version 0.16.2, this function is named pillar.data. is function name is still supported for
backwards compatibility.

By default the contents of the master configuration file are loaded into pillar for all minions. is enables the master
configuration file to be used for global configuration of minions.

Similar to the state tree, the pillar is comprised of sls files and has a top file. e default location for the pillar is in
/srv/pillar.

Note: e pillar location can be configured via the pillar_roots option inside the master configuration file. It must
not be in a subdirectory of the state tree.

To start seing up the pillar, the /srv/pillar directory needs to be present:

mkdir /srv/pillar

Now create a simple top file, following the same format as the top file used for states:

/srv/pillar/top.sls:

base:
'*':

- data

is top file associates the data.sls file to all minions. Now the /srv/pillar/data.sls file needs to be popu-
lated:

/srv/pillar/data.sls:

40 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

info: some data

To ensure that the minions have the new pillar data, issue a command to them asking that they fetch their pillars
from the master:

salt '*' saltutil.pillar_refresh

Now that the minions have the new pillar, it can be retreived:

salt '*' pillar.items

e key info should now appear in the returned pillar data.

More Complex Data

Unlike states, pillar files do not need to define formulas. is example sets up user data with a UID:

/srv/pillar/users/init.sls:
users:

thatch: 1000
shouse: 1001
utahdave: 1002
redbeard: 1003

Note: e same directory lookups that exist in states exist in pillar, so the file users/init.sls can be referenced
with users in the top file.

e top file will need to be updated to include this sls file:

/srv/pillar/top.sls:

base:
'*':

- data
- users

Now the data will be available to the minions. To use the pillar data in a state, you can use Jinja:

/srv/salt/users/init.sls

{% for user, uid in pillar.get('users', {}).items() %}
{{user}}:

user.present:
- uid: {{uid}}

{% endfor %}

is approach allows for users to be safely defined in a pillar and then the user data is applied in an sls file.

Parameterizing States With Pillar

Pillar data can be accessed in state files to customise behavior for each minion. All pillar (and grain) data applicable
to each minion is substituted into the state files through templating before being run. Typical uses include seing
directories appropriate for the minion and skipping states that don't apply.

A simple example is to set up a mapping of package names in pillar for separate Linux distributions:

/srv/pillar/pkg/init.sls:

3.2. Basics 41

Salt Documentation, Release 2014.7.6

pkgs:
{% if grains['os_family'] == 'RedHat' %}
apache: httpd
vim: vim-enhanced
{% elif grains['os_family'] == 'Debian' %}
apache: apache2
vim: vim
{% elif grains['os'] == 'Arch' %}
apache: apache
vim: vim
{% endif %}

e new pkg sls needs to be added to the top file:

/srv/pillar/top.sls:

base:
'*':

- data
- users
- pkg

Now the minions will auto map values based on respective operating systems inside of the pillar, so sls files can be
safely parameterized:

/srv/salt/apache/init.sls:

apache:
pkg.installed:

- name: {{ pillar['pkgs']['apache'] }}

Or, if no pillar is available a default can be set as well:

Note: e function pillar.get used in this example was added to Salt in version 0.14.0

/srv/salt/apache/init.sls:

apache:
pkg.installed:

- name: {{ salt['pillar.get']('pkgs:apache', 'httpd') }}

In the above example, if the pillar value pillar['pkgs']['apache'] is not set in the minion's pillar, then the
default of httpd will be used.

Note: Under the hood, pillar is just a Python dict, so Python dict methods such as get and items can be used.

Pillar Makes Simple States Grow Easily

One of the design goals of pillar is to make simple sls formulas easily grow into more flexible formulas without
refactoring or complicating the states.

A simple formula:

/srv/salt/edit/vim.sls:

vim:
pkg.installed: []

42 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

/etc/vimrc:
file.managed:

- source: salt://edit/vimrc
- mode: 644
- user: root
- group: root
- require:

- pkg: vim

Can be easily transformed into a powerful, parameterized formula:

/srv/salt/edit/vim.sls:

vim:
pkg.installed:

- name: {{ pillar['pkgs']['vim'] }}

/etc/vimrc:
file.managed:

- source: {{ pillar['vimrc'] }}
- mode: 644
- user: root
- group: root
- require:

- pkg: vim

Where the vimrc source location can now be changed via pillar:

/srv/pillar/edit/vim.sls:

{% if grains['id'].startswith('dev') %}
vimrc: salt://edit/dev_vimrc
{% elif grains['id'].startswith('qa') %}
vimrc: salt://edit/qa_vimrc
{% else %}
vimrc: salt://edit/vimrc
{% endif %}

Ensuring that the right vimrc is sent out to the correct minions.

Seing Pillar Data on the Command Line

Pillar data can be set on the command line like so:

salt '*' state.highstate pillar='{"foo": "bar"}'

e state.sls command can also be used to set pillar values via the command line:

salt '*' state.sls my_sls_file pillar='{"hello": "world"}'

Lists can be passed in pillar as well:

salt '*' state.highstate pillar='["foo", "bar", "baz"]'

Note: If a key is passed on the command line that already exists on the minion, the key that is passed in will
overwrite the entire value of that key, rather than merging only the specified value set via the command line.

3.2. Basics 43

Salt Documentation, Release 2014.7.6

More On Pillar

Pillar data is generated on the Salt master and securely distributed to minions. Salt is not restricted to the pillar sls
files when defining the pillar but can retrieve data from external sources. is can be useful when information about
an infrastructure is stored in a separate location.

Reference information on pillar and the external pillar interface can be found in the Salt documentation:

Pillar

3.3 States

3.3.1 How Do I Use Salt States?

Simplicity, Simplicity, Simplicity

Many of the most powerful and useful engineering solutions are founded on simple principles. Salt States strive to
do just that: K.I.S.S. (Keep It Stupidly Simple)

e core of the Salt State system is the SLS, or SaLt State file. e SLS is a representation of the state in which a system
should be in, and is set up to contain this data in a simple format. is is oen called configuration management.

Note: is is just the beginning of using states, make sure to read up on pillar Pillar next.

It is All Just Data

Before delving into the particulars, it will help to understand that the SLS file is just a data structure under the hood.
While understanding that the SLS is just a data structure isn't critical for understanding andmaking use of Salt States,
it should help bolster knowledge of where the real power is.

SLS files are therefore, in reality, just dictionaries, lists, strings, and numbers. By using this approach Salt can be much
more flexible. As one writes more state files, it becomes clearer exactly what is being wrien. e result is a system
that is easy to understand, yet grows with the needs of the admin or developer.

The Top File

e example SLS files in the below sections can be assigned to hosts using a file called top.sls. is file is described
in-depth here.

Default Data - YAML

By default Salt represents the SLS data in what is one of the simplest serialization formats available - YAML.

A typical SLS file will oen look like this in YAML:

Note: ese demos use some generic service and package names, different distributions oen use different names
for packages and services. For instance apache should be replaced with hpd on a Red Hat system. Salt uses the
name of the init script, systemd name, upstart name etc. based on what the underlying service management for the
platform. To get a list of the available service names on a platform execute the service.get_all salt function.

Information on how to make states work with multiple distributions is later in the tutorial.

44 Chapter 3. Tutorials

http://docs.python.org/2/library/stdtypes.html#typesmapping
http://docs.python.org/2/library/stdtypes.html#typesseq
http://docs.python.org/2/library/stdtypes.html#typesseq
http://docs.python.org/2/library/stdtypes.html#typesnumeric
http://yaml.org/spec/1.1/

Salt Documentation, Release 2014.7.6

apache:
pkg.installed: []
service.running:

- require:
- pkg: apache

is SLS data will ensure that the package named apache is installed, and that the apache service is running. e
components can be explained in a simple way.

e first line is the ID for a set of data, and it is called the ID Declaration. is ID sets the name of the thing that
needs to be manipulated.

e second and third lines contain the state module function to be run, in the format
<state_module>.<function>. e pkg.installed state module function ensures that a soware
package is installed via the system's native package manager. e service.running state module function
ensures that a given system daemon is running.

Finally, on line five, is the word require. is is called a Requisite Statement, and it makes sure that the Apache
service is only started aer a successful installation of the apache package.

Adding Configs and Users

When seing up a service like an Apache web server, many more components may need to be added. e Apache
configuration file will most likely be managed, and a user and group may need to be set up.

apache:
pkg.installed: []
service.running:

- watch:
- pkg: apache
- file: /etc/httpd/conf/httpd.conf
- user: apache

user.present:
- uid: 87
- gid: 87
- home: /var/www/html
- shell: /bin/nologin
- require:

- group: apache
group.present:

- gid: 87
- require:

- pkg: apache

/etc/httpd/conf/httpd.conf:
file.managed:

- source: salt://apache/httpd.conf
- user: root
- group: root
- mode: 644

is SLS data greatly extends the first example, and includes a config file, a user, a group and new requisite statement:
watch.

Adding more states is easy, since the new user and group states are under the Apache ID, the user and group will
be the Apache user and group. e require statements will make sure that the user will only be made aer the
group, and that the group will be made only aer the Apache package is installed.

3.3. States 45

Salt Documentation, Release 2014.7.6

Next, the require statement under service was changed to watch, and is now watching 3 states instead of just one.
e watch statement does the same thing as require, making sure that the other states run before running the state
with a watch, but it adds an extra component. e watch statement will run the state's watcher function for any
changes to the watched states. So if the package was updated, the config file changed, or the user uid modified, then
the service state's watcher will be run. e service state's watcher just restarts the service, so in this case, a change
in the config file will also trigger a restart of the respective service.

Moving Beyond a Single SLS

When seing up Salt States in a scalable manner, more than one SLS will need to be used. e above examples were
in a single SLS file, but two or more SLS files can be combined to build out a State Tree. e above example also
references a file with a strange source - salt://apache/httpd.conf. at file will need to be available as
well.

e SLS files are laid out in a directory structure on the Salt master; an SLS is just a file and files to download are
just files.

e Apache example would be laid out in the root of the Salt file server like this:

apache/init.sls
apache/httpd.conf

So the hpd.conf is just a file in the apache directory, and is referenced directly.

But when using more than one single SLS file, more components can be added to the toolkit. Consider this SSH
example:

ssh/init.sls:

openssh-client:
pkg.installed

/etc/ssh/ssh_config:
file.managed:

- user: root
- group: root
- mode: 644
- source: salt://ssh/ssh_config
- require:

- pkg: openssh-client

ssh/server.sls:

include:
- ssh

openssh-server:
pkg.installed

sshd:
service.running:

- require:
- pkg: openssh-client
- pkg: openssh-server
- file: /etc/ssh/banner
- file: /etc/ssh/sshd_config

/etc/ssh/sshd_config:
file.managed:

46 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

- user: root
- group: root
- mode: 644
- source: salt://ssh/sshd_config
- require:

- pkg: openssh-server

/etc/ssh/banner:
file:

- managed
- user: root
- group: root
- mode: 644
- source: salt://ssh/banner
- require:

- pkg: openssh-server

Note: Notice that we use two similar ways of denoting that a file is managed by Salt. In the /etc/ssh/sshd_config state
section above, we use the file.managed state declaration whereas with the /etc/ssh/banner state section, we use the
file state declaration and add a managed aribute to that state declaration. Both ways produce an identical result;
the first way -- using file.managed -- is merely a shortcut.

Now our State Tree looks like this:

apache/init.sls
apache/httpd.conf
ssh/init.sls
ssh/server.sls
ssh/banner
ssh/ssh_config
ssh/sshd_config

is example now introduces the include statement. e include statement includes another SLS file so that
components found in it can be required, watched or as will soon be demonstrated - extended.

e include statement allows for states to be cross linked. When an SLS has an include statement it is literally
extended to include the contents of the included SLS files.

Note that some of the SLS files are called init.sls, while others are not. More info on what this means can be found
in the States Tutorial.

Extending Included SLS Data

Sometimes SLS data needs to be extended. Perhaps the apache service needs to watch additional resources, or under
certain circumstances a different file needs to be placed.

In these examples, the first will add a custom banner to ssh and the second will add more watchers to apache to
include mod_python.

ssh/custom-server.sls:

include:
- ssh.server

extend:
/etc/ssh/banner:

3.3. States 47

Salt Documentation, Release 2014.7.6

file:
- source: salt://ssh/custom-banner

python/mod_python.sls:

include:
- apache

extend:
apache:

service:
- watch:

- pkg: mod_python

mod_python:
pkg.installed

e custom-server.sls file uses the extend statement to overwrite where the banner is being downloaded
from, and therefore changing what file is being used to configure the banner.

In the new mod_python SLS the mod_python package is added, but more importantly the apache service was ex-
tended to also watch the mod_python package.

Using extend with require or wat

e extend statement works differently for require or watch. It appends to, rather than replacing the requisite
component.

Understanding the Render System

Since SLS data is simply that (data), it does not need to be represented with YAML. Salt defaults to YAML because
it is very straightforward and easy to learn and use. But the SLS files can be rendered from almost any imaginable
medium, so long as a renderer module is provided.

e default rendering system is the yaml_jinja renderer. e yaml_jinja renderer will first pass the template
through the Jinja2 templating system, and then through the YAML parser. e benefit here is that full programming
constructs are available when creating SLS files.

Other renderers available are yaml_mako and yaml_wempy which each use the Mako or Wempy templating
system respectively rather than the jinja templating system, and more notably, the pure Python or py, pydsl &
pyobjects renderers. e py renderer allows for SLS files to be wrien in pure Python, allowing for the utmost
level of flexibility and power when preparing SLS data; while the pydsl renderer provides a flexible, domain-specific
language for authoring SLS data in Python; and the pyobjects renderer gives you a ``Pythonic'' interface to building
state data.

Note: e templating engines described above aren't just available in SLS files. ey can also be used in
file.managed states, making file management much more dynamic and flexible. Some examples for using tem-
plates in managed files can be found in the documentation for the file states, as well as the MooseFS example below.

Geing to Know the Default - yaml_jinja

e default renderer - yaml_jinja, allows for use of the jinja templating system. A guide to the Jinja templating
system can be found here: hp://jinja.pocoo.org/docs

48 Chapter 3. Tutorials

http://jinja.pocoo.org/
http://www.makotemplates.org/
https://fossil.secution.com/u/gcw/wempy/doc/tip/README.wiki
http://legacy.python.org/dev/peps/pep-0008/
http://jinja.pocoo.org/docs

Salt Documentation, Release 2014.7.6

When working with renderers a few very useful bits of data are passed in. In the case of templating engine based
renderers, three critical components are available, salt, grains, and pillar. e salt object allows for any
Salt function to be called from within the template, and grains allows for the Grains to be accessed from within
the template. A few examples:

apache/init.sls:

apache:
pkg.installed:

{% if grains['os'] == 'RedHat'%}
- name: httpd
{% endif %}

service.running:
{% if grains['os'] == 'RedHat'%}
- name: httpd
{% endif %}
- watch:

- pkg: apache
- file: /etc/httpd/conf/httpd.conf
- user: apache

user.present:
- uid: 87
- gid: 87
- home: /var/www/html
- shell: /bin/nologin
- require:

- group: apache
group.present:

- gid: 87
- require:

- pkg: apache

/etc/httpd/conf/httpd.conf:
file.managed:

- source: salt://apache/httpd.conf
- user: root
- group: root
- mode: 644

is example is simple. If the os grain states that the operating system is Red Hat, then the name of the Apache
package and service needs to be hpd. A more aggressive way to use Jinja can be found here, in a module to set up
a MooseFS distributed filesystem chunkserver:

moosefs/chunk.sls:

include:
- moosefs

{% for mnt in salt['cmd.run']('ls /dev/data/moose*').split() %}
/mnt/moose{{ mnt[-1] }}:

mount.mounted:
- device: {{ mnt }}
- fstype: xfs
- mkmnt: True

file.directory:
- user: mfs
- group: mfs
- require:

- user: mfs

3.3. States 49

Salt Documentation, Release 2014.7.6

- group: mfs
{% endfor %}

/etc/mfshdd.cfg:
file.managed:

- source: salt://moosefs/mfshdd.cfg
- user: root
- group: root
- mode: 644
- template: jinja
- require:

- pkg: mfs-chunkserver

/etc/mfschunkserver.cfg:
file.managed:

- source: salt://moosefs/mfschunkserver.cfg
- user: root
- group: root
- mode: 644
- template: jinja
- require:

- pkg: mfs-chunkserver

mfs-chunkserver:
pkg.installed: []

mfschunkserver:
service.running:

- require:
{% for mnt in salt['cmd.run']('ls /dev/data/moose*') %}

- mount: /mnt/moose{{ mnt[-1] }}
- file: /mnt/moose{{ mnt[-1] }}

{% endfor %}
- file: /etc/mfschunkserver.cfg
- file: /etc/mfshdd.cfg
- file: /var/lib/mfs

is example shows much more of the available power of Jinja. Multiple for loops are used to dynamically de-
tect available hard drives and set them up to be mounted, and the salt object is used multiple times to call shell
commands to gather data.

Introducing the Python, PyDSL and the Pyobjects Renderers

Sometimes the chosen default renderer might not have enough logical power to accomplish the needed task. When
this happens, the Python renderer can be used. Normally a YAML renderer should be used for the majority of SLS
files, but an SLS file set to use another renderer can be easily added to the tree.

is example shows a very basic Python SLS file:

python/django.sls:

#!py

def run():
'''
Install the django package
'''
return {'include': ['python'],

50 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

'django': {'pkg': ['installed']}}

is is a very simple example; the first line has an SLS shebang that tells Salt to not use the default renderer, but to
use the py renderer. en the run function is defined, the return value from the run function must be a Salt friendly
data structure, or beer known as a Salt HighState data structure.

Alternatively, using the pydsl renderer, the above example can be wrien more succinctly as:

#!pydsl

include('python', delayed=True)
state('django').pkg.installed()

e pyobjects renderer provides an ``Pythonic'' object based approach for building the state data. e above example
could be wrien as:

#!pyobjects

include('python')
Pkg.installed("django")

is Python examples would look like this if they were wrien in YAML:

include:
- python

django:
pkg.installed

is example clearly illustrates that; one, using the YAML renderer by default is a wise decision and two, unbridled
power can be obtained where needed by using a pure Python SLS.

Running and debugging salt states.

Once the rules in an SLS are ready, they should be tested to ensure they work properly. To invoke these rules, simply
execute salt '*' state.highstate on the command line. If you get back only hostnames with a : aer,
but no return, chances are there is a problem with one or more of the sls files. On the minion, use the salt-call
command: salt-call state.highstate -l debug to examine the output for errors. is should help
troubleshoot the issue. e minions can also be started in the foreground in debug mode: salt-minion -l
debug.

Next Reading

With an understanding of states, the next recommendation is to become familiar with Salt's pillar interface:

Pillar Walkthrough

3.3.2 States tutorial, part 1 - Basic Usage

e purpose of this tutorial is to demonstrate how quickly you can configure a system to be managed by Salt States.
For detailed information about the state system please refer to the full states reference.

is tutorial will walk you through using Salt to configure a minion to run the Apache HTTP server and to ensure
the server is running.

3.3. States 51

http://legacy.python.org/dev/peps/pep-0008/

Salt Documentation, Release 2014.7.6

Before continuingmake sure you have a working Salt installation by following the installation and the configuration
instructions.

Stu?

ere are many ways to get help from the Salt community including our mailing list and our IRC channel #salt.

Seing up the Salt State Tree

States are stored in text files on the master and transferred to the minions on demand via the master's File Server.
e collection of state files make up the State Tree.

To start using a central state system in Salt, the Salt File Server must first be set up. Edit the master config file
(file_roots) and uncomment the following lines:

file_roots:
base:

- /srv/salt

Note: If you are deploying on FreeBSD via ports, the file_roots path defaults to
/usr/local/etc/salt/states.

Restart the Salt master in order to pick up this change:

pkill salt-master
salt-master -d

Preparing the Top File

On the master, in the directory uncommented in the previous step, (/srv/salt by default), create a new file called
top.sls and add the following:

base:
'*':

- webserver

e top file is separated into environments (discussed later). e default environment is base. Under the base
environment a collection of minion matches is defined; for now simply specify all hosts (*).

Targeting minions

e expressions can use any of the targeting mechanisms used by Salt — minions can be matched by glob, PCRE
regular expression, or by grains. For example:

base:
'os:Fedora':

- match: grain
- webserver

Create an sls file

In the same directory as the top file, create a file named webserver.sls, containing the following:

52 Chapter 3. Tutorials

https://groups.google.com/forum/#!forum/salt-users
http://webchat.freenode.net/?channels=salt

Salt Documentation, Release 2014.7.6

apache: # ID declaration
pkg: # state declaration

- installed # function declaration

e first line, called the ID declaration, is an arbitrary identifier. In this case it defines the name of the package to be
installed.

Note: e package name for the Apache hpd web server may differ depending on OS or distro — for example, on
Fedora it is httpd but on Debian/Ubuntu it is apache2.

e second line, called the State declaration, defines which of the Salt States we are using. In this example, we are
using the pkg state to ensure that a given package is installed.

e third line, called the Function declaration, defines which function in the pkg state module to call.

Renderers

States sls files can be wrien in many formats. Salt requires only a simple data structure and is not concerned with
how that data structure is built. Templating languages and DSLs are a dime-a-dozen and everyone has a favorite.

Building the expected data structure is the job of Salt renderers and they are dead-simple to write.

In this tutorial we will be using YAML in Jinja2 templates, which is the default format. e default can be changed
by editing renderer in the master configuration file.

Install the package

Next, let's run the state we created. Open a terminal on the master and run:

% salt '*' state.highstate

Our master is instructing all targeted minions to run state.highstate. When a minion executes a highstate call
it will download the top file and aempt to match the expressions. When it does match an expression the modules
listed for it will be downloaded, compiled, and executed.

Once completed, the minion will report back with a summary of all actions taken and all changes made.

Warning: If you have created custom grain modules, they will not be available in the top file until aer the first
highstate. To make custom grains available on a minion's first highstate, it is recommended to use this example
to ensure that the custom grains are synced when the minion starts.

SLS File Namespace

Note that in the example above, the SLS file webserver.sls was referred to simply as webserver. e names-
pace for SLS files follows a few simple rules:

1. e .sls is discarded (i.e. webserver.sls becomes webserver).

2. Subdirectories can be used for better organization.

(a) Each subdirectory is represented by a dot.

(b) webserver/dev.sls is referred to as webserver.dev.

3. A file called init.sls in a subdirectory is referred to by the path of the directory. So, web-
server/init.sls is referred to as webserver.

3.3. States 53

http://en.wikipedia.org/wiki/Domain-specific_language

Salt Documentation, Release 2014.7.6

4. If both webserver.sls and webserver/init.sls happen to exist, webserver/init.sls will be
ignored and webserver.sls will be the file referred to as webserver.

Troubleshooting Salt

If the expected output isn't seen, the following tips can help to narrow down the problem.

Turn up logging Salt can be quite chay when you change the logging seing to debug:

salt-minion -l debug

Run the minion in the foreground By not starting the minion in daemon mode (-d) one can view any output from
the minion as it works:

salt-minion &

Increase the default timeout value when running salt. For example, to change the default timeout to 60 seconds:

salt -t 60

For best results, combine all three:

salt-minion -l debug & # On the minion
salt '*' state.highstate -t 60 # On the master

Next steps

is tutorial focused on geing a simple Salt States configuration working. Part 2 will build on this example to cover
more advanced sls syntax and will explore more of the states that ship with Salt.

3.3.3 States tutorial, part 2 - More Complex States, Requisites

Note: is tutorial builds on topics covered in part 1. It is recommended that you begin there.

In the last part of the Salt States tutorial we covered the basics of installing a package. We will now modify our
webserver.sls file to have requirements, and use even more Salt States.

Call multiple States

You can specify multiple State declaration under an ID declaration. For example, a quick modification to our web-
server.sls to also start Apache if it is not running:

1 apache:
2 pkg.installed: []
3 service.running:
4 - require:
5 - pkg: apache

Try stopping Apache before running state.highstate once again and observe the output.

54 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

Require other states

We now have a working installation of Apache so let's add an HTML file to customize our website. It isn't exactly
useful to have a website without a webserver so we don't want Salt to install our HTML file until Apache is installed
and running. Include the following at the boom of your webserver/init.sls file:

1 apache:
2 pkg.installed: []
3 service.running:
4 - require:
5 - pkg: apache
6

7 /var/www/index.html: # ID declaration
8 file: # state declaration
9 - managed # function

10 - source: salt://webserver/index.html # function arg
11 - require: # requisite declaration
12 - pkg: apache # requisite reference

line 9 is the ID declaration. In this example it is the location we want to install our custom HTML file. (Note: the
default location that Apache serves may differ from the above on your OS or distro. /srv/www could also be a
likely place to look.)

Line 10 the State declaration. is example uses the Salt file state.

Line 11 is the Function declaration. e managed function will download a file from the master and install it in
the location specified.

Line 12 is a Function arg declaration which, in this example, passes the source argument to the managed func-
tion.

Line 13 is a Requisite declaration.

Line 14 is a Requisite reference which refers to a state and an ID. In this example, it is referring to the ID decla-
ration from our example in part 1. is declaration tells Salt not to install the HTML file until Apache is installed.

Next, create the index.html file and save it in the webserver directory:

<html>
<head><title>Salt rocks</title></head>
<body>

<h1>This file brought to you by Salt</h1>
</body>

</html>

Last, call state.highstate again and the minion will fetch and execute the highstate as well as our HTML file
from the master using Salt's File Server:

salt '*' state.highstate

Verify that Apache is now serving your custom HTML.

require vs. watch
ere are two Requisite declaration, “require” and “watch”. Not every state supports “watch”. e service state
does support “watch” and will restart a service based on the watch condition.

For example, if you use Salt to install an Apache virtual host configuration file and want to restart Apache whenever
that file is changed you could modify our Apache example from earlier as follows:

3.3. States 55

Salt Documentation, Release 2014.7.6

/etc/httpd/extra/httpd-vhosts.conf:
file.managed:

- source: salt://webserver/httpd-vhosts.conf

apache:
pkg.installed: []
service.running:

- watch:
- file: /etc/httpd/extra/httpd-vhosts.conf

- require:
- pkg: apache

If the pkg and service names differ on your OS or distro of choice you can specify each one separately using a Name
declaration which explained in Part 3.

Next steps

In part 3 we will discuss how to use includes, extends and templating to make a more complete State Tree configu-
ration.

3.3.4 States tutorial, part 3 - Templating, Includes, Extends

Note: is tutorial builds on topics covered in part 1 and part 2. It is recommended that you begin there.

is part of the tutorial will cover more advanced templating and configuration techniques for sls files.

Templating SLS modules

SLS modules may require programming logic or inline execution. is is accomplished with module templating. e
default module templating system used is Jinja2 and may be configured by changing the renderer value in the
master config.

All states are passed through a templating systemwhen they are initially read. Tomake use of the templating system,
simply add some templating markup. An example of an sls module with templating markup may look like this:

{% for usr in ['moe','larry','curly'] %}
{{ usr }}:

user.present
{% endfor %}

is templated sls file once generated will look like this:
moe:

user.present
larry:

user.present
curly:

user.present

Here's a more complex example:

{% for usr in 'moe','larry','curly' %}
{{ usr }}:

56 Chapter 3. Tutorials

http://jinja.pocoo.org/

Salt Documentation, Release 2014.7.6

group:
- present

user:
- present
- gid_from_name: True
- require:

- group: {{ usr }}
{% endfor %}

Using Grains in SLS modules

Oen times a state will need to behave differently on different systems. Salt grains objects are made available in the
template context. e grains can be used from within sls modules:

apache:
pkg.installed:

{% if grains['os'] == 'RedHat' %}
- name: httpd
{% elif grains['os'] == 'Ubuntu' %}
- name: apache2
{% endif %}

Calling Salt modules from templates

All of the Salt modules loaded by the minion are available within the templating system. is allows data to be
gathered in real time on the target system. It also allows for shell commands to be run easily from within the sls
modules.

e Salt module functions are also made available in the template context as salt:
moe:

user.present:
- gid: {{ salt['file.group_to_gid']('some_group_that_exists') }}

Note that for the above example to work, some_group_that_existsmust exist before the state file is processed
by the templating engine.

Below is an example that uses the network.hw_addr function to retrieve the MAC address for eth0:

salt['network.hw_addr']('eth0')

Advanced SLS module syntax

Lastly, we will cover some incredibly useful techniques for more complex State trees.

Include declaration

A previous example showed how to spread a Salt tree across several files. Similarly, requisites span multiple files by
using an Include declaration. For example:

python/python-libs.sls:

python-dateutil:
pkg.installed

3.3. States 57

Salt Documentation, Release 2014.7.6

python/django.sls:

include:
- python.python-libs

django:
pkg.installed:

- require:
- pkg: python-dateutil

Extend declaration

You canmodify previous declarations by using an Extend declaration. For example the followingmodifies the Apache
tree to also restart Apache when the vhosts file is changed:

apache/apache.sls:

apache:
pkg.installed

apache/mywebsite.sls:

include:
- apache.apache

extend:
apache:

service:
- running
- watch:

- file: /etc/httpd/extra/httpd-vhosts.conf

/etc/httpd/extra/httpd-vhosts.conf:
file.managed:

- source: salt://apache/httpd-vhosts.conf

Using extend with require or wat

e extend statement works differently for require or watch. It appends to, rather than replacing the requisite
component.

Name declaration

You can override the ID declaration by using a Name declaration. For example, the previous example is a bit more
maintainable if rewrien as follows:

apache/mywebsite.sls:

include:
- apache.apache

extend:
apache:

service:
- running
- watch:

58 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

- file: mywebsite

mywebsite:
file.managed:

- name: /etc/httpd/extra/httpd-vhosts.conf
- source: salt://apache/httpd-vhosts.conf

Names declaration

Even more powerful is using a Names declaration to override the ID declaration for multiple states at once. is
oen can remove the need for looping in a template. For example, the first example in this tutorial can be rewrien
without the loop:

stooges:
user.present:

- names:
- moe
- larry
- curly

Next steps

In part 4 we will discuss how to use salt's file_roots to set up a workflow in which states can be ``promoted''
from dev, to QA, to production.

3.3.5 States tutorial, part 4

Note: is tutorial builds on topics covered in part 1, part 2 and part 3. It is recommended that you begin there.

is part of the tutorial will show how to use salt's file_roots to set up a workflow in which states can be
``promoted'' from dev, to QA, to production.

Salt fileserver path inheritance

Salt's fileserver allows for more than one root directory per environment, like in the below example, which uses both
a local directory and a secondary location shared to the salt master via NFS:

In the master config file (/etc/salt/master)
file_roots:

base:
- /srv/salt
- /mnt/salt-nfs/base

Salt's fileserver collapses the list of root directories into a single virtual environment containing all files from each
root. If the same file exists at the same relative path in more than one root, then the top-most match ``wins''. For ex-
ample, if /srv/salt/foo.txt and /mnt/salt-nfs/base/foo.txt both exist, then salt://foo.txt
will point to /srv/salt/foo.txt.

Note: When using multiple fileserver backends, the order in which they are listed in the fileserver_backend
parameter also maers. If both roots and git backends contain a file with the same relative path, and roots

3.3. States 59

Salt Documentation, Release 2014.7.6

appears before git in the fileserver_backend list, then the file in rootswill ``win'', and the file in gitfs will
be ignored.

A more thorough explanation of how Salt's modular fileserver works can be found here. We recommend reading
this.

Environment configuration

Configure a multiple-environment setup like so:

file_roots:
base:

- /srv/salt/prod
qa:

- /srv/salt/qa
- /srv/salt/prod

dev:
- /srv/salt/dev
- /srv/salt/qa
- /srv/salt/prod

Given the path inheritance described above, files within /srv/salt/prodwould be available in all environments.
Files within /srv/salt/qa would be available in both qa, and dev. Finally, the files within /srv/salt/dev
would only be available within the dev environment.

Based on the order in which the roots are defined, new files/states can be placed within /srv/salt/dev, and
pushed out to the dev hosts for testing.

ose files/states can then be moved to the same relative path within /srv/salt/qa, and they are now available
only in the dev and qa environments, allowing them to be pushed to QA hosts and tested.

Finally, if moved to the same relative path within /srv/salt/prod, the files are now available in all three envi-
ronments.

Practical Example

As an example, consider a simple website, installed to /var/www/foobarcom. Below is a top.sls that can be used
to deploy the website:

/srv/salt/prod/top.sls:

base:
'web*prod*':

- webserver.foobarcom
qa:

'web*qa*':
- webserver.foobarcom

dev:
'web*dev*':

- webserver.foobarcom

Using pillar, roles can be assigned to the hosts:

/srv/pillar/top.sls:

base:
'web*prod*':

- webserver.prod

60 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

'web*qa*':
- webserver.qa

'web*dev*':
- webserver.dev

/srv/pillar/webserver/prod.sls:

webserver_role: prod

/srv/pillar/webserver/qa.sls:

webserver_role: qa

/srv/pillar/webserver/dev.sls:

webserver_role: dev

And finally, the SLS to deploy the website:

/srv/salt/prod/webserver/foobarcom.sls:

{% if pillar.get('webserver_role', '') %}
/var/www/foobarcom:

file.recurse:
- source: salt://webserver/src/foobarcom
- env: {{ pillar['webserver_role'] }}
- user: www
- group: www
- dir_mode: 755
- file_mode: 644

{% endif %}

Given the above SLS, the source for the website should initially be placed in
/srv/salt/dev/webserver/src/foobarcom.

First, let's deploy to dev. Given the configuration in the top file, this can be done using state.highstate:

salt --pillar 'webserver_role:dev' state.highstate

However, in the event that it is not desirable to apply all states configured in the top file (which could be likely in
more complex setups), it is possible to apply just the states for the foobarcom website, using state.sls:

salt --pillar 'webserver_role:dev' state.sls webserver.foobarcom

Once the site has been tested in dev, then the files can be moved from
/srv/salt/dev/webserver/src/foobarcom to /srv/salt/qa/webserver/src/foobarcom,
and deployed using the following:

salt --pillar 'webserver_role:qa' state.sls webserver.foobarcom

Finally, once the site has been tested in qa, then the files can be moved from
/srv/salt/qa/webserver/src/foobarcom to /srv/salt/prod/webserver/src/foobarcom,
and deployed using the following:

salt --pillar 'webserver_role:prod' state.sls webserver.foobarcom

anks to Salt's fileserver inheritance, even though the files have been moved to within /srv/salt/prod, they
are still available from the same salt:// URI in both the qa and dev environments.

3.3. States 61

Salt Documentation, Release 2014.7.6

Continue Learning

ebest way to continue learning about Salt States is to read through the reference documentation and to look through
examples of existing state trees. Many pre-configured state trees can be found on Github in the saltstack-formulas
collection of repositories.

If you have any questions, suggestions, or just want to chat with other people who are using Salt, we have a very
active community and we'd love to hear from you.

In addition, by continuing to part 5, you can learn about the powerful orchestration of which Salt is capable.

3.3.6 States Tutorial, Part 5 - Orchestration with Salt

Note: is tutorial builds on some of the topics covered in the earlier States Walkthrough pages. It is recommended
to start with Part 1 if you are not familiar with how to use states.

Orchestration is accomplished in salt primarily through the Orchestrate Runner . Added in version 0.17.0, this Salt
Runner can use the full suite of requisites available in states, and can also execute states/functions using salt-ssh.
is runner replaces the OverState.

The Orchestrate Runner

New in version 0.17.0.

As noted above in the introduction, the Orchestrate Runner (originally called the state.sls runner) offers all the
functionality of the OverState, but with a couple advantages:

• All requisites available in states can be used.

• e states/functions can be executed using salt-ssh.

e Orchestrate Runner was added with the intent to eventually deprecate the OverState system, however the Over-
State will still be maintained for the foreseeable future.

Configuration Syntax

e configuration differs slightly from that of the OverState, and more closely resembles the configuration schema
used for states.

To execute a state, use salt.state:

install_nginx:
salt.state:

- tgt: 'web*'
- sls:

- nginx

To execute a function, use salt.function:

cmd.run:
salt.function:

- tgt: '*'
- arg:

- rm -rf /tmp/foo

62 Chapter 3. Tutorials

https://github.com/saltstack-formulas

Salt Documentation, Release 2014.7.6

Triggering a Highstate

Whereas with the OverState, a Highstate is run by simply omiing an sls or function argument, with the
Orchestrate Runner the Highstate must explicitly be requested by using highstate: True:

webserver_setup:
salt.state:

- tgt: 'web*'
- highstate: True

Executing the Orchestrate Runner

e Orchestrate Runner can be executed using the state.orchestrate runner function. state.orch also
works, for those that would like to type less.

Assuming that your base environment is located at /srv/salt, and you have placed a configuration file in
/srv/salt/orchestration/webserver.sls, then the following could both be used:

salt-run state.orchestrate orchestration.webserver
salt-run state.orch orchestration.webserver

Changed in version 2014.1.1: e runner function was renamed to state.orchestrate. In versions 0.17.0
through 2014.1.0, state.slsmust be used. is was renamed to avoid confusion with the state.sls execution
function.

salt-run state.sls orchestration.webserver

More Complex Orchestration

Many states/functions can be configured in a single file, which when combined with the full suite of requisites, can
be used to easily configure complex orchestration tasks. Additionally, the states/functions will be executed in the
order in which they are defined, unless prevented from doing so by any requisites, as is the default in SLS files since
0.17.0.

cmd.run:
salt.function:

- tgt: 10.0.0.0/24
- tgt_type: ipcidr
- arg:

- bootstrap

storage_setup:
salt.state:

- tgt: 'role:storage'
- tgt_type: grain
- sls: ceph
- require:

- salt: webserver_setup

webserver_setup:
salt.state:

- tgt: 'web*'
- highstate: True

Given the above setup, the orchestration will be carried out as follows:

3.3. States 63

Salt Documentation, Release 2014.7.6

1. e shell command bootstrap will be executed on all minions in the 10.0.0.0/24 subnet.

2. A Highstate will be run on all minions whose ID starts with ``web'', since the storage_setup state requires
it.

3. Finally, the ceph SLS target will be executed on all minions which have a grain called role with a value of
storage.

The OverState System

Warning: e OverState runner is deprecated, and will be removed in the feature release of Salt codenamed
Boron. (ree feature releases aer 2014.7.0, which is codenamed Helium)

Oen, servers need to be set up and configured in a specific order, and systems should only be set up if systems
earlier in the sequence have been set up without any issues.

e OverState system can be used to orchestrate deployment in a smooth and reliable way across multiple systems
in small to large environments.

The OverState SLS

e OverState system is managed by an SLS file named overstate.sls, located in the root of a Salt fileserver
environment.

e overstate.sls configures an unordered list of stages, each stage defines the minions on which to execute the
state, and can define what sls files to run, execute a state.highstate, or execute a function. Here's a sample
overstate.sls:

mysql:
match: 'db*'
sls:

- mysql.server
- drbd

webservers:
match: 'web*'
require:

- mysql
all:

match: '*'
require:

- mysql
- webservers

Note: e match argument uses compound matching

Given the above setup, the OverState will be carried out as follows:

1. e mysql stage will be executed first because it is required by the webservers and all stages. It will
execute state.sls once for each of the two listed SLS targets (mysql.server and drbd). ese states
will be executed on all minions whose minion ID starts with ``db''.

2. e webservers stage will then be executed, but only if the mysql stage executes without any failures. e
webservers stage will execute a state.highstate on all minions whose minion IDs start with ``web''.

3. Finally, the all stage will execute, running state.highstate on all systems, if and only if the mysql
and webservers stages completed without any failures.

64 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

Any failure in the above steps would cause the requires to fail, preventing the dependent stages from executing.

Using Functions with OverState

In the above example, you'll notice that the stages lacking an sls entry run a state.highstate. As mentioned
earlier, it is also possible to execute other functions in a stage. is functionality was added in version 0.15.0.

Running a function is easy:

http:
function:

pkg.install:
- httpd

e list of function arguments are defined aer the declared function. So, the above stage would run pkg.install
http. Requisites only function properly if the given function supports returning a custom return code.

Executing an OverState

Since the OverState is a Runner , it is executed using the salt-run command. e runner function for the OverState
is state.over.

salt-run state.over

e function will by default look in the root of the base environment (as defined in file_roots) for a file called
overstate.sls, and then execute the stages defined within that file.

Different environments and paths can be used as well, by adding them as positional arguments:

salt-run state.over dev /root/other-overstate.sls

eabovewould run anOverState using thedev fileserver environment, with the stages defined in/root/other-
overstate.sls.

Warning: Since these are positional arguments, when defining the path to the overstate file the environment
must also be specified, even if it is the base environment.

Note: Remember, salt-run is always executed on the master.

3.3.7 Syslog-ng usage

e syslog_ng state modul is to generate syslog-ng configurations. You can do the following things:

• generate syslog-ng configuration from YAML,

• use non-YAML configuration,

• start, stop or reload syslog-ng.

ere is also an execution module, which can check the syntax of the configuration, get the version and other
information about syslog-ng.

3.3. States 65

Salt Documentation, Release 2014.7.6

Configuration

e following configuration is an example, how a complete syslog-ng state configuration looks like:

Set the location of the configuration file
"/home/tibi/install/syslog-ng/etc/syslog-ng.conf":

syslog_ng.set_config_file

The syslog-ng and syslog-ng-ctl binaries are here. You needn't use
this method if these binaries can be found in a directory in your PATH.
"/home/tibi/install/syslog-ng/sbin":

syslog_ng.set_binary_path

Writes the first lines into the config file, also erases its previous
content
"3.6":

syslog_ng.write_version

Some global options
global_options:

syslog_ng.config:
- config:

options:
- time_reap: 30
- mark_freq: 10
- keep_hostname: "yes"

s_localhost:
syslog_ng.config:

- config:
source:

- tcp:
- ip: "127.0.0.1"
- port: 1233

d_log_server:
syslog_ng.config:

- config:
destination:

- tcp:
- "127.0.0.1"
- port: 1234

l_log_to_central_server:
syslog_ng.config:

- config:
log:

- source: s_localhost
- destination: d_log_server

some_comment:
syslog_ng.write_config:

- config: |
Multi line
comment

auto_start_or_reload:
{% set pids = salt["ps.pgrep"]("syslog-ng") %}
{% if pids == None or pids|length == 0 %}

66 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

syslog_ng.started:
- user: tibi

{% else %}
syslog_ng.reloaded
{% endif %}

#auto_stop:
syslog_ng.stopped

e 3.6, s_devlog, d_log_server, etc. are identifiers. e second lines in each block are functions and their
first parameter is their id. e - config is the second named parameter of the syslog_ng.config function.
is function can generate the syslog-ng configuration from YAML. If the statement (source, destination, parser,
etc.) has a name, this function uses the id as the name, otherwise (log statement) it's purpose is like a mandatory
comment.

You can use set_binary_path to set the directory which contains the syslog-ng and syslog-ng-ctl binaries. If
this directory is in your PATH, you don't need to use this function.

Under auto_start_or_reload you can see a Jinja template. If syslog-ng isn't running it will start it, otherwise
reload it. It uses the process name syslog-ng to determine its running state. I suggest that you use service
state if it's available on your system.

Aer execution this example the syslog_ng state will generate this file:

#Generated by Salt on 2014-06-19 16:53:11
@version: 3.6

options {
time_reap(30);
mark_freq(10);
keep_hostname(yes);

};

source s_localhost {
tcp(

ip("127.0.0.1"),
port(1233)

);
};

destination d_log_server {
tcp(

"127.0.0.1",
port(1234)

);
};

log {
source(s_localhost);
destination(d_log_server);

};

Multi line
comment

Users can include arbitrary texts in the generated configuration with using the write_config function.

3.3. States 67

Salt Documentation, Release 2014.7.6

Examples

Simple source

source s_tail {
file(

"/var/log/apache/access.log",
follow_freq(1),
flags(no-parse, validate-utf8)

);
};

s_tail:
Salt will call the source function of syslog_ng module
syslog_ng.config:

- config:
source:

- file:
- file: "/var/log/apache/access.log"
- follow_freq : 1
- flags:

- no-parse
- validate-utf8

OR

s_tail:
syslog_ng.config:

- config:
source:

- file:
- "/var/log/apache/access.log"
- follow_freq : 1
- flags:

- no-parse
- validate-utf8

Complex source

source s_gsoc2014 {
tcp(

ip("0.0.0.0"),
port(1234),
flags(no-parse)

);
};

s_gsoc2014:
syslog_ng.config:

- config:
source:

- tcp:
- ip: 0.0.0.0
- port: 1234
- flags: no-parse

68 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

Filter

filter f_json {
match(

"@json:"
);

};

f_json:
syslog_ng.config:

- config:
filter:

- match:
- "@json:"

Template

template t_demo_filetemplate {
template(

"$ISODATE $HOST $MSG "
);
template_escape(

no
);

};

t_demo_filetemplate:
syslog_ng.config:

-config:
template:

- template:
- "$ISODATE $HOST $MSG\n"

- template_escape:
- "no"

Rewrite

rewrite r_set_message_to_MESSAGE {
set(

"${.json.message}",
value("$MESSAGE")

);
};

r_set_message_to_MESSAGE:
syslog_ng.config:

- config:
rewrite:

- set:
- "${.json.message}"
- value : "$MESSAGE"

3.3. States 69

Salt Documentation, Release 2014.7.6

Global options

options {
time_reap(30);
mark_freq(10);
keep_hostname(yes);

};

global_options:
syslog_ng.config:

- config:
options:

- time_reap: 30
- mark_freq: 10
- keep_hostname: "yes"

Log

log {
source(s_gsoc2014);
junction {
channel {
filter(f_json);
parser(p_json);
rewrite(r_set_json_tag);
rewrite(r_set_message_to_MESSAGE);
destination {
file(

"/tmp/json-input.log",
template(t_gsoc2014)

);
};
flags(final);

};
channel {
filter(f_not_json);
parser {
syslog-parser(

);
};
rewrite(r_set_syslog_tag);
flags(final);

};
};
destination {
file(

"/tmp/all.log",
template(t_gsoc2014)

);
};

};

l_gsoc2014:
syslog_ng.config:

- config:

70 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

log:
- source: s_gsoc2014
- junction:

- channel:
- filter: f_json
- parser: p_json
- rewrite: r_set_json_tag
- rewrite: r_set_message_to_MESSAGE
- destination:

- file:
- "/tmp/json-input.log"
- template: t_gsoc2014

- flags: final
- channel:

- filter: f_not_json
- parser:

- syslog-parser: []
- rewrite: r_set_syslog_tag
- flags: final

- destination:
- file:

- "/tmp/all.log"
- template: t_gsoc2014

3.4 Advanced Topics

3.4.1 SaltStack Walk-through

Note: Welcome to SaltStack! I am excited that you are interested in Salt and starting down the path to beer infras-
tructure management. I developed (and am continuing to develop) Salt with the goal of making the best soware
available to manage computers of almost any kind. I hope you enjoy working with Salt and that the soware can
solve your real world needs!

• omas S Hatch

• Salt creator and Chief Developer

• CTO of SaltStack, Inc.

Geing Started

What is Salt?

Salt is a different approach to infrastructure management, founded on the idea that high-speed communication with
large numbers of systems can open up new capabilities. is approach makes Salt a powerful multitasking system
that can solve many specific problems in an infrastructure.

e backbone of Salt is the remote execution engine, which creates a high-speed, secure and bi-directional commu-
nication net for groups of systems. On top of this communication system, Salt provides an extremely fast, flexible
and easy-to-use configuration management system called Salt States.

3.4. Advanced Topics 71

Salt Documentation, Release 2014.7.6

Installing Salt

SaltStack has been made to be very easy to install and get started. Seing up Salt should be as easy as installing Salt
via distribution packages on Linux or via the Windows installer. e installation documents cover platform-specific
installation in depth.

Starting Salt

Salt functions on a master/minion topology. A master server acts as a central control bus for the clients, which are
called minions. e minions connect back to the master.

Setting Up the Salt Master Turning on the Salt Master is easy -- just turn it on! e default configuration is suitable
for the vast majority of installations. e Salt Master can be controlled by the local Linux/Unix service manager:

On Systemd based platforms (OpenSuse, Fedora):

systemctl start salt-master

On Upstart based systems (Ubuntu, older Fedora/RHEL):

service salt-master start

On SysV Init systems (Debian, Gentoo etc.):

/etc/init.d/salt-master start

Alternatively, the Master can be started directly on the command-line:

salt-master -d

e Salt Master can also be started in the foreground in debug mode, thus greatly increasing the command output:

salt-master -l debug

e Salt Master needs to bind to two TCP network ports on the system. ese ports are 4505 and 4506. For more
in depth information on firewalling these ports, the firewall tutorial is available here.

Setting up a SaltMinion
Note: e Salt Minion can operate with or without a Salt Master. is walk-through assumes that the minion will be
connected to the master, for information on how to run a master-less minion please see the master-less quick-start
guide:

Masterless Minion ickstart

e Salt Minion only needs to be aware of one piece of information to run, the network location of the master.

By default the minion will look for the DNS name salt for the master, making the easiest approach to set internal
DNS to resolve the name salt back to the Salt Master IP.

Otherwise, the minion configuration file will need to be edited so that the configuration option master points to
the DNS name or the IP of the Salt Master:

Note: e default location of the configuration files is /etc/salt. Most platforms adhere to this convention, but
platforms such as FreeBSD and Microso Windows place this file in different locations.

/etc/salt/minion:

72 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

master: saltmaster.example.com

Now that the master can be found, start the minion in the same way as the master; with the platform init system or
via the command line directly:

As a daemon:

salt-minion -d

In the foreground in debug mode:

salt-minion -l debug

When the minion is started, it will generate an id value, unless it has been generated on a previous run and cached in
the configuration directory, which is /etc/salt by default. is is the name by which the minion will aempt to
authenticate to the master. e following steps are aempted, in order to try to find a value that is not localhost:

1. e Python function socket.getfqdn() is run

2. /etc/hostname is checked (non-Windows only)

3. /etc/hosts (%WINDIR%\system32\drivers\etc\hosts on Windows hosts) is checked for host-
names that map to anything within 127.0.0.0/8.

If none of the above are able to produce an id which is not localhost, then a sorted list of IP addresses on the
minion (excluding any within 127.0.0.0/8) is inspected. e first publicly-routable IP address is used, if there is one.
Otherwise, the first privately-routable IP address is used.

If all else fails, then localhost is used as a fallback.

Note: Overriding the id
eminion id can be manually specified using the id parameter in the minion config file. If this configuration value
is specified, it will override all other sources for the id.

Now that the minion is started, it will generate cryptographic keys and aempt to connect to the master. e next
step is to venture back to the master server and accept the new minion's public key.

Using salt-key Salt authenticates minions using public-key encryption and authentication. For a minion to start
accepting commands from the master, the minion keys need to be accepted by the master.

e salt-key command is used to manage all of the keys on the master. To list the keys that are on the master:

salt-key -L

e keys that have been rejected, accepted and pending acceptance are listed. e easiest way to accept the minion
key is to accept all pending keys:

salt-key -A

Note: Keys should be verified! e secure thing to do before accepting a key is to run salt-key -f minion-
id to print the fingerprint of the minion's public key. is fingerprint can then be compared against the fingerprint
generated on the minion.

On the master:

On the minion:

If they match, approve the key with salt-key -a foo.domain.com.

3.4. Advanced Topics 73

Salt Documentation, Release 2014.7.6

Sending the First Commands Now that the minion is connected to the master and authenticated, the master can
start to command the minion.

Salt commands allow for a vast set of functions to be executed and for specific minions and groups of minions to be
targeted for execution.

e salt command is comprised of command options, target specification, the function to execute, and arguments
to the function.

A simple command to start with looks like this:

salt '*' test.ping

e * is the target, which specifies all minions.

test.ping tells the minion to run the test.ping function.

In the case of test.ping, test refers to a execution module. ping refers to the ping function contained in the
aforementioned test module.

Note: Execution modules are the workhorses of Salt. ey do the work on the system to perform various tasks,
such as manipulating files and restarting services.

e result of running this command will be the master instructing all of the minions to execute test.ping in
parallel and return the result.

is is not an actual ICMP ping, but rather a simple function which returns True. Using test.ping is a good
way of confirming that a minion is connected.

Note: Each minion registers itself with a unique minion ID. is ID defaults to the minion's hostname, but can be
explicitly defined in the minion config as well by using the id parameter.

Of course, there are hundreds of othermodules that can be called just astest.ping can. For example, the following
would return disk usage on all targeted minions:

salt '*' disk.percent

Getting to Know the Functions Salt comes with a vast library of functions available for execution, and Salt func-
tions are self-documenting. To see what functions are available on the minions execute the sys.doc function:

salt '*' sys.doc

is will display a very large list of available functions and documentation on them.

Note: Module documentation is also available on the web.

ese functions cover everything from shelling out to package management to manipulating database servers. ey
comprise a powerful system management API which is the backbone to Salt configuration management and many
other aspects of Salt.

Note: Salt comes with many plugin systems. e functions that are available via the salt command are called
Execution Modules.

Helpful Functions to Know e cmd module contains functions to shell out on minions, such as cmd.run and
cmd.run_all:

74 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

salt '*' cmd.run 'ls -l /etc'

e pkg functions automatically map local system package managers to the same salt functions. is means that
pkg.install will install packages via yum on Red Hat based systems, apt on Debian systems, etc.:

salt '*' pkg.install vim

Note: Some custom Linux spins and derivatives of other distributions are not properly detected by Salt. If the above
command returns an error message saying that pkg.install is not available, then you may need to override the
pkg provider. is process is explained here.

e network.interfaces function will list all interfaces on a minion, along with their IP addresses, netmasks,
MAC addresses, etc:

salt '*' network.interfaces

Changing the Output Format e default output format used for most Salt commands is called the nested out-
puer, but there are several other outpuers that can be used to change the way the output is displayed. For instance,
the pprint outpuer can be used to display the return data using Python's pprint module:

root@saltmaster:~# salt myminion grains.item pythonpath --out=pprint
{'myminion': {'pythonpath': ['/usr/lib64/python2.7',

'/usr/lib/python2.7/plat-linux2',
'/usr/lib64/python2.7/lib-tk',
'/usr/lib/python2.7/lib-tk',
'/usr/lib/python2.7/site-packages',
'/usr/lib/python2.7/site-packages/gst-0.10',
'/usr/lib/python2.7/site-packages/gtk-2.0']}}

e full list of Salt outpuers, as well as example output, can be found here.

salt-call e examples so far have described running commands from the Master using the salt command,
but when troubleshooting it can be more beneficial to login to the minion directly and use salt-call.

Doing so allows you to see the minion log messages specific to the command you are running (which are not part
of the return data you see when running the command from the Master using salt), making it unnecessary to tail
the minion log. More information on salt-call and how to use it can be found here.

Grains Salt uses a system called Grains to build up static data about minions. is data includes information about
the operating system that is running, CPU architecture and much more. e grains system is used throughout Salt
to deliver platform data to many components and to users.

Grains can also be statically set, this makes it easy to assign values to minions for grouping and managing.

A common practice is to assign grains to minions to specify what the role or roles a minion might be. ese static
grains can be set in the minion configuration file or via the grains.setval function.

Targeting Salt allows for minions to be targeted based on a wide range of criteria. e default targeting system
uses globular expressions to match minions, hence if there are minions named larry1, larry2, curly1 and
curly2, a glob of larry* will match larry1 and larry2, and a glob of *1 will match larry1 and curly1.

Many other targeting systems can be used other than globs, these systems include:

Regular Expressions Target using PCRE-compliant regular expressions

3.4. Advanced Topics 75

Salt Documentation, Release 2014.7.6

Grains Target based on grains data: Targeting with Grains

Pillar Target based on pillar data: Targeting with Pillar

IP Target based on IP address/subnet/range

Compound Create logic to target based on multiple targets: Targeting with Compound

Nodegroup Target with nodegroups: Targeting with Nodegroup

e concepts of targets are used on the command line with Salt, but also function in many other areas as well,
including the state system and the systems used for ACLs and user permissions.

Passing in Arguments Many of the functions available accept arguments which can be passed in on the command
line:

salt '*' pkg.install vim

is example passes the argument vim to the pkg.install function. Since many functions can accept more complex
input then just a string, the arguments are parsed through YAML, allowing for more complex data to be sent on the
command line:

salt '*' test.echo 'foo: bar'

In this case Salt translates the string `foo: bar' into the dictionary ``{`foo': `bar'}''

Note: Any line that contains a newline will not be parsed by YAML.

Salt States

Now that the basics are covered the time has come to evaluate States. Salt States, or the State System is
the component of Salt made for configuration management.

e state system is already available with a basic Salt setup, no additional configuration is required. States can be
set up immediately.

Note: Before diving into the state system, a brief overview of how states are constructed will make many of the
concepts clearer. Salt states are based on data modeling and build on a low level data structure that is used to execute
each state function. en more logical layers are built on top of each other.

e high layers of the state system which this tutorial will cover consists of everything that needs to be known to
use states, the two high layers covered here are the sls layer and the highest layer highstate.

Understanding the layers of data management in the State Systemwill help with understanding states, but they never
need to be used. Just as understanding how a compiler functions assists when learning a programming language,
understanding what is going on under the hood of a configuration management system will also prove to be a
valuable asset.

The First SLS Formula

e state system is built on SLS formulas. ese formulas are built out in files on Salt's file server. To make a very
basic SLS formula open up a file under /srv/salt named vim.sls. e following state ensures that vim is installed on
a system to which that state has been applied.

/srv/salt/vim.sls:

76 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

vim:
pkg.installed

Now install vim on the minions by calling the SLS directly:

salt '*' state.sls vim

is command will invoke the state system and run the vim SLS.

Now, to beef up the vim SLS formula, a vimrc can be added:

/srv/salt/vim.sls:

vim:
pkg.installed: []

/etc/vimrc:
file.managed:

- source: salt://vimrc
- mode: 644
- user: root
- group: root

Now the desired vimrc needs to be copied into the Salt file server to /srv/salt/vimrc. In Salt, everything is a
file, so no path redirection needs to be accounted for. e vimrc file is placed right next to the vim.sls file. e
same command as above can be executed to all the vim SLS formulas and now include managing the file.

Note: Salt does not need to be restarted/reloaded or have the master manipulated in any way when changing SLS
formulas. ey are instantly available.

Adding Some Depth

Obviously maintaining SLS formulas right in a single directory at the root of the file server will not scale out to
reasonably sized deployments. is is why more depth is required. Start by making an nginx formula a beer way,
make an nginx subdirectory and add an init.sls file:

/srv/salt/nginx/init.sls:

nginx:
pkg.installed: []
service.running:

- require:
- pkg: nginx

A few concepts are introduced in this SLS formula.

First is the service statement which ensures that the nginx service is running.

Of course, the nginx service can't be started unless the package is installed -- hence the require statement which
sets up a dependency between the two.

e require statement makes sure that the required component is executed before and that it results in success.

Note: e require option belongs to a family of options called requisites. Requisites are a powerful component of
Salt States, for more information on how requisites work and what is available see: Requisites

Also evaluation ordering is available in Salt as well: Ordering States

3.4. Advanced Topics 77

Salt Documentation, Release 2014.7.6

is new sls formula has a special name -- init.sls. When an SLS formula is named init.sls it inherits the
name of the directory path that contains it. is formula can be referenced via the following command:

salt '*' state.sls nginx

Note: Reminder!
Just as one could call the test.ping or disk.usage execution modules, state.sls is simply another execu-
tion module. It simply takes the name of an SLS file as an argument.

Now that subdirectories can be used, the vim.sls formula can be cleaned up. To make things more flexible, move
the vim.sls and vimrc into a new subdirectory called edit and change the vim.sls file to reflect the change:

/srv/salt/edit/vim.sls:

vim:
pkg.installed

/etc/vimrc:
file.managed:

- source: salt://edit/vimrc
- mode: 644
- user: root
- group: root

Only the source path to the vimrc file has changed. Now the formula is referenced as edit.vim because it resides
in the edit subdirectory. Now the edit subdirectory can contain formulas for emacs, nano, joe or any other editor
that may need to be deployed.

Next Reading

Two walk-throughs are specifically recommended at this point. First, a deeper run through States, followed by an
explanation of Pillar.

1. Starting States

2. Pillar Walkthrough

An understanding of Pillar is extremely helpful in using States.

Geing Deeper Into States

Two more in-depth States tutorials exist, which delve much more deeply into States functionality.

1. omas' original states tutorial, How Do I Use Salt States? , covers much more to get off the ground with States.

2. e States Tutorial also provides a fantastic introduction.

ese tutorials include much more in-depth information including templating SLS formulas etc.

So Much More!

is concludes the initial Salt walk-through, but there are many more things still to learn! ese documents will
cover important core aspects of Salt:

• Pillar

78 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

• Job Management

A few more tutorials are also available:

• Remote Execution Tutorial

• Standalone Minion

is still is only scratching the surface, many components such as the reactor and event systems, extending Salt,
modular components and more are not covered here. For an overview of all Salt features and documentation, look
at the Table of Contents.

3.4.2 MinionFS Backend Walkthrough

New in version 2014.1.0.

Sometimes, you might need to propagate files that are generated on a minion. Salt already has a feature to send files
from a minion to the master:

salt 'minion-id' cp.push /path/to/the/file

is command will store the file, including its full path, under cachedir /master/minions/minion-
id/files. With the default cachedir the example file above would be stored as
/var/cache/salt/master/minions/minion-id/files/path/to/the/file.

Note: is walkthrough assumes basic knowledge of Salt and cp.push. To get up to speed, check out the walk-
through.

Since it is not a good idea to expose the whole cachedir, MinionFS should be used to send these files to other
minions.

Simple Configuration

To use the minionfs backend only two configuration changes are required on the master. e file-
server_backend option needs to contain a value of minion and file_recv needs to be set to true:

fileserver_backend:
- roots
- minion

file_recv: True

ese changes require a restart of the master, then new requests for the salt://minion-id/ protocol will send
files that are pushed by cp.push from minion-id to the master.

Note: All of the files that are pushed to the master are going to be available to all of the minions. If this is not what
you want, please remove minion from fileserver_backend in the master config file.

Note: Having directories with the same name as your minions in the root that can be accessed like
salt://minion-id/ might cause confusion.

3.4. Advanced Topics 79

Salt Documentation, Release 2014.7.6

Commandline Example

Lets assume that we are going to generate SSH keys on a minion called minion-source and put the public part
in ~/.ssh/authorized_keys of root user of a minion called minion-destination.

First, lets make sure that /root/.ssh exists and has the right permissions:

[root@salt-master file]# salt '*' file.mkdir dir_path=/root/.ssh user=root group=root mode=700
minion-source:

None
minion-destination:

None

We create an RSA key pair without a passphrase 1:

[root@salt-master file]# salt 'minion-source' cmd.run 'ssh-keygen -N "" -f /root/.ssh/id_rsa'
minion-source:

Generating public/private rsa key pair.
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
9b:cd:1c:b9:c2:93:8e:ad:a3:52:a0:8b:0a:cc:d4:9b root@minion-source
The key's randomart image is:
+--[RSA 2048]----+
| |
| |
| |
| o . |
| o o S o |
|= + . B o |
|o+ E B = |
|+ . .+ o |
|o ...ooo |
+-----------------+

and we send the public part to the master to be available to all minions:

[root@salt-master file]# salt 'minion-source' cp.push /root/.ssh/id_rsa.pub
minion-source:

True

now it can be seen by everyone:

[root@salt-master file]# salt 'minion-destination' cp.list_master_dirs
minion-destination:

- .
- etc
- minion-source/root
- minion-source/root/.ssh

Lets copy that as the only authorized key to minion-destination:

[root@salt-master file]# salt 'minion-destination' cp.get_file salt://minion-source/root/.ssh/id_rsa.pub /root/.ssh/authorized_keys
minion-destination:

/root/.ssh/authorized_keys

Or we can use a more elegant and salty way to add an SSH key:

1 Yes, that was the actual key on my server, but the server is already destroyed.

80 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

[root@salt-master file]# salt 'minion-destination' ssh.set_auth_key_from_file user=root source=salt://minion-source/root/.ssh/id_rsa.pub
minion-destination:

new

3.4.3 Automatic Updates / Frozen Deployments

New in version 0.10.3.d.

Salt has support for the Esky application freezing and update tool. is tool allows one to build a complete zipfile
out of the salt scripts and all their dependencies - including shared objects / DLLs.

Geing Started

To build frozen applications, you'll need a suitable build environment for each of your platforms. You should probably
set up a virtualenv in order to limit the scope of Q/A.

is process does work on Windows. Follow the directions at hps://github.com/saltstack/salt-windows-install for
details on installing Salt inWindows. Only the 32-bit Python and dependencies have been tested, but they have been
tested on 64-bit Windows.

You will need to install esky and bbfreeze from PyPI in order to enable the bdist_esky command in
setup.py.

Building and Freezing

Once you have your tools installed and the environment configured, you can then python setup.py bdist
to get the eggs prepared. Aer that is done, run python setup.py bdist_esky to have Esky traverse the
module tree and pack all the scripts up into a redistributable. ere will be an appropriately versioned salt-
VERSION.zip in dist/ if everything went smoothly.

Windows

You will need to add C:\Python27\lib\site-packages\zmq to your PATH variable. is helps bbfreeze
find the zmq DLL so it can pack it up.

Using the Frozen Build

Unpack the zip file in your desired install location. Scripts like salt-minion and salt-call will be in the root
of the zip file. e associated libraries and bootstrapping will be in the directories at the same level. (Check the Esky
documentation for more information)

To support updating your minions in the wild, put your builds on a web server that your minions can reach.
salt.modules.saltutil.update() will trigger an update and (optionally) a restart of the minion service
under the new version.

Gotchas

My Windows minion isn't responding

e process dispatch on Windows is slower than it is on *nix. You may need to add `-t 15' to your salt calls to give
them plenty of time to return.

3.4. Advanced Topics 81

https://github.com/cloudmatrix/esky
https://github.com/saltstack/salt-windows-install
https://github.com/cloudmatrix/esky

Salt Documentation, Release 2014.7.6

Windows and the Visual Studio Redist

You will need to install the Visual C++ 2008 32-bit redistributable on all Windows minions. Esky has an option
to pack the library into the zipfile, but OpenSSL does not seem to acknowledge the new location. If you get a no
OPENSSL_Applink error on the console when trying to start your frozen minion, you have forgoen to install
the redistributable.

Mixed Linux environments and Yum

eYum Pythonmodule doesn't appear to be available on any of the standard Python packagemirrors. If you need to
support RHEL/CentOS systems, you should build on that platform to support all your Linux nodes. Also remember
to build your virtualenv with --system-site-packages so that the yum module is included.

Automatic (Python) module discovery

Automatic (Python) module discovery does not work with the late-loaded scheme that Salt uses for (Salt) modules.
You will need to explicitly add anymisbehaving modules to the freezer_includes in Salt's setup.py. Always
check the zipped application to make sure that the necessary modules were included.

3.4.4 Multi Master Tutorial

As of Salt 0.16.0, the ability to connect minions to multiple masters has beenmade available. emulti-master system
allows for redundancy of Salt masters and facilitates multiple points of communication out to minions. When using
a multi-master setup, all masters are running hot, and any active master can be used to send commands out to the
minions.

Note: If you need failover capabilities with multiple masters, there is also a MultiMaster-PKI setup available, that
uses a different topology MultiMaster-PKI with Failover Tutorial

In 0.16.0, themasters do not share any information, keys need to be accepted on bothmasters, and shared files need to
be shared manually or use tools like the git fileserver backend to ensure that the file_roots are kept consistent.

Summary of Steps

1. Create a redundant master server

2. Copy primary master key to redundant master

3. Start redundant master

4. Configure minions to connect to redundant master

5. Restart minions

6. Accept keys on redundant master

Prepping a Redundant Master

e first task is to prepare the redundant master. If the redundant master is already running, stop it. ere is only
one requirement when preparing a redundant master, which is that masters share the same private key. When the
first master was created, the master's identifying key pair was generated and placed in the master's pki_dir. e
default location of the master's key pair is /etc/salt/pki/master/. Take the private key, master.pem and

82 Chapter 3. Tutorials

http://docs.saltstack.com/en/latest/topics/tutorials/multimaster_pki.html

Salt Documentation, Release 2014.7.6

copy it to the same location on the redundant master. Do the same for the master's public key, master.pub.
Assuming that no minions have yet been connected to the new redundant master, it is safe to delete any existing
key in this location and replace it.

Note: ere is no logical limit to the number of redundant masters that can be used.

Once the new key is in place, the redundant master can be safely started.

Configure Minions

Since minions need to be master-aware, the new master needs to be added to the minion configurations. Simply
update the minion configurations to list all connected masters:

master:
- saltmaster1.example.com
- saltmaster2.example.com

Now the minion can be safely restarted.

Now the minions will check into the original master and also check into the new redundant master. Both masters
are first-class and have rights to the minions.

Sharing Files Between Masters

Salt does not automatically share files between multiple masters. A number of files should be shared or sharing of
these files should be strongly considered.

Minion Keys

Minion keys can be accepted the normal way using salt-key on both masters. Keys ac-
cepted, deleted, or rejected on one master will NOT be automatically managed on redundant
masters; this needs to be taken care of by running salt-key on both masters or sharing the
/etc/salt/pki/master/{minions,minions_pre,minions_rejected} directories between mas-
ters.

Note: While sharing the /etc/salt/pki/master directory will work, it is strongly discouraged, since allowing access
to the master.pem key outside of Salt creates a SERIOUS security risk.

File_Roots

e file_roots contents should be kept consistent between masters. Otherwise state runs will not always be
consistent on minions since instructions managed by one master will not agree with other masters.

e recommended way to sync these is to use a fileserver backend like gitfs or to keep these files on shared storage.

Pillar_Roots

Pillar roots should be given the same considerations as file_roots.

3.4. Advanced Topics 83

Salt Documentation, Release 2014.7.6

Master Configurations

While reasons may exist to maintain separate master configurations, it is wise to remember that each master main-
tains independent control over minions. erefore, access controls should be in sync between masters unless a valid
reason otherwise exists to keep them inconsistent.

ese access control options include but are not limited to:

• external_auth

• client_acl

• peer

• peer_run

3.4.5 Multi-Master-PKI Tutorial With Failover

is tutorial will explain, how to run a salt-environment where a single minion can have multiple masters and
fail-over between them if its current master fails.

e individual steps are

• setup the master(s) to sign its auth-replies

• setup minion(s) to verify master-public-keys

• enable multiple masters on minion(s)

• enable master-check on minion(s)

Please note, that it is advised to have good knowledge of the salt- authentication and
communication-process to understand this tutorial. All of the seings described here, go on top
of the default authentication/communication process.

Motivation

e default behaviour of a salt-minion is to connect to a master and accept the masters public key. With each
publication, the master sends his public-key for the minion to check and if this public-key ever changes, the minion
complains and exits. Practically this means, that there can only be a single master at any given time.

Would it not be much nicer, if the minion could have any number of masters (1:n) and jump to the next master if its
current master died because of a network or hardware failure?

Note: ere is also a MultiMaster-Tutorial with a different approach and topology than this one, that might also
suite your needs or might even be beer suited Multi-Master Tutorial

It is also desirable, to add some sort of authenticity-check to the very first public key a minion receives from amaster.
Currently a minions takes the first masters public key for granted.

The Goal

Setup the master to sign the public key it sends to the minions and enable the minions to verify this signature for
authenticity.

84 Chapter 3. Tutorials

http://docs.saltstack.com/en/latest/topics/tutorials/multimaster.html

Salt Documentation, Release 2014.7.6

Prepping the master to sign its public key

For signing to work, bothmaster andminionmust have the signing and/or verification seings enabled. If the master
signs the public key but the minion does not verify it, the minion will complain and exit. e same happens, when
the master does not sign but the minion tries to verify.

e easiest way to have the master sign its public key is to set

master_sign_pubkey: True

Aer restarting the salt-master service, the master will automatically generate a new key-pair

master_sign.pem
master_sign.pub

A custom name can be set for the signing key-pair by seing

master_sign_key_name: <name_without_suffix>

e master will then generate that key-pair upon restart and use it for creating the public keys signature aached
to the auth-reply.

e computation is done for every auth-request of a minion. If many minions auth very oen, it is advised to use
conf_master:master_pubkey_signature and conf_master:master_use_pubkey_signature seings described below.

If multiple masters are in use and should sign their auth-replies, the signing key-pair master_sign.* has to be copied
to each master. Otherwise a minion will fail to verify the masters public when connecting to a different master than
it did initially. at is because the public keys signature was created with a different signing key-pair.

Prepping the minion to verify received public keys

e minion must have the public key (and only that one!) available to be able to verify a signature it receives. at
public key (defaults to master_sign.pub) must be copied from the master to the minions pki-directory.

/etc/salt/pki/minion/master_sign.pub

DO NOT COPY THE master_sign.pem FILE. IT MUST STAY ON THE MASTER AND
ONLY THERE!

When that is done, enable the signature checking in the minions configuration

verify_master_pubkey_sign: True

and restart the minion. For the first try, the minion should be run in manual debug mode.

$ salt-minion -l debug

Upon connecting to the master, the following lines should appear on the output:

[DEBUG] Attempting to authenticate with the Salt Master at 172.16.0.10
[DEBUG] Loaded minion key: /etc/salt/pki/minion/minion.pem
[DEBUG] salt.crypt.verify_signature: Loading public key
[DEBUG] salt.crypt.verify_signature: Verifying signature
[DEBUG] Successfully verified signature of master public key with verification public key master_sign.pub
[INFO] Received signed and verified master pubkey from master 172.16.0.10
[DEBUG] Decrypting the current master AES key

If the signature verification fails, something went wrong and it will look like this

3.4. Advanced Topics 85

Salt Documentation, Release 2014.7.6

[DEBUG] Attempting to authenticate with the Salt Master at 172.16.0.10
[DEBUG] Loaded minion key: /etc/salt/pki/minion/minion.pem
[DEBUG] salt.crypt.verify_signature: Loading public key
[DEBUG] salt.crypt.verify_signature: Verifying signature
[DEBUG] Failed to verify signature of public key
[CRITICAL] The Salt Master server's public key did not authenticate!

In a case like this, it should be checked, that the verification pubkey (master_sign.pub) on the minion is the same as
the one on the master.

Once the verification is successful, the minion can be started in daemon mode again.

For the paranoid among us, its also possible to verify the public whenever it is received from the master. at is,
for every single auth-aempt which can be quite frequent. For example just the start of the minion will force the
signature to be checked 6 times for various things like auth, mine, highstate, etc.

If that is desired, enable the seing

always_verify_signature: True

Multiple Masters For A Minion

Configuring multiple masters on a minion is done by specifying two seings:

• a list of masters addresses

• what type of master is defined

master:
- 172.16.0.10
- 172.16.0.11
- 172.16.0.12

master_type: failover

is tells the minion that all the master above are available for it to connect to. When started with this configuration,
it will try the master in the order they are defined. To randomize that order, set

master_shuffle: True

e master-list will then be shuffled before the first connection aempt.

e first master that accepts the minion, is used by the minion. If the master does not yet know the minion, that
counts as accepted and the minion stays on that master.

For the minion to be able to detect if its still connected to its current master enable the check for it

master_alive_interval: <seconds>

If the loss of the connection is detected, the minion will temporarily remove the failed master from the list and try
one of the other masters defined (again shuffled if that is enabled).

Testing the setup

At least two running masters are needed to test the failover setup.

Both masters should be running and the minion should be running on the command line in debug mode

86 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

$ salt-minion -l debug

e minion will connect to the first master from its master list

[DEBUG] Attempting to authenticate with the Salt Master at 172.16.0.10
[DEBUG] Loaded minion key: /etc/salt/pki/minion/minion.pem
[DEBUG] salt.crypt.verify_signature: Loading public key
[DEBUG] salt.crypt.verify_signature: Verifying signature
[DEBUG] Successfully verified signature of master public key with verification public key master_sign.pub
[INFO] Received signed and verified master pubkey from master 172.16.0.10
[DEBUG] Decrypting the current master AES key

A test.ping on the master the minion is currently connected to should be run to test connectivity.

If successful, that master should be turned off. A firewall-rule denying the minions packets will also do the trick.

Depending on the configured conf_minion:master_alive_interval, the minion will notice the loss of the connection
and log it to its logfile.

[INFO] Connection to master 172.16.0.10 lost
[INFO] Trying to tune in to next master from master-list

e minion will then remove the current master from the list and try connecting to the next master

[INFO] Removing possibly failed master 172.16.0.10 from list of masters
[WARNING] Master ip address changed from 172.16.0.10 to 172.16.0.11
[DEBUG] Attempting to authenticate with the Salt Master at 172.16.0.11

If everything is configured correctly, the new masters public key will be verified successfully

[DEBUG] Loaded minion key: /etc/salt/pki/minion/minion.pem
[DEBUG] salt.crypt.verify_signature: Loading public key
[DEBUG] salt.crypt.verify_signature: Verifying signature
[DEBUG] Successfully verified signature of master public key with verification public key master_sign.pub

the authentication with the new master is successful

[INFO] Received signed and verified master pubkey from master 172.16.0.11
[DEBUG] Decrypting the current master AES key
[DEBUG] Loaded minion key: /etc/salt/pki/minion/minion.pem
[INFO] Authentication with master successful!

and the minion can be pinged again from its new master.

Performance Tuning

With the setup described above, the master computes a signature for every auth-request of a minion. With many
minions and many auth-requests, that can chew up quite a bit of CPU-Power.

To avoid that, the master can use a pre-created signature of its public-key. e signature is saved as a base64 encoded
string which the master reads once when starting and aaches only that string to auth-replies.

DO ME HERE Enabling this also gives paranoid users the possibility, to have the signing key-pair on a different
system than the actual salt-master and create the public keys signature there. Probably on a system with more
restrictive firewall rules, without internet access, less users, etc.

at signature can be created with

3.4. Advanced Topics 87

Salt Documentation, Release 2014.7.6

$ salt-key --gen-signature

is will create a default signature file in the master pki-directory

/etc/salt/pki/master/master_pubkey_signature

It is a simple text-file with the binary-signature converted to base64.

If no signing-pair is present yet, this will auto-create the signing pair and the signature file in one call

$ salt-key --gen-signature --auto-create

Telling the master to use the pre-created signature is done with

master_use_pubkey_signature: True

at requires the file `master_pubkey_signature' to be present in themasters pki-directorywith the correct signature.

If the signature file is named differently, its name can be set with

master_pubkey_signature: <filename>

With many masters and many public-keys (default and signing), it is advised to use the salt-masters hostname for
the signature-files name. Signatures can be easily confused because they do not provide any information about the
key the signature was created from.

Verifying that everything works is done the same way as above.

How the signing and verification works

e default key-pair of the salt-master is

/etc/salt/pki/master/master.pem
/etc/salt/pki/master/master.pub

To be able to create a signature of a message (in this case a public-key), another key-pair has to be added to the setup.
Its default name is:

master_sign.pem
master_sign.pub

e combination of the master.* and master_sign.* key-pairs give the possibility of generating signatures. e sig-
nature of a given message is unique and can be verified, if the public-key of the signing-key-pair is available to the
recipient (the minion).

e signature of the masters public-key in master.pub is computed with

master_sign.pem
master.pub
M2Crypto.EVP.sign_update()

is results in a binary signature which is converted to base64 and aached to the auth-reply send to the minion.

With the signing-pairs public-key available to the minion, the aached signature can be verified with

master_sign.pub
master.pub
M2Cryptos EVP.verify_update().

88 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

When running multiple masters, either the signing key-pair has to be present on all of them, or the mas-
ter_pubkey_signature has to be pre-computed for each master individually (because they all have different public-
keys).

DO NOT PUT THE SAME master.pub ON ALL MASTERS FOR EASE OF USE.

3.4.6 Preseed Minion with Accepted Key

In some situations, it is not convenient to wait for a minion to start before accepting its key on the master. For
instance, you may want the minion to bootstrap itself as soon as it comes online. You may also want to to let your
developers provision new development machines on the fly.

See also:

Many ways to preseed minion keys

Salt has other ways to generate and pre-accept minion keys in addition to the manual steps outlined below.

salt-cloud performs these same steps automatically when new cloud VMs are created (unless instructed not to).

salt-api exposes an HTTP call to Salt's REST API to generate and download the new minion keys as
a tarball.

ere is a general four step process to do this:

1. Generate the keys on the master:

root@saltmaster# salt-key --gen-keys=[key_name]

Pick a name for the key, such as the minion's id.

2. Add the public key to the accepted minion folder:

root@saltmaster# cp key_name.pub /etc/salt/pki/master/minions/[minion_id]

It is necessary that the public key file has the same name as your minion id. is is how Salt matches minions with
their keys. Also note that the pki folder could be in a different location, depending on your OS or if specified in the
master config file.

3. Distribute the minion keys.

ere is no single method to get the keypair to your minion. e difficulty is finding a distribution method
which is secure. For Amazon EC2 only, an AWS best practice is to use IAM Roles to pass credentials.
(See blog post, hp://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-
AWS-credentials-to-your-EC2-instances)

Security Warning

Since the minion key is already accepted on the master, distributing the private key poses a potential security risk.
A malicious party will have access to your entire state tree and other sensitive data if they gain access to a preseeded
minion key.

4. Preseed the Minion with the keys

You will want to place the minion keys before starting the salt-minion daemon:

/etc/salt/pki/minion/minion.pem
/etc/salt/pki/minion/minion.pub

Once in place, you should be able to start salt-minion and run salt-call state.highstate or any other salt
commands that require master authentication.

3.4. Advanced Topics 89

http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances
http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances

Salt Documentation, Release 2014.7.6

3.4.7 Salt Bootstrap

e Salt Bootstrap script allows for a user to install the Salt Minion or Master on a variety of system distributions
and versions. is shell script known as bootstrap-salt.sh runs through a series of checks to determine
the operating system type and version. It then installs the Salt binaries using the appropriate methods. e Salt
Bootstrap script installs the minimum number of packages required to run Salt. is means that in the event you
run the bootstrap to install via package, Git will not be installed. Installing the minimum number of packages helps
ensure the script stays as lightweight as possible, assuming the user will install any other required packages aer the
Salt binaries are present on the system. e script source is available on GitHub: hps://github.com/saltstack/salt-
bootstrap

Supported Operating Systems

• Amazon Linux 2012.09

• Arch

• CentOS 5/6

• Debian 6.x/7.x/8(git installations only)

• Fedora 17/18

• FreeBSD 9.1/9.2/10

• Gentoo

• Linaro

• Linux Mint 13/14

• OpenSUSE 12.x

• Oracle Linux 5/5

• Red Hat 5/6

• Red Hat Enterprise 5/6

• Scientific Linux 5/6

• SmartOS

• SuSE 11 SP1/11 SP2

• Ubuntu 10.x/11.x/12.x/13.04/13.10

• Elementary OS 0.2

Note: In the event you do not see your distribution or version available please review the develop branch on
Github as it main contain updates that are not present in the stable release: hps://github.com/saltstack/salt-
bootstrap/tree/develop

Example Usage

If you're looking for the one-liner to install salt, please scroll to the boom and use the instructions for Installing via
an Insecure One-Liner

Note: In every two-step example, you would be well-served to examine the downloaded file and examine it to
ensure that it does what you expect.

90 Chapter 3. Tutorials

https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap/tree/develop
https://github.com/saltstack/salt-bootstrap/tree/develop

Salt Documentation, Release 2014.7.6

Using curl to install latest git:

curl -L https://bootstrap.saltstack.com -o install_salt.sh
sudo sh install_salt.sh git develop

Using wget to install your distribution's stable packages:

wget -O install_salt.sh https://bootstrap.saltstack.com
sudo sh install_salt.sh

Install a specific version from git using wget:

wget -O install_salt.sh https://bootstrap.saltstack.com
sudo sh install_salt.sh -P git v0.16.4

If you already have python installed, python 2.6, then it's as easy as:

python -m urllib "https://bootstrap.saltstack.com" > install_salt.sh
sudo sh install_salt.sh git develop

All python versions should support the following one liner:

python -c 'import urllib; print urllib.urlopen("https://bootstrap.saltstack.com").read()' > install_salt.sh
sudo sh install_salt.sh git develop

On a FreeBSD base system you usually don't have either of the above binaries available. You do havefetch available
though:

fetch -o install_salt.sh https://bootstrap.saltstack.com
sudo sh install_salt.sh

If all you want is to install a salt-master using latest git:

curl -o install_salt.sh.sh -L https://bootstrap.saltstack.com
sudo sh install_salt.sh.sh -M -N git develop

If you want to install a specific release version (based on the git tags):

curl -o install_salt.sh.sh -L https://bootstrap.saltstack.com
sudo sh install_salt.sh.sh git v0.16.4

To install a specific branch from a git fork:

curl -o install_salt.sh.sh -L https://bootstrap.saltstack.com
sudo sh install_salt.sh.sh -g https://github.com/myuser/salt.git git mybranch

Installing via an Insecure One-Liner

e following examples illustrate how to install Salt via a one-liner.

Note: Warning! ese methods do not involve a verification step and assume that the delivered file is trustworthy.

Examples

Installing the latest develop branch of Salt:

3.4. Advanced Topics 91

Salt Documentation, Release 2014.7.6

curl -L https://bootstrap.saltstack.com | sudo sh -s -- git develop

Any of the example above which use two-lines can be made to run in a single-line configuration with minor modi-
fications.

Example Usage

e Salt Bootstrap script has a wide variety of options that can be passed as well as several ways of obtaining the
bootstrap script itself.

For example, using curl to install your distribution's stable packages:

curl -L https://bootstrap.saltstack.com | sudo sh

Using wget to install your distribution's stable packages:

wget -O - https://bootstrap.saltstack.com | sudo sh

Installing the latest version available from git with curl:

curl -L https://bootstrap.saltstack.com | sudo sh -s -- git develop

Install a specific version from git using wget:

wget -O - https://bootstrap.saltstack.com | sh -s -- -P git v0.16.4

If you already have python installed, python 2.6, then it's as easy as:

python -m urllib "https://bootstrap.saltstack.com" | sudo sh -s -- git develop

All python versions should support the following one liner:

python -c 'import urllib; print urllib.urlopen("https://bootstrap.saltstack.com").read()' | \
sudo sh -s -- git develop

On a FreeBSD base system you usually don't have either of the above binaries available. You do havefetch available
though:

fetch -o - https://bootstrap.saltstack.com | sudo sh

If all you want is to install a salt-master using latest git:

curl -L https://bootstrap.saltstack.com | sudo sh -s -- -M -N git develop

If you want to install a specific release version (based on the git tags):

curl -L https://bootstrap.saltstack.com | sudo sh -s -- git v0.16.4

Downloading the develop branch (from here standard command line options may be passed):

wget https://bootstrap.saltstack.com/develop

Command Line Options

Here's a summary of the command line options:

92 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

$ sh bootstrap-salt.sh -h

Usage : bootstrap-salt.sh [options] <install-type> <install-type-args>

Installation types:
- stable (default)
- daily (ubuntu specific)
- git

Examples:
$ bootstrap-salt.sh
$ bootstrap-salt.sh stable
$ bootstrap-salt.sh daily
$ bootstrap-salt.sh git
$ bootstrap-salt.sh git develop
$ bootstrap-salt.sh git v0.17.0
$ bootstrap-salt.sh git 8c3fadf15ec183e5ce8c63739850d543617e4357

Options:
-h Display this message
-v Display script version
-n No colours.
-D Show debug output.
-c Temporary configuration directory
-g Salt repository URL. (default: git://github.com/saltstack/salt.git)
-k Temporary directory holding the minion keys which will pre-seed

the master.
-M Also install salt-master
-S Also install salt-syndic
-N Do not install salt-minion
-X Do not start daemons after installation
-C Only run the configuration function. This option automatically

bypasses any installation.
-P Allow pip based installations. On some distributions the required salt

packages or its dependencies are not available as a package for that
distribution. Using this flag allows the script to use pip as a last
resort method. NOTE: This only works for functions which actually
implement pip based installations.

-F Allow copied files to overwrite existing(config, init.d, etc)
-U If set, fully upgrade the system prior to bootstrapping salt
-K If set, keep the temporary files in the temporary directories specified

with -c and -k.
-I If set, allow insecure connections while downloading any files. For

example, pass '--no-check-certificate' to 'wget' or '--insecure' to 'curl'
-A Pass the salt-master DNS name or IP. This will be stored under

${BS_SALT_ETC_DIR}/minion.d/99-master-address.conf
-i Pass the salt-minion id. This will be stored under

${BS_SALT_ETC_DIR}/minion_id
-L Install the Apache Libcloud package if possible(required for salt-cloud)
-p Extra-package to install while installing salt dependencies. One package

per -p flag. You're responsible for providing the proper package name.

3.4.8 Git Fileserver Backend Walkthrough

Note: is walkthrough assumes basic knowledge of Salt. To get up to speed, check out the Salt Walkthrough.

3.4. Advanced Topics 93

Salt Documentation, Release 2014.7.6

e gitfs backend allows Salt to serve files from git repositories. It can be enabled by adding git to the file-
server_backend list, and configuring one or more repositories in gitfs_remotes.

Branches and tags become Salt fileserver environments.

Installing Dependencies

Beginning with version 2014.7.0, both pygit2 and Dulwich are supported as alternatives to GitPython. e desired
provider can be configured using the gitfs_provider parameter in the master config file.

If gitfs_provider is not configured, then Salt will prefer pygit2 if a suitable version is available, followed by
GitPython and Dulwich.

pygit2

e minimum supported version of pygit2 is 0.20.3. Availability for this version of pygit2 is still limited, though the
SaltStack team is working to get compatible versions available for as many platforms as possible.

For the Fedora/EPEL versions which have a new enough version packaged, the following command would be used
to install pygit2:

yum install python-pygit2

Provided a valid version is packaged for Debian/Ubuntu (which is not currently the case), the package name would
be the same, and the following command would be used to install it:

apt-get install python-pygit2

If pygit2 is not packaged for the platform on which the Master is running, the pygit2 website has installation instruc-
tions here. Keep in mind however that following these instructions will install libgit2 and pygit2 without system
packages. Additionally, keep in mind that SSH authentication in pygit2 requires libssh2 (not libssh) development
libraries to be present before libgit2 is built.

GitPython

GitPython 0.3.0 or newer is required to use GitPython for gitfs. For RHEL-based Linux distros, a compatible version
is available in EPEL, and can be easily installed on the master using yum:

yum install GitPython

Ubuntu 14.04 LTS and Debian Wheezy (7.x) also have a compatible version packaged:

apt-get install python-git

If your master is running an older version (such as Ubuntu 12.04 LTS or Debian Squeeze), then you will need to install
GitPython using either pip or easy_install (it is recommended to use pip). Version 0.3.2.RC1 is now marked as the
stable release in PyPI, so it should be a simple maer of running pip install GitPython (or easy_install
GitPython) as root.

94 Chapter 3. Tutorials

https://github.com/libgit2/pygit2
https://www.samba.org/~jelmer/dulwich/
https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython
https://www.samba.org/~jelmer/dulwich/
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
http://www.pygit2.org/install.html
https://github.com/libgit2/pygit2
http://www.libssh2.org/
https://github.com/gitpython-developers/GitPython
http://www.pip-installer.org/

Salt Documentation, Release 2014.7.6

Warning: Keep in mind that if GitPython has been previously installed on the master using pip (even if
it was subsequently uninstalled), then it may still exist in the build cache (typically /tmp/pip-build-
root/GitPython) if the cache is not cleared aer installation. e package in the build cache will override
any requirement specifiers, so if you try upgrading to version 0.3.2.RC1 by running pip install 'Git-
Python==0.3.2.RC1' then it will ignore this and simply install the version from the cache directory. ere-
fore, it may be necessary to delete the GitPython directory from the build cache in order to ensure that the
specified version is installed.

Dulwich

Dulwich 0.9.4 or newer is required to use Dulwich as backend for gitfs.

Dulwich is available in EPEL, and can be easily installed on the master using yum:

yum install python-dulwich

For APT-based distros such as Ubuntu and Debian:

apt-get install python-dulwich

Important: If switching to Dulwich from GitPython/pygit2, or switching from GitPython/pygit2 to Dulwich, it is
necessary to clear the gitfs cache to avoid unpredictable behavior. is is probably a good idea whenever switching
to a new gitfs_provider, but it is less important when switching between GitPython and pygit2.

Beginning in version 2015.5.0, the gitfs cache can be easily cleared using the fileserver.clear_cache runner.

salt-run fileserver.clear_cache backend=git

If the Master is running an earlier version, then the cache can be cleared by removing the gitfs
and file_lists/gitfs directories (both paths relative to the master cache directory, usually
/var/cache/salt/master).

rm -rf /var/cache/salt/master{,/file_lists}/gitfs

Simple Configuration

To use the gitfs backend, only two configuration changes are required on the master:

1. Include git in the fileserver_backend list in the master config file:

fileserver_backend:
- git

2. Specify one or more git://, https://, file://, or ssh:// URLs in gitfs_remotes to configure
which repositories to cache and search for requested files:

gitfs_remotes:
- https://github.com/saltstack-formulas/salt-formula.git

SSH remotes can also be configured using scp-like syntax:

gitfs_remotes:
- git@github.com:user/repo.git
- ssh://user@domain.tld/path/to/repo.git

3.4. Advanced Topics 95

Salt Documentation, Release 2014.7.6

Information on how to authenticate to SSH remotes can be found here.

Note: Dulwich does not recognize ssh:// URLs, git+ssh:// must be used instead. Salt version 2015.5.0
and later will automatically add the git+ to the beginning of these URLs before fetching, but earlier Salt
versions will fail to fetch unless the URL is specified using git+ssh://.

3. Restart the master to load the new configuration.

Note: In a master/minion setup, files from a gitfs remote are cached once by the master, so minions do not need
direct access to the git repository.

Multiple Remotes

e gitfs_remotes option accepts an ordered list of git remotes to cache and search, in listed order, for requested
files.

A simple scenario illustrates this cascading lookup behavior:

If the gitfs_remotes option specifies three remotes:

gitfs_remotes:
- git://github.com/example/first.git
- https://github.com/example/second.git
- file:///root/third

And each repository contains some files:

first.git:
top.sls
edit/vim.sls
edit/vimrc
nginx/init.sls

second.git:
edit/dev_vimrc
haproxy/init.sls

third:
haproxy/haproxy.conf
edit/dev_vimrc

Salt will aempt to lookup the requested file from each gitfs remote repository in the order in which they are defined
in the configuration. e git://github.com/example/first.git remote will be searched first. If the requested file is
found, then it is served and no further searching is executed. For example:

• A request for the file salt://haproxy/init.sls will be served from the https://github.com/example/second.git
git repo.

• A request for the file salt://haproxy/haproxy.conf will be served from the file:///root/third repo.

Note: is example is purposefully contrived to illustrate the behavior of the gitfs backend. is example should
not be read as a recommended way to lay out files and git repos.

e file:// prefix denotes a git repository in a local directory. However, it will still use the given file:// URL as a
remote, rather than copying the git repo to the salt cache. is means that any refs you want accessible must exist
as local refs in the specified repo.

96 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

Warning: Salt versions prior to 2014.1.0 are not tolerant of changing the order of remotes or modifying the
URI of existing remotes. In those versions, when modifying remotes it is a good idea to remove the gitfs cache
directory (/var/cache/salt/master/gitfs) before restarting the salt-master service.

Per-remote Configuration Parameters

New in version 2014.7.0.

e following master config parameters are global (that is, they apply to all configured gitfs remotes):

• gitfs_base

• gitfs_root

• gitfs_mountpoint (new in 2014.7.0)

• gitfs_user (pygit2 only, new in 2014.7.0)

• gitfs_password (pygit2 only, new in 2014.7.0)

• gitfs_insecure_auth (pygit2 only, new in 2014.7.0)

• gitfs_pubkey (pygit2 only, new in 2014.7.0)

• gitfs_privkey (pygit2 only, new in 2014.7.0)

• gitfs_passphrase (pygit2 only, new in 2014.7.0)

ese parameters can now be overridden on a per-remote basis. is allows for a tremendous amount of customiza-
tion. Here's some example usage:

gitfs_provider: pygit2
gitfs_base: develop

gitfs_remotes:
- https://foo.com/foo.git
- https://foo.com/bar.git:

- root: salt
- mountpoint: salt://foo/bar/baz
- base: salt-base

- http://foo.com/baz.git:
- root: salt/states
- user: joe
- password: mysupersecretpassword
- insecure_auth: True

Important: ere are two important distinctions which should be noted for per-remote configuration:
1. e URL of a remote which has per-remote configuration must be suffixed with a colon.

2. Per-remote configuration parameters are named like the global versions, with the gitfs_ removed from the
beginning.

In the example configuration above, the following is true:

1. e first and third gitfs remotes will use the develop branch/tag as the base environment, while the second
one will use the salt-base branch/tag as the base environment.

2. e first remote will serve all files in the repository. e second remote will only serve files from the salt di-
rectory (and its subdirectories), while the third remote will only serve files from the salt/states directory
(and its subdirectories).

3.4. Advanced Topics 97

Salt Documentation, Release 2014.7.6

3. e files from the second remote will be located under salt://foo/bar/baz, while the files from the first
and third remotes will be located under the root of the Salt fileserver namespace (salt://).

4. e third remote overrides the default behavior of not authenticating to insecure (non-HTTPS) remotes.

Serving from a Subdirectory

e gitfs_root parameter allows files to be served from a subdirectory within the repository. is allows for
only part of a repository to be exposed to the Salt fileserver.

Assume the below layout:

.gitignore
README.txt
foo/
foo/bar/
foo/bar/one.txt
foo/bar/two.txt
foo/bar/three.txt
foo/baz/
foo/baz/top.sls
foo/baz/edit/vim.sls
foo/baz/edit/vimrc
foo/baz/nginx/init.sls

e below configuration would serve only the files under foo/baz, ignoring the other files in the repository:

gitfs_remotes:
- git://mydomain.com/stuff.git

gitfs_root: foo/baz

e root can also be configured on a per-remote basis.

Mountpoints

New in version 2014.7.0.

e gitfs_mountpoint parameter will prepend the specified path to the files served from gitfs. is allows an
existing repository to be used, rather than needing to reorganize a repository or design it around the layout of the
Salt fileserver.

Before the addition of this feature, if a file being served up via gitfs was deeply nested within the root directory (for
example, salt://webapps/foo/files/foo.conf, it would be necessary to ensure that the file was properly
located in the remote repository, and that all of the the parent directories were present (for example, the directories
webapps/foo/files/ would need to exist at the root of the repository).

e below example would allow for a file foo.conf at the root of the repository to be served up from the Salt
fileserver path salt://webapps/foo/files/foo.conf.

gitfs_remotes:
- https://mydomain.com/stuff.git

gitfs_mountpoint: salt://webapps/foo/files

Mountpoints can also be configured on a per-remote basis.

98 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

Using gitfs Alongside Other Backends

Sometimes it may make sense to use multiple backends; for instance, if sls files are stored in git but larger files are
stored directly on the master.

e cascading lookup logic used for multiple remotes is also used with multiple backends. If the file-
server_backend option contains multiple backends:

fileserver_backend:
- roots
- git

en the roots backend (the default backend of files in /srv/salt) will be searched first for the requested file;
then, if it is not found on the master, each configured git remote will be searched.

Branches, Environments and Top Files

When using the gitfs backend, branches and tags will be mapped to environments using the branch/tag name as an
identifier.

ere is one exception to this rule: the master branch is implicitly mapped to the base environment.

So, for a typical base, qa, dev setup, the following branches could be used:

master
qa
dev

top.sls files from different branches will be merged into one at runtime. Since this can lead to overly complex
configurations, the recommended setup is to have the top.sls file only in the master branch and use environment-
specific branches for state definitions.

To map a branch other than master as the base environment, use the gitfs_base parameter.

gitfs_base: salt-base

e base can also be configured on a per-remote basis.

Environment Whitelist/Blacklist

New in version 2014.7.0.

e gitfs_env_whitelist and gitfs_env_blacklist parameters allow for greater control over which
branches/tags are exposed as fileserver environments. Exact matches, globs, and regular expressions are supported,
and are evaluated in that order. If using a regular expression, ^ and $ must be omied, and the expression must
match the entire branch/tag.

gitfs_env_whitelist:
- base
- v1.*
- 'mybranch\d+'

Note: v1.*, in this example, will match as both a glob and a regular expression (though it will have been matched
as a glob, since globs are evaluated before regular expressions).

e behavior of the blacklist/whitelist will differ depending on which combination of the two options is used:

3.4. Advanced Topics 99

Salt Documentation, Release 2014.7.6

• If onlygitfs_env_whitelist is used, then only branches/tagswhichmatch thewhitelist will be available
as environments

• If only gitfs_env_blacklist is used, then the branches/tags which match the blacklist will not be avail-
able as environments

• If both are used, then the branches/tags which match the whitelist, but do not match the blacklist, will be
available as environments.

Authentication

pygit2

New in version 2014.7.0.

Both HTTPS and SSH authentication are supported as of version 0.20.3, which is the earliest version of pygit2
supported by Salt for gitfs.

Note: e examples below make use of per-remote configuration parameters, a feature new to Salt 2014.7.0. More
information on these can be found here.

HTTPS For HTTPS repositories which require authentication, the username and password can be provided like
so:

gitfs_remotes:
- https://domain.tld/myrepo.git:

- user: git
- password: mypassword

If the repository is served over HTTP instead of HTTPS, then Salt will by default refuse to authenticate to it. is
behavior can be overridden by adding an insecure_auth parameter:

gitfs_remotes:
- http://domain.tld/insecure_repo.git:

- user: git
- password: mypassword
- insecure_auth: True

SSH SSH repositories can be configured using the ssh:// protocol designation, or using scp-like syntax. So, the
following two configurations are equivalent:

• ssh://git@github.com/user/repo.git

• git@github.com:user/repo.git

Both gitfs_pubkey and gitfs_privkey (or their per-remote counterparts) must be configured in order to
authenticate to SSH-based repos. If the private key is protected with a passphrase, it can be configured using
gitfs_passphrase (or simply passphrase if being configured per-remote). For example:

gitfs_remotes:
- git@github.com:user/repo.git:

- pubkey: /root/.ssh/id_rsa.pub
- privkey: /root/.ssh/id_rsa
- passphrase: myawesomepassphrase

Finally, the SSH host key must be added to the known_hosts file.

100 Chapter 3. Tutorials

https://github.com/libgit2/pygit2

Salt Documentation, Release 2014.7.6

GitPython

With GitPython, only passphrase-less SSH public key authentication is supported. e auth parameters (pubkey,
privkey, etc.) shown in the pygit2 authentication examples above do not work with GitPython.

gitfs_remotes:
- ssh://git@github.com/example/salt-states.git

Since GitPythonwraps the git CLI, the private keymust be located in~/.ssh/id_rsa for the user under which the
Master is running, and should have permissions of 0600. Also, in the absence of a user in the repo URL, GitPython
will (just as SSH does) aempt to login as the current user (in other words, the user under which the Master is
running, usually root).

If a key needs to be used, then ~/.ssh/config can be configured to use the desired key. Information on how to
do this can be found by viewing the manpage for ssh_config. Here's an example entry which can be added to
the ~/.ssh/config to use an alternate key for gitfs:

Host github.com
IdentityFile /root/.ssh/id_rsa_gitfs

e Host parameter should be a hostname (or hostname glob) that matches the domain name of the git repository.

It is also necessary to add the SSH host key to the known_hosts file. e exception to this would be if strict
host key checking is disabled, which can be done by adding StrictHostKeyChecking no to the entry in
~/.ssh/config

Host github.com
IdentityFile /root/.ssh/id_rsa_gitfs
StrictHostKeyChecking no

However, this is generally regarded as insecure, and is not recommended.

Adding the SSH Host Key to the known_hosts File

To use SSH authentication, it is necessary to have the remote repository's SSH host key in the
~/.ssh/known_hosts file. If the master is also a minion, this can be done using the ssh.set_known_host
function:

salt mymaster ssh.set_known_host user=root hostname=github.com
mymaster:

new:

enc:

ssh-rsa
fingerprint:

16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48
hostname:

|1|OiefWWqOD4kwO3BhoIGa0loR5AA=|BIXVtmcTbPER+68HvXmceodDcfI=
key:

AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==
old:

None
status:

updated

If not, then the easiest way to add the key is to su to the user (usually root) under which the salt-master runs and
aempt to login to the server via SSH:

3.4. Advanced Topics 101

https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython

Salt Documentation, Release 2014.7.6

$ su
Password:
ssh github.com
The authenticity of host 'github.com (192.30.252.128)' can't be established.
RSA key fingerprint is 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'github.com,192.30.252.128' (RSA) to the list of known hosts.
Permission denied (publickey).

It doesn't maer if the login was successful, as answering yes will write the fingerprint to the known_hosts file.

Verifying the Fingerprint To verify that the correct fingerprint was added, it is a good idea to look it up. One way
to do this is to use nmap:

$ nmap github.com --script ssh-hostkey

Starting Nmap 5.51 (http://nmap.org) at 2014-08-18 17:47 CDT
Nmap scan report for github.com (192.30.252.129)
Host is up (0.17s latency).
Not shown: 996 filtered ports
PORT STATE SERVICE
22/tcp open ssh
| ssh-hostkey: 1024 ad:1c:08:a4:40:e3:6f:9c:f5:66:26:5d:4b:33:5d:8c (DSA)
|_2048 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48 (RSA)
80/tcp open http
443/tcp open https
9418/tcp open git

Nmap done: 1 IP address (1 host up) scanned in 28.78 seconds

Another way is to check one's own known_hosts file, using this one-liner:

$ ssh-keygen -l -f /dev/stdin <<<`ssh-keyscan -t rsa github.com 2>/dev/null` | awk '{print $2}'
16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48

Refreshing gitfs Upon Push

By default, Salt updates the remote fileserver backends every 60 seconds. However, if it is desirable to refresh quicker
than that, the Reactor System can be used to signal the master to update the fileserver on each push, provided that
the git server is also a Salt minion. ere are three steps to this process:

1. On the master, create a file /srv/reactor/update_fileserver.sls, with the following contents:

update_fileserver:
runner.fileserver.update

2. Add the following reactor configuration to the master config file:

reactor:
- 'salt/fileserver/gitfs/update':

- /srv/reactor/update_fileserver.sls

3. On the git server, add a post-receive hook with the following contents:

#!/usr/bin/env sh

salt-call event.fire_master update salt/fileserver/gitfs/update

102 Chapter 3. Tutorials

http://www.git-scm.com/book/en/Customizing-Git-Git-Hooks#Server-Side-Hooks

Salt Documentation, Release 2014.7.6

e update argument right aer event.fire_master in this example can really be anything, as it represents
the data being passed in the event, and the passed data is ignored by this reactor.

Similarly, the tag name salt/fileserver/gitfs/update can be replaced by anything, so long as the usage
is consistent.

Using Git as an External Pillar Source

Git repositories can also be used to provide Pillar data, using the External Pillar system. Note that this is different
from gitfs, and is not yet at feature parity with it.

To define a git external pillar, add a section like the following to the salt master config file:

ext_pillar:
- git: <branch> <repo> [root=<gitroot>]

Changed in version 2014.7.0: e optional root parameter was added

e <branch> param is the branch containing the pillar SLS tree. e <repo> param is the URI for the repository.
To add the master branch of the specified repo as an external pillar source:

ext_pillar:
- git: master https://domain.com/pillar.git

Use the root parameter to use pillars from a subdirectory of a git repository:

ext_pillar:
- git: master https://domain.com/pillar.git root=subdirectory

More information on the git external pillar can be found in the salt.pillar.get_pillar docs.

Why aren't my custom modules/states/etc. syncing to my Minions?

In versions 0.16.3 and older, when using the git fileserver backend, certain versions of GitPython may generate errors
when fetching, which Salt fails to catch. While not fatal to the fetch process, these interrupt the fileserver update
that takes place before custom types are synced, and thus interrupt the sync itself. Try disabling the git fileserver
backend in the master config, restarting the master, and aempting the sync again.

is issue is worked around in Salt 0.16.4 and newer.

3.4.9 The MacOS X (Maverick) Developer Step By Step Guide To Salt Installation

is document provides a step-by-step guide to installing a Salt cluster consisting of one master, and one minion
running on a local VM hosted on Mac OS X.

Note: is guide is aimed at developers who wish to run Salt in a virtual machine. e official (Linux) walkthrough
can be found here.

The 5 Cent Salt Intro

Since you're here you've probably already heard about Salt, so you already know Salt lets you configure and run
commands on hordes of servers easily. Here's a brief overview of a Salt cluster:

3.4. Advanced Topics 103

http://docs.saltstack.com/topics/tutorials/walkthrough.html

Salt Documentation, Release 2014.7.6

• Salt works by having a ``master'' server sending commands to one or multiple ``minion'' servers 2. e mas-
ter server is the ``command center''. It is going to be the place where you store your configuration files, aka:
``which server is the db, which is the web server, and what libraries and soware they should have installed''.
e minions receive orders from the master. Minions are the servers actually performing work for your busi-
ness.

• Salt has two types of configuration files:

1. the ``salt communication channels'' or ``meta'' or ``config'' configuration files (not official names): one for
the master (usually is /etc/salt/master , on the master server), and one for minions (default is /etc/salt/minion
or /etc/salt/minion.conf, on the minion servers). ose files are used to determine things like the Salt Master
IP, port, Salt folder locations, etc.. If these are configured incorrectly, your minions will probably be unable to
receive orders from the master, or the master will not know which soware a given minion should install.

2. the ``business'' or ``service'' configuration files (once again, not an official name): these are configuration
files, ending with ''.sls'' extension, that describe which soware should run on which server, along with par-
ticular configuration properties for the soware that is being installed. ese files should be created in the
/srv/salt folder by default, but their location can be changed using … /etc/salt/master configuration file!

Note: is tutorial contains a third important configuration file, not to be confused with the previous two: the
virtual machine provisioning configuration file. is in itself is not specifically tied to Salt, but it also contains some
Salt configuration. More on that in step 3. Also note that all configuration files are YAML files. So indentation
maers.

Before Digging In, The Architecture Of The Salt Cluster

Salt Master

e ``Salt master'' server is going to be the Mac OS machine, directly. Commands will be run from a terminal app, so
Salt will need to be installed on the Mac. is is going to be more convenient for toying around with configuration
files.

Salt Minion

We'll only have one ``Salt minion'' server. It is going to be running on a Virtual Machine running on the Mac, using
VirtualBox. It will run an Ubuntu distribution.

3.4.10 Step 1 - Configuring The Salt Master On Your Mac

official documentation

Because Salt has a lot of dependencies that are not built inMacOSX, wewill use Homebrew to install Salt. Homebrew
is a package manager for Mac, it's great, use it (for this tutorial at least!). Some people spend a lot of time installing
libs by hand to beer understand dependencies, and then realize how useful a package manager is once they're
configuring a brand new machine and have to do it all over again. It also lets you uninstall things easily.

Note: Brew is a Ruby program (Ruby is installed by default with your Mac). Brew downloads, compiles and links
soware. e linking phase is when compiled soware is deployed on your machine. It may conflict with manually
installed soware, especially in the /usr/local directory. It's ok, remove the manually installed version then refresh
the link by typing brew link 'packageName'. Brew has a brew doctor command that can help you

2 Salt also works with ``masterless'' configuration where a minion is autonomous (in which case salt can be seen as a local configuration tool),
or in ``multiple master'' configuration. See the documentation for more on that.

104 Chapter 3. Tutorials

http://docs.saltstack.com/topics/installation/osx.html

Salt Documentation, Release 2014.7.6

troubleshoot. It's a great command, use it oen. Brew requires xcode command line tools. When you run brew the
first time it asks you to install them if they're not already on your system. Brew installs soware in /usr/local/bin
(system bins are in /usr/bin). In order to use those bins you need your $PATH to search there first. Brew tells you if
your $PATH needs to be fixed.

Tip: Use the keyboard shortcut cmd + shift + period in the ``open'' Mac OS X dialog box to display hidden
files and folders, such as .profile.

Install Homebrew

Install Homebrew here hp://brew.sh/ Or just type

ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

Now type the following commands in your terminal (you may want to type brew doctor aer each to make sure
everything's fine):

brew install python
brew install swig
brew install zmq

Note: zmq is ZeroMQ. It's a fantastic library used for server to server network communication and is at the core of
Salt efficiency.

Install Salt

You should now have everything ready to launch this command:

pip install salt

Note: ere should be no need for sudo pip install salt. Brew installed Python for your user, so you should
have all the access. In case you would like to check, type which python to ensure that it's /usr/local/bin/python,
and which pip which should be /usr/local/bin/pip.

Now type python in a terminal then, import salt. ere should be no errors. Now exit the Python terminal
using exit().

Create The Master Configuration

If the default /etc/salt/master configuration file was not created, copy-paste it from here:
hp://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master

Note: /etc/salt/master is a file, not a folder.

Salt Master configuration changes. e Salt master needs a few customization to be able to run on Mac OS X:

sudo launchctl limit maxfiles 4096 8192

In the /etc/salt/master file, change max_open_files to 8192 (or just add the line: max_open_files: 8192 (no
quote) if it doesn't already exists).

3.4. Advanced Topics 105

http://brew.sh/
http://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master

Salt Documentation, Release 2014.7.6

You should now be able to launch the Salt master:

sudo salt-master --log-level=all

ere should be no errors when running the above command.

Note: is command is supposed to be a daemon, but for toying around, we'll keep it running on a terminal to
monitor the activity.

Now that the master is set, let's configure a minion on a VM.

3.4.11 Step 2 - Configuring The Minion VM

e Salt minion is going to run on a Virtual Machine. ere are a lot of soware options that let you run virtual
machines on a mac, But for this tutorial we're going to use VirtualBox. In addition to virtualBox, we will use Vagrant,
which allows you to create the base VM configuration.

Vagrant lets you build ready to use VM images, starting from an OS image and customizing it using ``provisioners''.
In our case, we'll use it to:

• Download the base Ubuntu image

• Install salt on that Ubuntu image (Salt is going to be the ``provisioner'' for the VM).

• Launch the VM

• SSH into the VM to debug

• Stop the VM once you're done.

Install VirtualBox

Go get it here: hps://www.virtualBox.org/wiki/Downloads (click on VirtualBox for OS X hosts => x86/amd64)

Install Vagrant

Go get it here: hp://downloads.vagrantup.com/ and choose the latest version (1.3.5 at time of writing), then the
.dmg file. Double-click to install it. Make sure the vagrant command is found when run in the terminal. Type
vagrant. It should display a list of commands.

Create The Minion VM Folder

Create a folder in which you will store your minion's VM. In this tutorial, it's going to be a minion folder in the
$home directory.

cd $home
mkdir minion

Initialize Vagrant

From the minion folder, type

vagrant init

106 Chapter 3. Tutorials

https://www.virtualBox.org/wiki/Downloads
http://downloads.vagrantup.com/

Salt Documentation, Release 2014.7.6

is command creates a default Vagrantfile configuration file. is configuration file will be used to pass configura-
tion parameters to the Salt provisioner in Step 3.

Import Precise64 Ubuntu Box

vagrant box add precise64 http://files.vagrantup.com/precise64.box

Note: is box is added at the global Vagrant level. You only need to do it once as each VM will use this same file.

Modify the Vagrantfile

Modify ./minion/Vagrantfile to use th precise64 box. Change the config.vm.box line to:

config.vm.box = "precise64"

Uncomment the line creating a host-only IP. is is the ip of your minion (you can change it to something else if
that IP is already in use):

config.vm.network :private_network, ip: "192.168.33.10"

At this point you should have a VM that can run, although there won't be much in it. Let's check that.

Checking The VM

From the $home/minion folder type:

vagrant up

A log showing the VM booting should be present. Once it's done you'll be back to the terminal:

ping 192.168.33.10

e VM should respond to your ping request.

Now log into the VM in ssh using Vagrant again:

vagrant ssh

You should see the shell prompt change to something similar to vagrant@precise64:~$meaning you're inside
the VM. From there, enter the following:

ping 10.0.2.2

Note: at ip is the ip of your VM host (the Mac OS X OS). e number is a VirtualBox default and is displayed in
the log aer the Vagrant ssh command. We'll use that IP to tell the minion where the Salt master is. Once you're
done, end the ssh session by typing exit.

It's now time to connect the VM to the salt master

3.4. Advanced Topics 107

Salt Documentation, Release 2014.7.6

3.4.12 Step 3 - Connecting Master and Minion

Creating The Minion Configuration File

Create the /etc/salt/minion file. In that file, put the following lines, giving the ID for this minion, and the IP
of the master:

master: 10.0.2.2
id: 'minion1'
file_client: remote

Minions authenticate with the master using keys. Keys are generated automatically if you don't provide one and
can accept them later on. However, this requires accepting the minion key every time the minion is destroyed or
created (which could be quite oen). A beer way is to create those keys in advance, feed them to the minion, and
authorize them once.

Preseed minion keys

From the minion folder on your Mac run:

sudo salt-key --gen-keys=minion1

is should create two files: minion1.pem, and minion1.pub. Since those files have been created using sudo, but will
be used by vagrant, you need to change ownership:

sudo chown youruser:yourgroup minion1.pem
sudo chown youruser:yourgroup minion1.pub

en copy the .pub file into the list of accepted minions:

sudo cp minion1.pub /etc/salt/pki/master/minions/minion1

Modify Vagrantfile to Use Salt Provisioner

Let's now modify the Vagrantfile used to provision the Salt VM. Add the following section in the Vagrantfile (note:
it should be at the same indentation level as the other properties):

salt-vagrant config
config.vm.provision :salt do |salt|

salt.run_highstate = true
salt.minion_config = "/etc/salt/minion"
salt.minion_key = "./minion1.pem"
salt.minion_pub = "./minion1.pub"

end

Now destroy the vm and recreate it from the /minion folder:

vagrant destroy
vagrant up

If everything is fine you should see the following message:

"Bootstrapping Salt... (this may take a while)
Salt successfully configured and installed!"

108 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

Checking Master-Minion Communication

To make sure the master and minion are talking to each other, enter the following:

sudo salt '*' test.ping

You should see your minion answering the ping. It's now time to do some configuration.

3.4.13 Step 4 - Configure Services to Install On the Minion

In this step we'll use the Salt master to instruct our minion to install Nginx.

Checking the system's original state

First, make sure that an HTTP server is not installed on our minion. When opening a browser directed at
http://192.168.33.10/ You should get an error saying the site cannot be reached.

Initialize the top.sls file

System configuration is done in the /srv/salt/top.sls file (and subfiles/folders), and then applied by running the
state.highstate command to have the Salt master give orders so minions will update their instructions and
run the associated commands.

First Create an empty file on your Salt master (Mac OS X machine):

touch /srv/salt/top.sls

When the file is empty, or if no configuration is found for our minion an error is reported:

sudo salt 'minion1' state.highstate

Should return an error stating: ``No Top file or external nodes data matches found''.

Create The Nginx Configuration

Now is finally the time to enter the real meat of our server's configuration. For this tutorial our minion will be treated
as a web server that needs to have Nginx installed.

Insert the following lines into the /srv/salt/top.sls file (which should current be empty).

base:
'minion1':

- bin.nginx

Now create a /srv/salt/bin/nginx.sls file containing the following:

nginx:
pkg.installed:

- name: nginx
service.running:

- enable: True
- reload: True

3.4. Advanced Topics 109

Salt Documentation, Release 2014.7.6

Check Minion State

Finally run the state.highstate command again:

sudo salt 'minion1' state.highstate

You should see a log showing that the Nginx package has been installed and the service configured. To prove it,
open your browser and navigate to hp://192.168.33.10/, you should see the standard Nginx welcome page.

Congratulations!

Where To Go From Here

A full description of configuration management within Salt (sls files among other things) is available here:
hp://docs.saltstack.com/index.html#configuration-management

3.4.14 Writing Salt Tests

Note: THIS TUTORIAL IS A WORK IN PROGRESS

Salt comes with a powerful integration and unit test suite. e test suite allows for the fully automated run of
integration and/or unit tests from a single interface. e integration tests are surprisingly easy to write and can be
wrien to be either destructive or non-destructive.

Geing Set Up For Tests

To walk through adding an integration test, start by geing the latest development code and the test system from
GitHub:

Note: e develop branch oen has failing tests and should always be considered a staging area. For a checkout
that tests should be running perfectly on, please check out a specific release tag (such as v2014.1.4).

git clone git@github.com:saltstack/salt.git
pip install git+https://github.com/saltstack/salt-testing.git#egg=SaltTesting

Now that a fresh checkout is available run the test suite

Destructive vs Non-destructive

Since Salt is used to change the seings and behavior of systems, oen, the best approach to run tests is to make
actual changes to an underlying system. is is where the concept of destructive integration tests comes into play.
Tests can be wrien to alter the system they are running on. is capability is what fills in the gap needed to properly
test aspects of system management like package installation.

To write a destructive test import and use the destructiveTest decorator for the test method:

import integration
from salttesting.helpers import destructiveTest

class PkgTest(integration.ModuleCase):
@destructiveTest
def test_pkg_install(self):

110 Chapter 3. Tutorials

http://192.168.33.10/
http://docs.saltstack.com/index.html#configuration-management

Salt Documentation, Release 2014.7.6

ret = self.run_function('pkg.install', name='finch')
self.assertSaltTrueReturn(ret)
ret = self.run_function('pkg.purge', name='finch')
self.assertSaltTrueReturn(ret)

Automated Test Runs

SaltStack maintains a Jenkins server which can be viewed at hp://jenkins.saltstack.com. e tests executed from
this Jenkins server create fresh virtual machines for each test run, then execute the destructive tests on the new clean
virtual machine. is allows for the execution of tests across supported platforms.

3.5 Salt Virt

3.5.1 Salt as a Cloud Controller

In Salt 0.14.0, an advanced cloud control system were introduced, allow private cloud vms to be managed directly
with Salt. is system is generally referred to as Salt Virt.

e Salt Virt system already exists and is installed within Salt itself, this means that beside seing up Salt, no addi-
tional salt code needs to be deployed.

e main goal of Salt Virt is to facilitate a very fast and simple cloud. e cloud that can scale and fully featured.
Salt Virt comes with the ability to set up and manage complex virtual machine networking, powerful image and disk
management, as well as virtual machine migration with and without shared storage.

is means that Salt Virt can be used to create a cloud from a blade center and a SAN, but can also create a cloud
out of a swarm of Linux Desktops without a single shared storage system. Salt Virt can make clouds from truly
commodity hardware, but can also stand up the power of specialized hardware as well.

Seing up Hypervisors

e first step to set up the hypervisors involves geing the correct soware installed and seing up the hypervisor
network interfaces.

Installing Hypervisor Soware

Salt Virt is made to be hypervisor agnostic but currently the only fully implemented hypervisor is KVM via libvirt.

e required soware for a hypervisor is libvirt and kvm. For advanced features install libguestfs or qemu-nbd.

Note: Libguestfs and qemu-nbd allow for virtual machine images to be mounted before startup and get pre-seeded
with configurations and a salt minion

is sls will set up the needed soware for a hypervisor, and run the routines to set up the libvirt pki keys.

Note: Package names and setup used is Red Hat specific, different package names will be required for different
platforms

3.5. Salt Virt 111

http://jenkins.saltstack.com

Salt Documentation, Release 2014.7.6

libvirt:
pkg.installed: []
file.managed:

- name: /etc/sysconfig/libvirtd
- contents: 'LIBVIRTD_ARGS="--listen"'
- require:

- pkg: libvirt
libvirt.keys:

- require:
- pkg: libvirt

service.running:
- name: libvirtd
- require:

- pkg: libvirt
- network: br0
- libvirt: libvirt

- watch:
- file: libvirt

libvirt-python:
pkg.installed: []

libguestfs:
pkg.installed:

- pkgs:
- libguestfs
- libguestfs-tools

Hypervisor Network Setup

e hypervisors will need to be running a network bridge to serve up network devices for virtual machines, this
formula will set up a standard bridge on a hypervisor connecting the bridge to eth0:

eth0:
network.managed:

- enabled: True
- type: eth
- bridge: br0

br0:
network.managed:

- enabled: True
- type: bridge
- proto: dhcp
- require:

- network: eth0

Virtual Machine Network Setup

Salt Virt comes with a system to model the network interfaces used by the deployed virtual machines; by default
a single interface is created for the deployed virtual machine and is bridged to br0. To get going with the default
networking setup, ensure that the bridge interface named br0 exists on the hypervisor and is bridged to an active
network device.

Note: To use more advanced networking in Salt Virt, read the Salt Virt Networking document:

112 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

Salt Virt Networking

Libvirt State

One of the challenges of deploying a libvirt based cloud is the distribution of libvirt certificates. ese certificates
allow for virtual machinemigration. Salt comeswith a system used to auto deploy these certificates. Salt manages the
signing authority key and generates keys for libvirt clients on the master, signs them with the certificate authority
and uses pillar to distribute them. is is managed via the libvirt state. Simply execute this formula on the
minion to ensure that the certificate is in place and up to date:

Note: e above formula includes the calls needed to set up libvirt keys.

libvirt_keys:
libvirt.keys

Geing Virtual Machine Images Ready

Salt Virt, requires that virtual machine images be provided as these are not generated on the fly. Generating these
virtual machine images differs greatly based on the underlying platform.

Virtual machine images can be manually created using KVM and running through the installer, but this process is
not recommended since it is very manual and prone to errors.

Virtual Machine generation applications are available for many platforms:

vm-builder: hps://wiki.debian.org/VMBuilder

See also:

vmbuilder-formula

Once virtual machine images are available, the easiest way to make them available to Salt Virt is to place them in
the Salt file server. Just copy an image into /srv/salt and it can now be used by Salt Virt.

For purposes of this demo, the file name centos.img will be used.

Existing Virtual Machine Images

Many existing Linux distributions distribute virtual machine images which can be used with Salt Virt. Please be
advised that NONE OF THESE IMAGES ARE SUPPORTED BY SALTSTACK.

CentOS ese images have been prepared for OpenNebula but should work without issue with Salt Virt, only the
raw qcow image file is needed: hp://wiki.centos.org/Cloud/OpenNebula

Fedora Linux Images for Fedora Linux can be found here: hp://fedoraproject.org/en/get-fedora#clouds

Ubuntu Linux Images for Ubuntu Linux can be found here: hp://cloud-images.ubuntu.com/

3.5. Salt Virt 113

https://wiki.debian.org/VMBuilder
https://github.com/saltstack-formulas/vmbuilder-formula
http://wiki.centos.org/Cloud/OpenNebula
http://fedoraproject.org/en/get-fedora#clouds
http://cloud-images.ubuntu.com/

Salt Documentation, Release 2014.7.6

Using Salt Virt

With hypervisors set up and virtual machine images ready, Salt can start issuing cloud commands.

Start by running a Salt Virt hypervisor info command:

salt-run virt.hyper_info

is will query what the running hypervisor stats are and display information for all configured hypervisors. is
command will also validate that the hypervisors are properly configured.

Now that hypervisors are available a virtual machine can be provisioned. e virt.init routine will create a
new virtual machine:

salt-run virt.init centos1 2 512 salt://centos.img

is command assumes that the CentOS virtual machine image is siing in the root of the Salt fileserver. Salt Virt
will now select a hypervisor to deploy the new virtual machine on and copy the virtual machine image down to the
hypervisor.

Once the VM image has been copied down the new virtual machine will be seeded. Seeding the VMs involves seing
pre-authenticated Salt keys on the new VM and if needed, will install the Salt Minion on the new VM before it is
started.

Note: e biggest boleneck in starting VMs is when the Salt Minion needs to be installed. Making sure that the
source VM images already have Salt installed will GREATLY speed up virtual machine deployment.

Now that the new VM has been prepared, it can be seen via the virt.query command:

salt-run virt.query

is command will return data about all of the hypervisors and respective virtual machines.

Now that the new VM is booted it should have contacted the Salt Master, a test.ping will reveal if the new VM
is running.

Migrating Virtual Machines

Salt Virt comes with full support for virtual machine migration, and using the libvirt state in the above formula
makes migration possible.

A few things need to be available to support migration. Many operating systems turn on firewalls when originally
set up, the firewall needs to be opened up to allow for libvirt and kvm to cross communicate and execution migration
routines. On Red Hat based hypervisors in particular port 16514 needs to be opened on hypervisors:

iptables -A INPUT -m state --state NEW -m tcp -p tcp --dport 16514 -j ACCEPT

Note: More in-depth information regarding distribution specific firewall seings can read in:
Opening the Firewall up for Salt

Salt also needs an additional flag to be turned on as well. e virt.tunnel option needs to be turned on. is
flag tells Salt to run migrations securely via the libvirt TLS tunnel and to use port 16514. Without virt.tunnel
libvirt tries to bind to random ports when running migrations. To turn on virt.tunnel simple apply it to the
master config file:

virt.tunnel: True

114 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

Once the master config has been updated, restart the master and send out a call to the minions to refresh the pillar
to pick up on the change:

salt * saltutil.refresh_modules

Now, migration routines can be run! To migrate a VM, simply run the Salt Virt migrate routine:

salt-run virt.migrate centos <new hypervisor>

VNC Consoles

Salt Virt also sets up VNC consoles by default, allowing for remote visual consoles to be oped up. e information
from a virt.query routine will display the vnc console port for the specific vms:

centos
CPU: 2
Memory: 524288
State: running
Graphics: vnc - hyper6:5900
Disk - vda:

Size: 2.0G
File: /srv/salt-images/ubuntu2/system.qcow2
File Format: qcow2

Nic - ac:de:48:98:08:77:
Source: br0
Type: bridge

e line Graphics: vnc - hyper6:5900 holds the key. First the port named, in this case 5900, will need to be available
in the hypervisor's firewall. Once the port is open, then the console can be easily opened via vncviewer:

vncviewer hyper6:5900

By default there is no VNC security set up on these ports, which suggests that keeping themfirewalled andmandating
that SSH tunnels be used to access these VNC interfaces. Keep in mind that activity on a VNC interface that is
accessed can be viewed by any other user that accesses that same VNC interface, and any other user logging in can
also operate with the logged in user on the virtual machine.

Conclusion

Now with Salt Virt running, new hypervisors can be seamlessly added just by running the above states on new bare
metal machines, and these machines will be instantly available to Salt Virt.

3.6 Halite

3.6.1 Installing and Configuring Halite

In this tutorial, we'll walk through installing and seing up Halite. e current version of Halite is considered
pre-alpha and is supported only in Salt v2014.1.0 or greater. Additional information is available on GitHub:
hps://github.com/saltstack/halite

Before beginning this tutorial, ensure that the salt-master is installed. To install the salt-master, please review the
installation documentation: hp://docs.saltstack.com/topics/installation/index.html

Note: Halite only works with Salt versions greater than 2014.1.0.

3.6. Halite 115

https://github.com/saltstack/halite
http://docs.saltstack.com/topics/installation/index.html

Salt Documentation, Release 2014.7.6

Installing Halite Via Package

On CentOS, RHEL, or Fedora:

$ yum install python-halite

Note: By default python-halite only installs CherryPy. If you would like to use a different webserver please review
the instructions below to install pip and your server of choice. e package does not modify the master configuration
with /etc/salt/master.

Installing Halite Using pip

To begin the installation of Halite from PyPI, you'll need to install pip. e Salt package, as well as the bootstrap, do
not install pip by default.

On CentOS, RHEL, or Fedora:

$ yum install python-pip

On Debian:

$ apt-get install python-pip

Once you have pip installed, use it to install halite:

$ pip install -U halite

Depending on the webserver you want to run halite through, you'll need to install that piece as well. On RHEL based
distros, use one of the following:

$ pip install cherrypy

$ pip install paste

$ yum install python-devel
$ yum install gcc
$ pip install gevent
$ pip install pyopenssl

On Debian based distributions:

$ pip install CherryPy

$ pip install paste

$ apt-get install gcc
$ apt-get install python-dev
$ apt-get install libevent-dev
$ pip install gevent
$ pip install pyopenssl

116 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

Configuring Halite Permissions

Configuring Halite access permissions is easy. By default, you only need to ensure that the @runner group is
configured. In the /etc/salt/master file, uncomment and modify the following lines:

external_auth:
pam:

testuser:
- .*
- '@runner'

Note: You cannot use the root user for pam login; it will fail to authenticate.

Halite uses the runner manage.present to get the status of minions, so runner permissions are required. For example:

external_auth:
pam:

mytestuser:
- .*
- '@runner'
- '@wheel'

Currently Halite allows, but does not require, any wheel modules.

Configuring Halite Seings

Once you've configured the permissions for Halite, you'll need to set up the Halite seings in the /etc/salt/master
file. Halite supports CherryPy, Paste and Gevent out of the box.

To configure cherrypy, add the following to the boom of your /etc/salt/master file:

halite:
level: 'debug'
server: 'cherrypy'
host: '0.0.0.0'
port: '8080'
cors: False
tls: True
certpath: '/etc/pki/tls/certs/localhost.crt'
keypath: '/etc/pki/tls/certs/localhost.key'
pempath: '/etc/pki/tls/certs/localhost.pem'

If you wish to use paste:

halite:
level: 'debug'
server: 'paste'
host: '0.0.0.0'
port: '8080'
cors: False
tls: True
certpath: '/etc/pki/tls/certs/localhost.crt'
keypath: '/etc/pki/tls/certs/localhost.key'
pempath: '/etc/pki/tls/certs/localhost.pem'

To use gevent:

3.6. Halite 117

Salt Documentation, Release 2014.7.6

halite:
level: 'debug'
server: 'gevent'
host: '0.0.0.0'
port: '8080'
cors: False
tls: True
certpath: '/etc/pki/tls/certs/localhost.crt'
keypath: '/etc/pki/tls/certs/localhost.key'
pempath: '/etc/pki/tls/certs/localhost.pem'

e ``cherrypy'' and ``gevent'' servers require the certpath and keypath files to run tls/ssl. e .crt file holds the
public cert and the .key file holds the private key. Whereas the ``paste'' server requires a single .pem file that contains
both the cert and key. is can be created simply by concatenating the .crt and .key files.

If you want to use a self-signed cert, you can create one using the Salt.tls module:

Note: e following command needs to be run on your salt master.

salt-call tls.create_self_signed_cert tls

Note that certs generated by the above command can be found under the /etc/pki/tls/certs/ directory.
When using self-signed certs, browsers will need approval before accepting the cert. If the web application page
has been cached with a non-HTTPS version of the app, then the browser cache will have to be cleared before it will
recognize and prompt to accept the self-signed certificate.

Starting Halite

Once you've configured the halite section of your /etc/salt/master, you can restart the salt-master service, and
your halite instance will be available. Depending on your configuration, the instance will be available either at
hp://localhost:8080/app, hp://domain:8080/app, or hp://123.456.789.012:8080/app .

Note: halite requires an HTML 5 compliant browser.

All logs relating to halite are logged to the default /var/log/salt/master file.

3.7 Using Salt at scale

3.7.1 Using salt at scale

e focus of this tutorial will be building a Salt infrastructure for handling large numbers of minions. is will
include tuning, topology, and best practices.

For how to install the saltmaster please go here: Installing saltstack

Note is tutorial is intended for large installations, although these same seings won't hurt, it may not
be worth the complexity to smaller installations.

When used with minions, the term `many' refers to at least a thousand and `a few' always means 500.

For simplicity reasons, this tutorial will default to the standard ports used by salt.

118 Chapter 3. Tutorials

http://localhost:8080/app
http://domain:8080/app
http://123.456.789.012:8080/app
http://docs.saltstack.com/topics/installation/index.html

Salt Documentation, Release 2014.7.6

The Master

e most common problems on the salt-master are:

1. too many minions authing at once

2. too many minions re-authing at once

3. too many minions re-connecting at once

4. too many minions returning at once

5. too few resources (CPU/HDD)

e first three are all ``thundering herd'' problems. To mitigate these issues we must configure the minions to
back-off appropriately when the master is under heavy load.

e fourth is caused by masters with lile hardware resources in combination with a possible bug in ZeroMQ. At
least thats what it looks like till today (Issue 118651, Issue 5948, Mail thread)

To fully understand each problem, it is important to understand, how salt works.

Very briefly, the saltmaster offers two services to the minions.

• a job publisher on port 4505

• an open port 4506 to receive the minions returns

All minions are always connected to the publisher on port 4505 and only connect to the open return port 4506 if
necessary. On an idle master, there will only be connections on port 4505.

Too many minions authing

When the minion service is first started up, it will connect to its master's publisher on port 4505. If too many minions
are started at once, this can cause a ``thundering herd''. is can be avoided by not starting too many minions at
once.

e connection itself usually isn't the culprit, the more likely cause of master-side issues is the authentication that
the minion must do with the master. If the master is too heavily loaded to handle the auth request it will time it out.
e minion will then wait acceptance_wait_time to retry. If acceptance_wait_time_max is set then the minion will
increase its wait time by the acceptance_wait_time each subsequent retry until reaching acceptance_wait_time_max.

Too many minions re-authing

is is most likely to happen in the testing phase, when all minion keys have already been accepted, the framework
is being tested and parameters change frequently in the masters configuration file.

In a few cases (master restart, remove minion key, etc.) the salt-master generates a new AES-key to encrypt its
publications with. e minions aren't notified of this but will realize this on the next pub job they receive. When the
minion receives such a job it will then re-auth with the master. Since Salt does minion-side filtering this means that
all the minions will re-auth on the next command published on the master-- causing another ``thundering herd''.
is can be avoided by seing the

random_reauth_delay: 60

in the minions configuration file to a higher value and stagger the amount of re-auth aempts. Increasing this value
will of course increase the time it takes until all minions are reachable via salt commands.

3.7. Using Salt at scale 119

https://github.com/saltstack/salt/issues/11865
https://github.com/saltstack/salt/issues/5948
https://groups.google.com/forum/#!searchin/salt-users/lots\protect \char "0024\relax 20of\protect \char "0024\relax 20minions/salt-users/WxothArv2Do/t12MigMQDFAJ

Salt Documentation, Release 2014.7.6

Too many minions re-connecting

By default the zmq socket will re-connect every 100ms which for some larger installations may be too quick. is
will control how quickly the TCP session is re-established, but has no bearing on the auth load.

To tune the minions sockets reconnect aempts, there are a few values in the sample configuration file (default
values)

recon_default: 100ms
recon_max: 5000
recon_randomize: True

• recon_default: the default value the socket should use, i.e. 100ms

• recon_max: the max value that the socket should use as a delay before trying to reconnect

• recon_randomize: enables randomization between recon_default and recon_max

To tune this values to an existing environment, a few decision have to be made.

1. How long can one wait, before the minions should be online and reachable via salt?

2. How many reconnects can the master handle without a syn flood?

ese questions can not be answered generally. eir answers depend on the hardware and the administrators
requirements.

Here is an example scenario with the goal, to have all minions reconnect within a 60 second time-frame on a salt-
master service restart.

recon_default: 1000
recon_max: 59000
recon_randomize: True

Each minion will have a randomized reconnect value between `recon_default' and `recon_default + recon_max',
which in this example means between 1000ms and 60000ms (or between 1 and 60 seconds). e generated random-
value will be doubled aer each aempt to reconnect (ZeroMQ default behavior).

Lets say the generated random value is 11 seconds (or 11000ms).

reconnect 1: wait 11 seconds reconnect 2: wait 22 seconds reconnect 3: wait 33 seconds reconnect 4: wait 44 seconds
reconnect 5: wait 55 seconds reconnect 6: wait time is bigger than 60 seconds (recon_default + recon_max) reconnect
7: wait 11 seconds reconnect 8: wait 22 seconds reconnect 9: wait 33 seconds reconnect x: etc.

With a thousand minions this will mean

1000/60 = ~16

round about 16 connection aempts a second. ese values should be altered to values that match your environment.
Keep in mind though, that it may grow over time and that more minions might raise the problem again.

Too many minions returning at once

is can also happen during the testing phase, if all minions are addressed at once with

$ salt * test.ping

it may cause thousands of minions trying to return their data to the salt-master open port 4506. Also causing a flood
of syn-flood if the master can't handle that many returns at once.

is can be easily avoided with salts batch mode:

120 Chapter 3. Tutorials

Salt Documentation, Release 2014.7.6

$ salt * test.ping -b 50

is will only address 50 minions at once while looping through all addressed minions.

Too few resources

emasters resources always have to match the environment. ere is no way to give good advise without knowing
the environment the master is supposed to run in. But here are some general tuning tips for different situations:

The master is CPU bound

Salt uses RSA-Key-Pairs on the masters and minions end. Both generate 4096 bit key-pairs on first start. While the
key-size for the master is currently not configurable, the minions keysize can be configured with different key-sizes.
For example with a 2048 bit key:

keysize: 2048

With thousands of decryptions, the amount of time that can be saved on the masters end should not be neglected.
See here for reference: Pull Request 9235 how much influence the key-size can have.

Downsizing the salt-masters key is not that important, because the minions do not encrypt as many messages as the
master does.

The master is disk IO bound

By default, the master saves every minion's return for every job in its job-cache. e cache can then be used later,
to lookup results for previous jobs. e default directory for this is:

cachedir: /var/cache/salt

and then in the /proc directory.

Each job return for every minion is saved in a single file. Over time this directory can grow quite large, depending
on the number of published jobs. e amount of files and directories will scale with the number of jobs published
and the retention time defined by

keep_jobs: 24

250 jobs/day * 2000 minions returns = 500.000 files a day

If no job history is needed, the job cache can be disabled:

job_cache: False

If the job cache is necessary there are (currently) 2 options:

• ext_job_cache: this will have the minions store their return data directly into a returner (not sent through the
master)

• master_job_cache (New in 2014.7.0): this will make the master store the job data using a returner (instead of
the local job cache on disk).

3.7. Using Salt at scale 121

https://github.com/saltstack/salt/pull/9235

Salt Documentation, Release 2014.7.6

122 Chapter 3. Tutorials

CHAPTER 4

Targeting Minions

Targeting minions is specifying which minions should run a command or execute a state by matching against host-
names, or system information, or defined groups, or even combinations thereof.

For example the command salt web1 apache.signal restart to restart the Apache hpd server specifies
the machine web1 as the target and the command will only be run on that one minion.

Similarly when using States, the following top file specifies that only the web1 minion should execute the contents
of webserver.sls:

base:
'web1':

- webserver

ere are many ways to target individual minions or groups of minions in Salt:

4.1 Matching the minion id

Each minion needs a unique identifier. By default when a minion starts for the first time it chooses its FQDN (fully
qualified domain name) as that identifier. e minion id can be overridden via the minion's id configuration seing.

Tip: minion id and minion keys
e minion id is used to generate the minion's public/private keys and if it ever changes the master must then accept
the new key as though the minion was a new host.

4.1.1 Globbing

e default matching that Salt utilizes is shell-style globbing around the minion id. is also works for
states in the top file.

Note: You must wrap salt calls that use globbing in single-quotes to prevent the shell from expanding the globs
before Salt is invoked.

Match all minions:

salt '*' test.ping

Match all minions in the example.net domain or any of the example domains:

123

http://docs.python.org/2/library/fnmatch.html#module-fnmatch

Salt Documentation, Release 2014.7.6

salt '*.example.net' test.ping
salt '*.example.*' test.ping

Match all the webN minions in the example.net domain (web1.example.net, web2.example.net …
webN.example.net):

salt 'web?.example.net' test.ping

Match the web1 through web5 minions:

salt 'web[1-5]' test.ping

Match the web1 and web3 minions:

salt 'web[1,3]' test.ping

Match the web-x, web-y, and web-z minions:

salt 'web-[x-z]' test.ping

Note: For additional targeting methods please review the compound matchers documentation.

4.1.2 Regular Expressions

Minions can be matched using Perl-compatible regular expressions (which is globbing on steroids and a ton
of caffeine).

Match both web1-prod and web1-devel minions:

salt -E 'web1-(prod|devel)' test.ping

When using regular expressions in a State's top file, you must specify the matcher as the first option. e following
example executes the contents of webserver.sls on the above-mentioned minions.

base:
'web1-(prod|devel)':
- match: pcre
- webserver

4.1.3 Lists

At the most basic level, you can specify a flat list of minion IDs:

salt -L 'web1,web2,web3' test.ping

4.2 Grains

Salt comes with an interface to derive information about the underlying system. is is called the grains interface,
because it presents salt with grains of information.

e grains interface is made available to Salt modules and components so that the right salt minion commands are
automatically available on the right systems.

124 Chapter 4. Targeting Minions

http://docs.python.org/2/library/re.html#module-re

Salt Documentation, Release 2014.7.6

It is important to remember that grains are bits of information loaded when the salt minion starts, so this information
is static. is means that the information in grains is unchanging, therefore the nature of the data is static. So grains
information are things like the running kernel, or the operating system.

Note: Grains resolve to lowercase leers. For example, FOO and foo target the same grain.

Match all CentOS minions:

salt -G 'os:CentOS' test.ping

Match all minions with 64-bit CPUs, and return number of CPU cores for each matching minion:

salt -G 'cpuarch:x86_64' grains.item num_cpus

Additionally, globs can be used in grain matches, and grains that are nested in a dictionary can be matched by
adding a colon for each level that is traversed. For example, the following will match hosts that have a grain called
ec2_tags, which itself is a dict with a key named environment, which has a value that contains the word
production:

salt -G 'ec2_tags:environment:*production*'

4.2.1 Listing Grains

Available grains can be listed by using the `grains.ls' module:

salt '*' grains.ls

Grains data can be listed by using the `grains.items' module:

salt '*' grains.items

4.2.2 Grains in the Minion Config

Grains can also be statically assigned within the minion configuration file. Just add the option grains and pass
options to it:

grains:
roles:

- webserver
- memcache

deployment: datacenter4
cabinet: 13
cab_u: 14-15

en status data specific to your servers can be retrieved via Salt, or used inside of the State system for matching. It
also makes targeting, in the case of the example above, simply based on specific data about your deployment.

4.2.3 Grains in /etc/salt/grains

If you do not want to place your custom static grains in the minion config file, you can also put them in
/etc/salt/grains on the minion. ey are configured in the same way as in the above example, only without
a top-level grains: key:

4.2. Grains 125

http://docs.python.org/2/library/stdtypes.html#typesmapping
http://docs.python.org/2/library/stdtypes.html#typesmapping

Salt Documentation, Release 2014.7.6

roles:
- webserver
- memcache

deployment: datacenter4
cabinet: 13
cab_u: 14-15

4.2.4 Matching Grains in the Top File

With correctly configured grains on the Minion, the top file used in Pillar or during Highstate can be made very
efficient. For example, consider the following configuration:

'node_type:web':
- match: grain
- webserver

'node_type:postgres':
- match: grain
- database

'node_type:redis':
- match: grain
- redis

'node_type:lb':
- match: grain
- lb

For this example to work, you would need to have defined the grain node_type for the minions you wish to match.
is simple example is nice, but too much of the code is similar. To go one step further, Jinja templating can be used
to simplify the the top file.

{% set node_type = salt['grains.get']('node_type', '') %}

{% if node_type %}
'node_type:{{ self }}':

- match: grain
- {{ self }}

{% endif %}

Using Jinja templating, only one match entry needs to be defined.

Note: e example above uses the grains.get function to account for minions which do not have the
node_type grain set.

4.2.5 Writing Grains

Grains are easy to write. e grains interface is derived by executing all of the ``public'' functions found in the
modules located in the grains package or the custom grains directory. e functions in the modules of the grains
must return a Python dict, where the keys in the dict are the names of the grains and the values are the values.

Custom grains should be placed in a _grains directory located under the file_roots specified by the mas-
ter config file. ey will be distributed to the minions when state.highstate is run, or by executing the
saltutil.sync_grains or saltutil.sync_all functions.

126 Chapter 4. Targeting Minions

http://docs.python.org/2/library/stdtypes.html#typesmapping
http://docs.python.org/2/library/stdtypes.html#typesmapping

Salt Documentation, Release 2014.7.6

Grains are easy to write, and only need to return a dictionary. A common approach would be code something similar
to the following:

#!/usr/bin/env python
def yourfunction():

initialize a grains dictionary
grains = {}
Some code for logic that sets grains like
grains['yourcustomgrain']=True
grains['anothergrain']='somevalue'
return grains

Before adding a grain to Salt, consider what the grain is and remember that grains need to be static data. If the data
is something that is likely to change, consider using Pillar instead.

Warning: Custom grains will not be available in the top file until aer the first highstate. To make custom grains
available on a minion's first highstate, it is recommended to use this example to ensure that the custom grains are
synced when the minion starts.

4.2.6 Precedence

Core grains can be overridden by custom grains. As there are several ways of defining custom grains, there is an
order of precedence which should be kept in mind when defining them. e order of evaluation is as follows:

1. Core grains.

2. Custom grain modules in _grains directory, synced to minions.

3. Custom grains in /etc/salt/grains.

4. Custom grains in /etc/salt/minion.

Each successive evaluation overrides the previous ones, so any grains defined by custom grains modules synced
to minions that have the same name as a core grain will override that core grain. Similarly, grains from
/etc/salt/grains override both core grains and custom grain modules, and grains in /etc/salt/minion
will override any grains of the same name.

4.2.7 Examples of Grains

e core module in the grains package is where the main grains are loaded by the Salt minion and provides the
principal example of how to write grains:

hps://github.com/saltstack/salt/blob/develop/salt/grains/core.py

4.2.8 Syncing Grains

Syncing grains can be done a number of ways, they are automatically synced when state.highstate is called,
or (as noted above) the grains can be manually synced and reloaded by calling the saltutil.sync_grains or
saltutil.sync_all functions.

4.3 Subnet/IP Address Matching

Minions can easily be matched based on IP address, or by subnet (using CIDR notation).

4.3. Subnet/IP Address Matching 127

https://github.com/saltstack/salt/blob/develop/salt/grains/core.py
http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Salt Documentation, Release 2014.7.6

salt -S 192.168.40.20 test.ping
salt -S 10.0.0.0/24 test.ping

Note: Only IPv4 matching is supported at this time.

4.4 Compound matchers

Compound matchers allow very granular minion targeting using any of Salt's matchers. e default matcher is a
glob match, just as with CLI and top file matching. To match using anything other than a glob, prefix the match
string with the appropriate leer from the table below, followed by an @ sign.

Leer Match Type Example
G Grains glob G@os:Ubuntu
E PCRE Minion ID E@web\d+\.(dev|qa|prod)\.loc
P Grains PCRE P@os:(RedHat|Fedora|CentOS)
L List of minions L@minion1.example.com,minion3.domain.com or

bl*.domain.com
I Pillar glob I@pdata:foobar
S Subnet/IP

address
S@192.168.1.0/24 or S@192.168.1.100

R Range cluster R@%foo.bar

Matchers can be joined using boolean and, or, and not operators.

For example, the following string matches all Debian minions with a hostname that begins with webserv, as well
as any minions that have a hostname which matches the regular expression web-dc1-srv.*:

salt -C 'webserv* and G@os:Debian or E@web-dc1-srv.*' test.ping

at same example expressed in a top file looks like the following:

base:
'webserv* and G@os:Debian or E@web-dc1-srv.*':

- match: compound
- webserver

Note that a leading not is not supported in compound matches. Instead, something like the following must be done:

salt -C '* and not G@kernel:Darwin' test.ping

Excluding a minion based on its ID is also possible:

salt -C '* and not web-dc1-srv' test.ping

4.4.1 Precedence Matching

Matches can be grouped together with parentheses to explicitly declare precedence amongst groups.

salt -C '(ms-1 or G@id:ms-3) and G@id:ms-3' test.ping

Note: Be certain to note that spaces are required between the parentheses and targets. Failing to obey this rule may
result in incorrect targeting!

128 Chapter 4. Targeting Minions

http://docs.python.org/2/library/fnmatch.html#module-fnmatch
http://docs.python.org/2/library/re.html#module-re

Salt Documentation, Release 2014.7.6

4.5 Node groups

Nodegroups are declared using a compound target specification. e compound target documentation can be found
here.

e nodegroupsmaster config file parameter is used to define nodegroups. Here's an example nodegroup config-
uration within /etc/salt/master:

nodegroups:
group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com or bl*.domain.com'
group2: 'G@os:Debian and foo.domain.com'

Note: e L within group1 is matching a list of minions, while the G in group2 is matching specific grains. See the
compound matchers documentation for more details.

To match a nodegroup on the CLI, use the -N command-line option:

salt -N group1 test.ping

To match a nodegroup in your top file, make sure to put - match: nodegroup on the line directly following
the nodegroup name.

base:
group1:

- match: nodegroup
- webserver

Note: When adding or modifying nodegroups to a master configuration file, the master must be restarted for those
changes to be fully recognized.

A limited amount of functionality, such as targeting with -N from the command-line may be available without a
restart.

4.6 Batch Size

e -b (or --batch-size) option allows commands to be executed on only a specified number of minions at a
time. Both percentages and finite numbers are supported.

salt '*' -b 10 test.ping

salt -G 'os:RedHat' --batch-size 25% apache.signal restart

is will only run test.ping on 10 of the targeted minions at a time and then restart apache on 25% of the minions
matching os:RedHat at a time and work through them all until the task is complete. is makes jobs like rolling
web server restarts behind a load balancer or doing maintenance on BSD firewalls using carp much easier with salt.

e batch system maintains a window of running minions, so, if there are a total of 150 minions targeted and the
batch size is 10, then the command is sent to 10 minions, when one minion returns then the command is sent to one
additional minion, so that the job is constantly running on 10 minions.

4.7 SECO Range

SECO range is a cluster-based metadata store developed and maintained by Yahoo!

4.5. Node groups 129

Salt Documentation, Release 2014.7.6

e Range project is hosted here:

hps://github.com/ytoolshed/range

Learn more about range here:

hps://github.com/ytoolshed/range/wiki/

4.7.1 Prerequisites

To utilize range support in Salt, a range server is required. Seing up a range server is outside the scope of this
document. Apache modules are included in the range distribution.

With aworking range server, cluster files must be defined. ese files are wrien in YAML and define hosts contained
inside a cluster. Full documentation on writing YAML range files is here:

hps://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

Additionally, the Python seco range libraries must be instaled on the salt master. One can verify that they have been
installed correctly via the following command:

python -c 'import seco.range'

If no errors are returned, range is installed successfully on the salt master.

4.7.2 Preparing Salt

Range support must be enabled on the salt master by seing the hostname and port of the range server inside the
master configuration file:

range_server: my.range.server.com:80

Following this, the master must be restarted for the change to have an effect.

4.7.3 Targeting with Range

Once a cluster has been defined, it can be targeted with a salt command by using the -R or --range flags.

For example, given the following range YAML file being served from a range server:

$ cat /etc/range/test.yaml
CLUSTER: host1..100.test.com
APPS:

- frontend
- backend
- mysql

One might target host1 through host100 in the test.com domain with Salt as follows:

salt --range %test:CLUSTER test.ping

e following salt command would target three hosts: frontend, backend and mysql:

salt --range %test:APPS test.ping

130 Chapter 4. Targeting Minions

https://github.com/ytoolshed/range
https://github.com/ytoolshed/range/wiki/
https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

CHAPTER 5

Storing Static Data in the Pillar

Pillar is an interface for Salt designed to offer global values that can be distributed to all minions. Pillar data is
managed in a similar way as the Salt State Tree.

Pillar was added to Salt in version 0.9.8

Note: Storing sensitive data
Unlike state tree, pillar data is only available for the targeted minion specified by the matcher type. is makes it
useful for storing sensitive data specific to a particular minion.

5.1 Declaring the Master Pillar

e Salt Master server maintains a pillar_roots setup that matches the structure of the file_roots used in the Salt file
server. Like the Salt file server the pillar_roots option in the master config is based on environments mapping
to directories. e pillar data is then mapped to minions based on matchers in a top file which is laid out in the same
way as the state top file. Salt pillars can use the same matcher types as the standard top file.

e configuration for the pillar_roots in the master config file is identical in behavior and function as
file_roots:

pillar_roots:
base:

- /srv/pillar

is example configuration declares that the base environment will be located in the /srv/pillar directory. It
must not be in a subdirectory of the state tree.

e top file used matches the name of the top file used for States, and has the same structure:

/srv/pillar/top.sls

base:
'*':

- packages

In the above top file, it is declared that in the `base' environment, the glob matching all minions will have the pillar
data found in the `packages' pillar available to it. Assuming the `pillar_roots' value of `/srv/salt' taken from above,
the `packages' pillar would be located at `/srv/salt/packages.sls'.

Another example shows how to use other standard top matching types to deliver specific salt pillar data to minions
with different properties.

131

Salt Documentation, Release 2014.7.6

Here is an example using the `grains' matcher to target pillars to minions by their `os' grain:

dev:
'os:Debian':

- match: grain
- servers

/srv/pillar/packages.sls

{% if grains['os'] == 'RedHat' %}
apache: httpd
git: git
{% elif grains['os'] == 'Debian' %}
apache: apache2
git: git-core
{% endif %}

company: Foo Industries

e above pillar sets two key/value pairs. If a minion is running RedHat, then the `apache' key is set to `hpd' and
the `git' key is set to the value of `git'. If the minion is running Debian, those values are changed to `apache2' and
`git-core' respctively. All minions that have this pillar targeting to them via a top file will have the key of `company'
with a value of `Foo Industries'.

Consequently this data can be used from within modules, renderers, State SLS files, and more via the shared pillar
dict:

apache:
pkg.installed:

- name: {{ pillar['apache'] }}

git:
pkg.installed:

- name: {{ pillar['git'] }}

Finally, the above states can utilize the values provided to them via Pillar. All pillar values targeted to a minion are
available via the `pillar' dictionary. As seen in the above example, Jinja substitution can then be utilized to access
the keys and values in the Pillar dictionary.

Note that you cannot just list key/value-information in top.sls. Instead, target a minion to a pillar file and then
list the keys and values in the pillar. Here is an example top file that illustrates this point:

base:
'*':

- common_pillar

And the actual pillar file at `/srv/salt/common_pillar.sls':

foo: bar
boo: baz

5.2 Pillar namespace flaened

e separate pillar files all share the same namespace. Given a top.sls of:

base:
'*':

132 Chapter 5. Storing Static Data in the Pillar

http://docs.python.org/2/library/stdtypes.html#typesmapping

Salt Documentation, Release 2014.7.6

- packages
- services

a packages.sls file of:

bind: bind9

and a services.sls file of:

bind: named

en a request for the bind pillar will only return `named'; the `bind9' value is not available. It is beer to structure
your pillar files with more hierarchy. For example your package.sls file could look like:

packages:
bind: bind9

5.3 Pillar Namespace Merges

With some care, the pillar namespace can merge content from multiple pillar files under a single key, so long as
conflicts are avoided as described above.

For example, if the above example were modified as follows, the values are merged below a single key:

base:
'*':

- packages
- services

And a packages.sls file like:

bind:
package-name: bind9
version: 9.9.5

And a services.sls file like:

bind:
port: 53
listen-on: any

e resulting pillar will be as follows:

$ salt-call pillar.get bind
local:

listen-on:

any
package-name:

bind9
port:

53
version:

9.9.5

Note: Remember: conflicting keys will be overwrien in a non-deterministic manner!

5.3. Pillar Namespace Merges 133

Salt Documentation, Release 2014.7.6

5.4 Including Other Pillars

New in version 0.16.0.

Pillar SLS files may include other pillar files, similar to State files. Two syntaxes are available for this purpose. e
simple form simply includes the additional pillar as if it were part of the same file:

include:
- users

e full include form allows two additional options -- passing default values to the templating engine for the included
pillar file as well as an optional key under which to nest the results of the included pillar:

include:
- users:

defaults:
sudo: ['bob', 'paul']

key: users

With this form, the included file (users.sls) will be nested within the `users' key of the compiled pillar. Additionally,
the `sudo' value will be available as a template variable to users.sls.

5.5 Viewing Minion Pillar

Once the pillar is set up the data can be viewed on the minion via the pillarmodule, the pillar module comes with
two functions, pillar.items and and pillar.raw. pillar.items will return a freshly reloaded pillar and
pillar.raw will return the current pillar without a refresh:

salt '*' pillar.items

Note: Prior to version 0.16.2, this function is named pillar.data. is function name is still supported for
backwards compatibility.

5.6 Pillar ``get'' Function

New in version 0.14.0.

e pillar.get function works much in the same way as the getmethod in a python dict, but with an enhance-
ment: nested dict components can be extracted using a : delimiter.

If a structure like this is in pillar:

foo:
bar:

baz: qux

Extracting it from the raw pillar in an sls formula or file template is done this way:

{{ pillar['foo']['bar']['baz'] }}

Now, with the new pillar.get function the data can be safely gathered and a default can be set, allowing the
template to fall back if the value is not available:

134 Chapter 5. Storing Static Data in the Pillar

Salt Documentation, Release 2014.7.6

{{ salt['pillar.get']('foo:bar:baz', 'qux') }}

is makes handling nested structures much easier.

Note: pillar.get() vs salt['pillar.get']()
It should be noted that within templating, the pillar variable is just a dictionary. is means
that calling pillar.get() inside of a template will just use the default dictionary .get() function
which does not include the extra : delimiter functionality. It must be called using the above syntax
(salt['pillar.get']('foo:bar:baz', 'qux')) to get the salt function, instead of the default dictio-
nary behavior.

5.7 Refreshing Pillar Data

When pillar data is changed on the master the minions need to refresh the data locally. is is done with the
saltutil.refresh_pillar function.

salt '*' saltutil.refresh_pillar

is function triggers the minion to asynchronously refresh the pillar and will always return None.

5.8 Targeting with Pillar

Pillar data can be used when targeting minions. is allows for ultimate control and flexibility when targeting
minions.

salt -I 'somekey:specialvalue' test.ping

Like with Grains, it is possible to use globbing as well as match nested values in Pillar, by adding colons for each
level that is being traversed. e below example would match minions with a pillar named foo, which is a dict
containing a key bar, with a value beginning with baz:

salt -I 'foo:bar:baz*' test.ping

5.9 Set Pillar Data at the Command Line

Pillar data can be set at the command line like the following example:

salt '*' state.highstate pillar='{"cheese": "spam"}'

is will create a dict with a key of `cheese' and a value of `spam'. A list can be created like this:

salt '*' state.highstate pillar='["cheese", "milk", "bread"]'

5.10 Master Config In Pillar

For convenience the data stored in the master configuration file is made available in all minion's pillars. is makes
global configuration of services and systems very easy but may not be desired if sensitive data is stored in the master
configuration.

5.7. Refreshing Pillar Data 135

Salt Documentation, Release 2014.7.6

To disable the master config from being added to the pillar set pillar_opts to False:

pillar_opts: False

136 Chapter 5. Storing Static Data in the Pillar

CHAPTER 6

Reactor System

Salt version 0.11.0 introduced the reactor system. e premise behind the reactor system is that with Salt's events
and the ability to execute commands, a logic engine could be put in place to allow events to trigger actions, or more
accurately, reactions.

is system binds sls files to event tags on the master. ese sls files then define reactions. is means that the
reactor system has two parts. First, the reactor option needs to be set in the master configuration file. e reactor
option allows for event tags to be associated with sls reaction files. Second, these reaction files use highdata (like
the state system) to define reactions to be executed.

6.1 Event System

A basic understanding of the event system is required to understand reactors. e event system is a local ZeroMQ
PUB interface which fires salt events. is event bus is an open system used for sending information notifying Salt
and other systems about operations.

e event system fires events with a very specific criteria. Every event has a tag. Event tags allow for fast top level
filtering of events. In addition to the tag, each event has a data structure. is data structure is a dict, which contains
information about the event.

6.2 Mapping Events to Reactor SLS Files

Reactor SLS files and event tags are associated in the master config file. By default this is /etc/salt/master, or
/etc/salt/master.d/reactor.conf.

New in version 2014.7.0: Added Reactor support for salt:// file paths.

In the master config section `reactor:' is a list of event tags to be matched and each event tag has a list of reactor SLS
files to be run.

reactor: # Master config section "reactor"

- 'salt/minion/*/start': # Match tag "salt/minion/*/start"
- /srv/reactor/start.sls # Things to do when a minion starts
- /srv/reactor/monitor.sls # Other things to do

- 'salt/cloud/*/destroyed': # Globs can be used to matching tags
- /srv/reactor/destroy/*.sls # Globs can be used to match file names

137

Salt Documentation, Release 2014.7.6

- 'myco/custom/event/tag': # React to custom event tags
- salt://reactor/mycustom.sls # Put reactor files under file_roots

Reactor sls files are similar to state and pillar sls files. ey are by default yaml + Jinja templates and are passed
familar context variables.

ey differ because of the addition of the tag and data variables.

• e tag variable is just the tag in the fired event.

• e data variable is the event's data dict.

Here is a simple reactor sls:

{% if data['id'] == 'mysql1' %}
highstate_run:

local.state.highstate:
- tgt: mysql1

{% endif %}

is simple reactor file uses Jinja to further refine the reaction to be made. If the id in the event data is mysql1 (in
other words, if the name of the minion is mysql1) then the following reaction is defined. e same data structure
and compiler used for the state system is used for the reactor system. e only difference is that the data is matched
up to the salt command API and the runner system. In this example, a command is published to the mysql1minion
with a function of state.highstate. Similarly, a runner can be called:

{% if data['data']['overstate'] == 'refresh' %}
overstate_run:

runner.state.over
{% endif %}

is example will execute the state.overstate runner and initiate an overstate execution.

6.3 Fire an event

To fire an event from a minion call event.send

salt-call event.send 'foo' '{overstate: refresh}'

Aer this is called, any reactor sls files matching event tag foo will execute with {{
data['data']['overstate'] }} equal to 'refresh'.

See salt.modules.event for more information.

6.4 Knowing what event is being fired

ebest way to see exactly what events are fired andwhat data is available in each event is to use the state.event
runner.

See also:

Common Salt Events

Example usage:

salt-run state.event pretty=True

138 Chapter 6. Reactor System

Salt Documentation, Release 2014.7.6

Example output:

salt/job/20150213001905721678/new {
"_stamp": "2015-02-13T00:19:05.724583",
"arg": [],
"fun": "test.ping",
"jid": "20150213001905721678",
"minions": [

"jerry"
],
"tgt": "*",
"tgt_type": "glob",
"user": "root"

}
salt/job/20150213001910749506/ret/jerry {

"_stamp": "2015-02-13T00:19:11.136730",
"cmd": "_return",
"fun": "saltutil.find_job",
"fun_args": [

"20150213001905721678"
],
"id": "jerry",
"jid": "20150213001910749506",
"retcode": 0,
"return": {},
"success": true

}

6.5 Debugging the Reactor

e best window into the Reactor is to run the master in the foreground with debug logging enabled. e output
will include when the master sees the event, what the master does in response to that event, and it will also include
the rendered SLS file (or any errors generated while rendering the SLS file).

1. Stop the master.

2. Start the master manually:

salt-master -l debug

6.6 Understanding the Structure of Reactor Formulas

I.e., when to use `arg` and `kwarg` and when to specify the function arguments directly.

While the reactor system uses the same basic data structure as the state system, the functions that will be called
using that data structure are different functions than are called via Salt's state system. e Reactor can call Runner
modules using the runner prefix, Wheel modules using thewheel prefix, and can also cause minions to run Execution
modules using the local prefix.

Changed in version 2014.7.0: e cmd prefix was renamed to local for consistency with other parts of Salt. A
backward-compatible alias was added for cmd.

e Reactor runs on the master and calls functions that exist on the master. In the case of Runner and Wheel
functions the Reactor can just call those functions directly since they exist on the master and are run on the master.

6.5. Debugging the Reactor 139

Salt Documentation, Release 2014.7.6

In the case of functions that exist on minions and are run on minions, the Reactor still needs to call a function on
the master in order to send the necessary data to the minion so the minion can execute that function.

e Reactor calls functions exposed in Salt's Python API documentation. and thus the structure of Reactor files very
transparently reflects the function signatures of those functions.

6.6.1 Calling Execution modules on Minions

e Reactor sends commands down to minions in the exact same way Salt's CLI interface does. It calls a function
locally on the master that sends the name of the function as well as a list of any arguments and a dictionary of any
keyword arguments that the minion should use to execute that function.

Specifically, the Reactor calls the async version of this function. You can see that function has `arg' and `kwarg'
parameters which are both values that are sent down to the minion.

e result is, to execute a remote command, a reactor formula would look like this:

clean_tmp:
local.cmd.run:

- tgt: '*'
- arg:

- rm -rf /tmp/*

e arg option takes a list of arguments as they would be presented on the command line, so the above declaration
is the same as running this salt command:

salt '*' cmd.run 'rm -rf /tmp/*'

Use the expr_form argument to specify a matcher:

clean_tmp:
local.cmd.run:

- tgt: 'os:Ubuntu'
- expr_form: grain
- arg:

- rm -rf /tmp/*

clean_tmp:
local.cmd.run:

- tgt: 'G@roles:hbase_master'
- expr_form: compound
- arg:

- rm -rf /tmp/*

Any other parameters in the LocalClient().cmd() method can be specified as well.

6.6.2 Calling Runner modules and Wheel modules

Calling Runenr modules and wheel modules from the Reactor uses a more direct syntax since the function is being
executed locally instead of sending a command to a remote system to be executed there. ere are no `arg' or `kwarg'
parameters (unless the Runenr function or Wheel function accepts a paramter with either of those names.)

For example:

clear_the_grains_cache_for_all_minions:
runner.cache.clear_grains

140 Chapter 6. Reactor System

Salt Documentation, Release 2014.7.6

If the runner takes arguments then they can be specified as well:

spin_up_more_web_machines:
runner.cloud.profile:

- prof: centos_6
- instances:

- web11 # These VM names would be generated via Jinja in a
- web12 # real-world example.

6.6.3 Passing event data to Minions or Orchestrate as Pillar

An interesting trick to pass data from the Reactor script to state.highstate or state.sls is to pass it as
inline Pillar data since both functions take a keyword argument named pillar.

e following example uses Salt's Reactor to listen for the event that is fired when the key for a new minion is
accepted on the master using salt-key.

/etc/salt/master.d/reactor.conf:

reactor:
- 'salt/key':

- /srv/salt/haproxy/react_new_minion.sls

eReactor then fires a state.sls command targeted to the HAProxy servers and passes the ID of the newminion
from the event to the state file via inline Pillar.

/srv/salt/haproxy/react_new_minion.sls:

{% if data['act'] == 'accept' and data['id'].startswith('web') %}
add_new_minion_to_pool:

local.state.sls:
- tgt: 'haproxy*'
- arg:

- haproxy.refresh_pool
- kwarg:

pillar:
new_minion: {{ data['id'] }}

{% endif %}

e above command is equivalent to the following command at the CLI:

salt 'haproxy*' state.sls haproxy.refresh_pool 'pillar={new_minion: minionid}'

is works with Orchestrate files as well:

call_some_orchestrate_file:
runner.state.orchestrate:

- mods: some_orchestrate_file
- pillar:

stuff: things

Which is equivalent to the following command at the CLI:

salt-run state.orchestrate some_orchestrate_file pillar='{stuff: things}'

Finally, that data is available in the state file using the normal Pillar lookup syntax. e following example is grabbing
web server names and IP addresses from Salt Mine. If this state is invoked from the Reactor then the custom Pillar
value from above will be available and the new minion will be added to the pool but with the disabled flag so
that HAProxy won't yet direct traffic to it.

6.6. Understanding the Structure of Reactor Formulas 141

Salt Documentation, Release 2014.7.6

/srv/salt/haproxy/refresh_pool.sls:

{% set new_minion = salt['pillar.get']('new_minion') %}

listen web *:80
balance source
{% for server,ip in salt['mine.get']('web*', 'network.interfaces', ['eth0']).items() %}
{% if server == new_minion %}
server {{ server }} {{ ip }}:80 disabled
{% else %}
server {{ server }} {{ ip }}:80 check
{% endif %}
{% endfor %}

6.7 A Complete Example

In this example, we're going to assume that we have a group of servers that will come online at random and need
to have keys automatically accepted. We'll also add that we don't want all servers being automatically accepted. For
this example, we'll assume that all hosts that have an id that starts with `ink' will be automatically accepted and have
state.highstate executed. On top of this, we're going to add that a host coming up that was replaced (meaning a new
key) will also be accepted.

Our master configuration will be rather simple. All minions that aempte to authenticate will match the tag of
salt/auth. When it comes to the minion key being accepted, we get a more refined tag that includes the minion id,
which we can use for matching.

/etc/salt/master.d/reactor.conf:

reactor:
- 'salt/auth':

- /srv/reactor/auth-pending.sls
- 'salt/minion/ink*/start':

- /srv/reactor/auth-complete.sls

In this sls file, we say that if the key was rejected we will delete the key on the master and then also tell the master
to ssh in to the minion and tell it to restart the minion, since a minion process will die if the key is rejected.

We also say that if the key is pending and the id starts with ink we will accept the key. A minion that is waiting on
a pending key will retry authentication every ten seconds by default.

/srv/reactor/auth-pending.sls:

{# Ink server faild to authenticate -- remove accepted key #}
{% if not data['result'] and data['id'].startswith('ink') %}
minion_remove:

wheel.key.delete:
- match: {{ data['id'] }}

minion_rejoin:
local.cmd.run:

- tgt: salt-master.domain.tld
- arg:

- ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no "{{ data['id'] }}" 'sleep 10 && /etc/init.d/salt-minion restart'
{% endif %}

{# Ink server is sending new key -- accept this key #}
{% if 'act' in data and data['act'] == 'pend' and data['id'].startswith('ink') %}
minion_add:

142 Chapter 6. Reactor System

Salt Documentation, Release 2014.7.6

wheel.key.accept:
- match: {{ data['id'] }}

{% endif %}

No if statements are needed here becausewe already limited this action to just Ink servers in themaster configuration.

/srv/reactor/auth-complete.sls:

{# When an Ink server connects, run state.highstate. #}
highstate_run:

local.state.highstate:
- tgt: {{ data['id'] }}

6.8 Syncing Custom Types on Minion Start

Salt will sync all custom types (by running a saltutil.sync_all) on every highstate. However, there is a
chicken-and-egg issue where, on the initial highstate, a minion will not yet have these custom types synced when
the top file is first compiled. is can be worked around with a simple reactor which watches for minion_start
events, which each minion fires when it first starts up and connects to the master.

On the master, create /srv/reactor/sync_grains.sls with the following contents:

sync_grains:
local.saltutil.sync_grains:

- tgt: {{ data['id'] }}

And in the master config file, add the following reactor configuration:

reactor:
- 'minion_start':

- /srv/reactor/sync_grains.sls

is will cause the master to instruct each minion to sync its custom grains when it starts, making these grains
available when the initial highstate is executed.

Other types can be synced by replacing local.saltutil.sync_grains with lo-
cal.saltutil.sync_modules, local.saltutil.sync_all, or whatever else suits the intended
use case.

6.8. Syncing Custom Types on Minion Start 143

Salt Documentation, Release 2014.7.6

144 Chapter 6. Reactor System

CHAPTER 7

The Salt Mine

e Salt Mine is used to collect arbitrary data from minions and store it on the master. is data is then made
available to all minions via the salt.modules.mine module.

e data is gathered on the minion and sent back to the master where only the most recent data is maintained (if
long term data is required use returners or the external job cache).

7.1 Mine Functions

To enable the Salt Mine the mine_functions option needs to be applied to a minion. is option can be applied via
the minion's configuration file, or the minion's Pillar. e mine_functions option dictates what functions are being
executed and allows for arguments to be passed in. If no arguments are passed, an empty list must be added:

mine_functions:
test.ping: []
network.ip_addrs:

interface: eth0
cidr: '10.0.0.0/8'

7.1.1 Mine Functions Aliases

Function aliases can be used to provide usage intentions or to allowmultiple calls of the same function with different
arguments.

New in version 2014.7.

mine_functions:
network.ip_addrs: [eth0]
networkplus.internal_ip_addrs: []
internal_ip_addrs:

mine_function: network.ip_addrs
cidr: 192.168.0.0/16

loopback_ip_addrs:
mine_function: network.ip_addrs
lo: True

145

Salt Documentation, Release 2014.7.6

7.2 Mine Interval

e Salt Mine functions are executed when the minion starts and at a given interval by the scheduler. e default
interval is every 60 minutes and can be adjusted for the minion via the mine_interval option:

mine_interval: 60

7.3 Example

One way to use data from Salt Mine is in a State. e values can be retrieved via Jinja and used in the SLS file. e
following example is a partial HAProxy configuration file and pulls IP addresses from all minions with the ``web''
grain to add them to the pool of load balanced servers.

/srv/pillar/top.sls:

base:
'G@roles:web':

- web

/srv/pillar/web.sls:

mine_functions:
network.ip_addrs: [eth0]

/etc/salt/minion.d/mine.conf:

mine_interval: 5

/srv/salt/haproxy.sls:

haproxy_config:
file.managed:

- name: /etc/haproxy/config
- source: salt://haproxy_config
- template: jinja

/srv/salt/haproxy_config:

<...file contents snipped...>

{% for server, addrs in salt['mine.get']('roles:web', 'network.ip_addrs', expr_form='grain').items() %}
server {{ server }} {{ addrs[0] }}:80 check
{% endfor %}

<...file contents snipped...>

146 Chapter 7. The Salt Mine

CHAPTER 8

External Authentication System

Salt's External Authentication System (eAuth) allows for Salt to pass through command authorization to any external
authentication system, such as PAM or LDAP.

8.1 Access Control System

New in version 0.10.4.

Salt maintains a standard system used to open granular control to non administrative users to execute Salt commands.
e access control system has been applied to all systems used to configure access to non administrative control
interfaces in Salt.ese interfaces include, the peer system, the external auth system and the client acl
system.

e access control systemmandated a standard configuration syntax used in all of the three aforementioned systems.
While this adds functionality to the configuration in 0.10.4, it does not negate the old configuration.

Now specific functions can be opened up to specific minions from specific users in the case of external auth and
client ACLs, and for specific minions in the case of the peer system.

e access controls are manifested using matchers in these configurations:

client_acl:
fred:

- web*:
- pkg.list_pkgs
- test.*
- apache.*

In the above example, fred is able to send commands only to minions which match the specified glob target. is
can be expanded to include other functions for other minions based on standard targets.

external_auth:
pam:

dave:
- test.ping
- mongo*:

- network.*
- log*:

- network.*
- pkg.*

- 'G@os:RedHat':
- kmod.*

147

Salt Documentation, Release 2014.7.6

steve:
- .*

e above allows for all minions to be hit by test.ping by dave, and adds a few functions that dave can execute on
other minions. It also allows steve unrestricted access to salt commands.

e external authentication system allows for specific users to be granted access to execute specific functions on
specific minions. Access is configured in the master configuration file and uses the access control system:

external_auth:
pam:

thatch:
- 'web*':

- test.*
- network.*

steve:
- .*

e above configuration allows the user thatch to execute functions in the test and network modules on the
minions that match the web* target. User steve is given unrestricted access to minion commands.

Note: e PAM module does not allow authenticating as root.

To allow access to wheel modules or runner modules the following @ syntax must be used:

external_auth:
pam:

thatch:
- '@wheel' # to allow access to all wheel modules
- '@runner' # to allow access to all runner modules
- '@jobs' # to allow access to the jobs runner and/or wheel module

Note: e runner/wheel markup is different, since there are no minions to scope the acl to.

Note: Globs will not match wheel or runners! ey must be explicitly allowed with @wheel or @runner.

e external authentication system can then be used from the command-line by any user on the same system as the
master with the -a option:

$ salt -a pam web* test.ping

e systemwill ask the user for the credentials required by the authentication system and then publish the command.

To apply permissions to a group of users in an external authentication system, append a % to the ID:

external_auth:
pam:

admins%:
- '*':

- 'pkg.*'

8.2 Tokens

With external authentication alone, the authentication credentials will be required with every call to Salt. is can
be alleviated with Salt tokens.

148 Chapter 8. External Authentication System

Salt Documentation, Release 2014.7.6

Tokens are short term authorizations and can be easily created by just adding a -T option when authenticating:

$ salt -T -a pam web* test.ping

Now a token will be created that has a expiration of 12 hours (by default). is token is stored in a file named
.salt_token in the active user's home directory.

Once the token is created, it is sent with all subsequent communications. User authentication does not need to be
entered again until the token expires.

Token expiration time can be set in the Salt master config file.

8.3 LDAP and Active Directory

Salt supports both user and group authentication for LDAP (and Active Directory accessed via its LDAP interface)

LDAP configuration happens in the Salt master configuration file.

Server configuration values and their defaults:

auth.ldap.server: localhost
auth.ldap.port: 389
auth.ldap.tls: False
auth.ldap.scope: 2
auth.ldap.uri: ''
auth.ldap.tls: False
auth.ldap.no_verify: False
auth.ldap.anonymous: False
auth.ldap.groupou: 'Groups'
auth.ldap.groupclass: 'posixGroup'
auth.ldap.accountattributename: 'memberUid'

These are only for Active Directory
auth.ldap.activedirectory: False
auth.ldap.persontype: 'person'

Salt also needs to know which Base DN to search for users and groups and the DN to bind to:

auth.ldap.basedn: dc=saltstack,dc=com
auth.ldap.binddn: cn=admin,dc=saltstack,dc=com

To bind to a DN, a password is required

auth.ldap.bindpw: mypassword

Salt uses a filter to find the DN associated with a user. Salt substitutes the {{ username }} value for the username
when querying LDAP

auth.ldap.filter: uid={{ username }}

For OpenLDAP, to determine group membership, one can specify an OU that contains group data. is is prepended
to the basedn to create a search path. en the results are filtered against auth.ldap.groupclass, default
posixGroup, and the account's `name' aribute, memberUid by default.

auth.ldap.groupou: Groups

Active Directory handles group membership differently, and does not utilize the groupou configuration variable.
AD needs the following options in the master config:

8.3. LDAP and Active Directory 149

Salt Documentation, Release 2014.7.6

auth.ldap.activedirectory: True
auth.ldap.filter: sAMAccountName={{username}}
auth.ldap.accountattributename: sAMAccountName
auth.ldap.groupclass: group
auth.ldap.persontype: person

To determine group membership in AD, the username and password that is entered when LDAP is requested as the
eAuth mechanism on the command line is used to bind to AD's LDAP interface. If this fails, then it doesn't maer
what groups the user belongs to, he or she is denied access. Next, the distinguishedName of the user is looked up
with the following LDAP search:

(&(<value of auth.ldap.accountattributename>={{username}})
(objectClass=<value of auth.ldap.persontype>)

)

is should return a distinguishedName that we can use to filter for group membership. en the following LDAP
quey is executed:

(&(member=<distinguishedName from search above>)
(objectClass=<value of auth.ldap.groupclass>)

)

external_auth:
ldap:

test_ldap_user:
- '*':

- test.ping

To configure an LDAP group, append a % to the ID:

external_auth:
ldap:

test_ldap_group%:
- '*':

- test.echo

150 Chapter 8. External Authentication System

CHAPTER 9

Job Management

New in version 0.9.7.

Since Salt executes jobs running on many systems, Salt needs to be able to manage jobs running on many systems.

9.1 The Minion proc System

Salt Minions maintain a proc directory in the Salt cachedir. e proc directory maintains files named aer the
executed job ID. ese files contain the information about the current running jobs on the minion and allow for jobs
to be looked up. is is located in the proc directory under the cachedir, with a default configuration it is under
/var/cache/salt/proc.

9.2 Functions in the saltutil Module

Salt 0.9.7 introduced a few new functions to the saltutil module for managing jobs. ese functions are:

1. running Returns the data of all running jobs that are found in the proc directory.

2. find_job Returns specific data about a certain job based on job id.

3. signal_job Allows for a given jid to be sent a signal.

4. term_job Sends a termination signal (SIGTERM, 15) to the process controlling the specified job.

5. kill_job Sends a kill signal (SIGKILL, 9) to the process controlling the specified job.

ese functions make up the core of the back end used to manage jobs at the minion level.

9.3 The jobs Runner

A convenience runner front end and reporting system has been added as well. e jobs runner contains functions
to make viewing data easier and cleaner.

e jobs runner contains a number of functions…

151

Salt Documentation, Release 2014.7.6

9.3.1 active

e active function runs saltutil.running on all minions and formats the return data about all running jobs in a much
more usable and compact format. e active function will also compare jobs that have returned and jobs that are
still running, making it easier to see what systems have completed a job and what systems are still being waited on.

salt-run jobs.active

9.3.2 lookup_jid

When jobs are executed the return data is sent back to the master and cached. By default it is cached for 24 hours,
but this can be configured via the keep_jobs option in the master configuration. Using the lookup_jid runner will
display the same return data that the initial job invocation with the salt command would display.

salt-run jobs.lookup_jid <job id number>

9.3.3 list_jobs

Before finding a historic job, it may be required to find the job id. list_jobs will parse the cached execution data and
display all of the job data for jobs that have already, or partially returned.

salt-run jobs.list_jobs

9.4 Scheduling Jobs

In Salt versions greater than 0.12.0, the scheduling system allows incremental executions on minions or the master.
e schedule system exposes the execution of any execution function on minions or any runner on the master.

Scheduling is enabled via the schedule option on either the master or minion config files, or via a minion's pillar
data.

Note: e scheduler executes different functions on the master and minions. When running on the master the
functions reference runner functions, when running on the minion the functions specify execution functions.

Specifymaxrunning to ensure that there are nomore thanN copies of a particular routine running. Use this for jobs
that may be long-running and could step on each other or otherwise double execute. e default for maxrunning
is 1.

States are executed on the minion, as all states are. You can pass positional arguments and provide a yaml dict of
named arguments.

schedule:
job1:

function: state.sls
seconds: 3600
args:

- httpd
kwargs:

test: True

is will schedule the command: state.sls hpd test=True every 3600 seconds (every hour)

152 Chapter 9. Job Management

Salt Documentation, Release 2014.7.6

schedule:
job1:

function: state.sls
seconds: 3600
args:

- httpd
kwargs:

test: True
splay: 15

iswill schedule the command: state.sls hpd test=True every 3600 seconds (every hour) splaying the time between
0 and 15 seconds

schedule:
job1:

function: state.sls
seconds: 3600
args:

- httpd
kwargs:

test: True
splay:

start: 10
end: 15

iswill schedule the command: state.sls hpd test=True every 3600 seconds (every hour) splaying the time between
10 and 15 seconds

New in version 2014.7.0.

Frequency of jobs can also be specified using date strings supported by the python dateutil library.

schedule:
job1:

function: state.sls
args:

- httpd
kwargs:

test: True
when: 5:00pm

is will schedule the command: state.sls hpd test=True at 5:00pm minion localtime.

schedule:
job1:

function: state.sls
args:

- httpd
kwargs:

test: True
when:

- Monday 5:00pm
- Tuesday 3:00pm
- Wednesday 5:00pm
- Thursday 3:00pm
- Friday 5:00pm

is will schedule the command: state.sls hpd test=True at 5pm on Monday, Wednesday and Friday, and 3pm on
Tuesday and ursday.

9.4. Scheduling Jobs 153

Salt Documentation, Release 2014.7.6

schedule:
job1:

function: state.sls
seconds: 3600
args:

- httpd
kwargs:

test: True
range:

start: 8:00am
end: 5:00pm

is will schedule the command: state.sls hpd test=True every 3600 seconds (every hour) between the hours of
8am and 5pm. e range parameter must be a dictionary with the date strings using the dateutil format.

New in version 2014.7.0.

e scheduler also supports ensuring that there are no more than N copies of a particular routine running. Use this
for jobs that may be long-running and could step on each other or pile up in case of infrastructure outage.

e default for maxrunning is 1.

schedule:
long_running_job:

function: big_file_transfer
jid_include: True

9.5 States

schedule:
log-loadavg:

function: cmd.run
seconds: 3660
args:

- 'logger -t salt < /proc/loadavg'
kwargs:

stateful: False
shell: True

9.6 Highstates

To set up a highstate to run on a minion every 60 minutes set this in the minion config or pillar:

schedule:
highstate:

function: state.highstate
minutes: 60

Time intervals can be specified as seconds, minutes, hours, or days.

9.7 Runners

Runner executions can also be specified on the master within the master configuration file:

154 Chapter 9. Job Management

Salt Documentation, Release 2014.7.6

schedule:
overstate:

function: state.over
seconds: 35
minutes: 30
hours: 3

e above configuration will execute the state.over runner every 3 hours, 30 minutes and 35 seconds, or every 12,635
seconds.

9.8 Scheduler With Returner

e scheduler is also useful for tasks like gathering monitoring data about a minion, this schedule option will gather
status data and send it to a MySQL returner database:

schedule:
uptime:

function: status.uptime
seconds: 60
returner: mysql

meminfo:
function: status.meminfo
minutes: 5
returner: mysql

Since specifying the returner repeatedly can be tiresome, the schedule_returner option is available to specify
one or a list of global returners to be used by the minions when scheduling.

In Salt versions greater than 0.12.0, the scheduling system allows incremental executions on minions or the master.
e schedule system exposes the execution of any execution function on minions or any runner on the master.

Scheduling is enabled via the schedule option on either the master or minion config files, or via a minion's pillar
data.

Note: e scheduler executes different functions on the master and minions. When running on the master the
functions reference runner functions, when running on the minion the functions specify execution functions.

Specifymaxrunning to ensure that there are nomore thanN copies of a particular routine running. Use this for jobs
that may be long-running and could step on each other or otherwise double execute. e default for maxrunning
is 1.

States are executed on the minion, as all states are. You can pass positional arguments and provide a yaml dict of
named arguments.

schedule:
job1:

function: state.sls
seconds: 3600
args:

- httpd
kwargs:

test: True

is will schedule the command: state.sls hpd test=True every 3600 seconds (every hour)

9.8. Scheduler With Returner 155

Salt Documentation, Release 2014.7.6

schedule:
job1:

function: state.sls
seconds: 3600
args:

- httpd
kwargs:

test: True
splay: 15

iswill schedule the command: state.sls hpd test=True every 3600 seconds (every hour) splaying the time between
0 and 15 seconds

schedule:
job1:

function: state.sls
seconds: 3600
args:

- httpd
kwargs:

test: True
splay:

start: 10
end: 15

iswill schedule the command: state.sls hpd test=True every 3600 seconds (every hour) splaying the time between
10 and 15 seconds

New in version 2014.7.0.

Frequency of jobs can also be specified using date strings supported by the python dateutil library.

schedule:
job1:

function: state.sls
args:

- httpd
kwargs:

test: True
when: 5:00pm

is will schedule the command: state.sls hpd test=True at 5:00pm minion localtime.

schedule:
job1:

function: state.sls
args:

- httpd
kwargs:

test: True
when:

- Monday 5:00pm
- Tuesday 3:00pm
- Wednesday 5:00pm
- Thursday 3:00pm
- Friday 5:00pm

is will schedule the command: state.sls hpd test=True at 5pm on Monday, Wednesday and Friday, and 3pm on
Tuesday and ursday.

156 Chapter 9. Job Management

Salt Documentation, Release 2014.7.6

schedule:
job1:

function: state.sls
seconds: 3600
args:

- httpd
kwargs:

test: True
range:

start: 8:00am
end: 5:00pm

is will schedule the command: state.sls hpd test=True every 3600 seconds (every hour) between the hours of
8am and 5pm. e range parameter must be a dictionary with the date strings using the dateutil format.

New in version 2014.7.0.

e scheduler also supports ensuring that there are no more than N copies of a particular routine running. Use this
for jobs that may be long-running and could step on each other or pile up in case of infrastructure outage.

e default for maxrunning is 1.

schedule:
long_running_job:

function: big_file_transfer
jid_include: True

9.8.1 States

schedule:
log-loadavg:

function: cmd.run
seconds: 3660
args:

- 'logger -t salt < /proc/loadavg'
kwargs:

stateful: False
shell: True

9.8.2 Highstates

To set up a highstate to run on a minion every 60 minutes set this in the minion config or pillar:

schedule:
highstate:

function: state.highstate
minutes: 60

Time intervals can be specified as seconds, minutes, hours, or days.

9.8.3 Runners

Runner executions can also be specified on the master within the master configuration file:

9.8. Scheduler With Returner 157

Salt Documentation, Release 2014.7.6

schedule:
overstate:

function: state.over
seconds: 35
minutes: 30
hours: 3

e above configuration will execute the state.over runner every 3 hours, 30 minutes and 35 seconds, or every 12,635
seconds.

9.8.4 Scheduler With Returner

e scheduler is also useful for tasks like gathering monitoring data about a minion, this schedule option will gather
status data and send it to a MySQL returner database:

schedule:
uptime:

function: status.uptime
seconds: 60
returner: mysql

meminfo:
function: status.meminfo
minutes: 5
returner: mysql

Since specifying the returner repeatedly can be tiresome, the schedule_returner option is available to specify
one or a list of global returners to be used by the minions when scheduling.

158 Chapter 9. Job Management

CHAPTER 10

Salt Event System

e Salt Event System is used to fire off events enabling third party applications or external processes to react to
behavior within Salt.

e event system is comprised of a two primary components:

• e event sockets which publishes events.

• e event library which can listen to events and send events into the salt system.

10.1 Event types

10.1.1 Salt Master Events

ese events are fired on the Salt Master event bus. is list is not comprehensive.

Authentication events

salt/auth
Fired when a minion performs an authentication check with the master.

Variables

• id -- e minion ID.

• act -- e current status of the minion key: accept, pend, reject.

• pub -- e minion public key.

Start events

salt/minion/<MID>/start
Fired every time a minion connects to the Salt master.

Variables id -- e minion ID.

Key events

salt/key
Fired when accepting and rejecting minions keys on the Salt master.

159

Salt Documentation, Release 2014.7.6

Variables

• id -- e minion ID.

• act -- e new status of the minion key: accept, pend, reject.

Job events

salt/job/<JID>/new
Fired as a new job is sent out to minions.

Variables

• jid -- e job ID.

• tgt -- e target of the job: *, a minion ID, G@os_family:RedHat, etc.

• tgt_type -- e type of targeting used: glob, grain, compound, etc.

• fun -- e function to run on minions: test.ping, network.interfaces, etc.

• arg -- A list of arguments to pass to the function that will be called.

• minions -- A list of minion IDs that Salt expects will return data for this job.

• user -- e name of the user that ran the command as defined in Salt's Client ACL or
external auth.

salt/job/<JID>/ret/<MID>
Fired each time a minion returns data for a job.

Variables

• id -- e minion ID.

• jid -- e job ID.

• retcode -- e return code for the job.

• fun -- e function the minion ran. E.g., test.ping.

• return -- e data returned from the execution module.

Presence events

salt/presence/present
Events fired on a regular interval about currently connected, newly connected, or recently disconnected min-
ions. Requires the presence_events seing to be enabled.

Variables present -- A list of minions that are currently connected to the Salt master.

salt/presence/change
Fired when the Presence system detects new minions connect or disconnect.

Variables

• new -- A list of minions that have connected since the last presence event.

• lost -- A list of minions that have disconnected since the last presence event.

160 Chapter 10. Salt Event System

Salt Documentation, Release 2014.7.6

Cloud Events

Unlike other Master events, salt-cloud events are not fired on behalf of a Salt Minion. Instead, salt-cloud
events are fired on behalf of a VM. is is because the minion-to-be may not yet exist to fire events to or also may
have been destroyed.

is behavior is reflected by the name variable in the event data for salt-cloud events as compared to the id
variable for Salt Minion-triggered events.

salt/cloud/<VM NAME>/creating
Fired when salt-cloud starts the VM creation process.

Variables

• name -- the name of the VM being created.

• event -- description of the event.

• provider -- the cloud provider of the VM being created.

• profile -- the cloud profile for the VM being created.

salt/cloud/<VM NAME>/deploying
Fired when the VM is available and salt-cloud begins deploying Salt to the new VM.

Variables

• name -- the name of the VM being created.

• event -- description of the event.

• kwargs -- options available as the deploy script is invoked: conf_file, de-
ploy_command, display_ssh_output, host, keep_tmp, key_filename,
make_minion, minion_conf, name, parallel, preseed_minion_keys,
script, script_args, script_env, sock_dir, start_action, sudo,
tmp_dir, tty, username

salt/cloud/<VM NAME>/requesting
Fired when salt-cloud sends the request to create a new VM.

Variables

• event -- description of the event.

• location -- the location of the VM being requested.

• kwargs -- options available as the VM is being requested: Action, ImageId, In-
stanceType, KeyName, MaxCount, MinCount, SecurityGroup.1

salt/cloud/<VM NAME>/querying
Fired when salt-cloud queries data for a new instance.

Variables

• event -- description of the event.

• instance_id -- the ID of the new VM.

salt/cloud/<VM NAME>/tagging
Fired when salt-cloud tags a new instance.

Variables

• event -- description of the event.

• tags -- tags being set on the new instance.

10.1. Event types 161

Salt Documentation, Release 2014.7.6

salt/cloud/<VM NAME>/waiting_for_ssh
Fired while the salt-cloud deploy process is waiting for ssh to become available on the new instance.

Variables

• event -- description of the event.

• ip_address -- IP address of the new instance.

salt/cloud/<VM NAME>/deploy_script
Fired once the deploy script is finished.

Variables event -- description of the event.

salt/cloud/<VM NAME>/created
Fired once the new instance has been fully created.

Variables

• name -- the name of the VM being created.

• event -- description of the event.

• instance_id -- the ID of the new instance.

• provider -- the cloud provider of the VM being created.

• profile -- the cloud profile for the VM being created.

salt/cloud/<VM NAME>/destroying
Fired when salt-cloud requests the destruction of an instance.

Variables

• name -- the name of the VM being created.

• event -- description of the event.

• instance_id -- the ID of the new instance.

salt/cloud/<VM NAME>/destroyed
Fired when an instance has been destroyed.

Variables

• name -- the name of the VM being created.

• event -- description of the event.

• instance_id -- the ID of the new instance.

10.2 Listening for Events

Salt's Event Bus is used heavily within Salt and it is also wrien to integrate heavily with existings tooling and
scripts. ere is a variety of ways to consume it.

10.2.1 From the CLI

e quickest way to watch the event bus is by calling the state.event runner:

salt-run state.event pretty=True

162 Chapter 10. Salt Event System

Salt Documentation, Release 2014.7.6

at runner is designed to interact with the event bus from external tools and shell scripts. See the documentation
for more examples.

10.2.2 Remotely via the REST API

Salt's event bus can be consumed salt.netapi.rest_cherrypy.app.Events as an HTTP stream from
external tools or services.

curl -SsNk https://salt-api.example.com:8000/events?token=05A3

10.2.3 From Python

Python scripts can access the event bus only as the same system user that Salt is running as.

e event system is accessed via the event library and can only be accessed by the same system user that Salt is
running as. To listen to events a SaltEvent object needs to be created and then the get_event function needs to be
run. e SaltEvent object needs to know the location that the Salt Unix sockets are kept. In the configuration this is
the sock_dir option. e sock_dir option defaults to ``/var/run/salt/master'' on most systems.

e following code will check for a single event:

import salt.config
import salt.utils.event

opts = salt.config.client_config('/etc/salt/master')

event = salt.utils.event.get_event(
'master',
sock_dir=opts['sock_dir'],
transport=opts['transport'],
opts=opts)

data = event.get_event()

Events will also use a ``tag''. Tags allow for events to be filtered. By default all events will be returned. If only
authentication events are desired, then pass the tag ``auth''.

e get_event method has a default poll time assigned of 5 seconds. To change this time set the ``wait'' option.

e following example will only listen for auth events and will wait for 10 seconds instead of the default 5.

data = event.get_event(wait=10, tag='salt/auth')

To retrieve the tag as well as the event data, pass full=True:

evdata = event.get_event(wait=10, tag='salt/job', full=True)

tag, data = evdata['tag'], evdata['data']

Instead of looking for a single event, the iter_events method can be used to make a generator which will con-
tinually yield salt events.

e iter_events method also accepts a tag but not a wait time:

import salt.utils.event

for data in event.iter_events(tag='salt/auth'):
print(data)

10.2. Listening for Events 163

Salt Documentation, Release 2014.7.6

And finally event tags can be globbed, such as they can be in the Reactor, using the fnmatch library.

import fnmatch

import salt.config
import salt.utils.event

opts = salt.config.client_config('/etc/salt/master')

sevent = salt.utils.event.get_event(
'master',
sock_dir=opts['sock_dir'],
transport=opts['transport'],
opts=opts)

while True:
ret = sevent.get_event(full=True)
if ret is None:

continue

if fnmatch.fnmatch(ret['tag'], 'salt/job/*/ret/*'):
do_something_with_job_return(ret['data'])

10.3 Firing Events

It is possible to fire events on either the minion's local bus or to fire events intended for the master.

To fire a local event from the minion on the command line call the event.fire execution function:

salt-call event.fire '{"data": "message to be sent in the event"}' 'tag'

To fire an event to be sent up to the master from the minion call the event.send execution function. Remember
YAML can be used at the CLI in function arguments:

salt-call event.send 'myco/mytag/success' '{success: True, message: "It works!"}'

If a process is listening on the minion, it may be useful for a user on the master to fire an event to it:

salt minionname event.fire '{"data": "message for the minion"}' 'tag'

10.4 Firing Events from Python

10.4.1 From Salt execution modules

Events can be very useful when writing execution modules, in order to inform various processes on the master when
a certain task has taken place. is is easily done using the normal cross-calling syntax:

/srv/salt/_modules/my_custom_module.py

def do_something():
'''
Do something and fire an event to the master when finished

CLI Example::

164 Chapter 10. Salt Event System

Salt Documentation, Release 2014.7.6

salt '*' my_custom_module:do_something
'''
do something!
__salt__['event.send']('myco/my_custom_module/finished', {

'finished': True,
'message': "The something is finished!",

})

10.4.2 From Custom Python Scripts

Firing events from custom Python code is quite simple and mirrors how it is done at the CLI:

import salt.client

caller = salt.client.Caller()

caller.sminion.functions['event.send'](
'myco/myevent/success',
{

'success': True,
'message': "It works!",

}
)

10.4. Firing Events from Python 165

Salt Documentation, Release 2014.7.6

166 Chapter 10. Salt Event System

CHAPTER 11

Salt Syndic

e Salt Syndic interface is a powerful tool which allows for the construction of Salt command topologies. A basic
Salt setup has a Salt Master commanding a group of Salt Minions. e Syndic interface is a special passthrough
minion, it is run on a master and connects to another master, then the master that the Syndic minion is listening to
can control the minions aached to the master running the syndic.

e intent for supporting many layouts is not presented with the intent of supposing the use of any single topology,
but to allow a more flexible method of controlling many systems.

11.1 Configuring the Syndic

Since the Syndic only needs to be aached to a higher level master the configuration is very simple. On a master that
is running a syndic to connect to a higher level master the syndic_master option needs to be set in the master
config file. e syndic_master option contains the hostname or IP address of the master server that can control
the master that the syndic is running on.

e master that the syndic connects to sees the syndic as an ordinary minion, and treats it as such. the higher level
master will need to accept the syndic's minion key like any other minion. is master will also need to set the
order_masters value in the configuration to True. e order_masters option in the config on the higher
level master is very important, to control a syndic extra information needs to be sent with the publications, the
order_masters option makes sure that the extra data is sent out.

To sum up, you have those configuration options available on the master side:

• syndic_master: MasterOfMaster ip/address

• syndic_master_port: MasterOfMaster ret_port

• syndic_log_file: path to the logfile (absolute or not)

• syndic_pidfile: path to the pidfile (absolute or not)

Each Syndic must provide its own file_roots directory. Files will not be automatically transferred from the
master-master.

11.2 Running the Syndic

e Syndic is a separate daemon that needs to be started on the master that is controlled by a higher master. Starting
the Syndic daemon is the same as starting the other Salt daemons.

167

Salt Documentation, Release 2014.7.6

salt-syndic

Note: If you have an exceptionally large infrastructure or many layers of syndics, you may find that the CLI doesn't
wait long enough for the syndics to return their events. If you think this is the case, you can set the syndic_wait
value in the upper master config. e default value is 1, and should work for the majority of deployments.

11.3 Topology

e salt-syndic is lile more than a command and event forwarder. When a command is issued from a higher-
level master, it will be received by the configured syndics on lower-level masters, and propagated to to their minions,
and other syndics that are bound to them further down in the hierarchy. When events and job return data are
generated by minions, they aggregated back, through the same syndic(s), to the master which issued the command.

e master siing at the top of the hierarchy (the Master of Masters) will not be running the salt-syndic dae-
mon. It will have the salt-master daemon running, and optionally, the salt-minion daemon. Each syndic
connected to an upper-level master will have both the salt-master and the salt-syndic daemon running,
and optionally, the salt-minion daemon.

Nodes on the lowest points of the hierarchy (minions which do not propagate data to another level) will only have
the salt-minion daemon running. ere is no need for either salt-master or salt-syndic to be running
on a standard minion.

11.4 Syndic and the CLI

In order for the high-level master to return information from minions that are below the syndic(s), the CLI requires
a short wait time in order to allow the syndic(s) to gather responses from their minions. is value is defined in the
``syndic_wait` and has a default of five seconds.

While it is possible to run a syndic without a minion installed on the same machine, it is recommended, for a faster
CLI response time, to do so. Without a minion installed on the syndic, the timeout value of syndic_wait increases
significantly - about three-fold. With a minion installed on the syndic, the CLI timeout resides at the value defined
in syndic_wait.

Note: To reduce the amount of time the CLI waits for minions to respond, install a minion on the syndic or tune
the value of the syndic_wait configuration.

168 Chapter 11. Salt Syndic

CHAPTER 12

Salt Proxy Minion Documentation

Proxy minions are a developing Salt feature that enables controlling devices that, for whatever reason, cannot run
a standard salt-minion. Examples include network gear that has an API but runs a proprietary OS, devices with
limited CPU or memory, or devices that could run a minion, but for security reasons, will not.

Proxy minions are not an ``out of the box'' feature. Because there are an infinite number of controllable devices, you
will most likely have to write the interface yourself. Fortunately, this is only as difficult as the actual interface to
the proxied device. Devices that have an existing Python module (PyUSB for example) would be relatively simple
to interface. Code to control a device that has an HTML REST-based interface should be easy. Code to control your
typical housecat would be excellent source material for a PhD thesis.

Salt proxy-minions provide the `plumbing' that allows device enumeration and discovery, control, status, remote
execution, and state management.

12.1 Geing Started

e following diagram may be helpful in understanding the structure of a Salt installation that includes proxy-
minions:

169

Salt Documentation, Release 2014.7.6

e key thing to remember is the le-most section of the diagram. Salt's nature is to have a minion connect to a
master, then the master may control the minion. However, for proxy minions, the target device cannot run a minion,
and thus must rely on a separate minion to fire up the proxy-minion and make the initial and persistent connection.

Aer the proxy minion is started and initiates its connection to the `dumb' device, it connects back to the salt-master
and ceases to be affiliated in any way with the minion that started it.

To create support for a proxied device one needs to create four things:

1. e proxytype connection class (located in salt/proxy).

2. e grains support code (located in salt/grains).

3. Salt modules specific to the controlled device.

4. Salt states specific to the controlled device.

170 Chapter 12. Salt Proxy Minion Documentation

Salt Documentation, Release 2014.7.6

12.1.1 Configuration parameters on the master

Proxy minions require no configuration parameters in /etc/salt/master.

Salt's Pillar system is ideally suited for configuring proxy-minions. Proxies can either be designated via a pillar file in
pillar_roots, or through an external pillar. External pillars afford the opportunity for interfacing with a configuration
management system, database, or other knowledgeable system that that may already contain all the details of proxy
targets. To use static files in pillar_roots, paern your files aer the following examples, which are based on the
diagram above:

/srv/pillar/top.sls

base:
minioncontroller1:

- networkswitches
minioncontroller2:

- reallydumbdevices
minioncontroller3:

- smsgateway

/srv/pillar/networkswitches.sls
proxy:

dumbdevice1:
proxytype: networkswitch
host: 172.23.23.5
username: root
passwd: letmein

dumbdevice2:
proxytype: networkswitch
host: 172.23.23.6
username: root
passwd: letmein

dumbdevice3:
proxytype: networkswitch
host: 172.23.23.7
username: root
passwd: letmein

/srv/pillar/reallydumbdevices.sls
proxy:

dumbdevice4:
proxytype: i2c_lightshow
i2c_address: 1

dumbdevice5:
proxytype: i2c_lightshow
i2c_address: 2

dumbdevice6:
proxytype: 433mhz_wireless

/srv/pillar/smsgateway.sls
proxy:

minioncontroller3:
dumbdevice7:

proxytype: sms_serial
deventry: /dev/tty04

12.1. Geing Started 171

Salt Documentation, Release 2014.7.6

Note the contents of each minioncontroller key may differ widely based on the type of device that the proxy-minion
is managing.

In the above example

• dumbdevices 1, 2, and 3 are network switches that have a management interface available at a particular IP
address.

• dumbdevices 4 and 5 are very low-level devices controlled over an i2c bus. In this case the devices are physically
connected to machine `minioncontroller2', and are addressable on the i2c bus at their respective i2c addresses.

• dumbdevice6 is a 433 MHz wireless transmier, also physically connected to minioncontroller2

• dumbdevice7 is an SMS gateway connected to machine minioncontroller3 via a serial port.

Because of the way pillar works, each of the salt-minions that fork off the proxy minions will only see the keys
specific to the proxies it will be handling. In other words, from the above example, onlyminioncontroller1 will see the
connection information for dumbdevices 1, 2, and 3. Minioncontroller2 will see configuration data for dumbdevices
4, 5, and 6, and minioncontroller3 will be privy to dumbdevice7.

Also, in general, proxy-minions are lightweight, so the machines that run them could conceivably control a large
number of devices. e example above is just to illustrate that it is possible for the proxy services to be spread across
many machines if necessary, or intentionally run on machines that need to control devices because of some physical
interface (e.g. i2c and serial above). Another reason to divide proxy services might be security. In more secure
environments only certain machines may have a network path to certain devices.

Now our salt-minions know if they are supposed to spawn a proxy-minion process to control a particular device.
at proxy-minion process will initiate a connection back to the master to enable control.

12.1.2 Proxytypes

A proxytype is a Python class called `Proxyconn' that encapsulates all the code necessary to interface with a device.
Proxytypes are located inside the salt.proxymodule. At aminimum a proxytype object must implement the following
methods:

proxytype(self): Returns a string with the name of the proxy type.

proxyconn(self, **kwargs): Provides the primary way to connect and communicate with the device. Some
proxyconns instantiate a particular object that opens a network connection to a device and leaves the connection
open for communication. Others simply abstract a serial connection or even implement endpoints to communicate
via REST over HTTP.

id(self, opts): Returns a unique, unchanging id for the controlled device. is is the ``name'' of the device,
and is used by the salt-master for targeting and key authentication.

Optionally, the class may define a shutdown(self, opts) method if the controlled device should be informed
when the minion goes away cleanly.

It is highly recommended that the test.ping execution module also be defined for a proxytype. e code for
ping should contact the controlled device and make sure it is really available.

Here is an example proxytype used to interface to Juniper Networks devices that run the Junos operating system.
Note the additional library requirements--most of the ``hard part'' of talking to these devices is handled by the
jnpr.junos, jnpr.junos.utils and jnpr.junos.cfg modules.

Import python libs
import logging
import os

import jnpr.junos
import jnpr.junos.utils

172 Chapter 12. Salt Proxy Minion Documentation

Salt Documentation, Release 2014.7.6

import jnpr.junos.cfg
HAS_JUNOS = True

class Proxyconn(object):

def __init__(self, details):
self.conn = jnpr.junos.Device(user=details['username'], host=details['host'], password=details['passwd'])
self.conn.open()
self.conn.bind(cu=jnpr.junos.cfg.Resource)

def proxytype(self):
return 'junos'

def id(self, opts):
return self.conn.facts['hostname']

def ping(self):
return self.conn.connected

def shutdown(self, opts):

print('Proxy module {} shutting down!!'.format(opts['id']))
try:

self.conn.close()
except Exception:

pass

Grains are data about minions. Most proxied devices will have a paltry amount of data as compared to a typical Linux
server. Because proxy-minions are started by a regular minion, they inherit a sizeable number of grain seings which
can be useful, especially when targeting (PYTHONPATH, for example).

All proxy minions set a grain called `proxy'. If it is present, you know the minion is controlling another device. To
add more grains to your proxy minion for a particular device, create a file in salt/grains named [proxytype].py and
place inside it the different functions that need to be run to collect the data you are interested in. Here's an example:

12.2 The __proxyenabled__ directive

Salt states and execution modules, by and large, cannot ``automatically'' work with proxied devices. Execution
modules like pkg or sqlite3 have no meaning on a network switch or a housecat. For a state/execution module
to be available to a proxy-minion, the __proxyenabled__ variable must be defined in the module as an array
containing the names of all the proxytypes that this module can support. e array can contain the special value *
to indicate that the module supports all proxies.

If no __proxyenabled__ variable is defined, then by default, the state/execution module is unavailable to any
proxy.

Here is an excerpt from a module that was modified to support proxy-minions:

def ping():

if 'proxyobject' in __opts__:

12.2. The __proxyenabled__ directive 173

Salt Documentation, Release 2014.7.6

if 'ping' in __opts__['proxyobject'].__attr__():
return __opts['proxyobject'].ping()

else:
return False

else:
return True

And then in salt.proxy.junos we find

def ping(self):

return self.connected

e Junos API layer lacks the ability to do a traditional `ping', so the example simply checks the connection object
field that indicates if the ssh connection was successfully made to the device.

174 Chapter 12. Salt Proxy Minion Documentation

CHAPTER 13

Windows Soware Repository

e Salt Windows Soware Repository provides a package manager and soware repository similar to what is
provided by yum and apt on Linux.

It permits the installation of soware using the installers on remote windows machines. In many senses, the opera-
tion is similar to that of the other package managers salt is aware of:

• the pkg.installed and similar states work on Windows.

• the pkg.install and similar module functions work on Windows.

• each windows machine needs to have pkg.refresh_db executed against it to pick up the latest version of
the package database.

High level differences to yum and apt are:

• e repository metadata (sls files) is hosted through either salt or git.

• Packages can be downloaded from within the salt repository, a git repository or from hp(s) or p urls.

• No dependencies are managed. Dependencies between packages needs to be managed manually.

13.1 Operation

e install state/module function of the windows package manager works roughly as follows:

1. Execute pkg.list_pkgs and store the result

2. Check if any action needs to be taken. (i.e. compare required package and version against pkg.list_pkgs
results)

3. If so, run the installer command.

4. Execute pkg.list_pkgs and compare to the result stored from before installation.

5. Success/Failure/Changes will be reported based on the differences between the original and final
pkg.list_pkgs results.

If there are any problems in using the package manager it is likely to be due to the data in your sls files not matching
the difference between the pre and post pkg.list_pkgs results.

175

Salt Documentation, Release 2014.7.6

13.2 Usage

By default, theWindows soware repository is found at/srv/salt/win/repois can be changed in themaster
config file (default location is /etc/salt/master) by modifying the win_repo variable. Each piece of soware
should have its own directory which contains the installers and a package definition file. is package definition file
is a YAML file named init.sls.

e package definition file should look similar to this example for Firefox:
/srv/salt/win/repo/firefox/init.sls

Firefox:
17.0.1:

installer: 'salt://win/repo/firefox/English/Firefox Setup 17.0.1.exe'
full_name: Mozilla Firefox 17.0.1 (x86 en-US)
locale: en_US
reboot: False
install_flags: ' -ms'
uninstaller: '%ProgramFiles(x86)%/Mozilla Firefox/uninstall/helper.exe'
uninstall_flags: ' /S'

16.0.2:
installer: 'salt://win/repo/firefox/English/Firefox Setup 16.0.2.exe'
full_name: Mozilla Firefox 16.0.2 (x86 en-US)
locale: en_US
reboot: False
install_flags: ' -ms'
uninstaller: '%ProgramFiles(x86)%/Mozilla Firefox/uninstall/helper.exe'
uninstall_flags: ' /S'

15.0.1:
installer: 'salt://win/repo/firefox/English/Firefox Setup 15.0.1.exe'
full_name: Mozilla Firefox 15.0.1 (x86 en-US)
locale: en_US
reboot: False
install_flags: ' -ms'
uninstaller: '%ProgramFiles(x86)%/Mozilla Firefox/uninstall/helper.exe'
uninstall_flags: ' /S'

More examples can be found here: hps://github.com/saltstack/salt-winrepo

e version number and full_name need to match the output from pkg.list_pkgs so that the status can be
verified when running highstate. Note: It is still possible to successfully install packages using pkg.install even
if they don't match which can make this hard to troubleshoot.

salt 'test-2008' pkg.list_pkgs
test-2008

7-Zip 9.20 (x64 edition):

9.20.00.0
Microsoft .NET Framework 4 Client Profile:

4.0.30319,4.0.30319
Microsoft .NET Framework 4 Extended:

4.0.30319,4.0.30319
Microsoft Visual C++ 2008 Redistributable - x64 9.0.21022:

9.0.21022
Mozilla Firefox 17.0.1 (x86 en-US):

17.0.1
Mozilla Maintenance Service:

17.0.1
NSClient++ (x64):

176 Chapter 13. Windows Soware Repository

https://github.com/saltstack/salt-winrepo

Salt Documentation, Release 2014.7.6

0.3.8.76
Notepad++:

6.4.2
Salt Minion 0.16.0:

0.16.0

If any of these preinstalled packages already exist in winrepo the full_name will be automatically renamed to their
package name during the next update (running highstate or installing another package).

test-2008:

7zip:

9.20.00.0
Microsoft .NET Framework 4 Client Profile:

4.0.30319,4.0.30319
Microsoft .NET Framework 4 Extended:

4.0.30319,4.0.30319
Microsoft Visual C++ 2008 Redistributable - x64 9.0.21022:

9.0.21022
Mozilla Maintenance Service:

17.0.1
Notepad++:

6.4.2
Salt Minion 0.16.0:

0.16.0
firefox:

17.0.1
nsclient:

0.3.9.328

Add msiexec: True if using an MSI installer requiring the use of msiexec /i to install and msiexec /x
to uninstall.

e install_flags and uninstall_flags are flags passed to the soware installer to cause it to perform a
silent install. ese can oen be found by adding /? or /h when running the installer from the command line. A
great resource for finding these silent install flags can be found on the WPKG project's wiki:

7zip:
9.20.00.0:

installer: salt://win/repo/7zip/7z920-x64.msi
full_name: 7-Zip 9.20 (x64 edition)
reboot: False
install_flags: ' /q '
msiexec: True
uninstaller: salt://win/repo/7zip/7z920-x64.msi
uninstall_flags: ' /qn'

13.3 Generate Repo Cache File

Once the sls file has been created, generate the repository cache file with the winrepo runner:

salt-run winrepo.genrepo

en update the repository cache file on your minions, exactly how it's done for the Linux package managers:

salt '*' pkg.refresh_db

13.3. Generate Repo Cache File 177

http://wpkg.org/Category:Silent_Installers

Salt Documentation, Release 2014.7.6

13.4 Install Windows Soware

Now you can query the available version of Firefox using the Salt pkg module.

salt '*' pkg.available_version Firefox

{'Firefox': {'15.0.1': 'Mozilla Firefox 15.0.1 (x86 en-US)',
'16.0.2': 'Mozilla Firefox 16.0.2 (x86 en-US)',
'17.0.1': 'Mozilla Firefox 17.0.1 (x86 en-US)'}}

As you can see, there are three versions of Firefox available for installation. You can refer a soware package by its
name or its full_name surround by single quotes.

salt '*' pkg.install 'Firefox'

e above line will install the latest version of Firefox.

salt '*' pkg.install 'Firefox' version=16.0.2

e above line will install version 16.0.2 of Firefox.

If a different version of the package is already installed it will be replaced with the version in winrepo (only if the
package itself supports live updating).

You can also specify the full name:

salt '*' pkg.install 'Mozilla Firefox 17.0.1 (x86 en-US)'

13.5 Uninstall Windows Soware

Uninstall soware using the pkg module:

salt '*' pkg.remove 'Firefox'

salt '*' pkg.purge 'Firefox'

pkg.purge just executes pkg.remove on Windows. At some point in the future pkg.purge may direct the
installer to remove all configs and seings for soware packages that support that option.

13.6 Standalone Minion Salt Windows Repo Module

In order to facilitate managing a Salt Windows soware repo with Salt on a Standalone Minion on Windows, a new
module named winrepo has been added to Salt. winrepo matches what is available in the salt runner and allows you
to manage the Windows soware repo contents. Example: salt '*' winrepo.genrepo

13.7 Git Hosted Repo

Windows soware package definitions can also be hosted in one or more git repositories. e default repo is one
hosted on Github.com by SaltStack,Inc., which includes package definitions for open source soware. is repo
points to the HTTP or p locations of the installer files. Anyone is welcome to send a pull request to this repo to
add new package definitions. Browse the repo here: hps://github.com/saltstack/salt-winrepo .

178 Chapter 13. Windows Soware Repository

https://github.com/saltstack/salt-winrepo

Salt Documentation, Release 2014.7.6

Configure which git repos the master can search for package definitions by modifying or extending the
win_gitrepos configuration option list in the master config.

Checkout each git repo in win_gitrepos, compile your package repository cache and then refresh each minion's
package cache:

salt-run winrepo.update_git_repos
salt-run winrepo.genrepo
salt '*' pkg.refresh_db

13.8 Troubleshooting

13.8.1 Incorrect name/version

If the package seems to install properly, but salt reports a failure then it is likely you have a version or full_name
mismatch.

Check the exact full_name and version used by the package. Use pkg.list_pkgs to check that the names and
version exactly match what is installed.

13.8.2 Changes to sls files not being picked up

Ensure you have (re)generated the repository cache file and then updated the repository cache on the relevant
minions:

salt-run winrepo.genrepo
salt 'MINION' pkg.refresh_db

13.8.3 Packages management under Windows 2003

On windows server 2003, you need to install optional windows component ``wmi windows installer provider'' to
have full list of installed packages. If you don't have this, salt-minion can't report some installed soware.

13.8. Troubleshooting 179

Salt Documentation, Release 2014.7.6

180 Chapter 13. Windows Soware Repository

CHAPTER 14

Windows-specific Behaviour

Salt is capable of managing Windows systems, however due to various differences between the operating systems,
there are some things you need to keep in mind.

is document will contain any quirks that apply across Salt or generally across multiple module functions. Any
Windows-specific behavior for particular module functions will be documented in the module function documenta-
tion. erefore this document should be read in conjunction with the module function documentation.

14.1 Group parameter for files

Salt was originally wrien for managing Unix-based systems, and therefore the file module functions were designed
around that security model. Rather than trying to shoehorn that model on toWindows, Salt ignores these parameters
and makes non-applicable module functions unavailable instead.

One of the commonly ignored parameters is the group parameter for managing files. UnderWindows, while files do
have a `primary group' property, this is rarely used. It generally has no bearing on permissions unless intentionally
configured and is most commonly used to provide Unix compatibility (e.g. Services For Unix, NFS services).

Because of this, any file module functions that typically require a group, do not underWindows. Aempts to directly
use file module functions that operate on the group (e.g. file.chgrp) will return a pseudo-value and cause a log
message to appear. No group parameters will be acted on.

If you do want to access and change the `primary group' property and understand the implications, use the
file.get_pgid or file.get_pgroup functions or the pgroup parameter on the file.chown module
function.

14.2 Dealing with case-insensitive but case-preserving names

Windows is case-insensitive, but however preserves the case of names and it is this preserved form that is returned
from system functions. is causes some issues with Salt because it assumes case-sensitive names. ese issues
generally occur in the state functions and can cause bizarre looking errors.

To avoid such issues, always pretend Windows is case-sensitive and use the right case for names, e.g. specify
user=Administrator instead of user=administrator.

Follow issue 11801 for any changes to this behavior.

181

https://github.com/saltstack/salt/issues/11801

Salt Documentation, Release 2014.7.6

14.3 Dealing with various username forms

Salt does not understand the various forms that Windows usernames can come in, e.g. username, mydomainuser-
name, username@mydomain.tld can all refer to the same user. In fact, Salt generally only considers the raw username
value, i.e. the username without the domain or host information.

Using these alternative forms will likely confuse Salt and cause odd errors to happen. Use only the raw username
value in the correct case to avoid problems.

Follow issue 11801 for any changes to this behavior.

14.4 Specifying the None group

Each Windows system has built-in _None_ group. is is the default `primary group' for files for users not on a
domain environment.

Unfortunately, the word _None_ has special meaning in Python - it is a special value indicating `nothing', similar to
null or nil in other languages.

To specify the None group, it must be specified in quotes, e.g. ./salt '*' file.chpgrp C:\path\to\file
"'None'".

14.5 Symbolic link loops

Under Windows, if any symbolic link loops are detected or if there are too many levels of symlinks (defaults to 64),
an error is always raised.

For some functions, this behavior is different to the behavior on Unix platforms. In general, avoid symlink loops on
either platform.

14.6 Modifying security properties (ACLs) on files

ere is no support in Salt for modifying ACLs, and therefore no support for changing file permissions, besides
modifying the owner/user.

182 Chapter 14. Windows-specific Behaviour

mailto:username@mydomain.tld
https://github.com/saltstack/salt/issues/11801

CHAPTER 15

Salt Cloud

15.1 Geing Started

15.1.1 Install Salt Cloud

Salt Cloud is now part of Salt proper. It was merged in as of Salt version 2014.1.0.

On Ubuntu, install Salt Cloud by using following command:

sudo add-apt-repository ppa:saltstack/salt
sudo apt-get install salt-cloud

If using Salt Cloud on OS X, curl-ca-bundlemust be installed. Presently, this package is not available via brew,
but it is available using MacPorts:

sudo port install curl-ca-bundle

Salt Cloud depends on apache-libcloud. Libcloud can be installed via pip with pip install apache-
libcloud.

Installing Salt Cloud for development

Installing Salt for development enables Salt Cloud development as well, just make sure apache-libcloud is
installed as per above paragraph.

See these instructions: Installing Salt for development.

15.2 Using Salt Cloud

15.2.1 Salt Cloud basic usage

Salt Cloud needs, at least, one configured Provider and Profile to be functional.

Creating a VM

To create a VM with salt cloud, use command:

183

Salt Documentation, Release 2014.7.6

salt-cloud -p <profile> name_of_vm

Assuming there is a profile configured as following:

fedora_rackspace:
provider: rackspace
image: Fedora 17
size: 256 server
script: bootstrap-salt

en, the command to create new VM named fedora_http_01 is:

salt-cloud -p fedora_rackspace fedora_http_01

Destroying a VM

To destroy a created-by-salt-cloud VM, use command:

salt-cloud -d name_of_vm

For example, to delete the VM created on above example, use:

salt-cloud -d fedora_http_01

15.2.2 VM Profiles

Salt cloud designates virtual machines inside the profile configuration file. e profile configuration file defaults to
/etc/salt/cloud.profiles and is a yaml configuration. e syntax for declaring profiles is simple:

fedora_rackspace:
provider: rackspace
image: Fedora 17
size: 256 server
script: bootstrap-salt

It should be noted that the script option defaults to bootstrap-salt, and does not normally need to be
specified. Further examples in this document will not show the script option.

A few key pieces of information need to be declared and can change based on the public cloud provider. A number
of additional parameters can also be inserted:

centos_rackspace:
provider: rackspace
image: CentOS 6.2
size: 1024 server
minion:

master: salt.example.com
append_domain: webs.example.com
grains:

role: webserver

e image must be selected from available images. Similarly, sizes must be selected from the list of sizes. To get a
list of available images and sizes use the following command:

salt-cloud --list-images openstack
salt-cloud --list-sizes openstack

184 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Some parameters can be specified in the main Salt cloud configuration file and then are applied to all cloud profiles.
For instance if only a single cloud provider is being used then the provider option can be declared in the Salt cloud
configuration file.

Multiple Configuration Files

In addition to /etc/salt/cloud.profiles, profiles can also be specified in any file matching
cloud.profiles.d/*conf which is a sub-directory relative to the profiles configuration file(with the above
configuration file as an example, /etc/salt/cloud.profiles.d/*.conf). is allows for more extensible
configuration, and plays nicely with various configuration management tools as well as version control systems.

Larger Example

rhel_ec2:
provider: ec2
image: ami-e565ba8c
size: Micro Instance
minion:

cheese: edam

ubuntu_ec2:
provider: ec2
image: ami-7e2da54e
size: Micro Instance
minion:

cheese: edam

ubuntu_rackspace:
provider: rackspace
image: Ubuntu 12.04 LTS
size: 256 server
minion:

cheese: edam

fedora_rackspace:
provider: rackspace
image: Fedora 17
size: 256 server
minion:

cheese: edam

cent_linode:
provider: linode
image: CentOS 6.2 64bit
size: Linode 512

cent_gogrid:
provider: gogrid
image: 12834
size: 512MB

cent_joyent:
provider: joyent
image: centos-6
size: Small 1GB

15.2. Using Salt Cloud 185

Salt Documentation, Release 2014.7.6

15.2.3 Cloud Map File

A number of options exist when creating virtual machines. ey can be managed directly from profiles and the
command line execution, or a more complex map file can be created. e map file allows for a number of virtual
machines to be created and associated with specific profiles.

Map files have a simple format, specify a profile and then a list of virtual machines to make from said profile:

fedora_small:
- web1
- web2
- web3

fedora_high:
- redis1
- redis2
- redis3

cent_high:
- riak1
- riak2
- riak3

is map file can then be called to roll out all of these virtual machines. Map files are called from the salt-cloud
command with the -m option:

$ salt-cloud -m /path/to/mapfile

Remember, that as with direct profile provisioning the -P option can be passed to create the virtual machines in
parallel:

$ salt-cloud -m /path/to/mapfile -P

A map file can also be enforced to represent the total state of a cloud deployment by using the --hard option.
When using the hard option any vms that exist but are not specified in the map file will be destroyed:

$ salt-cloud -m /path/to/mapfile -P -H

Be careful with this argument, it is very dangerous! In fact, it is so dangerous that in order to use it, you must
explicitly enable it in the main configuration file.

enable_hard_maps: True

A map file can include grains and minion configuration options:

fedora_small:
- web1:

minion:
log_level: debug

grains:
cheese: tasty
omelet: du fromage

- web2:
minion:

log_level: warn
grains:

cheese: more tasty
omelet: with peppers

A map file may also be used with the various query options:

186 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

$ salt-cloud -m /path/to/mapfile -Q
{'ec2': {'web1': {'id': 'i-e6aqfegb',

'image': None,
'private_ips': [],
'public_ips': [],
'size': None,
'state': 0}},

'web2': {'Absent'}}

…or with the delete option:

$ salt-cloud -m /path/to/mapfile -d
The following virtual machines are set to be destroyed:

web1
web2

Proceed? [N/y]

Seing up New Salt Masters

Bootstrapping a new master in the map is as simple as:

fedora_small:
- web1:

make_master: True
- web2
- web3

Notice that ALL bootstrapped minions from the map will answer to the newly created salt-master.

To make any of the bootstrapped minions answer to the bootstrapping salt-master as opposed to the newly created
salt-master, as an example:

fedora_small:
- web1:

make_master: True
minion:

master: <the local master ip address>
local_master: True

- web2
- web3

e above says the minion running on the newly created salt-master responds to the local master, ie, the master used
to bootstrap these VMs.

Another example:

fedora_small:
- web1:

make_master: True
- web2
- web3:

minion:
master: <the local master ip address>
local_master: True

e above example makes the web3 minion answer to the local master, not the newly created master.

15.2. Using Salt Cloud 187

Salt Documentation, Release 2014.7.6

15.2.4 Cloud Actions

Once a VM has been created, there are a number of actions that can be performed on it. e ``reboot'' action can be
used across all providers, but all other actions are specific to the cloud provider. In order to perform an action, you
may specify it from the command line, including the name(s) of the VM to perform the action on:

$ salt-cloud -a reboot vm_name
$ salt-cloud -a reboot vm1 vm2 vm2

Or you may specify a map which includes all VMs to perform the action on:

$ salt-cloud -a reboot -m /path/to/mapfile

e following is a list of actions currently supported by salt-cloud:

all providers:
- reboot

ec2:
- start
- stop

joyent:
- stop

Another useful reference for viewingmore salt-cloud actions is the :ref:Salt Cloud FeatureMatrix <salt-cloud-feature-
matrix>

15.2.5 Cloud Functions

Cloud functions work much the same way as cloud actions, except that they don't perform an operation on a specific
instance, and so do not need a machine name to be specified. However, since they perform an operation on a specific
cloud provider, that provider must be specified.

$ salt-cloud -f show_image ec2 image=ami-fd20ad94

ere are three universal salt-cloud functions that are extremely useful for gathering information about instances
on a provider basis:

*list_nodes: Returns some general information about the instances for the given provider.
*list_nodes_full: Returns all information about the instances for the given provider.
*list_nodes_select: Returns select information about the instances for the given provider.

$ salt-cloud -f list_nodes linode
$ salt-cloud -f list_nodes_full linode
$ salt-cloud -f list_nodes_select linode

Another useful reference for viewing salt-cloud functions is the :ref:Salt Cloud Feature Matrix <salt-cloud-feature-
matrix>

15.3 Core Configuration

15.3.1 Core Configuration

A number of core configuration options and some options that are global to the VM profiles can be set in the cloud
configuration file. By default this file is located at /etc/salt/cloud.

188 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Thread Pool Size

When salt cloud is operating in parallel mode via the -P argument, you can control the thread pool size by specifying
the pool_size parameter with a positive integer value.

By default, the thread pool size will be set to the number of VMs that salt cloud is operating on.

pool_size: 10

Minion Configuration

e default minion configuration is set up in this file. Minions created by salt-cloud derive their configuration from
this file. Almost all parameters found in Configuring the Salt Minion can be used here.

minion:
master: saltmaster.example.com

In particular, this is the location to specify the location of the salt master and its listening port, if the port is not set
to the default.

Cloud Configuration Syntax

e data specific to interacting with public clouds is set up here.

Cloud provider configuration syntax can live in several places. e first is in /etc/salt/cloud:

/etc/salt/cloud
providers:

my-aws-migrated-config:
id: HJGRYCILJLKJYG
key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test
securitygroup: quick-start
private_key: /root/test.pem
provider: aws

Cloud provider configuration data can also be housed in /etc/salt/cloud.providers or any file matching
/etc/salt/cloud.providers.d/*.conf. All files in any of these locationswill be parsed for cloud provider
data.

Using the example configuration above:

/etc/salt/cloud.providers
or could be /etc/salt/cloud.providers.d/*.conf
my-aws-config:

id: HJGRYCILJLKJYG
key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test
securitygroup: quick-start
private_key: /root/test.pem
provider: aws

Note: Salt Cloud provider configurations within /etc/cloud.provider.d/ should not specify the
``providers starting key.

15.3. Core Configuration 189

Salt Documentation, Release 2014.7.6

To allow for a more extensible configuration, --providers-config, which defaults to
/etc/salt/cloud.providers, was added to the cli parser. It allows for the providers' configuration
to be added on a per-file basis.

It is also possible to have multiple cloud configuration blocks within the same alias block. For example:

production-config:
- id: HJGRYCILJLKJYG

key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test
securitygroup: quick-start
private_key: /root/test.pem
provider: aws

- user: example_user
apikey: 123984bjjas87034
provider: rackspace

However, using this configuration method requires a change with profile configuration blocks. e provider alias
needs to have the provider key value appended as in the following example:

rhel_aws_dev:
provider: production-config:aws
image: ami-e565ba8c
size: t1.micro

rhel_aws_prod:
provider: production-config:aws
image: ami-e565ba8c
size: High-CPU Extra Large Instance

database_prod:
provider: production-config:rackspace
image: Ubuntu 12.04 LTS
size: 256 server

Notice that because of the multiple entries, one has to be explicit about the provider alias and name, from the above
example, production-config: aws.

is data interactions with the salt-cloud binary regarding its --list-location, --list-images, and
--list-sizes which needs a cloud provider as an argument. e argument used should be the configured cloud
provider alias. If the provider alias has multiple entries, <provider-alias>: <provider-name> should be
used.

Pillar Configuration

It is possible to configure cloud providers using pillars. is is only used when inside the cloud module. You can
setup a variable called cloud that contains your profile and provider to pass that information to the cloud servers
instead of having to copy the full configuration to every minion. In your pillar file, you would use something like
this:

cloud:
ssh_key_name: saltstack
ssh_key_file: /root/.ssh/id_rsa
update_cachedir: True
diff_cache_events: True
change_password: True

190 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

providers:
my-nova:

identity_url: https://identity.api.rackspacecloud.com/v2.0/
compute_region: IAD
user: myuser
api_key: apikey
tenant: 123456
provider: nova

my-openstack:
identity_url: https://identity.api.rackspacecloud.com/v2.0/tokens
user: user2
apikey: apikey2
tenant: 654321
compute_region: DFW
provider: openstack
compute_name: cloudServersOpenStack

profiles:
ubuntu-nova:

provider: my-nova
size: performance1-8
image: bb02b1a3-bc77-4d17-ab5b-421d89850fca
script_args: git develop

ubuntu-openstack:
provider: my-openstack
size: performance1-8
image: bb02b1a3-bc77-4d17-ab5b-421d89850fca
script_args: git develop

Cloud Configurations

Rackspace

Rackspace cloud requires two configuration options; a user and an apikey:

my-rackspace-config:
user: example_user
apikey: 123984bjjas87034
provider: rackspace-config

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-rackspace-config.

Amazon AWS

A number of configuration options are required for Amazon AWS including id, key, keyname, sercurity-
group, and private_key:

my-aws-quick-start:
id: HJGRYCILJLKJYG
key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test

15.3. Core Configuration 191

Salt Documentation, Release 2014.7.6

securitygroup: quick-start
private_key: /root/test.pem
provider: aws

my-aws-default:
id: HJGRYCILJLKJYG
key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test
securitygroup: default
private_key: /root/test.pem
provider: aws

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be either provider: my-aws-quick-start or provider: my-aws-default.

Linode

Linode requires a single API key, but the default root password also needs to be set:

my-linode-config:
apikey: asldkgfakl;sdfjsjaslfjaklsdjf;askldjfaaklsjdfhasldsadfghdkf
password: F00barbaz
provider: linode

e password needs to be 8 characters and contain lowercase, uppercase and numbers.

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-linode-config

Joyent Cloud

e Joyent cloud requires three configuration parameters: e username and password that are used to log into the
Joyent system, as well as the location of the private SSH key associated with the Joyent account. e SSH key is
needed to send the provisioning commands up to the freshly created virtual machine.

my-joyent-config:
user: fred
password: saltybacon
private_key: /root/joyent.pem
provider: joyent

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-joyent-config

GoGrid

To use Salt Cloud with GoGrid, log into the GoGrid web interface and create an API key. Do this by clicking on ``My
Account'' and then going to the API Keys tab.

e apikey and the sharedsecret configuration parameters need to be set in the configuration file to enable
interfacing with GoGrid:

192 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

my-gogrid-config:
apikey: asdff7896asdh789
sharedsecret: saltybacon
provider: gogrid

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-gogrid-config.

OpenStack

OpenStack configuration differs between providers, and at the moment several options need to be specified. is
module has been officially tested against theHP and the Rackspace implementations, and some examples are provided
for both.

For HP
my-openstack-hp-config:

identity_url:
'https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/'
compute_name: Compute
compute_region: 'az-1.region-a.geo-1'
tenant: myuser-tenant1
user: myuser
ssh_key_name: mykey
ssh_key_file: '/etc/salt/hpcloud/mykey.pem'
password: mypass
provider: openstack

For Rackspace
my-openstack-rackspace-config:

identity_url: 'https://identity.api.rackspacecloud.com/v2.0/tokens'
compute_name: cloudServersOpenStack
protocol: ipv4
compute_region: DFW
protocol: ipv4
user: myuser
tenant: 5555555
password: mypass
provider: openstack

If you have an API key for your provider, it may be specified instead of a password:

my-openstack-hp-config:
apikey: 901d3f579h23c8v73q9

my-openstack-rackspace-config:
apikey: 901d3f579h23c8v73q9

Note: In the cloud profile that uses this provider configuration, the syntax for theprovider required fieldwould be
either provider: my-openstack-hp-config or provider: my-openstack-rackspace-config.

You will certainly need to configure the user, tenant and either password or apikey.

If your OpenStack instances only have private IP addresses and a CIDR range of private addresses are not reachable
from the salt-master, you may set your preference to have Salt ignore it:

15.3. Core Configuration 193

Salt Documentation, Release 2014.7.6

my-openstack-config:
ignore_cidr: 192.168.0.0/16

For in-house OpenStack Essex installation, libcloud needs the service_type :

my-openstack-config:
identity_url: 'http://control.openstack.example.org:5000/v2.0/'
compute_name : Compute Service
service_type : compute

DigitalOcean

Using Salt for DigitalOcean requires a client_key and an api_key. ese can be found in the DigitalOcean
web interface, in the ``My Seings'' section, under the API Access tab. .. code-block:: yaml

my-digitalocean-config: provider: digital_ocean client_key: wFGEwgregeqw3435gDger api_key:
GDE43t43REGTrkilg43934t34qT43t4dgegerGEgg location: New York 1

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-digital-ocean-config.

Parallels

Using Salt with Parallels requires a user, password and URL. ese can be obtained from your cloud provider.

my-parallels-config:
user: myuser
password: xyzzy
url: https://api.cloud.xmission.com:4465/paci/v1.0/
provider: parallels

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-parallels-config.

Proxmox

Using Salt with Proxmox requires a user, password, and URL. ese can be obtained from your cloud provider.
Both PAM and PVE users can be used.

my-proxmox-config:
provider: proxmox
user: saltcloud@pve
password: xyzzy
url: your.proxmox.host

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-proxmox-config.

194 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

LXC

e lxc driver uses saltify to install salt and aach the lxc container as a new lxc minion. As soon as we can, we
manage baremetal operation over SSH. You can also destroy those containers via this driver.

devhost10-lxc:
target: devhost10
provider: lxc

And in the map file:

devhost10-lxc:
provider: devhost10-lxc
from_container: ubuntu
backing: lvm
sudo: True
size: 3g
ip: 10.0.3.9
minion:

master: 10.5.0.1
master_port: 4506

lxc_conf:
- lxc.utsname: superlxc

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be ``provdier: devhost10-lxc`.

Saltify

eSaltify driver is a new, experimental driver for installing Salt on existingmachines (virtual or baremetal). Because
it does not use an actual cloud provider, it needs no configuration in the main cloud config file. However, it does
still require a profile to be set up, and is most useful when used inside a map file. e key parameters to be set are
ssh_host, ssh_username and either ssh_keyfile or ssh_password. ese may all be set in either the
profile or the map. An example configuration might use the following in cloud.profiles:

make_salty:
provider: saltify

And in the map file:

make_salty:
- myinstance:

ssh_host: 54.262.11.38
ssh_username: ubuntu
ssh_keyfile: '/etc/salt/mysshkey.pem'
sudo: True

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: make_salty.

Extending Profiles and Cloud Providers Configuration

As of 0.8.7, the option to extend both the profiles and cloud providers configuration and avoid duplication was added.
e extends feature works on the current profiles configuration, but, regarding the cloud providers configuration,

15.3. Core Configuration 195

Salt Documentation, Release 2014.7.6

only works in the new syntax and respective configuration files, i.e. /etc/salt/salt/cloud.providers or
/etc/salt/cloud.providers.d/*.conf.

Note: Extending cloud profiles and providers is not recursive. For example, a profile that is extended by a second
profile is possible, but the second profile cannot be extended by a third profile.

Also, if a profile (or provider) is extending another profile and each contains a list of values, the lists from the
extending profile will override the list from the original profile. e lists are not merged together.

Extending Profiles

Some example usage on how to use extends with profiles. Consider /etc/salt/salt/cloud.profiles
containing:

development-instances:
provider: my-ec2-config
size: Micro Instance
ssh_username: ec2_user
securitygroup:

- default
deploy: False

Amazon-Linux-AMI-2012.09-64bit:
image: ami-54cf5c3d
extends: development-instances

Fedora-17:
image: ami-08d97e61
extends: development-instances

CentOS-5:
provider: my-aws-config
image: ami-09b61d60
extends: development-instances

e above configuration, once parsed would generate the following profiles data:

[{'deploy': False,
'image': 'ami-08d97e61',
'profile': 'Fedora-17',
'provider': 'my-ec2-config',
'securitygroup': ['default'],
'size': 'Micro Instance',
'ssh_username': 'ec2_user'},

{'deploy': False,
'image': 'ami-09b61d60',
'profile': 'CentOS-5',
'provider': 'my-aws-config',
'securitygroup': ['default'],
'size': 'Micro Instance',
'ssh_username': 'ec2_user'},

{'deploy': False,
'image': 'ami-54cf5c3d',
'profile': 'Amazon-Linux-AMI-2012.09-64bit',
'provider': 'my-ec2-config',
'securitygroup': ['default'],
'size': 'Micro Instance',

196 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

'ssh_username': 'ec2_user'},
{'deploy': False,
'profile': 'development-instances',
'provider': 'my-ec2-config',
'securitygroup': ['default'],
'size': 'Micro Instance',
'ssh_username': 'ec2_user'}]

Prey cool right?

Extending Providers

Some example usage on how to use extends within the cloud providers configuration. Consider
/etc/salt/salt/cloud.providers containing:

my-develop-envs:
- id: HJGRYCILJLKJYG

key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test
securitygroup: quick-start
private_key: /root/test.pem
location: ap-southeast-1
availability_zone: ap-southeast-1b
provider: aws

- user: myuser@mycorp.com
password: mypass
ssh_key_name: mykey
ssh_key_file: '/etc/salt/ibm/mykey.pem'
location: Raleigh
provider: ibmsce

my-productions-envs:
- extends: my-develop-envs:ibmsce

user: my-production-user@mycorp.com
location: us-east-1
availability_zone: us-east-1

e above configuration, once parsed would generate the following providers data:

'providers': {
'my-develop-envs': [

{'availability_zone': 'ap-southeast-1b',
'id': 'HJGRYCILJLKJYG',
'key': 'kdjgfsgm;woormgl/aserigjksjdhasdfgn',
'keyname': 'test',
'location': 'ap-southeast-1',
'private_key': '/root/test.pem',
'provider': 'aws',
'securitygroup': 'quick-start'

},
{'location': 'Raleigh',
'password': 'mypass',
'provider': 'ibmsce',
'ssh_key_file': '/etc/salt/ibm/mykey.pem',
'ssh_key_name': 'mykey',

15.3. Core Configuration 197

Salt Documentation, Release 2014.7.6

'user': 'myuser@mycorp.com'
}

],
'my-productions-envs': [

{'availability_zone': 'us-east-1',
'location': 'us-east-1',
'password': 'mypass',
'provider': 'ibmsce',
'ssh_key_file': '/etc/salt/ibm/mykey.pem',
'ssh_key_name': 'mykey',
'user': 'my-production-user@mycorp.com'

}
]

}

15.4 Windows Configuration

15.4.1 Spinning up Windows Minions

It is possible to use Salt Cloud to spin up Windows instances, and then install Salt on them. is functionality is
available on all cloud providers that are supported by Salt Cloud. However, it may not necessarily be available on
all Windows images.

Requirements

Salt Cloud makes use of smbclient and winexe to set up the Windows Salt Minion installer. smbclient may be part
of either the samba package, or its own smbclient package, depending on the distribution. winexe is less commonly
available in distribution-specific repositories. However, it is currently being built for various distributions in 3rd
party channels:

• RPMs at pbone.net

• OpenSuse Build Service

Additionally, a copy of the Salt Minion Windows installer must be present on the system on which Salt Cloud is
running. is installer may be downloaded from saltstack.com:

• SaltStack Download Area

Firewall Seings

Because Salt Cloud makes use of smbclient and winexe, port 445 must be open on the target image. is port is not
generally open by default on a standard Windows distribution, and care must be taken to use an image in which this
port is open, or the Windows firewall is disabled.

Configuration

Configuration is set as usual, with some extra configuration seings. e location of the Windows installer on the
machine that Salt Cloud is running on must be specified. is may be done in any of the regular configuration files
(main, providers, profiles, maps). For example:

Seing the installer in /etc/salt/cloud.providers:

198 Chapter 15. Salt Cloud

http://rpm.pbone.net/index.php3?stat=3&search=winexe
http://software.opensuse.org/package/winexe
http://docs.saltstack.com/downloads/

Salt Documentation, Release 2014.7.6

my-softlayer:
provider: softlayer
user: MYUSER1138
apikey: 'e3b68aa711e6deadc62d5b76355674beef7cc3116062ddbacafe5f7e465bfdc9'
minion:

master: saltmaster.example.com
win_installer: /root/Salt-Minion-0.17.0-AMD64-Setup.exe
win_username: Administrator
win_password: letmein

e default Windows user is Administrator, and the default Windows password is blank.

15.5 Cloud Provider Specifics

15.5.1 Geing Started With Aliyun ECS

e Aliyun ECS (Elastic Computer Service) is one of the most popular public cloud providers in China. is cloud
provider can be used to manage aliyun instance using salt-cloud.

hp://www.aliyun.com/

Dependencies

is driver requires the Python requests library to be installed.

Configuration

Using Salt for Aliyun ECS requires aliyun access key id and key secret. ese can be found in the aliyunweb interface,
in the ``User Center'' section, under ``My Service'' tab.

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-aliyun-config:
aliyun Access Key ID
id: wDGEwGregedg3435gDgxd
aliyun Access Key Secret
key: GDd45t43RDBTrkkkg43934t34qT43t4dgegerGEgg
location: cn-qingdao
provider: aliyun

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or in the /etc/salt/cloud.profiles.d/ di-
rectory:

aliyun_centos:
provider: my-aliyun-config
size: ecs.t1.small
location: cn-qingdao

15.5. Cloud Provider Specifics 199

http://www.aliyun.com/

Salt Documentation, Release 2014.7.6

securitygroup: G1989096784427999
image: centos6u3_64_20G_aliaegis_20130816.vhd

Sizes can be obtained using the --list-sizes option for the salt-cloud command:

salt-cloud --list-sizes my-aliyun-config
my-aliyun-config:

aliyun:

ecs.c1.large:

CpuCoreCount:

8
InstanceTypeId:

ecs.c1.large
MemorySize:

16.0

...SNIP...

Images can be obtained using the --list-images option for the salt-cloud command:

salt-cloud --list-images my-aliyun-config
my-aliyun-config:

aliyun:

centos5u8_64_20G_aliaegis_20131231.vhd:

Architecture:

x86_64
Description:

ImageId:
centos5u8_64_20G_aliaegis_20131231.vhd

ImageName:
CentOS 5.8 64�

ImageOwnerAlias:
system

ImageVersion:
1.0

OSName:
CentOS 5.8 64�

Platform:
CENTOS5

Size:
20

Visibility:
public

...SNIP...

Locations can be obtained using the --list-locations option for the salt-cloud command:

my-aliyun-config:

aliyun:

cn-beijing:

200 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

LocalName:

��
RegionId:

cn-beijing
cn-hangzhou:

LocalName:

��
RegionId:

cn-hangzhou
cn-hongkong:

LocalName:

��
RegionId:

cn-hongkong
cn-qingdao:

LocalName:

��
RegionId:

cn-qingdao

Security Group can be obtained using the -f list_securitygroup option for the salt-cloud command:

salt-cloud --location=cn-qingdao -f list_securitygroup my-aliyun-config
my-aliyun-config:

aliyun:

G1989096784427999:

Description:

G1989096784427999
SecurityGroupId:

G1989096784427999

Note: Aliyun ECS REST API documentation is available from Aliyun ECS API.

15.5.2 Geing Started With Azure

New in version 2014.1.0.

Azure is a cloud service by Microso providing virtual machines, SQL services, media services, and more. is
document describes how to use Salt Cloud to create a virtual machine on Azure, with Salt installed.

More information about Azure is located at hp://www.windowsazure.com/.

Dependencies

• e Azure Python SDK.

• A Microso Azure account

• OpenSSL (to generate the certificates)

15.5. Cloud Provider Specifics 201

http://help.aliyun.com/list/11113464.html?spm=5176.7224429.1997282881.55.J9XhVL
http://www.windowsazure.com/
https://pypi.python.org/pypi/azure

Salt Documentation, Release 2014.7.6

• Salt

Configuration

Set up the provider config at /etc/salt/cloud.providers.d/azure.conf:

Note: This example is for /etc/salt/cloud.providers.d/azure.conf

my-azure-config:
provider: azure
subscription_id: 3287abc8-f98a-c678-3bde-326766fd3617
certificate_path: /etc/salt/azure.pem

Set up the location of the salt master
#
minion:

master: saltmaster.example.com

provider: azure

Optional
management_host: management.core.windows.net

e certificate used must be generated by the user. OpenSSL can be used to create the management certificates. Two
certificates are needed: a .cer file, which is uploaded to Azure, and a .pem file, which is stored locally.

To create the .pem file, execute the following command:

openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout /etc/salt/azure.pem -out /etc/salt/azure.pem

To create the .cer file, execute the following command:

openssl x509 -inform pem -in /etc/salt/azure.pem -outform der -out /etc/salt/azure.cer

Aer creating these files, the .cer file will need to be uploaded to Azure via the ``Upload a Management Certificate''
action of the ``Management Certificates'' tab within the ``Seings'' section of the management portal.

Optionally, a management_host may be configured, if necessary for the region.

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles:

azure-ubuntu:
provider: my-azure-config
image: 'b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-12_04_3-LTS-amd64-server-20131003-en-us-30GB'
size: Small
location: 'East US'
ssh_username: azureuser
ssh_password: verybadpass
slot: production
media_link: 'http://portalvhdabcdefghijklmn.blob.core.windows.net/vhds'

ese options are described in more detail below. Once configured, the profile can be realized with a salt command:

salt-cloud -p azure-ubuntu newinstance

202 Chapter 15. Salt Cloud

https://github.com/saltstack/salt

Salt Documentation, Release 2014.7.6

is will create an salt minion instance named newinstance in Azure. If the command was executed on the
salt-master, its Salt key will automatically be signed on the master.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt newinstance test.ping

Profile Options

e following options are currently available for Azure.

provider

e name of the provider as configured in /etc/salt/cloud.providers.d/azure.conf.

image

e name of the image to use to create a VM. Available images can be viewed using the following command:

salt-cloud --list-images my-azure-config

size

e name of the size to use to create a VM. Available sizes can be viewed using the following command:

salt-cloud --list-sizes my-azure-config

location

e name of the location to create a VM in. Available locations can be viewed using the following command:

salt-cloud --list-locations my-azure-config

ssh_username

e user to use to log into the newly-created VM to install Salt.

ssh_password

e password to use to log into the newly-created VM to install Salt.

slot

e environment to which the hosted service is deployed. Valid values are staging or production. When set to
production, the resulting URL of the new VM will be <vm_name>.cloudapp.net. When set to staging, the resulting
URL will contain a generated hash instead.

15.5. Cloud Provider Specifics 203

Salt Documentation, Release 2014.7.6

media_link

is is the URL of the container that will store the disk that this VM uses. Currently, this container must already
exist. If a VM has previously been created in the associated account, a container should already exist. In the web
interface, go into the Storage area and click one of the available storage selections. Click the Containers link, and
then copy the URL from the container that will be used. It generally looks like:

http://portalvhdabcdefghijklmn.blob.core.windows.net/vhds

Show Instance

is action is a thin wrapper around --full-query, which displays details on a single instance only. In an
environment with several machines, this will save a user from having to sort through all instance data, just to
examine a single instance.

salt-cloud -a show_instance myinstance

15.5.3 Geing Started With DigitalOcean

DigitalOcean is a public cloud provider that specializes in Linux instances.

Configuration

Using Salt for DigitalOcean requires a client_key, an api_key, an ssh_key_file, and an ssh_key_name. e client_key
and api_key can be found in the Digital Ocean web interface, in the ``My Seings'' section, under the API Access
tab. e ssh_key_name can be found under the ``SSH Keys'' section.

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-digitalocean-config:
provider: digital_ocean
client_key: wFGEwgregeqw3435gDger
api_key: GDE43t43REGTrkilg43934t34qT43t4dgegerGEgg
ssh_key_file: /path/to/ssh/key/file
ssh_key_name: my-key-name
location: New York 1

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or in the /etc/salt/cloud.profiles.d/ di-
rectory:

digitalocean-ubuntu:
provider: my-digitalocean-config
image: Ubuntu 14.04 x32
size: 512MB
location: New York 1
private_networking: True
backups_enabled: True

204 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Sizes can be obtained using the --list-sizes option for the salt-cloud command:

salt-cloud --list-sizes my-digitalocean-config
my-digitalocean-config:

digital_ocean:

512MB:

cost_per_hour:

0.00744
cost_per_month:

5.0
cpu:

1
disk:

20
id:

66
memory:

512
name:

512MB
slug:

None
...SNIP...

Images can be obtained using the --list-images option for the salt-cloud command:

salt-cloud --list-images my-digitalocean-config
my-digitalocean-config:

digital_ocean:

Arch Linux 2013.05 x64:

distribution:

Arch Linux
id:

350424
name:

Arch Linux 2013.05 x64
public:

True
slug:

None
...SNIP...

Note: DigitalOcean's concept of Applications is nothingmore than a pre-configured instance (same as a normal
Droplet). Youwill find examples suchDocker 0.7 Ubuntu 13.04 x64 andWordpress on Ubuntu 12.10
when using the --list-images option. ese names can be used just like the rest of the standard instances when
specifying an image in the cloud profile configuration.

Note: Additional documentation is available from DigitalOcean.

15.5. Cloud Provider Specifics 205

https://www.digitalocean.com/community/articles/automated-provisioning-of-digitalocean-cloud-servers-with-salt-cloud-on-ubuntu-12-04

Salt Documentation, Release 2014.7.6

15.5.4 Geing Started With AWS EC2

Amazon EC2 is a very widely used public cloud platform and one of the core platforms Salt Cloud has been built to
support.

Previously, the suggested provider for AWS EC2 was the aws provider. is has been deprecated in favor of the
ec2 provider. Configuration using the old aws provider will still function, but that driver is no longer in active
development.

Dependencies

is driver requires the Python requests library to be installed.

Configuration

e following example illustrates some of the options that can be set. ese parameters are discussed in more detail
below.

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-ec2-southeast-public-ips:
Set up the location of the salt master
#
minion:

master: saltmaster.example.com

Set up grains information, which will be common for all nodes
using this provider
grains:

node_type: broker
release: 1.0.1

Specify whether to use public or private IP for deploy script.
#
Valid options are:
private_ips - The salt-master is also hosted with EC2
public_ips - The salt-master is hosted outside of EC2
#
ssh_interface: public_ips

Set the EC2 access credentials (see below)
#
id: HJGRYCILJLKJYG
key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'

Make sure this key is owned by root with permissions 0400.
#
private_key: /etc/salt/my_test_key.pem
keyname: my_test_key
securitygroup: default

Optionally configure default region
Use salt-cloud --list-locations <provider> to obtain valid regions
#
location: ap-southeast-1

206 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

availability_zone: ap-southeast-1b

Configure which user to use to run the deploy script. This setting is
dependent upon the AMI that is used to deploy. It is usually safer to
configure this individually in a profile, than globally. Typical users
are:
#
Amazon Linux -> ec2-user
RHEL -> ec2-user
CentOS -> ec2-user
Ubuntu -> ubuntu
#
ssh_username: ec2-user

Optionally add an IAM profile
iam_profile: 'arn:aws:iam::123456789012:instance-profile/ExampleInstanceProfile'

provider: ec2

my-ec2-southeast-private-ips:
Set up the location of the salt master
#
minion:

master: saltmaster.example.com

Specify whether to use public or private IP for deploy script.
#
Valid options are:
private_ips - The salt-master is also hosted with EC2
public_ips - The salt-master is hosted outside of EC2
#
ssh_interface: private_ips

Set the EC2 access credentials (see below)
#
id: HJGRYCILJLKJYG
key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'

Make sure this key is owned by root with permissions 0400.
#
private_key: /etc/salt/my_test_key.pem
keyname: my_test_key
securitygroup: default

Optionally configure default region
#
location: ap-southeast-1
availability_zone: ap-southeast-1b

Configure which user to use to run the deploy script. This setting is
dependent upon the AMI that is used to deploy. It is usually safer to
configure this individually in a profile, than globally. Typical users
are:
#
Amazon Linux -> ec2-user
RHEL -> ec2-user
CentOS -> ec2-user

15.5. Cloud Provider Specifics 207

Salt Documentation, Release 2014.7.6

Ubuntu -> ubuntu
#
ssh_username: ec2-user

Optionally add an IAM profile
iam_profile: 'my other profile name'

provider: ec2

Access Credentials

e id and key seings may be found in the Security Credentials area of the AWS Account page:

hps://portal.aws.amazon.com/gp/aws/securityCredentials

Both are located in the Access Credentials area of the page, under the Access Keys tab. e id seing is labeled
Access Key ID, and the key seing is labeled Secret Access Key.

Key Pairs

In order to create an instance with Salt installed and configured, a key pair will need to be created. is can be done
in the EC2 Management Console, in the Key Pairs area. ese key pairs are unique to a specific region. Keys in the
us-east-1 region can be configured at:

hps://console.aws.amazon.com/ec2/home?region=us-east-1#s=KeyPairs

Keys in the us-west-1 region can be configured at

hps://console.aws.amazon.com/ec2/home?region=us-west-1#s=KeyPairs

…and so on. When creating a key pair, the browser will prompt to download a pem file. is file must be placed in
a directory accessible by Salt Cloud, with permissions set to either 0400 or 0600.

Security Groups

An instance on EC2 needs to belong to a security group. Like key pairs, these are unique to a specific region. ese
are also configured in the EC2 Management Console. Security groups for the us-east-1 region can be configured at:

hps://console.aws.amazon.com/ec2/home?region=us-east-1#s=SecurityGroups

…and so on.

A security group defines firewall rules which an instance will adhere to. If the salt-master is configured outside of
EC2, the security group must open the SSH port (usually port 22) in order for Salt Cloud to install Salt.

IAM Profile

Amazon EC2 instances support the concept of an instance profile, which is a logical container for the IAM role.
At the time that you launch an EC2 instance, you can associate the instance with an instance profile, which in turn
corresponds to the IAM role. Any soware that runs on the EC2 instance is able to access AWS using the permissions
associated with the IAM role.

Scaffolding the profile is a 2-step configuration process:

1. Configure an IAM Role from the IAM Management Console.

2. Aach this role to a new profile. It can be done with the AWS CLI:

208 Chapter 15. Salt Cloud

https://portal.aws.amazon.com/gp/aws/securityCredentials
https://console.aws.amazon.com/ec2/home?region=us-east-1#s=KeyPairs
https://console.aws.amazon.com/ec2/home?region=us-west-1#s=KeyPairs
https://console.aws.amazon.com/ec2/home?region=us-east-1#s=SecurityGroups
http://docs.aws.amazon.com/IAM/latest/UserGuide/instance-profiles.html
https://console.aws.amazon.com/iam/home?#roles
http://docs.aws.amazon.com/cli/latest/index.html

Salt Documentation, Release 2014.7.6

> aws iam create-instance-profile --instance-profile-name PROFILE_NAME
> aws iam add-role-to-instance-profile --instance-profile-name PROFILE_NAME --role-name ROLE_NAME

Once the profile is created, you can use the PROFILE_NAME to configure your cloud profiles.

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles:

base_ec2_private:
provider: my-ec2-southeast-private-ips
image: ami-e565ba8c
size: Micro Instance
ssh_username: ec2-user

base_ec2_public:
provider: my-ec2-southeast-public-ips
image: ami-e565ba8c
size: Micro Instance
ssh_username: ec2-user

base_ec2_db:
provider: my-ec2-southeast-public-ips
image: ami-e565ba8c
size: m1.xlarge
ssh_username: ec2-user
volumes:

- { size: 10, device: /dev/sdf }
- { size: 10, device: /dev/sdg, type: io1, iops: 1000 }
- { size: 10, device: /dev/sdh, type: io1, iops: 1000 }

optionally add tags to profile:
tag: {'Environment': 'production', 'Role': 'database'}
force grains to sync after install
sync_after_install: grains

base_ec2_vpc:
provider: my-ec2-southeast-public-ips
image: ami-a73264ce
size: m1.xlarge
ssh_username: ec2-user
script: /etc/salt/cloud.deploy.d/user_data.sh
network_interfaces:

- DeviceIndex: 0
PrivateIpAddresses:

- Primary: True
#auto assign public ip (not EIP)
AssociatePublicIpAddress: True
SubnetId: subnet-813d4bbf
SecurityGroupId:

- sg-750af413
volumes:

- { size: 10, device: /dev/sdf }
- { size: 10, device: /dev/sdg, type: io1, iops: 1000 }
- { size: 10, device: /dev/sdh, type: io1, iops: 1000 }

del_root_vol_on_destroy: True
del_all_vol_on_destroy: True
tag: {'Environment': 'production', 'Role': 'database'}

15.5. Cloud Provider Specifics 209

Salt Documentation, Release 2014.7.6

sync_after_install: grains

e profile can now be realized with a salt command:

salt-cloud -p base_ec2 ami.example.com
salt-cloud -p base_ec2_public ami.example.com
salt-cloud -p base_ec2_private ami.example.com

is will create an instance named ami.example.com in EC2. e minion that is installed on this instance will
have an id of ami.example.com. If the command was executed on the salt-master, its Salt key will automatically
be signed on the master.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt 'ami.example.com' test.ping

Required Seings

e following seings are always required for EC2:

Set the EC2 login data
my-ec2-config:

id: HJGRYCILJLKJYG
key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test
securitygroup: quick-start
private_key: /root/test.pem
provider: ec2

Optional Seings

EC2 allows a location to be set for servers to be deployed in. Availability zones exist inside regions, and may be
added to increase specificity.

my-ec2-config:
Optionally configure default region
location: ap-southeast-1
availability_zone: ap-southeast-1b

EC2 instances can have a public or private IP, or both. When an instance is deployed, Salt Cloud needs to log into
it via SSH to run the deploy script. By default, the public IP will be used for this. If the salt-cloud command is run
from another EC2 instance, the private IP should be used.

my-ec2-config:
Specify whether to use public or private IP for deploy script
private_ips or public_ips
ssh_interface: public_ips

Many EC2 instances do not allow remote access to the root user by default. Instead, another user must be used to run
the deploy script using sudo. Some common usernames include ec2-user (for Amazon Linux), ubuntu (for Ubuntu
instances), admin (official Debian) and bitnami (for images provided by Bitnami).

my-ec2-config:
Configure which user to use to run the deploy script
ssh_username: ec2-user

210 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Multiple usernames can be provided, in which case Salt Cloud will aempt to guess the correct username. is is
mostly useful in the main configuration file:

my-ec2-config:
ssh_username:

- ec2-user
- ubuntu
- admin
- bitnami

Multiple security groups can also be specified in the same fashion:

my-ec2-config:
securitygroup:

- default
- extra

Your instances may optionally make use of EC2 Spot Instances. e following example will request that spot in-
stances be used and your maximum bid will be $0.10. Keep in mind that different spot prices may be needed based
on the current value of the various EC2 instance sizes. You can check current and past spot instance pricing via the
EC2 API or AWS Console.

my-ec2-config:
spot_config:

spot_price: 0.10

By default, the spot instance type is set to `one-time', meaning it will be launched and, if it's ever terminated for
whatever reason, it will not be recreated. If you would like your spot instances to be relaunched aer a termination
(by your or AWS), set the type to `persistent'.

NOTE: Spot instances are a great way to save a bit of money, but you do run the risk of losing your spot instances if
the current price for the instance size goes above your maximum bid.

e following parameters may be set in the cloud configuration file to control various aspects of the spot instance
launching:

• wait_for_spot_timeout: seconds to wait before giving up on spot instance launch (default=600)

• wait_for_spot_interval: seconds to wait in between polling requests to determine if a spot instance
is available (default=30)

• wait_for_spot_interval_multiplier: a multiplier to add to the interval in between requests,
which is useful if AWS is throling your requests (default=1)

• wait_for_spot_max_failures: maximum number of failures before giving up on launching your spot
instance (default=10)

If you find that you're being throled by AWS while polling for spot instances, you can set the following in your
core cloud configuration file that will double the polling interval aer each request to AWS.

wait_for_spot_interval: 1
wait_for_spot_interval_multiplier: 2

See the AWS Spot Instances documentation for more information.

Block device mappings enable you to specify additional EBS volumes or instance store volumes when the instance
is launched. is seing is also available on each cloud profile. Note that the number of instance stores varies by
instance type. If more mappings are provided than are supported by the instance type, mappings will be created in
the order provided and additional mappings will be ignored. Consult the AWS documentation for a listing of the
available instance stores, device names, and mount points.

15.5. Cloud Provider Specifics 211

http://aws.amazon.com/ec2/purchasing-options/spot-instances/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

Salt Documentation, Release 2014.7.6

my-ec2-config:
block_device_mappings:

- DeviceName: /dev/sdb
VirtualName: ephemeral0

- DeviceName: /dev/sdc
VirtualName: ephemeral1

You can also use block device mappings to change the size of the root device at the provisioning time. For example,
assuming the root device is `/dev/sda', you can set its size to 100G by using the following configuration.

my-ec2-config:
block_device_mappings:

- DeviceName: /dev/sda
Ebs.VolumeSize: 100

Existing EBS volumes may also be aached (not created) to your instances or you can create new EBS volumes based
on EBS snapshots. To simply aach an existing volume use the volume_id parameter.

device: /dev/xvdj
mount_point: /mnt/my_ebs
volume_id: vol-12345abcd

Or, to create a volume from an EBS snapshot, use the snapshot parameter.

device: /dev/xvdj
mount_point: /mnt/my_ebs
snapshot: snap-abcd12345

Note that volume_id will take precedence over the snapshot parameter.

Tags can be set once an instance has been launched.

my-ec2-config:
tag:

tag0: value
tag1: value

Modify EC2 Tags

One of the features of EC2 is the ability to tag resources. In fact, under the hood, the names given to EC2 instances
by salt-cloud are actually just stored as a tag called Name. Salt Cloud has the ability to manage these tags:

salt-cloud -a get_tags mymachine
salt-cloud -a set_tags mymachine tag1=somestuff tag2='Other stuff'
salt-cloud -a del_tags mymachine tag1,tag2,tag3

It is possible to manage tags on any resource in EC2 with a Resource ID, not just instances:

salt-cloud -f get_tags my_ec2 resource_id=af5467ba
salt-cloud -f set_tags my_ec2 resource_id=af5467ba tag1=somestuff
salt-cloud -f del_tags my_ec2 resource_id=af5467ba tag1,tag2,tag3

Rename EC2 Instances

As mentioned above, EC2 instances are named via a tag. However, renaming an instance by renaming its tag will
cause the salt keys to mismatch. A rename function exists which renames both the instance, and the salt keys.

212 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

salt-cloud -a rename mymachine newname=yourmachine

EC2 Termination Protection

EC2 allows the user to enable and disable termination protection on a specific instance. An instance with this
protection enabled cannot be destroyed.

salt-cloud -a enable_term_protect mymachine
salt-cloud -a disable_term_protect mymachine

Rename on Destroy

When instances on EC2 are destroyed, there will be a lag between the time that the action is sent, and the time that
Amazon cleans up the instance. During this time, the instance still retails a Name tag, which will cause a collision
if the creation of an instance with the same name is aempted before the cleanup occurs. In order to avoid such
collisions, Salt Cloud can be configured to rename instances when they are destroyed. e new name will look
something like:

myinstance-DEL20f5b8ad4eb64ed88f2c428df80a1a0c

In order to enable this, add rename_on_destroy line to the main configuration file:

my-ec2-config:
rename_on_destroy: True

Listing Images

Normally, images can be queried on a cloud provider by passing the --list-images argument to Salt Cloud. is
still holds true for EC2:

salt-cloud --list-images my-ec2-config

However, the full list of images on EC2 is extremely large, and querying all of the available images may cause Salt
Cloud to behave as if frozen. erefore, the default behavior of this option may be modified, by adding an owner
argument to the provider configuration:

owner: aws-marketplace

e possible values for this seing are amazon, aws-marketplace, self, <AWS account ID> or all. e
default seing is amazon. Take note that all and aws-marketplace may cause Salt Cloud to appear as if it is
freezing, as it tries to handle the large amount of data.

It is also possible to perform this query using different seings without modifying the configuration files. To do this,
call the avail_images function directly:

salt-cloud -f avail_images my-ec2-config owner=aws-marketplace

EC2 Images

e following are lists of available AMI images, generally sorted by OS. ese lists are on 3rd-party websites, are not
managed by Salt Stack in any way. ey are provided here as a reference for those who are interested, and contain
no warranty (express or implied) from anyone affiliated with Salt Stack. Most of them have never been used, much
less tested, by the Salt Stack team.

15.5. Cloud Provider Specifics 213

Salt Documentation, Release 2014.7.6

• Arch Linux

• FreeBSD

• Fedora

• CentOS

• Ubuntu

• Debian

• OmniOS

• All Images on Amazon

show_image

is is a function that describes an AMI on EC2. is will give insight as to the defaults that will be applied to an
instance using a particular AMI.

$ salt-cloud -f show_image ec2 image=ami-fd20ad94

show_instance

is action is a thin wrapper around --full-query, which displays details on a single instance only. In an
environment with several machines, this will save a user from having to sort through all instance data, just to
examine a single instance.

$ salt-cloud -a show_instance myinstance

ebs_optimized

is argument enables switching of the EbsOptimized seing which default to `false'. Indicates whether the instance
is optimized for EBS I/O. is optimization provides dedicated throughput to Amazon EBS and an optimized config-
uration stack to provide optimal Amazon EBS I/O performance. is optimization isn't available with all instance
types. Additional usage charges apply when using an EBS-optimized instance.

is seing can be added to the profile or map file for an instance.

If set to True, this seing will enable an instance to be EbsOptimized

ebs_optimized: True

is can also be set as a cloud provider seing in the EC2 cloud configuration:

my-ec2-config:
ebs_optimized: True

del_root_vol_on_destroy

is argument overrides the default DeleteOnTermination seing in the AMI for the EBS root volumes for an in-
stance. Many AMIs contain `false' as a default, resulting in orphaned volumes in the EC2 account, which may
unknowingly be charged to the account. is seing can be added to the profile or map file for an instance.

If set, this seing will apply to the root EBS volume

214 Chapter 15. Salt Cloud

https://wiki.archlinux.org/index.php/Arch_Linux_AMIs_for_Amazon_Web_Services
http://www.daemonology.net/freebsd-on-ec2/
https://fedoraproject.org/wiki/Cloud_images
http://wiki.centos.org/Cloud/AWS
http://cloud-images.ubuntu.com/locator/ec2/
https://wiki.debian.org/Cloud/AmazonEC2Image
http://omnios.omniti.com/wiki.php/Installation#IntheCloud
https://aws.amazon.com/marketplace

Salt Documentation, Release 2014.7.6

del_root_vol_on_destroy: True

is can also be set as a cloud provider seing in the EC2 cloud configuration:

my-ec2-config:
del_root_vol_on_destroy: True

del_all_vols_on_destroy

is argument overrides the default DeleteOnTermination seing in the AMI for the not-root EBS volumes for an
instance. Many AMIs contain `false' as a default, resulting in orphaned volumes in the EC2 account, which may
unknowingly be charged to the account. is seing can be added to the profile or map file for an instance.

If set, this seing will apply to any (non-root) volumes that were created by salt-cloud using the `volumes' seing.

e volumes will not be deleted under the following conditions * If a volume is detached before terminating the
instance * If a volume is created without this seing and aached to the instance

del_all_vols_on_destroy: True

is can also be set as a cloud provider seing in the EC2 cloud configuration:

my-ec2-config:
del_all_vols_on_destroy: True

e seing for this may be changed on all volumes of an existing instance using one of the following commands:

salt-cloud -a delvol_on_destroy myinstance
salt-cloud -a keepvol_on_destroy myinstance
salt-cloud -a show_delvol_on_destroy myinstance

e seing for this may be changed on a volume on an existing instance using one of the following commands:

salt-cloud -a delvol_on_destroy myinstance device=/dev/sda1
salt-cloud -a delvol_on_destroy myinstance volume_id=vol-1a2b3c4d
salt-cloud -a keepvol_on_destroy myinstance device=/dev/sda1
salt-cloud -a keepvol_on_destroy myinstance volume_id=vol-1a2b3c4d
salt-cloud -a show_delvol_on_destroy myinstance device=/dev/sda1
salt-cloud -a show_delvol_on_destroy myinstance volume_id=vol-1a2b3c4d

EC2 Termination Protection

EC2 allows the user to enable and disable termination protection on a specific instance. An instance with this protec-
tion enabled cannot be destroyed. e EC2 driver adds a show_term_protect action to the regular EC2 functionality.

salt-cloud -a show_term_protect mymachine
salt-cloud -a enable_term_protect mymachine
salt-cloud -a disable_term_protect mymachine

Alternate Endpoint

Normally, EC2 endpoints are build using the region and the service_url. e resulting endpoint would follow this
paern:

15.5. Cloud Provider Specifics 215

Salt Documentation, Release 2014.7.6

ec2.<region>.<service_url>

is results in an endpoint that looks like:

ec2.us-east-1.amazonaws.com

ere are other projects that support an EC2 compatibility layer, which this scheme does not account for. is can
be overridden by specifying the endpoint directly in the main cloud configuration file:

my-ec2-config:
endpoint: myendpoint.example.com:1138/services/Cloud

Volume Management

e EC2 driver has several functions and actions for management of EBS volumes.

Creating Volumes

A volume may be created, independent of an instance. A zone must be specified. A size or a snapshot may be
specified (in GiB). If neither is given, a default size of 10 GiB will be used. If a snapshot is given, the size of the
snapshot will be used.

salt-cloud -f create_volume ec2 zone=us-east-1b
salt-cloud -f create_volume ec2 zone=us-east-1b size=10
salt-cloud -f create_volume ec2 zone=us-east-1b snapshot=snap12345678
salt-cloud -f create_volume ec2 size=10 type=standard
salt-cloud -f create_volume ec2 size=10 type=io1 iops=1000

Aaching Volumes

Unaached volumes may be aached to an instance. e following values are required; name or instance_id, vol-
ume_id and device.

salt-cloud -a attach_volume myinstance volume_id=vol-12345 device=/dev/sdb1

Show a Volume

e details about an existing volume may be retrieved.

salt-cloud -a show_volume myinstance volume_id=vol-12345
salt-cloud -f show_volume ec2 volume_id=vol-12345

Detaching Volumes

An existing volume may be detached from an instance.

salt-cloud -a detach_volume myinstance volume_id=vol-12345

216 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Deleting Volumes

A volume that is not aached to an instance may be deleted.

salt-cloud -f delete_volume ec2 volume_id=vol-12345

Managing Key Pairs

e EC2 driver has the ability to manage key pairs.

Creating a Key Pair

A key pair is required in order to create an instance. When creating a key pair with this function, the return data
will contain a copy of the private key. is private key is not stored by Amazon, will not be obtainable past this
point, and should be stored immediately.

salt-cloud -f create_keypair ec2 keyname=mykeypair

Show a Key Pair

is function will show the details related to a key pair, not including the private key itself (which is not stored by
Amazon).

salt-cloud -f show_keypair ec2 keyname=mykeypair

Delete a Key Pair

is function removes the key pair from Amazon.

salt-cloud -f delete_keypair ec2 keyname=mykeypair

Launching instances into a VPC

Simple launching into a VPC

In the amazon web interface, identify the id of the subnet into which your image should be created. en, edit your
cloud.profiles file like so:-

profile-id:
provider: provider-name
subnetid: subnet-XXXXXXXX
image: ami-XXXXXXXX
size: m1.medium
ssh_username: ubuntu
securitygroupid:

- sg-XXXXXXXX

15.5. Cloud Provider Specifics 217

Salt Documentation, Release 2014.7.6

Specifying interface properties

Launching into a VPC allows you to specify more complex configurations for the network interfaces of your virtual
machines, for example:-

profile-id:
provider: provider-name
image: ami-XXXXXXXX
size: m1.medium
ssh_username: ubuntu

Do not include either 'subnetid' or 'securitygroupid' here if you are
going to manually specify interface configuration
#
network_interfaces:

- DeviceIndex: 0
SubnetId: subnet-XXXXXXXX
SecurityGroupId:

- sg-XXXXXXXX

Uncomment this to associate an existing Elastic IP Address with
this network interface:
#
associate_eip: eni-XXXXXXXX

You can allocate more than one IP address to an interface. Use the
'ip addr list' command to see them.
#
SecondaryPrivateIpAddressCount: 2

Uncomment this to allocate a new Elastic IP Address to this
interface (will be associated with the primary private ip address
of the interface
#
allocate_new_eip: True

Uncomment this instead to allocate a new Elastic IP Address to
both the primary private ip address and each of the secondary ones
#
allocate_new_eips: True

Note that it is an error to assign a `subnetid' or `securitygroupid' to a profile where the interfaces are manually
configured like this. ese are both really properties of each network interface, not of the machine itself.

15.5.5 Geing Started With GoGrid

GoGrid is a public cloud provider supporting Linux and Windows.

Dependencies

• Libcloud >= 0.13.2

218 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Configuration

To use Salt Cloud with GoGrid log into the GoGrid web interface and create an API key. Do this by clicking on ``My
Account'' and then going to the API Keys tab.

e apikey and the sharedsecret configuration parameters need to be set in the configuration file to enable
interfacing with GoGrid:

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-gogrid-config:
provider: gogrid
apikey: asdff7896asdh789
sharedsecret: saltybacon

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or in the /etc/salt/cloud.profiles.d/ di-
rectory:

gogrid_512:
provider: my-gogrid-config
size: 512MB
image: CentOS 6.2 (64-bit) w/ None

Sizes can be obtained using the --list-sizes option for the salt-cloud command:

salt-cloud --list-sizes my-gogrid-config
my-gogrid-config:

gogrid:

512MB:

bandwidth:

None
disk:

30
driver:
get_uuid:
id:

512MB
name:

512MB
price:

0.095
ram:

512
uuid:

bde1e4d7c3a643536e42a35142c7caac34b060e9
...SNIP...

Images can be obtained using the --list-images option for the salt-cloud command:

15.5. Cloud Provider Specifics 219

Salt Documentation, Release 2014.7.6

salt-cloud --list-images my-gogrid-config
my-gogrid-config:

gogrid:

CentOS 6.4 (64-bit) w/ None:

driver:
extra:

get_uuid:
id:

18094
name:

CentOS 6.4 (64-bit) w/ None
uuid:

bfd4055389919e01aa6261828a96cf54c8dcc2c4
...SNIP...

15.5.6 Geing Started With Google Compute Engine

Google Compute Engine (GCE) is Google-infrastructure as a service that lets you run your large-scale computing
workloads on virtual machines. is document covers how to use Salt Cloud to provision and manage your virtual
machines hosted within Google's infrastructure.

You can find out more about GCE and other Google Cloud Platform services at hps://cloud.google.com.

Dependencies

• Libcloud >= 0.14.0-beta3

• PyCrypto >= 2.1.

• A Google Cloud Platform account with Compute Engine enabled

• A registered Service Account for authorization

• Oh, and obviously you'll need salt

Google Compute Engine Setup

1. Sign up for Google Cloud Platform

Go to hps://cloud.google.com and use your Google account to sign up for Google Cloud Platform and com-
plete the guided instructions.

2. Create a Project

Next, go to the console at hps://cloud.google.com/console and create a new Project. Make sure to select your
new Project if you are not automatically directed to the Project.

Projects are a way of grouping together related users, services, and billing. You may opt to create multiple
Projects and the remaining instructions will need to be completed for each Project if you wish to use GCE and
Salt Cloud to manage your virtual machines.

3. Enable the Google Compute Engine service

220 Chapter 15. Salt Cloud

https://cloud.google.com
https://github.com/saltstack/salt
https://cloud.google.com
https://cloud.google.com/console

Salt Documentation, Release 2014.7.6

In your Project, either just click Compute Engine to the le, or go to the APIs & auth section and APIs link and
enable the Google Compute Engine service.

4. Create a Service Account

To set up authorization, navigate to APIs & auth section and then the Credentials link and click the CREATE
NEW CLIENT ID buon. Select Service Account and click the Create Client ID buon. is will automatically
download a .json file, which should be ignored. Look for a new Service Account section in the page and
record the generated email address for the matching key/fingerprint. e email address will be used in the
service_account_email_address of the /etc/salt/cloud file.

5. Key Format

In the new Service Account section, click Generate new P12 key, which will automatically download a .p12
private key file. e .p12 private key needs to be converted to a format compatible with libcloud. is
new Google-generated private key was encrypted using notasecret as a passphrase. Use the following com-
mand and record the location of the converted private key and record the location for use in the ser-
vice_account_private_key of the /etc/salt/cloud file:

openssl pkcs12 -in ORIG.p12 -passin pass:notasecret \
-nodes -nocerts | openssl rsa -out NEW.pem

Configuration

Set up the cloud config at /etc/salt/cloud:

Note: This example is for /etc/salt/cloud

providers:
gce-config:

Set up the Project name and Service Account authorization
#
project: "your-project-id"
service_account_email_address: "123-a5gt@developer.gserviceaccount.com"
service_account_private_key: "/path/to/your/NEW.pem"

Set up the location of the salt master
#
minion:

master: saltmaster.example.com

Set up grains information, which will be common for all nodes
using this provider
grains:

node_type: broker
release: 1.0.1

provider: gce

Note: e value provided for project must not contain underscores or spaces and is labeled as ``Project ID'' on
the Google Developers Console.

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles:

15.5. Cloud Provider Specifics 221

Salt Documentation, Release 2014.7.6

all_settings:
image: centos-6
size: n1-standard-1
location: europe-west1-b
network: default
tags: '["one", "two", "three"]'
metadata: '{"one": "1", "2": "two"}'
use_persistent_disk: True
delete_boot_pd: False
deploy: True
make_master: False
provider: gce-config

e profile can be realized now with a salt command:

salt-cloud -p all_settings gce-instance

is will create an salt minion instance named gce-instance in GCE. If the command was executed on the
salt-master, its Salt key will automatically be signed on the master.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt 'ami.example.com' test.ping

GCE Specific Seings

Consult the sample profile below for more information about GCE specific seings. Some of them are mandatory
and are properly labeled below but typically also include a hard-coded default.

all_settings:

Image is used to define what Operating System image should be used
to for the instance. Examples are Debian 7 (wheezy) and CentOS 6.
#
MANDATORY
#
image: centos-6

A 'size', in GCE terms, refers to the instance's 'machine type'. See
the on-line documentation for a complete list of GCE machine types.
#
MANDATORY
#
size: n1-standard-1

A 'location', in GCE terms, refers to the instance's 'zone'. GCE
has the notion of both Regions (e.g. us-central1, europe-west1, etc)
and Zones (e.g. us-central1-a, us-central1-b, etc).
#
MANDATORY
#
location: europe-west1-b

Use this setting to define the network resource for the instance.
All GCE projects contain a network named 'default' but it's possible
to use this setting to create instances belonging to a different
network resource.

222 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

#
network: default

GCE supports instance/network tags and this setting allows you to
set custom tags. It should be a list of strings and must be
parse-able by the python ast.literal_eval() function to convert it
to a python list.
#
tags: '["one", "two", "three"]'

GCE supports instance metadata and this setting allows you to
set custom metadata. It should be a hash of key/value strings and
parse-able by the python ast.literal_eval() function to convert it
to a python dictionary.
#
metadata: '{"one": "1", "2": "two"}'

Use this setting to ensure that when new instances are created,
they will use a persistent disk to preserve data between instance
terminations and re-creations.
#
use_persistent_disk: True

In the event that you wish the boot persistent disk to be permanently
deleted when you destroy an instance, set delete_boot_pd to True.
#
delete_boot_pd: False

GCE instances do not allow remote access to the root user by default. Instead, another user must be used to run the
deploy script using sudo. Append something like this to /etc/salt/cloud.profiles:

all_settings:
...

SSH to GCE instances as gceuser
ssh_username: gceuser

Use the local private SSH key file located here
ssh_keyfile: /etc/cloud/google_compute_engine

If you have not already used this SSH key to login to instances in this GCE project you will also need to add the
public key to your projects metadata at hps://cloud.google.com/console. You could also add it via the metadata
seing too:

all_settings:
...

metadata: '{"one": "1", "2": "two",
"sshKeys": "gceuser:ssh-rsa <Your SSH Public Key> gceuser@host"}'

Single instance details

is action is a thin wrapper around --full-query, which displays details on a single instance only. In an
environment with several machines, this will save a user from having to sort through all instance data, just to
examine a single instance.

15.5. Cloud Provider Specifics 223

https://cloud.google.com/console

Salt Documentation, Release 2014.7.6

salt-cloud -a show_instance myinstance

Destroy, persistent disks, and metadata

As noted in the provider configuration, it's possible to force the boot persistent disk to be deleted when you destroy
the instance. e way that this has been implemented is to use the instance metadata to record the cloud profile used
when creating the instance. When destroy is called, if the instance contains a salt-cloud-profile key, it's
value is used to reference the matching profile to determine if delete_boot_pd is set to True.

Be aware that anyGCE instances createdwith salt cloudwill contain this customsalt-cloud-profilemetadata
entry.

List various resources

It's also possible to list several GCE resources similar to what can be done with other providers. e following
commands can be used to list GCE zones (locations), machine types (sizes), and images.

salt-cloud --list-locations gce
salt-cloud --list-sizes gce
salt-cloud --list-images gce

Persistent Disk

e Compute Engine provider provides functions via salt-cloud to manage your Persistent Disks. You can create and
destroy disks as well as aach and detach them from running instances.

Create

When creating a disk, you can create an empty disk and specify its size (in GB), or specify either an `image' or
`snapshot'.

salt-cloud -f create_disk gce disk_name=pd location=us-central1-b size=200

Delete

Deleting a disk only requires the name of the disk to delete

salt-cloud -f delete_disk gce disk_name=old-backup

Aach

Aaching a disk to an existing instance is really an `action' and requires both an instance name and disk name.
It's possible to use this ation to create bootable persistent disks if necessary. Compute Engine also supports aach-
ing a persistent disk in READ_ONLY mode to multiple instances at the same time (but then cannot be aached in
READ_WRITE to any instance).

salt-cloud -a attach_disk myinstance disk_name=pd mode=READ_WRITE boot=yes

224 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Detach

Detaching a disk is also an action against an instance and only requires the name of the disk. Note that this does
not safely sync and umount the disk from the instance. To ensure no data loss, you must first make sure the disk is
unmounted from the instance.

salt-cloud -a detach_disk myinstance disk_name=pd

Show disk

It's also possible to look up the details for an existing disk with either a function or an action.

salt-cloud -a show_disk myinstance disk_name=pd
salt-cloud -f show_disk gce disk_name=pd

Create snapshot

You can take a snapshot of an existing disk's content. e snapshot can then in turn be used to create other persistent
disks. Note that to prevent data corruption, it is strongly suggested that you unmount the disk prior to taking a
snapshot. You must name the snapshot and provide the name of the disk.

salt-cloud -f create_snapshot gce name=backup-20140226 disk_name=pd

Delete snapshot

You can delete a snapshot when it's no longer needed by specifying the name of the snapshot.

salt-cloud -f delete_snapshot gce name=backup-20140226

Show snapshot

Use this function to look up information about the snapshot.

salt-cloud -f show_snapshot gce name=backup-20140226

Networking

Compute Engine supports multiple private networks per project. Instances within a private network can easily
communicate with each other by an internal DNS service that resolves instance names. Instances within a private
network can also communicate with either directly without needing special routing or firewall rules even if they
span different regions/zones.

Networks also support custom firewall rules. By default, traffic between instances on the same private network is
open to all ports and protocols. Inbound SSH traffic (port 22) is also allowed but all other inbound traffic is blocked.

Create network

New networks require a name and CIDR range. New instances can be created and added to this network by seing
the network name during create. It is not possible to add/remove existing instances to a network.

15.5. Cloud Provider Specifics 225

Salt Documentation, Release 2014.7.6

salt-cloud -f create_network gce name=mynet cidr=10.10.10.0/24

Destroy network

Destroy a network by specifying the name. Make sure that there are no instances associated with the network prior
to deleting it or you'll have a bad day.

salt-cloud -f delete_network gce name=mynet

Show network

Specify the network name to view information about the network.

salt-cloud -f show_network gce name=mynet

Create firewall

You'll need to create custom firewall rules if you want to allow other traffic than what is described above. For
instance, if you run a web service on your instances, you'll need to explicitly allow HTTP and/or SSL traffic. e
firewall rule must have a name and it will use the `default' network unless otherwise specified with a `network'
aribute. Firewalls also support instance tags for source/destination

salt-cloud -f create_fwrule gce name=web allow=tcp:80,tcp:443,icmp

Delete firewall

Deleting a firewall rule will prevent any previously allowed traffic for the named firewall rule.

salt-cloud -f delete_fwrule gce name=web

Show firewall

Use this function to review an existing firewall rule's information.

salt-cloud -f show_fwrule gce name=web

Load Balancer

Compute Engine possess a load-balancer feature for spliing traffic across multiple instances. Please reference the
documentation for a more complete discription.

e load-balancer functionality is slightly different than that described in Google's documentation. e concept of
TargetPool and ForwardingRule are consolidated in salt-cloud/libcloud. HTTP Health Checks are optional.

226 Chapter 15. Salt Cloud

https://developers.google.com/compute/docs/load-balancing/

Salt Documentation, Release 2014.7.6

HTTP Health Check

HTTP Health Checks can be used as a means to toggle load-balancing across instance members, or to detect if an
HTTP site is functioning. A common use-case is to set up a health check URL and if you want to toggle traffic on/off
to an instance, you can temporarily have it return a non-200 response. A non-200 response to the load-balancer's
health check will keep the LB from sending any new traffic to the ``down'' instance. Once the instance's health
check URL beings returning 200-responses, the LB will again start to send traffic to it. Review Compute Engine's
documentation for allowable parameters. You can use the following salt-cloud functions to manage your HTTP
health checks.

salt-cloud -f create_hc gce name=myhc path=/ port=80
salt-cloud -f delete_hc gce name=myhc
salt-cloud -f show_hc gce name=myhc

Load-balancer

When creating a new load-balancer, it requires a name, region, port range, and list of members. ere are other
optional parameters for protocol, and list of health checks. Deleting or showing details about the LB only requires
the name.

salt-cloud -f create_lb gce name=lb region=... ports=80 members=w1,w2,w3
salt-cloud -f delete_lb gce name=lb
salt-cloud -f show_lb gce name=lb

Aach and Detach LB

It is possible to aach or detach an instance from an existing load-balancer. Both the instance and load-balancer
must exist before using these functions.

salt-cloud -f attach_lb gce name=lb member=w4
salt-cloud -f detach_lb gce name=lb member=oops

15.5.7 Geing Started With HP Cloud

HP Cloud is a major public cloud platform and uses the libcloud openstack driver. e current version of OpenStack
that HP Cloud uses is Havana. When an instance is booted, it must have a floating IP added to it in order to connect
to it and further below you will see an example that adds context to this statement.

Set up a cloud provider configuration file

To use the openstack driver for HP Cloud, set up the cloud provider configuration file as in the example shown below:

/etc/salt/cloud.providers.d/hpcloud.conf:

hpcloud-config:
Set the location of the salt-master
#
minion:

master: saltmaster.example.com

Configure HP Cloud using the OpenStack plugin
#

15.5. Cloud Provider Specifics 227

Salt Documentation, Release 2014.7.6

identity_url: https://region-b.geo-1.identity.hpcloudsvc.com:35357/v2.0/tokens
compute_name: Compute
protocol: ipv4

Set the compute region:
#
compute_region: region-b.geo-1

Configure HP Cloud authentication credentials
#
user: myname
tenant: myname-project1
password: xxxxxxxxx

keys to allow connection to the instance launched
#
ssh_key_name: yourkey
ssh_key_file: /path/to/key/yourkey.priv

provider: openstack

e subsequent example that follows is using the openstack driver.

Compute Region

Originally, HP Cloud, in its OpenStack Essex version (1.0), had 3 availability zones in one region, US West (region-
a.geo-1), which each behaved each as a region.

is has since changed, and the current OpenStack Havana version of HP Cloud (1.1) now has simplified this and
now has two regions to choose from:

region-a.geo-1 -> US West
region-b.geo-1 -> US East

Authentication

e user is the same user as is used to log into the HP Cloud management UI. e tenant can be found in the
upper le under ``Project/Region/Scope''. It is oen named the same as user albeit with a -project1 appended.
e password is of course what you created your account with. e management UI also has other information
such as being able to select US East or US West.

Set up a cloud profile config file

e profile shown below is a know working profile for an Ubuntu instance. e profile configuration file is stored
in the following location:

/etc/salt/cloud.profiles.d/hp_ae1_ubuntu.conf:

hp_ae1_ubuntu:
provider: hp_ae1
image: 9302692b-b787-4b52-a3a6-daebb79cb498
ignore_cidr: 10.0.0.1/24
networks:

- floating: Ext-Net
size: standard.small

228 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

ssh_key_file: /root/keys/test.key
ssh_key_name: test
ssh_username: ubuntu

Some important things about the example above:

• e image parameter can use either the image name or image ID which you can obtain by running in the
example below (this case US East):

salt-cloud --list-images hp_ae1

• e parameter ignore_cidr specifies a range of addresses to ignore when trying to connect to the instance.
In this case, it's the range of IP addresses used for an private IP of the instance.

• e parameter networks is very important to include. In previous versions of Salt Cloud, this is what made
it possible for salt-cloud to be able to aach a floating IP to the instance in order to connect to the instance and
set up the minion. e current version of salt-cloud doesn't require it, though having it is of no harm either.
Newer versions of salt-cloud will use this, and without it, will aempt to find a list of floating IP addresses to
use regardless.

• e ssh_key_file and ssh_key_name are the keys that will make it possible to connect to the instance
to set up the minion

• e ssh_username parameter, in this case, being that the image used will be ubuntu, will make it possible
to not only log in but install the minion

Launch an instance

To instantiate a machine based on this profile (example):

salt-cloud -p hp_ae1_ubuntu ubuntu_instance_1

Aer several minutes, this will create an instance named ubuntu_instance_1 running in HP Cloud in the US East
region and will set up the minion and then return information about the instance once completed.

Manage the instance

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt ubuntu_instance_1 ping

SSH to the instance

Additionally, the instance can be accessed via SSH using the floating IP assigned to it

ssh ubuntu@<floating ip>

Using a private IP

Alternatively, in the cloud profile, using the private IP to log into the instance to set up the minion is another option,
particularly if salt-cloud is running within the cloud on an instance that is on the same network with all the other
instances (minions)

e example below is a modified version of the previous example. Note the use of ssh_interface:

15.5. Cloud Provider Specifics 229

Salt Documentation, Release 2014.7.6

hp_ae1_ubuntu:
provider: hp_ae1
image: 9302692b-b787-4b52-a3a6-daebb79cb498
size: standard.small
ssh_key_file: /root/keys/test.key
ssh_key_name: test
ssh_username: ubuntu
ssh_interface: private_ips

With this setup, salt-cloud will use the private IP address to ssh into the instance and set up the salt-minion

15.5.8 Geing Started With Joyent

Joyent is a public cloud provider supporting SmartOS, Linux, FreeBSD and Windows.

Dependencies

is driver requires the Python requests library to be installed.

Configuration

e Joyent cloud requires three configuration parameters. e user name and password that are used to log into the
Joyent system, and the location of the private ssh key associated with the Joyent account. e ssh key is needed to
send the provisioning commands up to the freshly created virtual machine.

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-joyent-config:
provider: joyent
user: fred
password: saltybacon
private_key: /root/joyent.pem

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or in the /etc/salt/cloud.profiles.d/ di-
rectory:

joyent_512
provider: my-joyent-config
size: Extra Small 512 MB
image: Arch Linux 2013.06

Sizes can be obtained using the --list-sizes option for the salt-cloud command:

salt-cloud --list-sizes my-joyent-config
my-joyent-config:

joyent:

230 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Extra Small 512 MB:

default:

false
disk:

15360
id:

Extra Small 512 MB
memory:

512
name:

Extra Small 512 MB
swap:

1024
vcpus:

1
...SNIP...

Images can be obtained using the --list-images option for the salt-cloud command:

salt-cloud --list-images my-joyent-config
my-joyent-config:

joyent:

base:

description:

A 32-bit SmartOS image with just essential packages
installed. Ideal for users who are comfortable with setting
up their own environment and tools.

disabled:
False

files:

- compression:

bzip2
- sha1:

40cdc6457c237cf6306103c74b5f45f5bf2d9bbe
- size:

82492182
name:

base
os:

smartos
owner:

352971aa-31ba-496c-9ade-a379feaecd52
public:

True
...SNIP...

15.5.9 Geing Started With LXC

e LXC module is designed to install Salt in an LXC container on a controlled and possibly remote minion.

In other words, Salt will connect to a minion, then from that minion:

• Provision and configure a container for networking access

15.5. Cloud Provider Specifics 231

Salt Documentation, Release 2014.7.6

• Use saltify to deploy salt and re-aach to master

Limitations

• You can only act on one minion and one provider at a time.

• Listing images must be targeted to a particular LXC provider (nothing will be outpued with all)

Operation

Salt's LXC support does not use lxc.init. is enables it to tie minions to a master in a more generic fashion (if any
masters are defined) and allows other custom association code.

Order of operation:

• Create the LXC container using the LXC execution module on the desired minion (clone or template)

• Change LXC config options (if any need to be changed)

• Start container

• Change base passwords if any

• Change base DNS configuration if necessary

• Wait for LXC container to be up and ready for ssh

• Test SSH connection and bailout in error

• Via SSH (with the help of saltify), upload deploy script and seeds, then re-aach the minion.

Provider configuration

Here is a simple provider configuration:

Note: This example goes in /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.
devhost10-lxc:

target: devhost10
provider: lxc

Profile configuration

Here are the options to configure your containers:

``target``
Host minion id to install the lxc Container into

``profile``
Name of the profile containing the LXC configuration

Container creation/clone options:
Create a container by cloning:

``from_container``
Name of an original container using clone

``snapshot``
Do we use snapshots on cloned filesystems

Create a container from scratch using an LXC template:
image

232 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

template to use
backing

Backing store type (None, lvm, brtfs)
lvname

LVM logical volume name, if any
fstype

Type of filesystem
size

Size of the containera (for brtfs, or lvm)
vgname

LVM Volume Group name, if any
users

Names of the users to be pre-created inside the container
ssh_username

Username of the SSH systems administrator inside the container
sudo

Do we use sudo
ssh_gateway

if the minion is not in your 'topmaster' network, use
that gateway to connect to the lxc container.
This may be the public ip of the hosting minion

ssh_gateway_key
When using gateway, the ssh key of the gateway user (passed to saltify)

ssh_gateway_port
When using gateway, the ssh port of the gateway (passed to saltify)

ssh_gateway_user
When using gateway, user to login as via SSH (passed to saltify)

password
password for root and sysadmin (see "users" parameter above)

mac
mac address to assign to the container's network interface

ip
IP address to assign to the container's network interface

netmask
netmask for the network interface's IP

bridge
bridge under which the container's network interface will be enslaved

dnsservers
List of DNS servers to use--this is optional. If present, DNS
servers will be restricted to that list if used

lxc_conf_unset
Configuration variables to unset in this container's LXC configuration

lxc_conf
LXC configuration variables to add in this container's LXC configuration

minion
minion configuration (see :doc:`Minion Configuration in Salt Cloud </topics/cloud/config>`)

Note: This example would go in /etc/salt/cloud.profile or any file in the
/etc/salt/cloud.profile.d/ directory.
devhost10-lxc:

provider: devhost10-lxc
from_container: ubuntu
backing: lvm
sudo: True
size: 3g
ip: 10.0.3.9
minion:

master: 10.5.0.1

15.5. Cloud Provider Specifics 233

Salt Documentation, Release 2014.7.6

master_port: 4506
lxc_conf:

- lxc.utsname: superlxc

Driver Support

• Container creation

• Image listing (LXC templates)

• Running container informations (IP addresses, etc.)

15.5.10 Geing Started With Linode

Linode is a public cloud provider with a focus on Linux instances.

Dependencies

• linode-python >= 1.1.1

OR

• Libcloud >= 0.13.2

is driver supports accessing Linode via linode-python or Apache Libcloud. Linode-python is recommended, it is
more full-featured than Libcloud. In particular using linode-python enables stopping, starting, and cloningmachines.

Driver selection is automatic. If linode-python is present it will be used. If it is absent, salt-cloud will fall back to
Libcloud. If neither are present salt-cloud will abort.

NOTE: linode-python 1.1.1 or later is recommended. Earlier versions of linode-python should work but leak sensitive
information into the debug logs.

Linode-python can be downloaded from hps://github.com/tjfontaine/linode-python or installed via pip.

Configuration

Linode requires a single API key, but the default root password for new instances also needs to be set:

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-linode-config:
apikey: asldkgfakl;sdfjsjaslfjaklsdjf;askldjfaaklsjdfhasldsadfghdkf
password: F00barbaz
provider: linode

e password needs to be 8 characters and contain lowercase, uppercase and numbers.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or in the /etc/salt/cloud.profiles.d/ di-
rectory:

234 Chapter 15. Salt Cloud

https://github.com/tjfontaine/linode-python

Salt Documentation, Release 2014.7.6

linode_1024:
provider: my-linode-config
size: Linode 1024
image: Arch Linux 2013.06

Sizes can be obtained using the --list-sizes option for the salt-cloud command:

salt-cloud --list-sizes my-linode-config
my-linode-config:

linode:

Linode 1024:

bandwidth:

2000
disk:

49152
driver:
get_uuid:
id:

1
name:

Linode 1024
price:

20.0
ram:

1024
uuid:

03e18728ce4629e2ac07c9cbb48afffb8cb499c4
...SNIP...

Images can be obtained using the --list-images option for the salt-cloud command:

salt-cloud --list-images my-linode-config
my-linode-config:

linode:

Arch Linux 2013.06:

driver:
extra:

64bit:

1
pvops:

1
get_uuid:
id:

112
name:

Arch Linux 2013.06
uuid:

8457f92eaffc92b7666b6734a96ad7abe1a8a6dd
...SNIP...

15.5. Cloud Provider Specifics 235

Salt Documentation, Release 2014.7.6

Cloning

When salt-cloud accesses Linode via linode-python it can clone machines.

It is safest to clone a stopped machine. To stop a machine run

salt-cloud -a stop machine_to_clone

To create a new machine based on another machine, add an entry to your linode cloud profile that looks like this:

li-clone:
provider: linode
clonefrom: machine_to_clone
script_args: -C

en run salt-cloud as normal, specifying -p li-clone. e profile name can be anything--it doesn't have to be li-clone.

Clonefrom: is the name of an existing machine in Linode from which to clone. Script_args: -C is necessary to avoid
re-deploying Salt via salt-bootstrap. -C will just re-deploy keys so the new minion will not have a duplicate key or
minion_id on the master.

15.5.11 Geing Started With OpenStack

OpenStack is one the most popular cloud projects. It's an open source project to build public and/or private clouds.
You can use Salt Cloud to launch OpenStack instances.

Dependencies

• Libcloud >= 0.13.2

Configuration

• Using the new format, set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/openstack.conf:

my-openstack-config:
Set the location of the salt-master
#
minion:

master: saltmaster.example.com

Configure the OpenStack driver
#
identity_url: http://identity.youopenstack.com/v2.0/tokens
compute_name: nova
protocol: ipv4

compute_region: RegionOne

Configure Openstack authentication credentials
#
user: myname
password: 123456
tenant is the project name
tenant: myproject

236 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

provider: openstack

skip SSL certificate validation (default false)
insecure: false

Using nova client to get information from OpenStack

One of the best ways to get information about OpenStack is using the novaclient python package (available in pypi as
python-novaclient). e client configuration is a set of environment variables that you can get from the Dashboard.
Log in and then go to Project -> Access & security -> API Access and download the ``OpenStack RC file''. en:

source /path/to/your/rcfile
nova credentials
nova endpoints

In the nova endpoints output you can see the information about compute_region and compute_name.

Compute Region

It depends on the OpenStack cluster that you are using. Please, have a look at the previous sections.

Authentication

e user and password is the same user as is used to log into the OpenStack Dashboard.

Profiles

Here is an example of a profile:

openstack_512:
provider: my-openstack-config
size: m1.tiny
image: cirros-0.3.1-x86_64-uec
ssh_key_file: /tmp/test.pem
ssh_key_name: test
ssh_interface: private_ips

e following list explains some of the important properties.

size can be one of the options listed in the output of nova flavor-list.

image can be one of the options listed in the output of nova image-list.

ssh_key_file e SSH private key that the salt-cloud uses to SSH into the VM aer its first booted in order to
execute a command or script. is private key's public key must be the openstack public key inserted into the
authorized_key's file of the VM's root user account.

ssh_key_name e name of the openstack SSH public key that is inserted into the authorized_keys file of the VM's
root user account. Prior to using this public key, you must use openstack commands or the horizon web UI
to load that key into the tenant's account. Note that this openstack tenant must be the one you defined in the
cloud provider.

ssh_interface is option allows you to create a VM without a public IP. If this option is omied and the VM does
not have a public IP, then the salt-cloud waits for a certain period of time and then destroys the VM.

For more information concerning cloud profiles, see here.

15.5. Cloud Provider Specifics 237

Salt Documentation, Release 2014.7.6

change_password

If no ssh_key_file is provided, and the server already exists, change_password will use the api to change the root
password of the server so that it can be bootstrapped.

change_password: True

userdata_file

Use userdata_file to specify the userdata file to upload for use with cloud-init if available.

userdata_file: /etc/salt/cloud-init/packages.yml

15.5.12 Geing Started With Parallels

Parallels Cloud Server is a product by Parallels that delivers a cloud hosting solution. e PARALLELS module for
Salt Cloud enables you to manage instances hosted by a provider using PCS. Further information can be found at:

hp://www.parallels.com/products/pcs/

• Using the old format, set up the cloud configuration at /etc/salt/cloud:

Set up the location of the salt master
#
minion:

master: saltmaster.example.com

Set the PARALLELS access credentials (see below)
#
PARALLELS.user: myuser
PARALLELS.password: badpass

Set the access URL for your PARALLELS provider
#
PARALLELS.url: https://api.cloud.xmission.com:4465/paci/v1.0/

• Using the new format, set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/parallels.conf:

my-parallels-config:
Set up the location of the salt master
#
minion:

master: saltmaster.example.com

Set the PARALLELS access credentials (see below)
#
user: myuser
password: badpass

Set the access URL for your PARALLELS provider
#
url: https://api.cloud.xmission.com:4465/paci/v1.0/
provider: parallels

238 Chapter 15. Salt Cloud

http://www.parallels.com/products/pcs/

Salt Documentation, Release 2014.7.6

Access Credentials

e user, password and url will be provided to you by your cloud provider. ese are all required in order for
the PARALLELS driver to work.

Cloud Profiles

Set up an initial profile at/etc/salt/cloud.profiles or/etc/salt/cloud.profiles.d/parallels.conf:

• Using the old cloud configuration format:

parallels-ubuntu:
provider: parallels
image: ubuntu-12.04-x86_64

• Using the new cloud configuration format and the cloud configuration example from above:

parallels-ubuntu:
provider: my-parallels-config
image: ubuntu-12.04-x86_64

e profile can be realized now with a salt command:

salt-cloud -p parallels-ubuntu myubuntu

is will create an instance named myubuntu on the cloud provider. e minion that is installed on this instance
will have an id of myubuntu. If the command was executed on the salt-master, its Salt key will automatically be
signed on the master.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt myubuntu test.ping

Required Seings

e following seings are always required for PARALLELS:

• Using the old cloud configuration format:

PARALLELS.user: myuser
PARALLELS.password: badpass
PARALLELS.url: https://api.cloud.xmission.com:4465/paci/v1.0/

• Using the new cloud configuration format:

my-parallels-config:
user: myuser
password: badpass
url: https://api.cloud.xmission.com:4465/paci/v1.0/
provider: parallels

Optional Seings

Unlike other cloud providers in Salt Cloud, Parallels does not utilize a size seing. is is because Parallels al-
lows the end-user to specify a more detailed configuration for their instances, than is allowed by many other cloud
providers. e following options are available to be used in a profile, with their default seings listed.

15.5. Cloud Provider Specifics 239

Salt Documentation, Release 2014.7.6

Description of the instance. Defaults to the instance name.
desc: <instance_name>

How many CPU cores, and how fast they are (in MHz)
cpu_number: 1
cpu_power: 1000

How many megabytes of RAM
ram: 256

Bandwidth available, in kbps
bandwidth: 100

How many public IPs will be assigned to this instance
ip_num: 1

Size of the instance disk (in GiB)
disk_size: 10

Username and password
ssh_username: root
password: <value from PARALLELS.password>

The name of the image, from ``salt-cloud --list-images parallels``
image: ubuntu-12.04-x86_64

15.5.13 Geing Started With Proxmox

Proxmox Virtual Environment is a complete server virtualizationmanagement solution, based on KVMvirtualization
and OpenVZ containers. Further information can be found at:

hp://www.proxmox.org/

Dependencies

• IPy >= 0.81

• requests >= 2.2.1

Please note: is module allows you to create both OpenVZ and KVM but installing Salt on it will only be done
when the VM is an OpenVZ container rather than a KVM virtual machine.

• Set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/proxmox.conf:

my-proxmox-config:
Set up the location of the salt master
#
minion:

master: saltmaster.example.com

Set the PROXMOX access credentials (see below)
#
user: myuser@pve
password: badpass

Set the access URL for your PROXMOX provider

240 Chapter 15. Salt Cloud

http://www.proxmox.org/

Salt Documentation, Release 2014.7.6

#
url: your.proxmox.host
provider: proxmox

Access Credentials

e user, password and url will be provided to you by your cloud provider. ese are all required in order for
the PROXMOX driver to work.

Cloud Profiles

Set up an initial profile at/etc/salt/cloud.profiles or/etc/salt/cloud.profiles.d/proxmox.conf:

• Configure a profile to be used:

proxmox-ubuntu:
provider: proxmox
image: local:vztmpl/ubuntu-12.04-standard_12.04-1_amd64.tar.gz
technology: openvz
host: myvmhost
ip_address: 192.168.100.155
password: topsecret

e profile can be realized now with a salt command:

salt-cloud -p proxmox-ubuntu myubuntu

iswill create an instance namedmyubuntu on the cloud provider. eminion that is installed on this instancewill
have a hostname of myubuntu. If the command was executed on the salt-master, its Salt key will automatically
be signed on the master.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt myubuntu test.ping

Required Seings

e following seings are always required for PROXMOX:

• Using the new cloud configuration format:

my-proxmox-config:
provider: proxmox
user: saltcloud@pve
password: xyzzy
url: your.proxmox.host

Optional Seings

Unlike other cloud providers in Salt Cloud, Proxmox does not utilize a size seing. is is because Proxmox
allows the end-user to specify a more detailed configuration for their instances, than is allowed by many other cloud
providers. e following options are available to be used in a profile, with their default seings listed.

15.5. Cloud Provider Specifics 241

Salt Documentation, Release 2014.7.6

Description of the instance.
desc: <instance_name>

How many CPU cores, and how fast they are (in MHz)
cpus: 1
cpuunits: 1000

How many megabytes of RAM
memory: 256

How much swap space in MB
swap: 256

Whether to auto boot the vm after the host reboots
onboot: 1

Size of the instance disk (in GiB)
disk: 10

Host to create this vm on
host: myvmhost

Nameservers. Defaults to host
nameserver: 8.8.8.8 8.8.4.4

Username and password
ssh_username: root
password: <value from PROXMOX.password>

The name of the image, from ``salt-cloud --list-images proxmox``
image: local:vztmpl/ubuntu-12.04-standard_12.04-1_amd64.tar.gz

15.5.14 Geing Started With Rackspace

Rackspace is a major public cloud platform which may be configured using either the rackspace or the openstack
driver, depending on your needs.

Please note that the rackspace driver is only intended for 1st gen instances, aka, ``the old cloud'' at Rackspace. It
is required for 1st gen instances, but will not work with OpenStack-based instances. Unless you explicitly have a
reason to use it, it is highly recommended that you use the openstack driver instead.

Dependencies

• Libcloud >= 0.13.2

Configuration

To use the opensta driver (recommended), set up the cloud configuration at /etc/salt/cloud.providers
or /etc/salt/cloud.providers.d/rackspace.conf:

my-rackspace-config:
Set the location of the salt-master
#
minion:

242 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

master: saltmaster.example.com

Configure Rackspace using the OpenStack plugin
#
identity_url: 'https://identity.api.rackspacecloud.com/v2.0/tokens'
compute_name: cloudServersOpenStack
protocol: ipv4

Set the compute region:
#
compute_region: DFW

Configure Rackspace authentication credentials
#
user: myname
tenant: 123456
apikey: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

provider: openstack

To use the raspace driver, set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/rackspace.conf:

my-rackspace-config:
provider: rackspace
The Rackspace login user
user: fred
The Rackspace user's apikey
apikey: 901d3f579h23c8v73q9

e seings that follow are for using Rackspace with the openstack driver, and will not work with the rackspace
driver.

Compute Region

Rackspace currently has six compute regions which may be used:

DFW -> Dallas/Forth Worth
ORD -> Chicago
SYD -> Sydney
LON -> London
IAD -> Northern Virginia
HKG -> Hong Kong

Note: Currently the LON region is only available with a UK account, and UK accounts cannot access other regions

Authentication

e user is the same user as is used to log into the Rackspace Control Panel. e tenant and apikey can be
found in the API Keys area of the Control Panel. e apikey will be labeled as API Key (and may need to be
generated), and tenant will be labeled as Cloud Account Number.

An initial profile can be configured in /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/rackspace.conf:

15.5. Cloud Provider Specifics 243

Salt Documentation, Release 2014.7.6

openstack_512:
provider: my-rackspace-config
size: 512 MB Standard
image: Ubuntu 12.04 LTS (Precise Pangolin)

To instantiate a machine based on this profile:

salt-cloud -p openstack_512 myinstance

is will create a virtual machine at Rackspace with the name myinstance. is operation may take several
minutes to complete, depending on the current load at the Rackspace data center.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt myinstance test.ping

RackConnect Environments

Rackspace offers a hybrid hosting configuration option called RackConnect that allows you to use a physical firewall
appliance with your cloud servers. When this service is in use the public_ip assigned by nova will be replaced by a
NAT ip on the firewall. For salt-cloud to work properly it must use the newly assigned ``access ip'' instead of the
Nova assigned public ip. You can enable that capability by adding this to your profiles:

openstack_512:
provider: my-openstack-config
size: 512 MB Standard
image: Ubuntu 12.04 LTS (Precise Pangolin)
rackconnect: True

Managed Cloud Environments

Rackspace offers a managed service level of hosting. As part of the managed service level you have the ability to
choose from base of lamp installations on cloud server images. e post build process for both the base and the lamp
installations used Chef to install things such as the cloud monitoring agent and the cloud backup agent. It also takes
care of installing the lamp stack if selected. In order to prevent the post installation process from stomping over the
bootstrapping you can add the below to your profiles.

openstack_512:
provider: my-rackspace-config
size: 512 MB Standard
image: Ubuntu 12.04 LTS (Precise Pangolin)
managedcloud: True

First and Next Generation Images

Rackspace provides two sets of virtual machine images, first and next generation. As of 0.8.9 salt-cloudwill default
to using the next generation images. To force the use of first generation images, on the profile configuration please
add:

FreeBSD-9.0-512:
provider: my-rackspace-config
size: 512 MB Standard
image: FreeBSD 9.0
force_first_gen: True

244 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

15.5.15 Geing Started With SoLayer

SoLayer is a public cloud provider, and baremetal hardware hosting provider.

Dependencies

e SoLayer driver for Salt Cloud requires the solayer package, which is available at PyPI:

hps://pypi.python.org/pypi/SoLayer

is package can be installed using pip or easy_install:

pip install softlayer
easy_install softlayer

Configuration

Set up the cloud config at /etc/salt/cloud.providers:

Note: These examples are for /etc/salt/cloud.providers

my-softlayer:
Set up the location of the salt master
minion:

master: saltmaster.example.com

Set the SoftLayer access credentials (see below)
user: MYUSER1138
apikey: 'e3b68aa711e6deadc62d5b76355674beef7cc3116062ddbacafe5f7e465bfdc9'

provider: softlayer

my-softlayer-hw:
Set up the location of the salt master
minion:

master: saltmaster.example.com

Set the SoftLayer access credentials (see below)
user: MYUSER1138
apikey: 'e3b68aa711e6deadc62d5b76355674beef7cc3116062ddbacafe5f7e465bfdc9'

provider: softlayer_hw

Access Credentials

e user seing is the same user as is used to log into the SoLayer Administration area. e apikey seing is found
inside the Admin area aer logging in:

• Hover over the Administrative menu item.

• Click the API Access link.

• e apikey is located next to the user seing.

15.5. Cloud Provider Specifics 245

https://pypi.python.org/pypi/SoftLayer

Salt Documentation, Release 2014.7.6

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles:

base_softlayer_ubuntu:
provider: my-softlayer
image: UBUNTU_LATEST
cpu_number: 1
ram: 1024
disk_size: 100
local_disk: True
hourly_billing: True
domain: example.com
location: sjc01
Optional
max_net_speed: 1000
private_vlan: 396
private_network: True
private_ssh: True
May be used _instead_of_ image
global_identifier: 320d8be5-46c0-dead-cafe-13e3c51

Most of the above items are required; optional items are specified below.

image Images to build an instance can be found using the --list-images option:

salt-cloud --list-images my-softlayer

e seing used will be labeled as template.

cpu_number is is the number of CPU cores that will be used for this instance. is number may be dependent
upon the image that is used. For instance:

Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (1 - 4 Core):

name:

Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (1 - 4 Core)
template:

REDHAT_6_64
Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (5 - 100 Core):

name:

Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (5 - 100 Core)
template:

REDHAT_6_64

Note that the template (meaning, the image option) for both of these is the same, but the names suggests how many
CPU cores are supported.

ram is is the amount of memory, in megabytes, that will be allocated to this instance.

disk_size e amount of disk space that will be allocated to this image, in megabytes.

246 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

local_disk When true the disks for the computing instance will be provisioned on the host which it runs, otherwise
SAN disks will be provisioned.

hourly_billing When true the computing instance will be billed on hourly usage, otherwise it will be billed on a
monthly basis.

domain e domain name that will be used in the FQDN (Fully alified Domain Name) for this instance. e
domain seing will be used in conjunction with the instance name to form the FQDN.

location Images to build an instance can be found using the --list-locations option:

salt-cloud --list-location my-softlayer

max_net_speed Specifies the connection speed for the instance's network components. is seing is optional.
By default, this is set to 10.

public_vlan If it is necessary for an instance to be created within a specific frontend VLAN, the ID for that VLAN
can be specified in either the provider or profile configuration.

is ID can be queried using the list_vlans function, as described below. is seing is optional.

private_vlan If it is necessary for an instance to be created within a specific backend VLAN, the ID for that VLAN
can be specified in either the provider or profile configuration.

is ID can be queried using the list_vlans function, as described below. is seing is optional.

private_network If a server is to only be used internally, meaning it does not have a public VLAN associated with
it, this value would be set to True. is seing is optional. e default is False.

private_ssh Whether to run the deploy script on the server using the public IP address or the private IP address.
If set to True, Salt Cloud will aempt to SSH into the new server using the private IP address. e default is False.
is seiong is optional.

global_identifier When creating an instance using a custom template, this option is set to the corresponding value
obtained using the list_custom_images function. is option will not be used if an image is set, and if an image is not
set, it is required.

e profile can be realized now with a salt command:

salt-cloud -p base_softlayer_ubuntu myserver

Using the above configuration, this will create myserver.example.com.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt 'myserver.example.com' test.ping

15.5. Cloud Provider Specifics 247

Salt Documentation, Release 2014.7.6

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles:

base_softlayer_hw_centos:
provider: my-softlayer-hw
CentOS 6.0 - Minimal Install (64 bit)
image: 13963
2 x 2.0 GHz Core Bare Metal Instance - 2 GB Ram
size: 1921
250GB SATA II
hdd: 19
San Jose 01
location: 168642
domain: example.com
Optional
vlan: 396
port_speed: 273
banwidth: 248

Most of the above items are required; optional items are specified below.

image Images to build an instance can be found using the --list-images option:

salt-cloud --list-images my-softlayer-hw

A list of id`s and names will be provided. e `name will describe the operating system and architecture. e id will
be the seing to be used in the profile.

size Sizes to build an instance can be found using the --list-sizes option:

salt-cloud --list-sizes my-softlayer-hw

A list of id`s and names will be provided. e `name will describe the speed and quantity of CPU cores, and the
amount of memory that the hardware will contain. e id will be the seing to be used in the profile.

hdd ere are currently two sizes of hard disk drive (HDD) that are available for hardware instances on SoLayer:

19: 250GB SATA II
1267: 500GB SATA II

e hdd seing in the profile will be either 19 or 1267. Other sizes may be added in the future.

location Locations to build an instance can be found using the --list-images option:

salt-cloud --list-locations my-softlayer-hw

A list of IDs and names will be provided. e location will describe the location in human terms. e id will be the
seing to be used in the profile.

domain e domain name that will be used in the FQDN (Fully alified Domain Name) for this instance. e
domain seing will be used in conjunction with the instance name to form the FQDN.

248 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

vlan If it is necessary for an instance to be created within a specific VLAN, the ID for that VLAN can be specified
in either the provider or profile configuration.

is ID can be queried using the list_vlans function, as described below.

port_speed Specifies the speed for the instance's network port. is seing refers to an ID within the SoLayer
API, which sets the port speed. is seing is optional. e default is 273, or, 100 Mbps Public & Private Networks.
e following seings are available:

• 273: 100 Mbps Public & Private Networks

• 274: 1 Gbps Public & Private Networks

• 21509: 10 Mbps Dual Public & Private Networks (up to 20 Mbps)

• 21513: 100 Mbps Dual Public & Private Networks (up to 200 Mbps)

• 2314: 1 Gbps Dual Public & Private Networks (up to 2 Gbps)

• 272: 10 Mbps Public & Private Networks

bandwidth Specifies the network bandwidth available for the instance. is seing refers to an ID within the
SoLayer API, which sets the bandwidth. is seing is optional. e default is 248, or, 5000 GB Bandwidth. e
following seings are available:

• 248: 5000 GB Bandwidth

• 129: 6000 GB Bandwidth

• 130: 8000 GB Bandwidth

• 131: 10000 GB Bandwidth

• 36: Unlimited Bandwidth (10 Mbps Uplink)

• 125: Unlimited Bandwidth (100 Mbps Uplink)

Actions

e following actions are currently supported by the SoLayer Salt Cloud driver.

show_instance

is action is a thin wrapper around --full-query, which displays details on a single instance only. In an environment
with several machines, this will save a user from having to sort through all instance data, just to examine a single
instance.

$ salt-cloud -a show_instance myinstance

Functions

e following functions are currently supported by the SoLayer Salt Cloud driver.

15.5. Cloud Provider Specifics 249

Salt Documentation, Release 2014.7.6

list_vlans

is function lists all VLANs associated with the account, and all known data from the SoLayer API concerning
those VLANs.

$ salt-cloud -f list_vlans my-softlayer
$ salt-cloud -f list_vlans my-softlayer-hw

e id returned in this list is necessary for the vlan option when creating an instance.

list_custom_images

is function lists any custom templates associated with the account, that can be used to create a new instance.

$ salt-cloud -f list_custom_images my-softlayer

e globalIdentifier returned in this list is necessary for the global_identifier option when creating an image using a
custom template.

Optional Products for SoLayer HW

e solayer_hw provider supports the ability to add optional products, which are supported by SoLayer's API.
ese products each have an ID associated with them, that can be passed into Salt Cloud with the optional_products
option:

softlayer_hw_test:
provider: my-softlayer-hw
CentOS 6.0 - Minimal Install (64 bit)
image: 13963
2 x 2.0 GHz Core Bare Metal Instance - 2 GB Ram
size: 1921
250GB SATA II
hdd: 19
San Jose 01
location: 168642
domain: example.com
optional_products:

MySQL for Linux
- id: 28
Business Continuance Insurance
- id: 104

ese values can be manually obtained by looking at the source of an order page on the SoLayer web interface. For
convenience, many of these values are listed here:

Public Secondary IP Addresses

• 22: 4 Public IP Addresses

• 23: 8 Public IP Addresses

Primary IPv6 Addresses

• 17129: 1 IPv6 Address

250 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Public Static IPv6 Addresses

• 1481: /64 Block Static Public IPv6 Addresses

OS-Specific Addon

• 17139: XenServer Advanced for XenServer 6.x

• 17141: XenServer Enterprise for XenServer 6.x

• 2334: XenServer Advanced for XenServer 5.6

• 2335: XenServer Enterprise for XenServer 5.6

• 13915: Microso WebMatrix

• 21276: VMware vCenter 5.1 Standard

Control Panel Soware

• 121: cPanel/WHM with Fantastico and RVskin

• 20778: Parallels Plesk Panel 11 (Linux) 100 Domain w/ Power Pack

• 20786: Parallels Plesk Panel 11 (Windows) 100 Domain w/ Power Pack

• 20787: Parallels Plesk Panel 11 (Linux) Unlimited Domain w/ Power Pack

• 20792: Parallels Plesk Panel 11 (Windows) Unlimited Domain w/ Power Pack

• 2340: Parallels Plesk Panel 10 (Linux) 100 Domain w/ Power Pack

• 2339: Parallels Plesk Panel 10 (Linux) Unlimited Domain w/ Power Pack

• 13704: Parallels Plesk Panel 10 (Windows) Unlimited Domain w/ Power Pack

Database Soware

• 29: MySQL 5.0 for Windows

• 28: MySQL for Linux

• 21501: Riak 1.x

• 20893: MongoDB

• 30: Microso SQL Server 2005 Express

• 92: Microso SQL Server 2005 Workgroup

• 90: Microso SQL Server 2005 Standard

• 94: Microso SQL Server 2005 Enterprise

• 1330: Microso SQL Server 2008 Express

• 1340: Microso SQL Server 2008 Web

• 1337: Microso SQL Server 2008 Workgroup

• 1334: Microso SQL Server 2008 Standard

• 1331: Microso SQL Server 2008 Enterprise

15.5. Cloud Provider Specifics 251

Salt Documentation, Release 2014.7.6

• 2179: Microso SQL Server 2008 Express R2

• 2173: Microso SQL Server 2008 Web R2

• 2183: Microso SQL Server 2008 Workgroup R2

• 2180: Microso SQL Server 2008 Standard R2

• 2176: Microso SQL Server 2008 Enterprise R2

Anti-Virus & Spyware Protection

• 594: McAfee VirusScan Anti-Virus - Windows

• 414: McAfee Total Protection - Windows

Insurance

• 104: Business Continuance Insurance

Monitoring

• 55: Host Ping

• 56: Host Ping and TCP Service Monitoring

Notification

• 57: Email and Ticket

Advanced Monitoring

• 2302: Monitoring Package - Basic

• 2303: Monitoring Package - Advanced

• 2304: Monitoring Package - Premium Application

Response

• 58: Automated Notification

• 59: Automated Reboot from Monitoring

• 60: 24x7x365 NOC Monitoring, Notification, and Response

Intrusion Detection & Protection

• 413: McAfee Host Intrusion Protection w/Reporting

252 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Hardware & Soware Firewalls

• 411: APF Soware Firewall for Linux

• 894: Microso Windows Firewall

• 410: 10Mbps Hardware Firewall

• 409: 100Mbps Hardware Firewall

• 408: 1000Mbps Hardware Firewall

15.5.16 Geing Started with VEXXHOST

VEXXHOST is an cloud computing provider which provides Canadian cloud computing services which are based
in Monteral and uses the libcloud OpenStack driver. VEXXHOST currently runs the Havana release of OpenStack.
When provisioning new instances, they automatically get a public IP and private IP address. erefore, you do not
need to assign a floating IP to access your instance once it's booted.

Cloud Provider Configuration

To use the openstack driver for the VEXXHOST public cloud, you will need to set up the cloud provider configuration
file as in the example below:

/etc/salt/cloud.providers.d/vexxhost.conf: In order to use the VEXXHOST public cloud, you will
need to setup a cloud provider configuration file as in the example below which uses the OpenStack driver.

vexxhost:
Set the location of the salt-master
#
minion:

master: saltmaster.example.com

Configure VEXXHOST using the OpenStack plugin
#
identity_url: http://auth.api.thenebulacloud.com:5000/v2.0/tokens
compute_name: nova

Set the compute region:
#
compute_region: na-yul-nhs1

Configure VEXXHOST authentication credentials
#
user: your-tenant-id
password: your-api-key
tenant: your-tenant-name

keys to allow connection to the instance launched
#
ssh_key_name: yourkey
ssh_key_file: /path/to/key/yourkey.priv

provider: openstack

15.5. Cloud Provider Specifics 253

http://vexxhost.com
http://vexxhost.com/cloud-computing

Salt Documentation, Release 2014.7.6

Authentication

All of the authentication fields that you need can be found by logging into your VEXXHOST customer center. Once
you've logged in, you will need to click on ``CloudConsole'' and then click on ``API Credentials''.

Cloud Profile Configuration

In order to get the correct image UUID and the instance type to use in the cloud profile, you can run the following
command respectively:

salt-cloud --list-images=vexxhost-config
salt-cloud --list-sizes=vexxhost-config

Once you have that, you can go ahead and create a new cloud profile. is profile will build an Ubuntu 12.04 LTS
nb.2G instance.

/etc/salt/cloud.profiles.d/vh_ubuntu1204_2G.conf:

vh_ubuntu1204_2G:
provider: vexxhost
image: 4051139f-750d-4d72-8ef0-074f2ccc7e5a
size: nb.2G

Provision an instance

To create an instance based on the sample profile that we created above, you can run the following salt-cloud com-
mand.

salt-cloud -p vh_ubuntu1204_2G vh_instance1

Typically, instances are provisioned in under 30 seconds on the VEXXHOST public cloud. Aer the instance provi-
sions, it will be set up a minion and then return all the instance information once it's complete.

Once the instance has been setup, you can test connectivity to it by running the following command:

salt vh_instance1 test.ping

You can now continue to provision new instances and they will all automatically be set up as minions of the master
you've defined in the configuration file.

15.6 Miscellaneous Options

15.6.1 Miscellaneous Salt Cloud Options

is page describes various miscellaneous options available in Salt Cloud

Deploy Script Arguments

Custom deploy scripts are unlikely to need custom arguments to be passed to them, but salt-bootstrap has been
extended quite a bit, and this may be necessary. script_args can be specified in either the profile or the map file, to
pass arguments to the deploy script:

254 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

ec2-amazon:
provider: ec2
image: ami-1624987f
size: Micro Instance
ssh_username: ec2-user
script: bootstrap-salt
script_args: -c /tmp/

is has also been tested to work with pipes, if needed:

script_args: | head

Sync Aer Install

Salt allows users to create custom modules, grains and states which can be synchronised to minions to extend Salt
with further functionality.

is option will inform Salt Cloud to synchronise your custom modules, grains, states or all these to the minion just
aer it has been created. For this to happen, the following line needs to be added to the main cloud configuration
file:

sync_after_install: all

e available options for this seing are:

modules
grains
states
all

Seing up New Salt Masters

It has become increasingly common for users to set up multi-hierarchal infrastructures using Salt Cloud. is some-
times involves seing up an instance to be a master in addition to a minion. With that in mind, you can now lay
down master configuration on a machine by specifying master options in the profile or map file.

make_master: True

is will cause Salt Cloud to generate master keys for the instance, and tell salt-bootstrap to install the salt-master
package, in addition to the salt-minion package.

e default master configuration is usually appropriate for most users, and will not be changed unless specific master
configuration has been added to the profile or map:

master:
user: root
interface: 0.0.0.0

Delete SSH Keys

When Salt Cloud deploys an instance, the SSH pub key for the instance is added to the known_hosts file for the user
that ran the salt-cloud command. When an instance is deployed, a cloud provider generally recycles the IP address
for the instance. When Salt Cloud aempts to deploy an instance using a recycled IP address that has previously
been accessed from the same machine, the old key in the known_hosts file will cause a conflict.

15.6. Miscellaneous Options 255

Salt Documentation, Release 2014.7.6

In order to mitigate this issue, Salt Cloud can be configured to remove old keys from the known_hosts file when
destroying the node. In order to do this, the following line needs to be added to the main cloud configuration file:

delete_sshkeys: True

Keeping /tmp/ Files

When Salt Cloud deploys an instance, it uploads temporary files to /tmp/ for salt-bootstrap to put in place. Aer the
script has run, they are deleted. To keep these files around (mostly for debugging purposes), the --keep-tmp option
can be added:

salt-cloud -p myprofile mymachine --keep-tmp

For those wondering why /tmp/ was used instead of /root/, this had to be done for images which require the use of
sudo, and therefore do not allow remote root logins, even for file transfers (which makes /root/ unavailable).

Hide Output From Minion Install

By default Salt Cloud will stream the output from the minion deploy script directly to STDOUT. Although this can
been very useful, in certain cases you may wish to switch this off. e following config option is there to enable or
disable this output:

display_ssh_output: False

Connection Timeout

ere are several stages when deploying Salt where Salt Cloud needs to wait for something to happen. e VM
geing it's IP address, the VM's SSH port is available, etc.

If you find that the Salt Cloud defaults are not enough and your deployment fails because Salt Cloud did not wait
log enough, there are some seings you can tweak.

Note

All values should be provided in seconds

You can tweak these seings globally, per cloud provider, or event per profile definition.

wait_for_ip_timeout

e amount of time Salt Cloud should wait for a VM to start and get an IP back from the cloud provider. Default: 5
minutes.

wait_for_ip_interval

e amount of time Salt Cloud should sleep while querying for the VM's IP. Default: 5 seconds.

ssh_connect_timeout

e amount of time Salt Cloud should wait for a successful SSH connection to the VM. Default: 5 minutes.

256 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

wait_for_passwd_timeout

e amount of time until an ssh connection can be established via password or ssh key. Default 15 seconds.

wait_for_passwd_maxtries

e number of aempts to connect to the VM until we abandon. Default 15 aempts

wait_for_fun_timeout

Some cloud drivers check for an available IP or a successful SSH connection using a function, namely, SoLayer and
SoLayer-HW. So, the amount of time Salt Cloud should retry such functions before failing. Default: 5 minutes.

wait_for_spot_timeout

e amount of time Salt Cloud should wait before an EC2 Spot instance is available. is seing is only available
for the EC2 cloud driver.

Salt Cloud Cache

Salt Cloud can maintain a cache of node data, for supported providers. e following options manage this function-
ality.

update_cachedir

On supported cloud providers, whether or not to maintain a cache of nodes re-
turned from a --full-query. e data will be stored in json format under
<SALT_CACHEDIR>/cloud/active/<DRIVER>/<PROVIDER>/<NODE_NAME>.json. is seing
can be True or False.

diff_cache_events

When the cloud cachedir is being managed, if differences are encountered between the data that is returned live
from the cloud provider and the data in the cache, fire events which describe the changes. is seing can be True
or False.

Some of these events will contain data which describe a node. Because some of the fields returned may contain
sensitive data, the cache_event_strip_fields configuration option exists to strip those fields from the event
return.

cache_event_strip_fields:
- password
- priv_key

e following are events that can be fired based on this data.

salt/cloud/minionid/cae_node_new A new node was found on the cloud provider which was not listed in the
cloud cachedir. A dict describing the new node will be contained in the event.

15.6. Miscellaneous Options 257

Salt Documentation, Release 2014.7.6

salt/cloud/minionid/cae_node_missing A node that was previously listed in the cloud cachedir is no longer
available on the cloud provider.

salt/cloud/minionid/cae_node_diff One or more pieces of data in the cloud cachedir has changed on the cloud
provider. A dict containing both the old and the new data will be contained in the event.

SSH Known Hosts

Normally when bootstrapping a VM, salt-cloud will ignore the SSH host key. is is because it does not know what
the host key is before starting (because it doesn't exist yet). If strict host key checking is turned on without the key
in the known_hosts file, then the host will never be available, and cannot be bootstrapped.

If a provider is able to determine the host key before trying to bootstrap it, that provider's driver can add it to the
known_hosts file, and then turn on strict host key checking. is can be set up in the main cloud configuration
file (normally /etc/salt/cloud) or in the provider-specific configuration file:

known_hosts_file: /path/to/.ssh/known_hosts

If this is not set, it will default to /dev/null, and strict host key checking will be turned off.

It is highly recommended that this option is not set, unless the user has verified that the provider supports this
functionality, and that the image being used is capable of providing the necessary information. At this time, only
the EC2 driver supports this functionality.

File Map Upload

New in version 2014.7.0.

e file_map option allows an arbitrary group of files to be uploaded to the target system before running the
deploy script. is functionality requires a provider uses salt.utils.cloud.bootstrap(), which is currently limited to
the ec2, gce, openstack and nova drivers.

e file_map can be configured globally in /etc/salt/cloud, or in any cloud provider or profile file. For
example, to upload an extra package or a custom deploy script, a cloud profile using file_map might look like:

ubuntu14:
provider: ec2-config
image: ami-98aa1cf0
size: t1.micro
ssh_username: root
securitygroup: default
file_map:

/local/path/to/custom/script: /remote/path/to/use/custom/script
/local/path/to/package: /remote/path/to/store/package

15.7 Troubleshooting Steps

15.7.1 Troubleshooting Salt Cloud

is page describes various steps for troubleshooting problems that may arise while using Salt Cloud.

258 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Virtual Machines Are Created, But Do Not Respond

Are TCP ports 4505 and 4506 open on the master? is is easy to overlook on new masters. Information on how to
open firewall ports on various platforms can be found here.

Generic Troubleshooting Steps

is section describes a set of instructions that are useful to a large number of situations, and are likely to solve most
issues that arise.

Version Compatibility

One of the most common issues that Salt Cloud users run into is import errors. ese are oen caused by version
compatibility issues with Salt.

Salt 0.16.x works with Salt Cloud 0.8.9 or greater.

Salt 0.17.x requires Salt Cloud 0.8.11.

Releases aer 0.17.x (0.18 or greater) should not encounter issues as Salt Cloud has been merged into Salt itself.

Debug Mode

Frequently, running Salt Cloud in debug mode will reveal information about a deployment which would otherwise
not be obvious:

salt-cloud -p myprofile myinstance -l debug

Keep inmind that a number of messages will appear that look at first like errors, but are in fact intended to give devel-
opers factual information to assist in debugging. A number of messages that appear will be for cloud providers that
you do not have configured; in these cases, the message usually is intended to confirm that they are not configured.

Salt Bootstrap

By default, Salt Cloud uses the Salt Bootstrap script to provision instances:

is script is packaged with Salt Cloud, but may be updated without updating the Salt package:

salt-cloud -u

The Bootstrap Log

If the default deploy script was used, there should be a file in the /tmp/ directory called bootstrap-salt.log.
is file contains the full output from the deployment, including any errors that may have occurred.

Keeping Temp Files

Salt Cloud uploads minion-specific files to instances once they are available via SSH, and then executes a deploy
script to put them into the correct place and install Salt. e --keep-tmp option will instruct Salt Cloud not to
remove those files when finished with them, so that the user may inspect them for problems:

15.7. Troubleshooting Steps 259

Salt Documentation, Release 2014.7.6

salt-cloud -p myprofile myinstance --keep-tmp

By default, Salt Cloud will create a directory on the target instance called /tmp/.saltcloud/. is directory
should be owned by the user that is to execute the deploy script, and should have permissions of 0700.

Most cloud providers are configured to use root as the default initial user for deployment, and as such, this directory
and all files in it should be owned by the root user.

e /tmp/.saltcloud/ directory should the following files:

• A deploy.sh script. is script should have permissions of 0755.

• A .pem and .pub key named aer the minion. e .pem file should have permissions of 0600. Ensure that
the .pem and .pub files have been properly copied to the /etc/salt/pki/minion/ directory.

• A file called minion. is file should have been copied to the /etc/salt/ directory.

• Optionally, a file called grains. is file, if present, should have been copied to the /etc/salt/ directory.

Unprivileged Primary Users

Some providers, most notably EC2, are configured with a different primary user. Some common examples are ec2-
user, ubuntu, fedora and bitnami. In these cases, the /tmp/.saltcloud/ directory and all files in it
should be owned by this user.

Some providers, such as EC2, are configured to not require these users to provide a password when using the sudo
command. Because it is more secure to require sudo users to provide a password, other providers are configured
that way.

If this instance is required to provide a password, it needs to be configured in Salt Cloud. A password for sudo to
use may be added to either the provider configuration or the profile configuration:

sudo_password: mypassword

/tmp/ is Mounted as noexec

It is more secure to mount the /tmp/ directory with a noexec option. is is uncommon on most cloud providers,
but very common in private environments. To see if the /tmp/ directory is mounted this way, run the following
command:

mount | grep tmp

e if the output of this command includes a line that looks like this, then the /tmp/ directory is mounted as
noexec:

tmpfs on /tmp type tmpfs (rw,noexec)

If this is the case, then the deploy_command will need to be changed in order to run the deploy script through
the sh command, rather than trying to execute it directly. is may be specified in either the provider or the profile
config:

deploy_command: sh /tmp/.saltcloud/deploy.sh

Please note that by default, Salt Cloud will place its files in a directory called /tmp/.saltcloud/. is may be
also be changed in the provider or profile configuration:

260 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

tmp_dir: /tmp/.saltcloud/

If this directory is changed, then the deploy_command need to be changed in order to reflect the tmp_dir
configuration.

Executing the Deploy Script Manually

If all of the files needed for deployment were successfully uploaded to the correct locations, and contain the correct
permissions and ownerships, the deploy script may be executed manually in order to check for other issues:

cd /tmp/.saltcloud/
./deploy.sh

15.8 Extending Salt Cloud

15.8.1 Writing Cloud Provider Modules

Salt Cloud runs on a module system similar to the main Salt project. e modules inside saltcloud exist in the
salt/cloud/clouds directory of the salt source.

ere are two basic types of cloud modules. If a cloud provider is supported by libcloud, then using it is the fastest
route to geing a module wrien. e Apache Libcloud project is located at:

hp://libcloud.apache.org/

Not every cloud provider is supported by libcloud. Additionally, not every feature in a supported cloud provider is
necessary supported by libcloud. In either of these cases, a module can be created which does not rely on libcloud.

All Modules

e following functions are required by all modules, whether or not they are based on libcloud.

The __virtual__() Function

is function determines whether or not to make this cloud module available upon execution. Most oen, it uses
get_configured_provider() to determine if the necessary configuration has been set up. It may also check
for necessary imports, to decide whether to load the module. In most cases, it will return a True or False value.
If the name of the driver used does not match the filename, then that name should be returned instead of True. An
example of this may be seen in the Azure module:

hps://github.com/saltstack/salt/tree/develop/salt/cloud/clouds/msazure.py

The get_configured_provider() Function

is function uses config.is_provider_configured() to determine wither all required information for
this driver has been configured. e last value in the list of required seings should be followed by a comma.

15.8. Extending Salt Cloud 261

http://libcloud.apache.org/
https://github.com/saltstack/salt/tree/develop/salt/cloud/clouds/msazure.py

Salt Documentation, Release 2014.7.6

Libcloud Based Modules

Writing a cloud module based on libcloud has two major advantages. First of all, much of the work has already been
done by the libcloud project. Second, most of the functions necessary to Salt have already been added to the Salt
Cloud project.

The create() Function

e most important function that does need to be manually wrien is the create() function. is is what is used
to request a virtual machine to be created by the cloud provider, wait for it to become available, and then (optionally)
log in and install Salt on it.

A good example to follow for writing a cloud provider module based on libcloud is the module provided for Linode:

hps://github.com/saltstack/salt/tree/develop/salt/cloud/clouds/linode.py

e basic flow of a create() function is as follows:

• Send a request to the cloud provider to create a virtual machine.

• Wait for the virtual machine to become available.

• Generate kwargs to be used to deploy Salt.

• Log into the virtual machine and deploy Salt.

• Return a data structure that describes the newly-created virtual machine.

At various points throughout this function, events may be fired on the Salt event bus. Four of these events, which
are described below, are required. Other events may be added by the user, where appropriate.

When the create() function is called, it is passed a data structure called vm_. is dict contains a composite of
information describing the virtual machine to be created. A dict called __opts__ is also provided by Salt, which
contains the options used to run Salt Cloud, as well as a set of configuration and environment variables.

e first thing the create() function must do is fire an event stating that it has started the create process. is
event is tagged salt/cloud/<vm name>/creating. e payload contains the names of the VM, profile and
provider.

A set of kwargs is then usually created, to describe the parameters required by the cloud provider to request the
virtual machine.

An event is then fired to state that a virtual machine is about to be requested. It is tagged as salt/cloud/<vm
name>/requesting. e payload contains most or all of the parameters that will be sent to the cloud provider.
Any private information (such as passwords) should not be sent in the event.

Aer a request is made, a set of deploy kwargs will be generated. ese will be used to install Salt on the target
machine. Windows options are supported at this point, and should be generated, even if the cloud provider does
not currently support Windows. is will save time in the future if the provider does eventually decide to support
Windows.

An event is then fired to state that the deploy process is about to begin. is event is tagged salt/cloud/<vm
name>/deploying. e payload for the event will contain a set of deploy kwargs, useful for debugging purposed.
Any private data, including passwords and keys (including public keys) should be stripped from the deploy kwargs
before the event is fired.

If any Windows options have been passed in, the salt.utils.cloud.deploy_windows() function
will be called. Otherwise, it will be assumed that the target is a Linux or Unix machine, and the
salt.utils.cloud.deploy_script() will be called.

262 Chapter 15. Salt Cloud

https://github.com/saltstack/salt/tree/develop/salt/cloud/clouds/linode.py

Salt Documentation, Release 2014.7.6

Both of these functions will wait for the target machine to become available, then the necessary port to log in, then a
successful login that can be used to install Salt. Minion configuration and keys will then be uploaded to a temporary
directory on the target by the appropriate function. On a Windows target, the Windows Minion Installer will be
run in silent mode. On a Linux/Unix target, a deploy script (bootstrap-salt.sh, by default) will be run, which will
auto-detect the operating system, and install Salt using its native package manager. ese do not need to be handled
by the developer in the cloud module.

Aer the appropriate deploy function completes, a final event is fired which describes the virtual machine that has
just been created. is event is tagged salt/cloud/<vm name>/created. e payload contains the names of
the VM, profile and provider.

Finally, a dict (queried from the provider) which describes the new virtual machine is returned to the user. Because
this data is not fired on the event bus it can, and should, return any passwords that were returned by the cloud
provider. In some cases (for example, Rackspace), this is the only time that the password can be queried by the user;
post-creation queries may not contain password information (depending upon the provider).

The libcloudfuncs Functions

A number of other functions are required for all cloud providers. However, with libcloud-based modules, these are
all provided for free by the libcloudfuncs library. e following two lines set up the imports:

from salt.cloud.libcloudfuncs import * # pylint: disable=W0614,W0401
from salt.utils import namespaced_function

And then a series of declarations will make the necessary functions available within the cloud module.

get_size = namespaced_function(get_size, globals())
get_image = namespaced_function(get_image, globals())
avail_locations = namespaced_function(avail_locations, globals())
avail_images = namespaced_function(avail_images, globals())
avail_sizes = namespaced_function(avail_sizes, globals())
script = namespaced_function(script, globals())
destroy = namespaced_function(destroy, globals())
list_nodes = namespaced_function(list_nodes, globals())
list_nodes_full = namespaced_function(list_nodes_full, globals())
list_nodes_select = namespaced_function(list_nodes_select, globals())
show_instance = namespaced_function(show_instance, globals())

If necessary, these functions may be replaced by removing the appropriate declaration line, and then adding the
function as normal.

ese functions are required for all cloud modules, and are described in detail in the next section.

Non-Libcloud Based Modules

In some cases, using libcloud is not an option. is may be because libcloud has not yet included the necessary
driver itself, or it may be that the driver that is included with libcloud does not contain all of the necessary features
required by the developer. When this is the case, some or all of the functions in libcloudfuncsmay be replaced.
If they are all replaced, the libcloud imports should be absent from the Salt Cloud module.

A good example of a non-libcloud provider is the DigitalOcean module:

hps://github.com/saltstack/salt/tree/develop/salt/cloud/clouds/digital_ocean.py

15.8. Extending Salt Cloud 263

https://github.com/saltstack/salt/tree/develop/salt/cloud/clouds/digital_ocean.py

Salt Documentation, Release 2014.7.6

The create() Function

e create() function must be created as described in the libcloud-based module documentation.

The get_size() Function

is function is only necessary for libcloud-based modules, and does not need to exist otherwise.

The get_image() Function

is function is only necessary for libcloud-based modules, and does not need to exist otherwise.

The avail_locations() Function

is function returns a list of locations available, if the cloud provider uses multiple data centers. It is not necessary
if the cloud provider only uses one data center. It is normally called using the --list-locations option.

salt-cloud --list-locations my-cloud-provider

The avail_images() Function

is function returns a list of images available for this cloud provider. ere are not currently any known cloud
providers that do not provide this functionality, though they may refer to images by a different name (for example,
``templates''). It is normally called using the --list-images option.

salt-cloud --list-images my-cloud-provider

The avail_sizes() Function

is function returns a list of sizes available for this cloud provider. Generally, this refers to a combination of RAM,
CPU and/or disk space. is functionality may not be present on some cloud providers. For example, the Parallels
module breaks down RAM, CPU and disk space into separate options, whereas in other providers, these options are
baked into the image. It is normally called using the --list-sizes option.

salt-cloud --list-sizes my-cloud-provider

The script() Function

is function builds the deploy script to be used on the remote machine. It is likely to be moved into the
salt.utils.cloud library in the near future, as it is very generic and can usually be copied wholesale from
another module. An excellent example is in the Azure driver.

The destroy() Function

is function irreversibly destroys a virtual machine on the cloud provider. Before doing so, it should fire an event on
the Salt event bus. e tag for this event is salt/cloud/<vm name>/destroying. Once the virtual machine
has been destroyed, another event is fired. e tag for that event is salt/cloud/<vm name>/destroyed.

264 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

is function is normally called with the -d options:

salt-cloud -d myinstance

The list_nodes() Function

is function returns a list of nodes available on this cloud provider, using the following fields:

• id (str)

• image (str)

• size (str)

• state (str)

• private_ips (list)

• public_ips (list)

No other fields should be returned in this function, and all of these fields should be returned, even if empty. e
private_ips and public_ips fields should always be of a list type, even if empty, and the other fields should always be
of a str type. is function is normally called with the -Q option:

salt-cloud -Q

The list_nodes_full() Function

All information available about all nodes should be returned in this function. e fields in the list_nodes() function
should also be returned, even if they would not normally be provided by the cloud provider. is is because some
functions both within Salt and 3rd party will break if an expected field is not present. is function is normally called
with the -F option:

salt-cloud -F

The list_nodes_select() Function

is function returns only the fields specified in the query.selection option in /etc/salt/cloud. Because
this function is so generic, all of the heavy liing has been moved into the salt.utils.cloud library.

A function to call list_nodes_select() still needs to be present. In general, the following code can be used
as-is:

def list_nodes_select(call=None):
'''
Return a list of the VMs that are on the provider, with select fields
'''
return salt.utils.cloud.list_nodes_select(

list_nodes_full('function'), __opts__['query.selection'], call,
)

However, depending on the cloud provider, additional variables may be required. For instance, some modules use
a conn object, or may need to pass other options into list_nodes_full(). In this case, be sure to update the
function appropriately:

15.8. Extending Salt Cloud 265

Salt Documentation, Release 2014.7.6

def list_nodes_select(conn=None, call=None):
'''
Return a list of the VMs that are on the provider, with select fields
'''
if not conn:

conn = get_conn() # pylint: disable=E0602

return salt.utils.cloud.list_nodes_select(
list_nodes_full(conn, 'function'),
__opts__['query.selection'],
call,

)

is function is normally called with the -S option:

salt-cloud -S

The show_instance() Function

is function is used to display all of the information about a single node that is available from the cloud provider.
e simplest way to provide this is usually to call list_nodes_full(), and return just the data for the requested
node. It is normally called as an action:

salt-cloud -a show_instance myinstance

Actions and Functions

Extra functionality may be added to a cloud provider in the form of an --action or a --function. Actions are
performed against a cloud instance/virtual machine, and functions are performed against a cloud provider.

Actions

Actions are calls that are performed against a specific instance or virtual machine. e show_instance action
should be available in all cloud modules. Actions are normally called with the -a option:

salt-cloud -a show_instance myinstance

Actions must accept a name as a first argument, may optionally support any number of kwargs as appropriate, and
must accept an argument of call, with a default of None.

Before performing any other work, an action should normally verify that it has been called correctly. It may then
perform the desired feature, and return useful information to the user. A basic action looks like:

def show_instance(name, call=None):
'''
Show the details from EC2 concerning an AMI
'''
if call != 'action':

raise SaltCloudSystemExit(
'The show_instance action must be called with -a or --action.'

)

return _get_node(name)

266 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Please note that generic kwargs, if used, are passed through to actions as kwargs and not **kwargs. An example
of this is seen in the Functions section.

Functions

Functions are called that are performed against a specific cloud provider. An optional function that is oen useful is
show_image, which describes an image in detail. Functions are normally called with the -f option:

salt-cloud -f show_image my-cloud-provider image='Ubuntu 13.10 64-bit'

A function may accept any number of kwargs as appropriate, and must accept an argument of call with a default
of None.

Before performing any other work, a function should normally verify that it has been called correctly. It may then
perform the desired feature, and return useful information to the user. A basic function looks like:

def show_image(kwargs, call=None):
'''
Show the details from EC2 concerning an AMI
'''
if call != 'function':

raise SaltCloudSystemExit(
'The show_image action must be called with -f or --function.'

)

params = {'ImageId.1': kwargs['image'],
'Action': 'DescribeImages'}

result = query(params)
log.info(result)

return result

Take note that generic kwargs are passed through to functions as kwargs and not **kwargs.

15.8.2 OS Support for Cloud VMs

Salt Cloud works primarily by executing a script on the virtual machines as soon as they become available. e
script that is executed is referenced in the cloud profile as the script. In older versions, this was the os argument.
is was changed in 0.8.2.

A number of legacy scripts exist in the deploy directory in the saltcloud source tree. e preferredmethod is currently
to use the salt-bootstrap script. A stable version is included with each release tarball starting with 0.8.4. e most
updated version can be found at:

hps://github.com/saltstack/salt-bootstrap

If you do not specify a script argument, this script will be used at the default.

If the Salt Bootstrap script does not meet your needs, you may write your own. e script should be wrien in bash
and is a Jinja template. Deploy scripts need to execute a number of functions to do a complete salt setup. ese
functions include:

1. Install the salt minion. If this can be done via system packages this method is HIGHLY preferred.

2. Add the salt minion keys before the minion is started for the first time. eminion keys are available as strings
that can be copied into place in the Jinja template under the dict named ``vm''.

3. Start the salt-minion daemon and enable it at startup time.

15.8. Extending Salt Cloud 267

https://github.com/saltstack/salt-bootstrap

Salt Documentation, Release 2014.7.6

4. Set up the minion configuration file from the ``minion'' data available in the Jinja template.

A good, well commented, example of this process is the Fedora deployment script:

hps://github.com/saltstack/salt-cloud/blob/master/saltcloud/deploy/Fedora.sh

A number of legacy deploy scripts are included with the release tarball. None of them are as functional or complete
as Salt Bootstrap, and are still included for academic purposes.

Other Generic Deploy Scripts

If you want to be assured of always using the latest Salt Bootstrap script, there are a few generic templates available
in the deploy directory of your saltcloud source tree:

curl-bootstrap
curl-bootstrap-git
python-bootstrap
wget-bootstrap
wget-bootstrap-git

ese are example scripts which were designed to be customized, adapted, and refit to meet your needs. One impor-
tant use of them is to pass options to the salt-bootstrap script, such as updating to specific git tags.

Post-Deploy Commands

Once aminion has been deployed, it has the option to run a salt command. Normally, this would be the state.highstate
command, which would finish provisioning the VM. Another common option is state.sls, or for just testing, test.ping.
is is configured in the main cloud config file:

start_action: state.highstate

is is currently considered to be experimental functionality, and may not work well with all providers. If you
experience problems with Salt Cloud hanging aer Salt is deployed, consider using Startup States instead:

hp://docs.saltstack.com/ref/states/startup.html

Skipping the Deploy Script

For whatever reason, you may want to skip the deploy script altogether. is results in a VM being spun up much
faster, with absolutely no configuration. is can be set from the command line:

salt-cloud --no-deploy -p micro_aws my_instance

Or it can be set from the main cloud config file:

deploy: False

Or it can be set from the provider's configuration:

RACKSPACE.user: example_user
RACKSPACE.apikey: 123984bjjas87034
RACKSPACE.deploy: False

Or even on the VM's profile seings:

268 Chapter 15. Salt Cloud

https://github.com/saltstack/salt-cloud/blob/master/saltcloud/deploy/Fedora.sh
http://docs.saltstack.com/ref/states/startup.html

Salt Documentation, Release 2014.7.6

ubuntu_aws:
provider: aws
image: ami-7e2da54e
size: Micro Instance
deploy: False

e default for deploy is True.

In the profile, you may also set the script option to None:

script: None

is is the slowest option, since it still uploads the None deploy script and executes it.

Updating Salt Bootstrap

Salt Bootstrap can be updated automatically with salt-cloud:

salt-cloud -u
salt-cloud --update-bootstrap

Bear in mind that this updates to the latest (unstable) version, so use with caution.

Keeping /tmp/ Files

When Salt Cloud deploys an instance, it uploads temporary files to /tmp/ for salt-bootstrap to put in place. Aer the
script has run, they are deleted. To keep these files around (mostly for debugging purposes), the --keep-tmp option
can be added:

salt-cloud -p myprofile mymachine --keep-tmp

For those wondering why /tmp/ was used instead of /root/, this had to be done for images which require the use of
sudo, and therefore do not allow remote root logins, even for file transfers (which makes /root/ unavailable).

Deploy Script Arguments

Custom deploy scripts are unlikely to need custom arguments to be passed to them, but salt-bootstrap has been
extended quite a bit, and this may be necessary. script_args can be specified in either the profile or the map file, to
pass arguments to the deploy script:
aws-amazon:

provider: aws
image: ami-1624987f
size: Micro Instance
ssh_username: ec2-user
script: bootstrap-salt
script_args: -c /tmp/

is has also been tested to work with pipes, if needed:

script_args: | head

15.8. Extending Salt Cloud 269

Salt Documentation, Release 2014.7.6

15.9 Using Salt Cloud from Salt

15.9.1 Using the Salt Modules for Cloud

In addition to the salt-cloud command, Salt Cloud can be called from Salt, in a variety of different ways. Most
users will be interested in either the execution module or the state module, but it is also possible to call Salt Cloud
as a runner.

Because the actual work will be performed on a remote minion, the normal Salt Cloud configuration must exist
on any target minion that needs to execute a Salt Cloud command. Because Salt Cloud now supports breaking
out configuration into individual files, the configuration is easily managed using Salt's own file.managed state
function. For example, the following directories allow this configuration to be managed easily:

/etc/salt/cloud.providers.d/
/etc/salt/cloud.profiles.d/

Minion Keys

Keep in mind that when creating minions, Salt Cloud will create public and private minion keys, upload them to the
minion, and place the public key on the machine that created the minion. It will not aempt to place any public
minion keys on the master, unless the minion which was used to create the instance is also the Salt Master. is
is because granting arbitrary minions access to modify keys on the master is a serious security risk, and must be
avoided.

Execution Module

e cloud module is available to use from the command line. At the moment, almost every standard Salt Cloud
feature is available to use. e following commands are available:

list_images

is command is designed to show images that are available to be used to create an instance using Salt Cloud. In
general they are used in the creation of profiles, but may also be used to create an instance directly (see below).
Listing images requires a provider to be configured, and specified:

salt myminion cloud.list_images my-cloud-provider

list_sizes

is command is designed to show sizes that are available to be used to create an instance using Salt Cloud. In
general they are used in the creation of profiles, but may also be used to create an instance directly (see below). is
command is not available for all cloud providers; see the provider-specific documentation for details. Listing sizes
requires a provider to be configured, and specified:

salt myminion cloud.list_sizes my-cloud-provider

list_locations

is command is designed to show locations that are available to be used to create an instance using Salt Cloud.
In general they are used in the creation of profiles, but may also be used to create an instance directly (see below).

270 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

is command is not available for all cloud providers; see the provider-specific documentation for details. Listing
locations requires a provider to be configured, and specified:

salt myminion cloud.list_locations my-cloud-provider

query

is command is used to query all configured cloud providers, and display all instances associated with those ac-
counts. By default, it will run a standard query, returning the following fields:

id e name or ID of the instance, as used by the cloud provider.

image e disk image that was used to create this instance.

private_ips Any public IP addresses currently assigned to this instance.

public_ips Any private IP addresses currently assigned to this instance.

size e size of the instance; can refer to RAM, CPU(s), disk space, etc., depending on the cloud provider.

state e running state of the instance; for example, running, stopped, pending, etc. is state is dependent
upon the provider.

is command may also be used to perform a full query or a select query, as described below. e following usages
are available:

salt myminion cloud.query
salt myminion cloud.query list_nodes
salt myminion cloud.query list_nodes_full

full_query

is command behaves like the query command, but lists all information concerning each instance as provided by
the cloud provider, in addition to the fields returned by the query command.

salt myminion cloud.full_query

select_query

is command behaves like the query command, but only returned select fields as defined in the
/etc/salt/cloud configuration file. A sample configuration for this section of the file might look like:

query.selection:
- id
- key_name

is configuration would only return the id and key_name fields, for those cloud providers that support those two
fields. is would be called using the following command:

salt myminion cloud.select_query

profile

is command is used to create an instance using a profile that is configured on the target minion. Please note that
the profile must be configured before this command can be used with it.

15.9. Using Salt Cloud from Salt 271

Salt Documentation, Release 2014.7.6

salt myminion cloud.profile ec2-centos64-x64 my-new-instance

Please note that the execution module does not run in parallel mode. Using multiple minions to create instances can
effectively perform parallel instance creation.

create

is command is similar to the profile command, in that it is used to create a new instance. However, it does not
require a profile to be pre-configured. Instead, all of the options that are normally configured in a profile are passed
directly to Salt Cloud to create the instance:

salt myminion cloud.create my-ec2-config my-new-instance \
image=ami-1624987f size='Micro Instance' ssh_username=ec2-user \
securitygroup=default delvol_on_destroy=True

Please note that the execution module does not run in parallel mode. Using multiple minions to create instances can
effectively perform parallel instance creation.

destroy

is command is used to destroy an instance or instances. is command will search all configured providers and
remove any instance(s) which matches the name(s) passed in here. e results of this command are non-reversable
and should be used with caution.

salt myminion cloud.destroy myinstance
salt myminion cloud.destroy myinstance1,myinstance2

action

is command implements both the action and the function commands used in the standard salt-cloud
command. If one of the standard action commands is used, an instance name must be provided. If one of the
standard function commands is used, a provider configuration must be named.

salt myminion cloud.action start instance=myinstance
salt myminion cloud.action show_image provider=my-ec2-config \

image=ami-1624987f

e actions available are largely dependent upon the module for the specific cloud provider. e following actions
are available for all cloud providers:

list_nodes is is a direct call to the query function as described above, but is only performed against a single
cloud provider. A provider configuration must be included.

list_nodes_select is is a direct call to thefull_query function as described above, but is only performed
against a single cloud provider. A provider configuration must be included.

list_nodes_select is is a direct call to the select_query function as described above, but is only per-
formed against a single cloud provider. A provider configuration must be included.

show_instance is is a thin wrapper around list_nodes, which returns the full information about a single
instance. An instance name must be provided.

272 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

State Module

A subset of the execution module is available through the cloud state module. Not all functions are currently
included, because there is currently insufficient code for them to perform statefully. For example, a command to
create an instance may be issued with a series of options, but those options cannot currently be statefully managed.
Additional states to manage these options will be released at a later time.

cloud.present

is state will ensure that an instance is present inside a particular cloud provider. Any option that is normally
specified in the cloud.create execution module and function may be declared here, but only the actual presence
of the instance will be managed statefully.

my-instance-name:
cloud.present:

- provider: my-ec2-config
- image: ami-1624987f
- size: 'Micro Instance'
- ssh_username: ec2-user
- securitygroup: default
- delvol_on_destroy: True

cloud.profile

is state will ensure that an instance is present inside a particular cloud provider. is function calls the
cloud.profile execution module and function, but as with cloud.present, only the actual presence of the
instance will be managed statefully.

my-instance-name:
cloud.profile:

- profile: ec2-centos64-x64

cloud.absent

is state will ensure that an instance (identified by name) does not exist in any of the cloud providers configured
on the target minion. Please note that this state is non-reversable and may be considered especially destructive when
issued as a cloud state.

my-instance-name:
cloud.absent

Runner Module

e cloud runner module is executed on the master, and performs actions using the configuration and Salt modules
on the master itself. is means that any public minion keys will also be properly accepted by the master.

Using the functions in the runner module is no different than using those in the execution module, outside of the
behavior described in the above paragraph. e following functions are available inside the runner:

• list_images

• list_sizes

• list_locations

15.9. Using Salt Cloud from Salt 273

Salt Documentation, Release 2014.7.6

• query

• full_query

• select_query

• profile

• destroy

• action

Outside of the standard usage of salt-run itself, commands are executed as usual:

salt-run cloud.profile ec2-centos64-x86_64 my-instance-name

CloudClient

e execution, state and runner modules ultimately all use the CloudClient library that ships with Salt. To use the
CloudClient library locally (either on the master or a minion), create a client object and issue a command against it:

import salt.cloud
import pprint
client = salt.cloud.CloudClient('/etc/salt/cloud')
nodes = client.query()
pprint.pprint(nodes)

15.10 Feature Comparison

15.10.1 Feature Matrix

A number of features are available in most cloud providers, but not all are available everywhere. is may be because
the feature isn't supported by the cloud provider itself, or it may only be that the feature has not yet been added to
Salt Cloud. In a handful of cases, it is because the feature does not make sense for a particular cloud provider (Saltify,
for instance).

is matrix shows which features are available in which cloud providers, as far as Salt Cloud is concerned. is is
not a comprehensive list of all features available in all cloud providers, and should not be used to make business
decisions concerning choosing a cloud provider. In most cases, adding support for a feature to Salt Cloud requires
only a lile effort.

Legacy Drivers

Both AWS and Rackspace are listed as ``Legacy''. is is because those drivers have been replaced by other drivers,
which are generally the preferred method for working with those providers.

e EC2 driver should be used instead of the AWS driver, when possible. e OpenStack driver should be used
instead of the Rackspace driver, unless the user is dealing with instances in ``the old cloud'' in Rackspace.

Note for Developers

When adding new features to a particular cloud provider, please make sure to add the feature to this table. Addi-
tionally, if you notice a feature that is not properly listed here, pull requests to fix them is appreciated.

274 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Standard Features

ese are features that are available for almost every provider.

AWS
(Legacy)

Cloud-
Stack

Digi-
tal
Ocean

EC2 GoGridJoyEntLin-
ode

Open-
Stack

Par-
al-
lels

Rackspace
(Legacy)

SaltifySo-
layer

So-
layer
Hard-
ware

Aliyun

ery Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Full
ery

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Selec-
tive
ery

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

List
Sizes

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

List
Im-
ages

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

List
Loca-
tions

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

create Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
de-
stroy

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Actions

ese are features that are performed on a specific instance, and require an instance name to be passed in. For
example:

salt-cloud -a attach_volume ami.example.com

15.10. Feature Comparison 275

Salt Documentation, Release 2014.7.6

Actions AWS
(Legacy)

Cloud-
Stack

Digi-
tal
Ocean

EC2 GoGridJoyEntLin-
ode

Open-
Stack

Par-
al-
lels

Rackspace
(Legacy)

SaltifySo-
layer

So-
layer
Hard-
ware

Aliyun

at-
tach_volume

Yes

cre-
ate_aach_volumes

Yes Yes

del_tags Yes Yes
delvol_on_destroy Yes
de-
tach_volume

Yes

dis-
able_term_protect

Yes Yes

en-
able_term_protect

Yes Yes

get_tags Yes Yes
keep-
vol_on_destroy

Yes

list_keypairs Yes
rename Yes Yes
set_tags Yes Yes
show_delvol_on_destroy Yes
show_instance Yes Yes Yes Yes Yes Yes
show_term_protect Yes
start Yes Yes Yes Yes Yes
stop Yes Yes Yes Yes Yes
take_action Yes

Functions

ese are features that are performed against a specific cloud provider, and require the name of the provider to be
passed in. For example:

salt-cloud -f list_images my_digitalocean

Functions AWS (Legacy) CloudStack Digital Ocean EC2 GoGrid JoyEnt Linode OpenStack Parallels Rackspace (Legacy) Saltify Solayer Solayer Hardware Aliyun
block_device_mappings Yes
create_keypair Yes
create_volume Yes
delete_key Yes
delete_keypair Yes
delete_volume Yes
get_image Yes Yes Yes Yes
get_ip Yes
get_key Yes
get_keyid Yes
get_keypair Yes
get_networkid Yes
get_node Yes
get_password Yes

Continued on next page

276 Chapter 15. Salt Cloud

Salt Documentation, Release 2014.7.6

Table 15.1 -- continued from previous page
Functions AWS (Legacy) CloudStack Digital Ocean EC2 GoGrid JoyEnt Linode OpenStack Parallels Rackspace (Legacy) Saltify Solayer Solayer Hardware Aliyun
get_size Yes Yes Yes
get_spot_config Yes
get_subnetid Yes
iam_profile Yes Yes Yes
import_key Yes
key_list Yes
keyname Yes Yes
list_availability_zones Yes Yes
list_custom_images Yes
list_keys Yes
list_nodes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
list_nodes_full Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
list_nodes_select Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
list_vlans Yes Yes
rackconnect Yes
reboot Yes Yes Yes
reformat_node Yes
securitygroup Yes Yes
securitygroupid Yes Yes
show_image Yes Yes Yes
show_key Yes
show_keypair Yes Yes
show_volume Yes Yes

15.10. Feature Comparison 277

Salt Documentation, Release 2014.7.6

278 Chapter 15. Salt Cloud

CHAPTER 16

netapimodules

16.1 Writing netapi modules

netapi modules, put simply, bind a port and start a service. ey are purposefully open-ended and can be used to
present a variety of external interfaces to Salt, and even present multiple interfaces at once.

See also:

e full list of netapi modules

16.1.1 Configuration

All netapi configuration is done in the Salt master config and takes a form similar to the following:

rest_cherrypy:
port: 8000
debug: True
ssl_crt: /etc/pki/tls/certs/localhost.crt
ssl_key: /etc/pki/tls/certs/localhost.key

16.1.2 The __virtual__ function

Like all module types in Salt, netapi modules go through Salt's loader interface to determine if they should be
loaded into memory and then executed.

e __virtual__ function in the module makes this determination and should return False or a string that will
serve as the name of the module. If the module raises an ImportError or any other errors, it will not be loaded.

16.1.3 The start function

e start() function will be called for each netapi module that is loaded. is function should contain the
server loop that actually starts the service. is is started in a multiprocess.

16.1.4 Inline documentation

As with the rest of Salt, it is a best-practice to include liberal inline documentation in the form of a module docstring
and docstrings on any classes, methods, and functions in your netapi module.

279

Salt Documentation, Release 2014.7.6

16.1.5 Loader “magic” methods

e loader makes the __opts__ data structure available to any function in a netapi module.

16.2 Introduction to netapi modules

netapi modules provide API-centric access to Salt. Usually externally-facing services such as REST or WebSockets,
XMPP, XMLRPC, etc.

In general netapi modules bind to a port and start a service. ey are purposefully open-ended. A single module can
be configured to run as well as multiple modules simultaneously.

netapi modules are enabled by adding configuration to your Salt Master config file and then starting the salt-api
daemon. Check the docs for each module to see external requirements and configuration seings.

Communication with Salt and Salt satellite projects is done using Salt's own Python API . A list of available client
interfaces is below.

salt-api

Prior to Salt's 2014.7.0 release, netapi modules lived in the separate sister projected salt-api. at project has
been merged into the main Salt project.

See also:

e full list of netapi modules

16.3 Client interfaces

Salt's client interfaces expose executing functions by craing a dictionary of values that are mapped to function
arguments. is allows calling functions simply by creating a data structure. (And this is exactly how much of Salt's
own internals work!)

class salt.netapi.NetapiClient(opts)
Provide a uniform method of accessing the various client interfaces in Salt in the form of low-data data struc-
tures. For example:

>>> client = NetapiClient(__opts__)
>>> lowstate = {'client': 'local', 'tgt': '*', 'fun': 'test.ping', 'arg': ''}
>>> client.run(lowstate)

local(*args, **kwargs)
Run execution modules synchronously

See salt.client.LocalClient.cmd() for all available parameters.

Sends a command from the master to the targeted minions. is is the same interface that Salt's own CLI
uses. Note the arg and kwarg parameters are sent down to the minion(s) and the given function, fun,
is called with those parameters.

Returns Returns the result from the execution module

local_async(*args, **kwargs)
Run execution modules asynchronously

Wraps salt.client.LocalClient.run_job().

280 Chapter 16. netapimodules

Salt Documentation, Release 2014.7.6

Returns job ID

local_batch(*args, **kwargs)
Run execution modules against batches of minions

New in version 0.8.4.

Wraps salt.client.LocalClient.cmd_batch()

Returns Returns the result from the exeuction module for each batch of returns

runner(fun, timeout=None, **kwargs)
Run runner modules <all-salt.runners> synchronously

Wraps salt.runner.RunnerClient.cmd_sync().

Note that runner functions must be called using keyword arguments. Positional arguments are not sup-
ported.

Returns Returns the result from the runner module

wheel(fun, **kwargs)
Run wheel modules synchronously

Wraps salt.wheel.WheelClient.master_call().

Note that wheel functions must be called using keyword arguments. Positional arguments are not sup-
ported.

Returns Returns the result from the wheel module

16.3. Client interfaces 281

Salt Documentation, Release 2014.7.6

282 Chapter 16. netapimodules

CHAPTER 17

Salt Virt

e Salt Virt cloud controller capability was initial added to Salt in version 0.14.0 as an alpha technology.

e initial Salt Virt system supports core cloud operations:

• Virtual machine deployment

• Inspection of deployed VMs

• Virtual machine migration

• Network profiling

• Automatic VM integration with all aspects of Salt

• Image Pre-seeding

Many features are currently under development to enhance the capabilities of the Salt Virt systems.

Note: It is noteworthy that Salt was originally developed with the intent of using the Salt communication system
as the backbone to a cloud controller. is means that the Salt Virt system is not an aerthought, simply a system
that took the back seat to other development. e original aempt to develop the cloud control aspects of Salt was
a project called buer. is project never took off, but was functional and proves the early viability of Salt to be a
cloud controller.

17.1 Salt Virt Tutorial

A tutorial about how to get Salt Virt up and running has been added to the tutorial section:

Cloud Controller Tutorial

17.2 The Salt Virt Runner

e point of interaction with the cloud controller is the virt runner. e virt runner comes with routines to execute
specific virtual machine routines.

Reference documentation for the virt runner is available with the runner module documentation:

Virt Runner Reference

283

Salt Documentation, Release 2014.7.6

17.3 Based on Live State Data

e Salt Virt system is based on using Salt to query live data about hypervisors and then using the data gathered to
make decisions about cloud operations. is means that no external resources are required to run Salt Virt, and that
the information gathered about the cloud is live and accurate.

17.4 Deploy from Network or Disk

17.4.1 Virtual Machine Disk Profiles

Salt Virt allows for the disks created for deployed virtual machines to be finely configured. e configuration is a
simple data structure which is read from the config.option function, meaning that the configuration can be
stored in the minion config file, the master config file, or the minion's pillar.

is configuration option is called virt.disk. e default virt.disk data structure looks like this:

virt.disk:
default:

- system:
size: 8192
format: qcow2
model: virtio

Note: e format and model does not need to be defined, Salt will default to the optimal format used by the
underlying hypervisor, in the case of kvm this it is qcow2 and virtio.

is configuration sets up a disk profile called default. e default profile creates a single system disk on the virtual
machine.

Define More Profiles

Many environments will require more complex disk profiles andmay require more than one profile, this can be easily
accomplished:

virt.disk:
default:

- system:
size: 8192

database:
- system:

size: 8192
- data:

size: 30720
web:

- system:
size: 1024

- logs:
size: 5120

is configuration allows for one of three profiles to be selected, allowing virtual machines to be created with dif-
ferent storage needs of the deployed vm.

284 Chapter 17. Salt Virt

Salt Documentation, Release 2014.7.6

17.4.2 Virtual Machine Network Profiles

Salt Virt allows for the network devices created for deployed virtual machines to be finely configured. e configu-
ration is a simple data structure which is read from the config.option function, meaning that the configuration
can be stored in the minion config file, the master config file, or the minion's pillar.

is configuration option is called virt.nic. By default the virt.nic option is empty but defaults to a data
structure which looks like this:

virt.nic:
default:

eth0:
bridge: br0
model: virtio

Note: e model does not need to be defined, Salt will default to the optimal model used by the underlying hyper-
visor, in the case of kvm this model is virtio

is configuration sets up a network profile called default. e default profile creates a single Ethernet device on the
virtual machine that is bridged to the hypervisor's br0 interface. is default setup does not require seing up the
virt.nic configuration, and is the reason why a default install only requires seing up the br0 bridge device on
the hypervisor.

Define More Profiles

Many environments will require more complex network profiles and may require more than one profile, this can be
easily accomplished:

virt.nic:
dual:

eth0:
bridge: service_br

eth1:
bridge: storage_br

single:
eth0:

bridge: service_br
triple:

eth0:
bridge: service_br

eth1:
bridge: storage_br

eth2:
bridge: dmz_br

all:
eth0:

bridge: service_br
eth1:

bridge: storage_br
eth2:

bridge: dmz_br
eth3:

bridge: database_br
dmz:

eth0:
bridge: service_br

eth1:

17.4. Deploy from Network or Disk 285

Salt Documentation, Release 2014.7.6

bridge: dmz_br
database:

eth0:
bridge: service_br

eth1:
bridge: database_br

is configuration allows for one of six profiles to be selected, allowing virtual machines to be created which aach
to different network depending on the needs of the deployed vm.

286 Chapter 17. Salt Virt

CHAPTER 18

Understanding YAML

e default renderer for SLS files is the YAML renderer. YAML is a markup language with many powerful features.
However, Salt uses a small subset of YAML that maps over very commonly used data structures, like lists and dictio-
naries. It is the job of the YAML renderer to take the YAML data structure and compile it into a Python data structure
for use by Salt.

ough YAML syntax may seem daunting and terse at first, there are only three very simple rules to remember when
writing YAML for SLS files.

18.1 Rule One: Indentation

YAML uses a fixed indentation scheme to represent relationships between data layers. Salt requires that the inden-
tation for each level consists of exactly two spaces. Do not use tabs.

18.2 Rule Two: Colons

Python dictionaries are, of course, simply key-value pairs. Users from other languages may recognize this data type
as hashes or associative arrays.

Dictionary keys are represented in YAML as strings terminated by a trailing colon. Values are represented by either
a string following the colon, separated by a space:

my_key: my_value

In Python, the above maps to:

{'my_key': 'my_value'}

Alternatively, a value can be associated with a key through indentation.

my_key:
my_value

Note: e above syntax is valid YAML but is uncommon in SLS files because most oen, the value for a key is not
singular but instead is a list of values.

In Python, the above maps to:

287

Salt Documentation, Release 2014.7.6

{'my_key': 'my_value'}

Dictionaries can be nested:

first_level_dict_key:
second_level_dict_key: value_in_second_level_dict

And in Python:

{
'first_level_dict_key': {

'second_level_dict_key': 'value_in_second_level_dict'
}

}

18.3 Rule Three: Dashes

To represent lists of items, a single dash followed by a space is used. Multiple items are a part of the same list as a
function of their having the same level of indentation.

- list_value_one
- list_value_two
- list_value_three

Lists can be the value of a key-value pair. is is quite common in Salt:

my_dictionary:
- list_value_one
- list_value_two
- list_value_three

In Python, the above maps to:

{'my_dictionary': ['list_value_one', 'list_value_two', 'list_value_three']}

18.4 Learning More

One easy way to learn more about how YAML gets rendered into Python data structures is to use an online YAML
parser to see the Python output.

One excellent choice for experimenting with YAML parsing is: hp://yaml-online-parser.appspot.com/

288 Chapter 18. Understanding YAML

http://yaml-online-parser.appspot.com/

CHAPTER 19

Master Tops System

In 0.10.4 the external_nodes system was upgraded to allow for modular subsystems to be used to generate the top
file data for a highstate run on the master.

e old external_nodes option has been removed. e master tops system contains a number of subsystems that are
loaded via the Salt loader interfaces like modules, states, returners, runners, etc.

Using the new master_tops option is simple:

master_tops:
ext_nodes: cobbler-external-nodes

for Cobbler or:

master_tops:
reclass:

inventory_base_uri: /etc/reclass
classes_uri: roles

for Reclass.

It's also possible to create custom master_tops modules. ese modules must go in a subdirectory called tops in the
extension_modules directory. e extension_modules directory is not defined by default (the default /srv/salt/_modules
will NOT work as of this release)

Custom tops modules are wrien like any other execution module, see the source for the two modules above for
examples of fully functional ones. Below is a degenerate example:

/etc/salt/master:

extension_modules: /srv/salt/modules
master_tops:

customtop: True

/srv/salt/modules/tops/customtop.py:

import logging
import sys
Define the module's virtual name
__virtualname__ = 'customtop'

log = logging.getLogger(__name__)

def __virtual__():
return __virtualname__

289

Salt Documentation, Release 2014.7.6

def top(**kwargs):
log.debug('Calling top in customtop')
return {'base': ['test']}

salt minion state.show_top should then display something like:

$ salt minion state.show_top

minion

base:

- test

290 Chapter 19. Master Tops System

CHAPTER 20

Salt SSH

Note: Salt ssh is considered production ready in version 2014.7.0

Note: On many systems, salt-ssh will be in its own package, usually named salt-ssh.

In version 0.17.0 of Salt a new transport system was introduced, the ability to use SSH for Salt communication. is
addition allows for Salt routines to be executed on remote systems entirely through ssh, bypassing the need for a
Salt Minion to be running on the remote systems and the need for a Salt Master.

Note: e Salt SSH system does not supercede the standard Salt communication systems, it simply offers an SSH
based alternative that does not require ZeroMQ and a remote agent. Be aware that since all communication with
Salt SSH is executed via SSH it is substantially slower than standard Salt with ZeroMQ.

Salt SSH is very easy to use, simply set up a basic roster file of the systems to connect to and run salt-ssh
commands in a similar way as standard salt commands.

Note: e Salt SSH eventually is supposed to support the same set of commands and functionality as standard salt
command.

At the moment fileserver operations must be wrapped to ensure that the relevant files are delivered with the salt-
ssh commands. e state module is an exception, which compiles the state run on the master, and in the process
finds all the references to salt:// paths and copies those files down in the same tarball as the state run. However,
needed fileserver wrappers are still under development.

20.1 Salt SSH Roster

e roster system in Salt allows for remote minions to be easily defined.

Note: See the Roster documentation for more details.

Simply create the roster file, the default location is /etc/salt/roster :

web1: 192.168.42.1

is is a very basic roster file where a Salt ID is being assigned to an IP address. A more elaborate roster can be
created:

291

Salt Documentation, Release 2014.7.6

web1:
host: 192.168.42.1 # The IP addr or DNS hostname
user: fred # Remote executions will be executed as user fred
passwd: foobarbaz # The password to use for login, if omitted, keys are used
sudo: True # Whether to sudo to root, not enabled by default

web2:
host: 192.168.42.2

Note: sudo works only if NOPASSWD is set for user in /etc/sudoers: fred ALL=(ALL) NOPASSWD: ALL

20.2 Calling Salt SSH

e salt-ssh command can be easily executed in the same way as a salt command:

salt-ssh '*' test.ping

Commands with salt-ssh follow the same syntax as the salt command.

e standard salt functions are available! e output is the same as salt and many of the same flags are available.
Please see hp://docs.saltstack.com/ref/cli/salt-ssh.html for all of the available options.

20.2.1 Raw Shell Calls

By default salt-ssh runs Salt execution modules on the remote system, but salt-ssh can also execute raw shell
commands:

salt-ssh '*' -r 'ifconfig'

20.3 States Via Salt SSH

e Salt State system can also be used with salt-ssh. e state system abstracts the same interface to the user in
salt-ssh as it does when using standard salt. e intent is that Salt Formulas defined for standard salt will
work seamlessly with salt-ssh and vice-versa.

e standard Salt States walkthroughs function by simply replacing salt commands with salt-ssh.

20.4 Targeting with Salt SSH

Due to the fact that the targeting approach differs in salt-ssh, only glob and regex targets are supported as of this
writing, the remaining target systems still need to be implemented.

20.5 Configuring Salt SSH

Salt SSH takes its configuration from a master configuration file. Normally, this file is in /etc/salt/master. If
one wishes to use a customized configuration file, the -c option to Salt SSH facilitates passing in a directory to look
inside for a configuration file named master.

292 Chapter 20. Salt SSH

http://docs.saltstack.com/ref/cli/salt-ssh.html

Salt Documentation, Release 2014.7.6

20.5.1 Minion Config

New in version 2015.5.1.

Minion config options can be defined globally using the master configuration option ssh_minion_opts. It can
also be defined on a per-minion basis with the minion_opts entry in the roster.

20.6 Running Salt SSH as non-root user

By default, Salt read all the configuration from /etc/salt/. If you are running Salt SSH with a regular user you have to
modify some paths or you will get ``Permission denied'' messages. You have to modify two parameters: pki_dir
and cachedir. ose should point to a full path writable for the user.

It's recommed not to modify /etc/salt for this purpose. Create a private copy of /etc/salt for the user and run the
command with -c /new/config/path.

20.7 Define CLI Options with Saltfile

If you are commonly passing in CLI options to salt-ssh, you can create a Saltfile to automatically use these
options. is is common if you're managing several different salt projects on the same server.

So if you cd into a directory with a Saltfile with the following YAML contents:

salt-ssh:
config_dir: path/to/config/dir
max_prox: 30
wipe_ssh: true

Instead of having to call salt-ssh --config-dir=path/to/config/dir --max-procs=30 --wipe
* test.ping you can call salt-ssh * test.ping.

Boolean-style options should be specified in their YAML representation.

Note: e option keys specified must match the destination aributes for the options specified in the parser
salt.utils.parsers.SaltSSHOptionParser. For example, in the case of the --wipe command line
option, its dest is configured to be wipe_ssh and thus this is what should be configured in the Saltfile.
Using the names of flags for this option, being wipe: true or w: true, will not work.

20.6. Running Salt SSH as non-root user 293

Salt Documentation, Release 2014.7.6

294 Chapter 20. Salt SSH

CHAPTER 21

Salt Rosters

Salt rosters are pluggable systems added in Salt 0.17.0 to facilitate the salt-ssh system. e roster system was
created because salt-ssh needs a means to identify which systems need to be targeted for execution.

See also:

Full list of builtin roster modules

Note: e Roster System is not needed or used in standard Salt because the master does not need to be initially
aware of target systems, since the Salt Minion checks itself into the master.

Since the roster system is pluggable, it can be easily augmented to aach to any existing systems to gather informa-
tion about what servers are presently available and should be aached to by salt-ssh. By default the roster file
is located at /etc/salt/roster.

21.1 How Rosters Work

e roster system compiles a data structure internally referred to as targets. e targets is a list of target systems
and aributes about how to connect to said systems. e only requirement for a roster module in Salt is to return
the targets data structure.

21.1.1 Targets Data

e information which can be stored in a roster target is the following:

<Salt ID>: # The id to reference the target system with
host: # The IP address or DNS name of the remote host
user: # The user to log in as
passwd: # The password to log in with

Optional parameters
port: # The target system's ssh port number
sudo: # Boolean to run command via sudo
priv: # File path to ssh private key, defaults to salt-ssh.rsa
timeout: # Number of seconds to wait for response
minion_opts: # Dictionary of minion opts

295

Salt Documentation, Release 2014.7.6

296 Chapter 21. Salt Rosters

CHAPTER 22

Reference

22.1 Full list of builtin auth modules

auto An ``Always Approved'' eauth interface to test against, not intended for
keystone Provide authentication using OpenStack Keystone
ldap Provide authentication using simple LDAP binds
pam Authenticate against PAM
pki Authenticate via a PKI certificate.
stormpath_mod Salt Stormpath Authentication

22.1.1 salt.auth.auto

An ``Always Approved'' eauth interface to test against, not intended for production use

salt.auth.auto.auth(username, password)
Authenticate!

22.1.2 salt.auth.keystone

Provide authentication using OpenStack Keystone

depends

• keystoneclient Python module

salt.auth.keystone.auth(username, password)
Try and authenticate

salt.auth.keystone.get_auth_url()
Try and get the URL from the config, else return localhost

22.1.3 salt.auth.ldap

Provide authentication using simple LDAP binds

depends

• ldap Python module

297

Salt Documentation, Release 2014.7.6

salt.auth.ldap.auth(username, password)
Simple LDAP auth

salt.auth.ldap.groups(username, **kwargs)
Authenticate against an LDAP group

Behavior is highly dependent on if Active Directory is in use.

AD handles group membership very differently than OpenLDAP. See the External Authentication documenta-
tion for a thorough discussion of available parameters for customizing the search.

OpenLDAP allows you to search for all groups in the directory and returns members of those groups. en
we check against the username entered.

22.1.4 salt.auth.pam

Authenticate against PAM

Provides an authenticate function that will allow the caller to authenticate a user against the Pluggable Authentica-
tion Modules (PAM) on the system.

Implemented using ctypes, so no compilation is necessary.

Note: PAM authentication will not work for the root user.
e Python interface to PAM does not support authenticating as root.

class salt.auth.pam.PamConv
Wrapper class for pam_conv structure

appdata_ptr
Structure/Union member

conv
Structure/Union member

class salt.auth.pam.PamHandle
Wrapper class for pam_handle_t

handle
Structure/Union member

class salt.auth.pam.PamMessage
Wrapper class for pam_message structure

msg
Structure/Union member

msg_style
Structure/Union member

class salt.auth.pam.PamResponse
Wrapper class for pam_response structure

resp
Structure/Union member

resp_retcode
Structure/Union member

salt.auth.pam.auth(username, password, **kwargs)
Authenticate via pam

298 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.auth.pam.authenticate(username, password, service='login')
Returns True if the given username and password authenticate for the given service. Returns False otherwise

username: the username to authenticate

password: the password in plain text

service: the PAM service to authenticate against. Defaults to `login'

salt.auth.pam.groups(username, *args, **kwargs)
Retrieve groups for a given user for this auth provider

Uses system groups

22.1.5 salt.auth.pki

Authenticate via a PKI certificate.

Note: is module is Experimental and should be used with caution

Provides an authenticate function that will allow the caller to authenticate a user via their public cert against a
pre-defined Certificate Authority.

TODO: Add a `ca_dir' option to configure a directory of CA files, a la Apache.

depends

• pyOpenSSL module

salt.auth.pki.auth(pem, **kwargs)
Returns True if the given user cert was issued by the CA. Returns False otherwise.

pem: a pem-encoded user public key (certificate)

Configure the CA cert in the master config file:

external_auth:
pki:

ca_file: /etc/pki/tls/ca_certs/trusted-ca.crt

22.1.6 salt.auth.stormpath_mod

Salt Stormpath Authentication

Module to provide authentication using Stormpath as the backend.

depends

• stormpath-sdk Python module

configuration is module requires the development branch of the stormpath-sdk which can be found
here: hps://github.com/stormpath/stormpath-sdk-python

e following config items are required in the master config:

stormpath.api_key_file: <path/to/apiKey.properties>
stormpath.app_url: <Rest url of your Stormpath application>

Ensure that your apiKey.properties is readable by the user the Salt Master is running as, but not
readable by other system users.

22.1. Full list of builtin auth modules 299

https://github.com/stormpath/stormpath-sdk-python

Salt Documentation, Release 2014.7.6

salt.auth.stormpath_mod.auth(username, password)
Try and authenticate

22.2 Command Line Reference

Salt can be controlled by a command line client by the root user on the Salt master. e Salt command line client
uses the Salt client API to communicate with the Salt master server. e Salt client is straightforward and simple to
use.

Using the Salt client commands can be easily sent to the minions.

Each of these commands accepts an explicit --config option to point to either the master or minion configuration
file. If this option is not provided and the default configuration file does not exist then Salt falls back to use the
environment variables SALT_MASTER_CONFIG and SALT_MINION_CONFIG.

See also:

Configuration

22.2.1 Using the Salt Command

e Salt command needs a few components to send information to the Salt minions. e target minions need to be
defined, the function to call and any arguments the function requires.

Defining the Target Minions

e first argument passed to salt, defines the target minions, the target minions are accessed via their hostname. e
default target type is a bash glob:

salt '*foo.com' sys.doc

Salt can also define the target minions with regular expressions:

salt -E '.*' cmd.run 'ls -l | grep foo'

Or to explicitly list hosts, salt can take a list:

salt -L foo.bar.baz,quo.qux cmd.run 'ps aux | grep foo'

More Powerful Targets

e simple target specifications, glob, regex and list will cover many use cases, and for some will cover all use cases,
but more powerful options exist.

Targeting with Grains

e Grains interface was built into Salt to allow minions to be targeted by system properties. So minions running
on a particular operating system can be called to execute a function, or a specific kernel.

Calling via a grain is done by passing the -G option to salt, specifying a grain and a glob expression to match the
value of the grain. e syntax for the target is the grain key followed by a globexpression: ``os:Arch*''.

300 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt -G 'os:Fedora' test.ping

Will return True from all of the minions running Fedora.

To discover what grains are available and what the values are, execute the grains.item salt function:

salt '*' grains.items

more info on using targeting with grains can be found here.

Targeting with Executions

As of 0.8.8 targeting with executions is still under heavy development and this documentation is wrien to reference
the behavior of execution matching in the future.

Execution matching allows for a primary function to be executed, and then based on the return of the primary
function the main function is executed.

Execution matching allows for matching minions based on any arbitrary running data on the minions.

Compound Targeting

New in version 0.9.5.

Multiple target interfaces can be used in conjunction to determine the command targets. ese targets can then be
combined using and or or statements. is is well defined with an example:

salt -C 'G@os:Debian and webser* or E@db.*' test.ping

In this example any minion who's id starts with webser and is running Debian, or any minion who's id starts with
db will be matched.

e type of matcher defaults to glob, but can be specified with the corresponding leer followed by the @ symbol.
In the above example a grain is used with G@ as well as a regular expression with E@. e webser* target does not
need to be prefaced with a target type specifier because it is a glob.

more info on using compound targeting can be found here.

Node Group Targeting

New in version 0.9.5.

For certain cases, it can be convenient to have a predefined group of minions on which to execute commands.
is can be accomplished using what are called nodegroups. Nodegroups allow for predefined compound targets to
be declared in the master configuration file, as a sort of shorthand for having to type out complicated compound
expressions.

nodegroups:
 group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com and bl*.domain.com'
 group2: 'G@os:Debian and foo.domain.com'

More info on using nodegroups can be found here.

22.2. Command Line Reference 301

Salt Documentation, Release 2014.7.6

Calling the Function

e function to call on the specified target is placed aer the target specification.

New in version 0.9.8.

Functions may also accept arguments, space-delimited:

salt '*' cmd.exec_code python 'import sys; print sys.version'

Optional, keyword arguments are also supported:

salt '*' pip.install salt timeout=5 upgrade=True

ey are always in the form of kwarg=argument.

Arguments are formaed as YAML:

salt '*' cmd.run 'echo "Hello: $FIRST_NAME"' env='{FIRST_NAME: "Joe"}'

Note: dictionaries must have curly braces around them (like the env keyword argument above). is was changed
in 0.15.1: in the above example, the first argument used to be parsed as the dictionary {'echo "Hello':
'$FIRST_NAME"'}. is was generally not the expected behavior.

If you want to test what parameters are actually passed to a module, use the test.arg_repr command:

salt '*' test.arg_repr 'echo "Hello: $FIRST_NAME"' env='{FIRST_NAME: "Joe"}'

Finding available minion functions

e Salt functions are self documenting, all of the function documentation can be retried from the minions via the
sys.doc() function:

salt '*' sys.doc

Compound Command Execution

If a series of commands needs to be sent to a single target specification then the commands can be sent in a single
publish. is can make gathering groups of information faster, and lowers the stress on the network for repeated
commands.

Compound command execution works by sending a list of functions and arguments instead of sending a single
function and argument. e functions are executed on the minion in the order they are defined on the command
line, and then the data from all of the commands are returned in a dictionary. is means that the set of commands
are called in a predictable way, and the returned data can be easily interpreted.

Executing compound commands if done by passing a comma delimited list of functions, followed by a comma de-
limited list of arguments:

salt '*' cmd.run,test.ping,test.echo 'cat /proc/cpuinfo',,foo

e trick to look out for here, is that if a function is being passed no arguments, then there needs to be a place-
holder for the absent arguments. is is why in the above example, there are two commas right next to each other.
test.ping takes no arguments, so we need to add another comma, otherwise Salt would aempt to pass ``foo''
to test.ping.

If you need to pass arguments that include commas, then make sure you add spaces around the commas that separate
arguments. For example:

302 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' cmd.run,test.ping,test.echo 'echo "1,2,3"' , , foo

You may change the arguments separator using the --args-separator option:

salt --args-separator=:: '*' some.fun,test.echo params with , comma :: foo

22.2.2 salt-call

salt-call

Synopsis

salt-call [options]

Description

e salt-call command is used to runmodule functions locally on aminion instead of executing them from themaster.

Options

--version
Print the version of Salt that is running.

--versions-report
Show program's dependencies and version number, and then exit

-h, --help
Show the help message and exit

-c CONFIG_DIR, --config-dir=CONFIG_dir
e location of the Salt configuration directory. is directory contains the configuration files for Salt master
and minions. e default location on most systems is /etc/salt.

--hard-crash
Raise any original exception rather than exiting gracefully Default: False

-g, --grains
Return the information generated by the Salt grains

-m MODULE_DIRS, --module-dirs=MODULE_DIRS
Specify an additional directory to pull modules from. Multiple directories can be provided by passing -m
/--module-dirs multiple times.

-d, --doc, --documentation
Return the documentation for the specified module or for all modules if none are specified

--master=MASTER
Specify the master to use. e minion must be authenticated with the master. If this option is omied, the
master options from the minion config will be used. If multi masters are set up the first listed master that
responds will be used.

--return RETURNER
Set salt-call to pass the return data to one or many returner interfaces. To use many returner interfaces specify
a comma delimited list of returners.

22.2. Command Line Reference 303

Salt Documentation, Release 2014.7.6

--local
Run salt-call locally, as if there was no master running.

--file-root=FILE_ROOT
Set this directory as the base file root.

--pillar-root=PILLAR_ROOT
Set this directory as the base pillar root.

--retcode-passthrough
Exit with the salt call retcode and not the salt binary retcode

--metadata
Print out the execution metadata as well as the return. is will print out the outpuer data, the return code,
etc.

--id=ID
Specify the minion id to use. If this option is omied, the id option from the minion config will be used.

--skip-grains
Do not load grains.

--refresh-grains-cache
Force a refresh of the grains cache

Logging Options Logging options which override any seings defined on the configuration files.

-l LOG_LEVEL, --log-level=LOG_LEVEL
Console logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. De-
fault: info.

--log-file=LOG_FILE
Log file path. Default: /var/log/salt/minion.

--log-file-level=LOG_LEVEL_LOGFILE
Logfile logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. Default:
info.

Output Options
--out

Pass in an alternative outpuer to display the return of data. is outpuer can be any of the available out-
puers:

grains, highstate, json, key, overstatestage, pprint, raw, txt, yaml

Some outpuers are formaed only for data returned from specific functions; for instance, the grains out-
puer will not work for non-grains data.

If an outpuer is used that does not support the data passed into it, then Salt will fall back on the pprint
outpuer and display the return data using the Python pprint standard library module.

Note: If using --out=json, you will probably want --static as well. Without the static option, you will
get a JSON string for each minion. is is due to using an iterative outpuer. So if you want to feed it to a
JSON parser, use --static as well.

--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT
Print the output indented by the provided value in spaces. Negative values disable indentation. Only applicable
in outpuers that support indentation.

304 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE
Write the output to the specified file.

--no-color
Disable all colored output

--force-color
Force colored output

Note: When using colored output the color codes are as follows:
green denotes success, red denotes failure, blue denotes changes and success and yellow denotes a
expected future change in configuration.

See also

salt(1) salt-master(1) salt-minion(1)

22.2.3 salt

salt

Synopsis

salt `*' [options] sys.doc

salt -E `.*' [options] sys.doc cmd

salt -G `os:Arch.*' [options] test.ping

salt -C `G@os:Arch.* and webserv* or G@kernel:FreeBSD' [options] test.ping

Description

Salt allows for commands to be executed across a swath of remote systems in parallel. is means that remote
systems can be both controlled and queried with ease.

Options

--version
Print the version of Salt that is running.

--versions-report
Show program's dependencies and version number, and then exit

-h, --help
Show the help message and exit

-c CONFIG_DIR, --config-dir=CONFIG_dir
e location of the Salt configuration directory. is directory contains the configuration files for Salt master
and minions. e default location on most systems is /etc/salt.

22.2. Command Line Reference 305

mailto:'G@os
mailto:G@kernel

Salt Documentation, Release 2014.7.6

-t TIMEOUT, --timeout=TIMEOUT
e timeout in seconds to wait for replies from the Salt minions. e timeout number specifies how long the
command line client will wait to query the minions and check on running jobs. Default: 5

-s, --static
By default as of version 0.9.8 the salt command returns data to the console as it is received from minions,
but previous releases would return data only aer all data was received. To only return the data with a hard
timeout and aer all minions have returned then use the static option.

--async
Instead of waiting for the job to run on minions only print the jod id of the started execution and complete.

--state-output=STATE_OUTPUT
New in version 0.17.

Override the configured state_output value for minion output. One of full, terse, mixed, changes
or filter. Default: full.

--subset=SUBSET
Execute the routine on a random subset of the targeted minions. e minions will be verified that they have
the named function before executing.

-v VERBOSE, --verbose
Turn on verbosity for the salt call, this will cause the salt command to print out extra data like the job id.

--show-timeout
Instead of only showing the return data from the online minions this option also prints the names of the
minions which could not be reached.

-b BATCH, --batch-size=BATCH
Instead of executing on all targeted minions at once, execute on a progressive set of minions. is option takes
an argument in the form of an explicit number of minions to execute at once, or a percentage of minions to
execute on.

-a EAUTH, --auth=EAUTH
Pass in an external authentication medium to validate against. e credentials will be prompted for. Can be
used with the -T option.

-T, --make-token
Used in conjunction with the -a option. is creates a token that allows for the authenticated user to send
commands without needing to re-authenticate.

--return=RETURNER
Chose an alternative returner to call on the minion, if an alternative returner is used then the return will not
come back to the command line but will be sent to the specified return system.

-d, --doc, --documentation
Return the documentation for the module functions available on the minions

--args-separator=ARGS_SEPARATOR
Set the special argument used as a delimiter between command arguments of compound commands. is is
useful when one wants to pass commas as arguments to some of the commands in a compound command.

Logging Options Logging options which override any seings defined on the configuration files.

-l LOG_LEVEL, --log-level=LOG_LEVEL
Console logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. De-
fault: warning.

--log-file=LOG_FILE
Log file path. Default: /var/log/salt/master.

306 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

--log-file-level=LOG_LEVEL_LOGFILE
Logfile logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. Default:
warning.

Target Selection
-E, --pcre

e target expression will be interpreted as a PCRE regular expression rather than a shell glob.
-L, --list

e target expression will be interpreted as a comma-delimited list; example:
server1.foo.bar,server2.foo.bar,example7.quo.qux

-G, --grain
e target expression matches values returned by the Salt grains system on the minions. e target expression
is in the format of `<grain value>:<glob expression>'; example: `os:Arch*'

is was changed in version 0.9.8 to accept glob expressions instead of regular expression. To use regular
expression matching with grains, use the --grain-pcre option.

--grain-pcre
e target expression matches values returned by the Salt grains system on the minions. e target expression
is in the format of `<grain value>:< regular expression>'; example: `os:Arch.*'

-N, --nodegroup
Use a predefined compound target defined in the Salt master configuration file.

-R, --range
Instead of using shell globs to evaluate the target, use a range expression to identify targets. Range expressions
look like %cluster.

Using the Range option requires that a range server is set up and the location of the range server is referenced
in the master configuration file.

-C, --compound
Utilize many target definitions to make the call very granular. is option takes a group of targets separated
by and or or. e default matcher is a glob as usual. If something other than a glob is used, preface it with
the leer denoting the type; example: `webserv* and G@os:Debian or E@db*` Make sure that the compound
target is encapsulated in quotes.

-I, --pillar
Instead of using shell globs to evaluate the target, use a pillar value to identify targets. e syntax for the
target is the pillar key followed by a glob expression: ``role:production*''

-S, --ipcidr
Match based on Subnet (CIDR notation) or IPv4 address.

Output Options
--out

Pass in an alternative outpuer to display the return of data. is outpuer can be any of the available out-
puers:

grains, highstate, json, key, overstatestage, pprint, raw, txt, yaml

Some outpuers are formaed only for data returned from specific functions; for instance, the grains out-
puer will not work for non-grains data.

If an outpuer is used that does not support the data passed into it, then Salt will fall back on the pprint
outpuer and display the return data using the Python pprint standard library module.

Note: If using --out=json, you will probably want --static as well. Without the static option, you will

22.2. Command Line Reference 307

mailto:G@os
mailto:E@db*

Salt Documentation, Release 2014.7.6

get a JSON string for each minion. is is due to using an iterative outpuer. So if you want to feed it to a
JSON parser, use --static as well.

--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT
Print the output indented by the provided value in spaces. Negative values disable indentation. Only applicable
in outpuers that support indentation.

--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE
Write the output to the specified file.

--no-color
Disable all colored output

--force-color
Force colored output

Note: When using colored output the color codes are as follows:
green denotes success, red denotes failure, blue denotes changes and success and yellow denotes a
expected future change in configuration.

See also

salt(7) salt-master(1) salt-minion(1)

22.2.4 salt-cloud

salt-cloud

Provision virtual machines in the cloud with Salt

Synopsis

salt-cloud -m /etc/salt/cloud.map

salt-cloud -p PROFILE NAME

salt-cloud -p PROFILE NAME1 NAME2 NAME3 NAME4 NAME5 NAME6

Description

Salt Cloud is the system used to provision virtual machines on various public clouds via a cleanly controlled profile
and mapping system.

Options

--version
Print the version of Salt that is running.

--versions-report
Show program's dependencies and version number, and then exit

308 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

-h, --help
Show the help message and exit

-c CONFIG_DIR, --config-dir=CONFIG_dir
e location of the Salt configuration directory. is directory contains the configuration files for Salt master
and minions. e default location on most systems is /etc/salt.

Execution Options
-L LOCATION, --location=LOCATION

Specify which region to connect to.
-a ACTION, --action=ACTION

Perform an action that may be specific to this cloud provider. is argument requires one or more instance
names to be specified.

-f <FUNC-NAME> <PROVIDER>, --function=<FUNC-NAME> <PROVIDER>
Perform an function that may be specific to this cloud provider, that does not apply to an instance. is
argument requires a provider to be specified (i.e.: nova).

-p PROFILE, --profile=PROFILE
Select a single profile to build the named cloud VMs from. e profile must be defined in the specified profiles
file.

-m MAP, --map=MAP
Specify a map file to use. If used without any other options, this option will ensure that all of the mapped VMs
are created. If the named VM already exists then it will be skipped.

-H, --hard
When specifying a map file, the default behavior is to ensure that all of the VMs specified in the map file are
created. If the --hard option is set, then any VMs that exist on configured cloud providers that are not specified
in the map file will be destroyed. Be advised that this can be a destructive operation and should be used with
care.

-d, --destroy
Pass in the name(s) of VMs to destroy, salt-cloud will search the configured cloud providers for the specified
names and destroy the VMs. Be advised that this is a destructive operation and should be used with care. Can
be used in conjunction with the -m option to specify a map of VMs to be deleted.

-P, --parallel
Normally when building many cloud VMs they are executed serially. e -P option will run each cloud vm
build in a separate process allowing for large groups of VMs to be build at once.

Be advised that some cloud provider's systems don't seem to be well suited for this influx of vm creation. When
creating large groups of VMs watch the cloud provider carefully.

-Q, --query
Execute a query and print out information about all cloud VMs. Can be used in conjunction with -m to display
only information about the specified map.

-u, --update-bootstrap
Update salt-bootstrap to the latest develop version on GitHub.

-y, --assume-yes
Default yes in answer to all confirmation questions.

-k, --keep-tmp
Do not remove files from /tmp/ aer deploy.sh finishes.

--show-deploy-args
Include the options used to deploy the minion in the data returned.

22.2. Command Line Reference 309

Salt Documentation, Release 2014.7.6

--script-args=SCRIPT_ARGS
Script arguments to be fed to the bootstrap script when deploying the VM.

ery Options
-Q, --query

Execute a query and return some information about the nodes running on configured cloud providers
-F, --full-query

Execute a query and print out all available information about all cloud VMs. Can be used in conjunction with
-m to display only information about the specified map.

-S, --select-query
Execute a query and print out selected information about all cloud VMs. Can be used in conjunction with -m
to display only information about the specified map.

--list-providers
Display a list of configured providers.

Cloud Providers Listings
--list-locations=LIST_LOCATIONS

Display a list of locations available in configured cloud providers. Pass the cloud provider that available loca-
tions are desired on, aka ``linode'', or pass ``all'' to list locations for all configured cloud providers

--list-images=LIST_IMAGES
Display a list of images available in configured cloud providers. Pass the cloud provider that available images
are desired on, aka ``linode'', or pass ``all'' to list images for all configured cloud providers

--list-sizes=LIST_SIZES
Display a list of sizes available in configured cloud providers. Pass the cloud provider that available sizes are
desired on, aka ``AWS'', or pass ``all'' to list sizes for all configured cloud providers

Cloud Credentials
--set-password=<USERNAME> <PROVIDER>

Configure password for a cloud provider and save it to the keyring. PROVIDER can be specified with
or without a driver, for example: ``--set-password bob rackspace'' or more specific ``--set-password bob
rackspace:openstack'' DEPRECATED!

Output Options
--out

Pass in an alternative outpuer to display the return of data. is outpuer can be any of the available out-
puers:

grains, highstate, json, key, overstatestage, pprint, raw, txt, yaml

Some outpuers are formaed only for data returned from specific functions; for instance, the grains out-
puer will not work for non-grains data.

If an outpuer is used that does not support the data passed into it, then Salt will fall back on the pprint
outpuer and display the return data using the Python pprint standard library module.

Note: If using --out=json, you will probably want --static as well. Without the static option, you will
get a JSON string for each minion. is is due to using an iterative outpuer. So if you want to feed it to a
JSON parser, use --static as well.

--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT
Print the output indented by the provided value in spaces. Negative values disable indentation. Only applicable
in outpuers that support indentation.

310 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE
Write the output to the specified file.

--no-color
Disable all colored output

--force-color
Force colored output

Note: When using colored output the color codes are as follows:
green denotes success, red denotes failure, blue denotes changes and success and yellow denotes a
expected future change in configuration.

Examples

To create 4 VMs named web1, web2, db1 and db2 from specified profiles:

salt-cloud -p fedora_rackspace web1 web2 db1 db2

To read in a map file and create all VMs specified therein:

salt-cloud -m /path/to/cloud.map

To read in a map file and create all VMs specified therein in parallel:

salt-cloud -m /path/to/cloud.map -P

To delete any VMs specified in the map file:

salt-cloud -m /path/to/cloud.map -d

To delete any VMs NOT specified in the map file:

salt-cloud -m /path/to/cloud.map -H

To display the status of all VMs specified in the map file:

salt-cloud -m /path/to/cloud.map -Q

See also

salt-cloud(7) salt(7) salt-master(1) salt-minion(1)

22.2.5 salt-cp

salt-cp

Copy a file to a set of systems

Synopsis

22.2. Command Line Reference 311

Salt Documentation, Release 2014.7.6

salt-cp '*' [options] SOURCE DEST

salt-cp -E '.*' [options] SOURCE DEST

salt-cp -G 'os:Arch.*' [options] SOURCE DEST

Description

Salt copy copies a local file out to all of the Salt minions matched by the given target.

Options

--version
Print the version of Salt that is running.

--versions-report
Show program's dependencies and version number, and then exit

-h, --help
Show the help message and exit

-c CONFIG_DIR, --config-dir=CONFIG_dir
e location of the Salt configuration directory. is directory contains the configuration files for Salt master
and minions. e default location on most systems is /etc/salt.

-t TIMEOUT, --timeout=TIMEOUT
e timeout in seconds to wait for replies from the Salt minions. e timeout number specifies how long the
command line client will wait to query the minions and check on running jobs. Default: 5

Logging Options Logging options which override any seings defined on the configuration files.

-l LOG_LEVEL, --log-level=LOG_LEVEL
Console logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. De-
fault: warning.

--log-file=LOG_FILE
Log file path. Default: /var/log/salt/master.

--log-file-level=LOG_LEVEL_LOGFILE
Logfile logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. Default:
warning.

Target Selection
-E, --pcre

e target expression will be interpreted as a PCRE regular expression rather than a shell glob.
-L, --list

e target expression will be interpreted as a comma-delimited list; example:
server1.foo.bar,server2.foo.bar,example7.quo.qux

-G, --grain
e target expression matches values returned by the Salt grains system on the minions. e target expression
is in the format of `<grain value>:<glob expression>'; example: `os:Arch*'

is was changed in version 0.9.8 to accept glob expressions instead of regular expression. To use regular
expression matching with grains, use the --grain-pcre option.

312 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

--grain-pcre
e target expression matches values returned by the Salt grains system on the minions. e target expression
is in the format of `<grain value>:< regular expression>'; example: `os:Arch.*'

-N, --nodegroup
Use a predefined compound target defined in the Salt master configuration file.

-R, --range
Instead of using shell globs to evaluate the target, use a range expression to identify targets. Range expressions
look like %cluster.

Using the Range option requires that a range server is set up and the location of the range server is referenced
in the master configuration file.

See also

salt(1) salt-master(1) salt-minion(1)

22.2.6 salt-key

salt-key

Synopsis

salt-key [options]

Description

Salt-key executes simple management of Salt server public keys used for authentication.

Options

--version
Print the version of Salt that is running.

--versions-report
Show program's dependencies and version number, and then exit

-h, --help
Show the help message and exit

-c CONFIG_DIR, --config-dir=CONFIG_dir
e location of the Salt configuration directory. is directory contains the configuration files for Salt master
and minions. e default location on most systems is /etc/salt.

-u USER, --user=USER
Specify user to run salt-key

--hard-crash
Raise any original exception rather than exiting gracefully. Default is False.

-q, --quiet
Suppress output

22.2. Command Line Reference 313

Salt Documentation, Release 2014.7.6

-y, --yes
Answer `Yes' to all questions presented, defaults to False

--rotate-aes-key=ROTATE_AES_KEY
Seing this to False prevents the master from refreshing the key session when keys are deleted or rejected,
this lowers the security of the key deletion/rejection operation. Default is True.

Logging Options Logging options which override any seings defined on the configuration files.

--log-file=LOG_FILE
Log file path. Default: /var/log/salt/minion.

--log-file-level=LOG_LEVEL_LOGFILE
Logfile logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. Default:
warning.

Output Options
--out

Pass in an alternative outpuer to display the return of data. is outpuer can be any of the available out-
puers:

grains, highstate, json, key, overstatestage, pprint, raw, txt, yaml

Some outpuers are formaed only for data returned from specific functions; for instance, the grains out-
puer will not work for non-grains data.

If an outpuer is used that does not support the data passed into it, then Salt will fall back on the pprint
outpuer and display the return data using the Python pprint standard library module.

Note: If using --out=json, you will probably want --static as well. Without the static option, you will
get a JSON string for each minion. is is due to using an iterative outpuer. So if you want to feed it to a
JSON parser, use --static as well.

--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT
Print the output indented by the provided value in spaces. Negative values disable indentation. Only applicable
in outpuers that support indentation.

--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE
Write the output to the specified file.

--no-color
Disable all colored output

--force-color
Force colored output

Note: When using colored output the color codes are as follows:
green denotes success, red denotes failure, blue denotes changes and success and yellow denotes a
expected future change in configuration.

Actions
-l ARG, --list=ARG

List the public keys. e args pre, un, and unaccepted will list unaccepted/unsigned keys. acc or ac-
cepted will list accepted/signed keys. rej or rejected will list rejected keys. Finally, all will list all
keys.

314 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

-L, --list-all
List all public keys. (Deprecated: use --list all)

-a ACCEPT, --accept=ACCEPT
Accept the specified public key (use --include-all to match rejected keys in addition to pending keys). Globs
are supported.

-A, --accept-all
Accepts all pending keys.

-r REJECT, --reject=REJECT
Reject the specified public key (use --include-all to match accepted keys in addition to pending keys). Globs
are supported.

-R, --reject-all
Rejects all pending keys.

--include-all
Include non-pending keys when accepting/rejecting.

-p PRINT, --print=PRINT
Print the specified public key.

-P, --print-all
Print all public keys

-d DELETE, --delete=DELETE
Delete the specified key. Globs are supported.

-D, --delete-all
Delete all keys.

-f FINGER, --finger=FINGER
Print the specified key's fingerprint.

-F, --finger-all
Print all keys' fingerprints.

Key Generation Options
--gen-keys=GEN_KEYS

Set a name to generate a keypair for use with salt
--gen-keys-dir=GEN_KEYS_DIR

Set the directory to save the generated keypair. Only works with `gen_keys_dir' option; default is the current
directory.

--keysize=KEYSIZE
Set the keysize for the generated key, only works with the `--gen-keys' option, the key size must be 2048 or
higher, otherwise it will be rounded up to 2048. e default is 2048.

--gen-signature
Create a signature file of themasters public-key namedmaster_pubkey_signature. e signature can be send to
a minion in the masters auth-reply and enables the minion to verify the masters public-key cryptographically.
is requires a new signing-key- pair which can be auto-created with the --auto-create parameter.

--priv=PRIV
e private-key file to create a signature with

--signature-path=SIGNATURE_PATH
e path where the signature file should be wrien

22.2. Command Line Reference 315

Salt Documentation, Release 2014.7.6

--pub=PUB
e public-key file to create a signature for

--auto-create
Auto-create a signing key-pair if it does not yet exist

See also

salt(7) salt-master(1) salt-minion(1)

22.2.7 salt-master

salt-master

e Salt master daemon, used to control the Salt minions

Synopsis

salt-master [options]

Description

e master daemon controls the Salt minions

Options

--version
Print the version of Salt that is running.

--versions-report
Show program's dependencies and version number, and then exit

-h, --help
Show the help message and exit

-c CONFIG_DIR, --config-dir=CONFIG_dir
e location of the Salt configuration directory. is directory contains the configuration files for Salt master
and minions. e default location on most systems is /etc/salt.

-u USER, --user=USER
Specify user to run salt-master

-d, --daemon
Run salt-master as a daemon

--pid-file PIDFILE
Specify the location of the pidfile. Default: /var/run/salt-master.pid

316 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Logging Options Logging options which override any seings defined on the configuration files.

-l LOG_LEVEL, --log-level=LOG_LEVEL
Console logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. De-
fault: warning.

--log-file=LOG_FILE
Log file path. Default: /var/log/salt/master.

--log-file-level=LOG_LEVEL_LOGFILE
Logfile logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. Default:
warning.

See also

salt(1) salt(7) salt-minion(1)

22.2.8 salt-minion

salt-minion

e Salt minion daemon, receives commands from a remote Salt master.

Synopsis

salt-minion [options]

Description

e Salt minion receives commands from the central Salt master and replies with the results of said commands.

Options

--version
Print the version of Salt that is running.

--versions-report
Show program's dependencies and version number, and then exit

-h, --help
Show the help message and exit

-c CONFIG_DIR, --config-dir=CONFIG_dir
e location of the Salt configuration directory. is directory contains the configuration files for Salt master
and minions. e default location on most systems is /etc/salt.

-u USER, --user=USER
Specify user to run salt-minion

-d, --daemon
Run salt-minion as a daemon

22.2. Command Line Reference 317

Salt Documentation, Release 2014.7.6

--pid-file PIDFILE
Specify the location of the pidfile. Default: /var/run/salt-minion.pid

Logging Options Logging options which override any seings defined on the configuration files.

-l LOG_LEVEL, --log-level=LOG_LEVEL
Console logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. De-
fault: warning.

--log-file=LOG_FILE
Log file path. Default: /var/log/salt/minion.

--log-file-level=LOG_LEVEL_LOGFILE
Logfile logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. Default:
warning.

See also

salt(1) salt(7) salt-master(1)

22.2.9 salt-run

salt-run

Execute a Salt runner

Synopsis

salt-run RUNNER

Description

salt-run is the frontend command for executing Salt Runners. Salt runners are simple modules used to execute
convenience functions on the master

Options

--version
Print the version of Salt that is running.

--versions-report
Show program's dependencies and version number, and then exit

-h, --help
Show the help message and exit

-c CONFIG_DIR, --config-dir=CONFIG_dir
e location of the Salt configuration directory. is directory contains the configuration files for Salt master
and minions. e default location on most systems is /etc/salt.

318 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

-t TIMEOUT, --timeout=TIMEOUT
e timeout in seconds to wait for replies from the Salt minions. e timeout number specifies how long the
command line client will wait to query the minions and check on running jobs. Default: 1

--hard-crash
Raise any original exception rather than exiting gracefully. Default is False.

-d, --doc, --documentation
Display documentation for runners, pass a module or a runner to see documentation on only that mod-
ule/runner.

Logging Options Logging options which override any seings defined on the configuration files.

-l LOG_LEVEL, --log-level=LOG_LEVEL
Console logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. De-
fault: warning.

--log-file=LOG_FILE
Log file path. Default: /var/log/salt/master.

--log-file-level=LOG_LEVEL_LOGFILE
Logfile logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. Default:
warning.

See also

salt(1) salt-master(1) salt-minion(1)

22.2.10 salt-ssh

salt-ssh

Synopsis

salt-ssh '*' [options] sys.doc

salt-ssh -E '.*' [options] sys.doc cmd

Description

Salt SSH allows for salt routines to be executed using only SSH for transport

Options

-r, --raw, --raw-shell
Execute a raw shell command.

--priv
Specify the SSH private key file to be used for authentication.

--roster
Define which roster system to use, this defines if a database backend, scanner, or custom roster system is used.
Default is the flat file roster.

22.2. Command Line Reference 319

Salt Documentation, Release 2014.7.6

--roster-file
Define an alternative location for the default roster file location. e default roster file is called roster and
is found in the same directory as the master config file.

New in version 2014.1.0.

--refresh, --refresh-cache
Force a refresh of the master side data cache of the target's data. is is needed if a target's grains have been
changed and the auto refresh timeframe has not been reached.

--max-procs
Set the number of concurrent minions to communicate with. is value defines how many processes are
opened up at a time to manage connections, the more running process the faster communication should be,
default is 25.

-i, --ignore-host-keys
Ignore the ssh host keys which by default are honored and connections would ask for approval.

--passwd
Set the default password to aempt to use when authenticating.

--key-deploy
Set this flag to aempt to deploy the authorized ssh key with all minions. is combined with --passwd can
make initial deployment of keys very fast and easy.

--version
Print the version of Salt that is running.

--versions-report
Show program's dependencies and version number, and then exit

-h, --help
Show the help message and exit

-c CONFIG_DIR, --config-dir=CONFIG_dir
e location of the Salt configuration directory. is directory contains the configuration files for Salt master
and minions. e default location on most systems is /etc/salt.

Target Selection
-E, --pcre

e target expression will be interpreted as a PCRE regular expression rather than a shell glob.
-L, --list

e target expression will be interpreted as a comma-delimited list; example:
server1.foo.bar,server2.foo.bar,example7.quo.qux

-G, --grain
e target expression matches values returned by the Salt grains system on the minions. e target expression
is in the format of `<grain value>:<glob expression>'; example: `os:Arch*'

is was changed in version 0.9.8 to accept glob expressions instead of regular expression. To use regular
expression matching with grains, use the --grain-pcre option.

--grain-pcre
e target expression matches values returned by the Salt grains system on the minions. e target expression
is in the format of `<grain value>:< regular expression>'; example: `os:Arch.*'

-N, --nodegroup
Use a predefined compound target defined in the Salt master configuration file.

320 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

-R, --range
Instead of using shell globs to evaluate the target, use a range expression to identify targets. Range expressions
look like %cluster.

Using the Range option requires that a range server is set up and the location of the range server is referenced
in the master configuration file.

Logging Options Logging options which override any seings defined on the configuration files.

-l LOG_LEVEL, --log-level=LOG_LEVEL
Console logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. De-
fault: warning.

--log-file=LOG_FILE
Log file path. Default: /var/log/salt/ssh.

--log-file-level=LOG_LEVEL_LOGFILE
Logfile logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. Default:
warning.

Output Options
--out

Pass in an alternative outpuer to display the return of data. is outpuer can be any of the available out-
puers:

grains, highstate, json, key, overstatestage, pprint, raw, txt, yaml

Some outpuers are formaed only for data returned from specific functions; for instance, the grains out-
puer will not work for non-grains data.

If an outpuer is used that does not support the data passed into it, then Salt will fall back on the pprint
outpuer and display the return data using the Python pprint standard library module.

Note: If using --out=json, you will probably want --static as well. Without the static option, you will
get a JSON string for each minion. is is due to using an iterative outpuer. So if you want to feed it to a
JSON parser, use --static as well.

--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT
Print the output indented by the provided value in spaces. Negative values disable indentation. Only applicable
in outpuers that support indentation.

--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE
Write the output to the specified file.

--no-color
Disable all colored output

--force-color
Force colored output

Note: When using colored output the color codes are as follows:
green denotes success, red denotes failure, blue denotes changes and success and yellow denotes a
expected future change in configuration.

22.2. Command Line Reference 321

Salt Documentation, Release 2014.7.6

See also

salt(7) salt-master(1) salt-minion(1)

22.2.11 salt-syndic

salt-syndic

e Salt syndic daemon, a special minion that passes through commands from a higher master

Synopsis

salt-syndic [options]

Description

e Salt syndic daemon, a special minion that passes through commands from a higher master.

Options

--version
Print the version of Salt that is running.

--versions-report
Show program's dependencies and version number, and then exit

-h, --help
Show the help message and exit

-c CONFIG_DIR, --config-dir=CONFIG_dir
e location of the Salt configuration directory. is directory contains the configuration files for Salt master
and minions. e default location on most systems is /etc/salt.

-u USER, --user=USER
Specify user to run salt-syndic

-d, --daemon
Run salt-syndic as a daemon

--pid-file PIDFILE
Specify the location of the pidfile. Default: /var/run/salt-syndic.pid

Logging Options Logging options which override any seings defined on the configuration files.

-l LOG_LEVEL, --log-level=LOG_LEVEL
Console logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. De-
fault: warning.

--log-file=LOG_FILE
Log file path. Default: /var/log/salt/master.

322 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

--log-file-level=LOG_LEVEL_LOGFILE
Logfile logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. Default:
warning.

See also

salt(1) salt-master(1) salt-minion(1)

22.2.12 salt-api

salt-api

Start interfaces used to remotely connect to the salt master

Synopsis

salt-api

Description

e Salt API system manages network api connectors for the Salt Master

Options

--version
Print the version of Salt that is running.

--versions-report
Show program's dependencies and version number, and then exit

-h, --help
Show the help message and exit

-c CONFIG_DIR, --config-dir=CONFIG_dir
e location of the Salt configuration directory. is directory contains the configuration files for Salt master
and minions. e default location on most systems is /etc/salt.

-d, --daemon
Run the salt-api as a daemon

--pid-file=PIDFILE
Specify the location of the pidfile. Default: /var/run/salt-api.pid

Logging Options Logging options which override any seings defined on the configuration files.

-l LOG_LEVEL, --log-level=LOG_LEVEL
Console logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. De-
fault: warning.

--log-file=LOG_FILE
Log file path. Default: /var/log/salt/api.

22.2. Command Line Reference 323

Salt Documentation, Release 2014.7.6

--log-file-level=LOG_LEVEL_LOGFILE
Logfile logging log level. One of all, garbage, trace, debug, info, warning, error, quiet. Default:
warning.

See also

salt-api(7) salt(7) salt-master(1)

22.3 Client ACL system

e salt client ACL system is a means to allow system users other than root to have access to execute select salt
commands on minions from the master.

e client ACL system is configured in the master configuration file via the client_acl configuration option. Un-
der the client_acl configuration option the users open to send commands are specified and then a list of regular
expressions which specify the minion functions which will be made available to specified user. is configuration
is much like the peer configuration:

Allow thatch to execute anything and allow fred to use ping and pkg
client_acl:

thatch:
- .*

fred:
- test.*
- pkg.*

22.3.1 Permission Issues

Directories required for client_acl must be modified to be readable by the users specified:

chmod 755 /var/cache/salt /var/cache/salt/jobs /var/run/salt

Note: In addition to the changes above you will also need to modify the permissions of /var/log/salt and the existing
log file. If you do not wish to do this then you must disable logging or Salt will generate errors as it cannot write to
the logs as the system users.

If you are upgrading from earlier versions of salt you must also remove any existing user keys and re-start the Salt
master:

rm /var/cache/salt/.*key
service salt-master restart

22.4 Python client API

Salt provides several entry points for interfacing with Python applications. ese entry points are oen referred to
as *Client() APIs. Each client accesses different parts of Salt, either from the master or from a minion. Each
client is detailed below.

See also:

ere are many ways to access Salt programmatically.

324 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Salt can be used from CLI scripts as well as via a REST interface.

See Salt's outpuer system to retrieve structured data from Salt as JSON, or as shell-friendly text, or many other
formats.

See the state.event runner to utilize Salt's event bus from shell scripts.

See the salt-api project to access Salt externally via a REST interface. It uses Salt's Python interface documented
below and is also useful as a reference implementation.

22.4.1 Salt's opts dictionary

Some clients require access to Salt's opts dictionary. (e dictionary representation of the master or minion config
files.)

A common paern for fetching the opts dictionary is to defer to environment variables if they exist or otherwise
fetch the config from the default location.

salt.config.client_config(path, env_var='SALT_CLIENT_CONFIG', defaults=None)
Load Master configuration data

Usage:

import salt.config
master_opts = salt.config.client_config('/etc/salt/master')

Returns a dictionary of the Salt Master configuration file with necessary options needed to communicate with
a locally-running Salt Master daemon. is function searches for client specific configurations and adds them
to the data from the master configuration.

is is useful for master-side operations like LocalClient.

salt.config.minion_config(path, env_var='SALT_MINION_CONFIG', defaults=None, min-
ion_id=False)

Reads in the minion configuration file and sets up special options

is is useful forMinion-side operations, such as the Caller class, andmanually running the loader interface.

import salt.client
minion_opts = salt.config.minion_config('/etc/salt/minion')

22.4.2 Salt's Loader Interface

Modules in the Salt ecosystem are loaded into memory using a custom loader system. is allows modules to
have conditional requirements (OS, OS version, installed libraries, etc) and allows Salt to inject special variables
(__salt__, __opts, etc).

Mostmodules can bemanually loaded. is is oen useful in third-party Python apps orwhenwriting tests. However
some modules require and expect a full, running Salt system underneath. Notably modules that facilitate master-
to-minion communication such as the mine, publish, and peer execution modules. e error KeyError:
'master_uri' is a likely indicator for this situation. In those instances use the Caller class to execute those
modules instead.

Each module type has a corresponding loader function.

salt.loader.minion_mods(opts, context=None, whitelist=None, loaded_base_name=None)
Load execution modules

Returns a dictionary of execution modules appropriate for the current system by evaluating the __virtual__()
function in each module.

22.4. Python client API 325

https://github.com/saltstack/salt-api

Salt Documentation, Release 2014.7.6

import salt.config
import salt.loader

__opts__ = salt.config.minion_config('/etc/salt/minion')
__grains__ = salt.loader.grains(__opts__)
__opts__['grains'] = __grains__
__salt__ = salt.loader.minion_mods(__opts__)
__salt__['test.ping']()

salt.loader.raw_mod(opts, name, functions)
Returns a single module loaded raw and bypassing the __virtual__ function

import salt.config
import salt.loader

__opts__ = salt.config.minion_config('/etc/salt/minion')
testmod = salt.loader.raw_mod(__opts__, 'test', None)
testmod['test.ping']()

salt.loader.states(opts, functions, whitelist=None)
Returns the state modules

import salt.config
import salt.loader

__opts__ salt.config.minion_config('/etc/salt/minion')
statemods = salt.loader.states(__opts__, None)

salt.loader.grains(opts, force_refresh=False)
Return the functions for the dynamic grains and the values for the static grains.

import salt.config
import salt.loader

__opts__ salt.config.minion_config('/etc/salt/minion')
__grains__ = salt.loader.grains(__opts__)
print __grains__['id']

22.4.3 Salt's Client Interfaces

LocalClient

class salt.client.LocalClient(c_path='/etc/salt/master', mopts=None, skip_perm_errors=False)
e interface used by the salt CLI tool on the Salt Master

LocalClient is used to send a command to Salt minions to execute execution modules and return the results
to the Salt Master.

Importing and using LocalClient must be done on the same machine as the Salt Master and it must be
done using the same user that the Salt Master is running as. (Unless external_auth is configured and
authentication credentials are included in the execution).

import salt.client

local = salt.client.LocalClient()
local.cmd('*', 'test.fib', [10])

326 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

cmd(tgt, fun, arg=(), timeout=None, expr_form='glob', ret='`, kwarg=None, **kwargs)
Synchronously execute a command on targeted minions

e cmd method will execute and wait for the timeout period for all minions to reply, then it will return
all minion data at once.

>>> import salt.client
>>> local = salt.client.LocalClient()
>>> local.cmd('*', 'cmd.run', ['whoami'])
{'jerry': 'root'}

With extra keyword arguments for the command function to be run:

local.cmd('*', 'test.arg', ['arg1', 'arg2'], kwarg={'foo': 'bar'})

Compound commands can be used for multiple executions in a single publish. Function names and
function arguments are provided in separate lists but the index values must correlate and an empty list
must be used if no arguments are required.

>>> local.cmd('*', [
'grains.items',
'sys.doc',
'cmd.run',

],
[

[],
[],
['uptime'],

])

Parameters

• tgt (string or list) -- Which minions to target for the execution. Default is shell glob.
Modified by the expr_form option.

• fun (string or list of strings) -- e module and function to call on the specified minions
of the form module.function. For example test.ping or grains.items.

Compound commands Multiple functions may be called in a single publish by passing a
list of commands. is can dramatically lower overhead and speed up the application
communicating with Salt.

is requires that the arg param is a list of lists. e fun list and the arg list must
correlate by index meaning a function that does not take arguments must still have a
corresponding empty list at the expected index.

• arg (list or list-of-lists) -- A list of arguments to pass to the remote function. If the
function takes no arguments arg may be omied except when executing a compound
command.

• timeout -- Seconds to wait aer the last minion returns but before all minions return.

• expr_form -- e type of tgt. Allowed values:

– glob - Bash glob completion - Default

– pcre - Perl style regular expression

– list - Python list of hosts

– grain - Match based on a grain comparison

22.4. Python client API 327

Salt Documentation, Release 2014.7.6

– grain_pcre - Grain comparison with a regex

– pillar - Pillar data comparison

– nodegroup - Match on nodegroup

– range - Use a Range server for matching

– compound - Pass a compound match string

• ret --e returner to use. e value passed can be single returner, or a comma delimited
list of returners to call in order on the minions

• kwarg -- A dictionary with keyword arguments for the function.

• kwargs -- Optional keyword arguments. Authentication credentials may be passed
when using external_auth.

For example: local.cmd('*', 'test.ping', username='saltdev',
password='saltdev', eauth='pam'). Or: local.cmd('*',
'test.ping', token='5871821ea51754fdcea8153c1c745433')

Returns A dictionary with the result of the execution, keyed by minion ID. A compound com-
mand will return a sub-dictionary keyed by function name.

cmd_async(tgt, fun, arg=(), expr_form='glob', ret='`, kwarg=None, **kwargs)
Asynchronously send a command to connected minions

e function signature is the same as cmd() with the following exceptions.

Returns A job ID or 0 on failure.

>>> local.cmd_async('*', 'test.sleep', [300])
'20131219215921857715'

cmd_batch(tgt, fun, arg=(), expr_form='glob', ret='`, kwarg=None, batch=`10%', **kwargs)
Iteratively execute a command on subsets of minions at a time

e function signature is the same as cmd() with the following exceptions.

Parameters batch -- e batch identifier of systems to execute on

Returns A generator of minion returns

>>> returns = local.cmd_batch('*', 'state.highstate', bat='10%')
>>> for return in returns:
... print return
{'jerry': {...}}
{'dave': {...}}
{'stewart': {...}}

cmd_iter(tgt, fun, arg=(), timeout=None, expr_form='glob', ret='`, kwarg=None, **kwargs)
Yields the individual minion returns as they come in

e function signature is the same as cmd() with the following exceptions.

Returns A generator

>>> ret = local.cmd_iter('*', 'test.ping')
>>> for i in ret:
... print i
{'jerry': {'ret': True}}
{'dave': {'ret': True}}
{'stewart': {'ret': True}}

328 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

cmd_iter_no_block(tgt, fun, arg=(), timeout=None, expr_form='glob', ret='`, kwarg=None,
**kwargs)

Blocks while waiting for individual minions to return.

e function signature is the same as cmd() with the following exceptions.

Returns None until the next minion returns. is allows for actions to be injected in between
minion returns.

>>> ret = local.cmd_iter('*', 'test.ping')
>>> for i in ret:
... print i
None
{'jerry': {'ret': True}}
{'dave': {'ret': True}}
None
{'stewart': {'ret': True}}

cmd_subset(tgt, fun, arg=(), expr_form='glob', ret='`, kwarg=None, sub=3, cli=False, **kwargs)
Execute a command on a random subset of the targeted systems

e function signature is the same as cmd() with the following exceptions.

Parameters sub -- e number of systems to execute on

>>> SLC.cmd_subset('*', 'test.ping', sub=1)
{'jerry': True}

get_cli_returns(jid, minions, timeout=None, tgt='*', tgt_type='glob', verbose=False, show_jid=False,
**kwargs)

Starts a watcher looking at the return data for a specified JID

Returns all of the information for the JID

get_event_iter_returns(jid, minions, timeout=None)
Gather the return data from the event system, break hard when timeout is reached.

run_job(tgt, fun, arg=(), expr_form='glob', ret='`, timeout=None, kwarg=None, **kwargs)
Asynchronously send a command to connected minions

Prep the job directory and publish a command to any targeted minions.

Returns A dictionary of (validated) pub_data or an empty dictionary on failure. e
pub_data contains the job ID and a list of all minions that are expected to return data.

>>> local.run_job('*', 'test.sleep', [300])
{'jid': '20131219215650131543', 'minions': ['jerry']}

Salt Caller

class salt.client.Caller(c_path='/etc/salt/minion', mopts=None)
Caller is the same interface used by the salt-call command-line tool on the Salt Minion.

Importing and using Caller must be done on the same machine as a Salt Minion and it must be done using
the same user that the Salt Minion is running as.

Usage:

import salt.client
caller = salt.client.Caller()
caller.function('test.ping')

22.4. Python client API 329

Salt Documentation, Release 2014.7.6

Or call objects directly
caller.sminion.functions['cmd.run']('ls -l')

Note, a running master or minion daemon is not required to use this class. Running salt-call --local
simply sets file_client to 'local'. e same can be achieved at the Python level by including that
seing in a minion config file.

Instantiate a new Caller() instance using a file system path to the minion config file:

caller = salt.client.Caller('/path/to/custom/minion_config')
caller.sminion.functions['grains.items']()

Instantiate a new Caller() instance using a dictionary of the minion config:

New in version 2014.7.0: Pass the minion config as a dictionary.

import salt.client
import salt.config

opts = salt.config.minion_config('/etc/salt/minion')
opts['file_client'] = 'local'
caller = salt.client.Caller(mopts=opts)
caller.sminion.functions['grains.items']()

function(fun, *args, **kwargs)
Call a single salt function

RunnerClient

class salt.runner.RunnerClient(opts)
e interface used by the salt-run CLI tool on the Salt Master

It executes runner modules which run on the Salt Master.

Importing and using RunnerClient must be done on the same machine as the Salt Master and it must be
done using the same user that the Salt Master is running as.

Salt's external_auth can be used to authenticate calls. e eauth user must be authorized to execute
runner modules: (@runner). Only the master_call() below supports eauth.

async(fun, low, user='UNKNOWN')
Execute the function in a multiprocess and return the event tag to use to watch for the return

cmd(fun, arg, pub_data=None, kwarg=None)
Execute a runner function

>>> opts = salt.config.master_config('/etc/salt/master')
>>> runner = salt.runner.RunnerClient(opts)
>>> runner.cmd('jobs.list_jobs', [])
{

'20131219215650131543': {
'Arguments': [300],
'Function': 'test.sleep',
'StartTime': '2013, Dec 19 21:56:50.131543',
'Target': '*',
'Target-type': 'glob',
'User': 'saltdev'

},
'20131219215921857715': {

330 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

'Arguments': [300],
'Function': 'test.sleep',
'StartTime': '2013, Dec 19 21:59:21.857715',
'Target': '*',
'Target-type': 'glob',
'User': 'saltdev'

},
}

cmd_async(low)
Execute a runner function asynchronously; eauth is respected

is function requires that external_auth is configured and the user is authorized to execute runner
functions: (@runner).

runner.eauth_async({
'fun': 'jobs.list_jobs',
'username': 'saltdev',
'password': 'saltdev',
'eauth': 'pam',

})

cmd_sync(low, timeout=None)
Execute a runner function synchronously; eauth is respected

is function requires that external_auth is configured and the user is authorized to execute runner
functions: (@runner).

runner.eauth_sync({
'fun': 'jobs.list_jobs',
'username': 'saltdev',
'password': 'saltdev',
'eauth': 'pam',

})

WheelClient

class salt.wheel.WheelClient(opts=None)
An interface to Salt's wheel modules

Wheel modules interact with various parts of the Salt Master.

Importing and using WheelClient must be done on the same machine as the Salt Master and it must be
done using the same user that the Salt Master is running as. Unless external_auth is configured and the
user is authorized to execute wheel functions: (@wheel).

async(fun, low, user='UNKNOWN')
Execute the function in a multiprocess and return the event tag to use to watch for the return

cmd(fun, **kwargs)
Execute a wheel function

>>> opts = salt.config.master_config('/etc/salt/master')
>>> wheel = salt.wheel.Wheel(opts)
>>> wheel.call_func('key.list_all')
{'local': ['master.pem', 'master.pub'],
'minions': ['jerry'],
'minions_pre': [],
'minions_rejected': []}

22.4. Python client API 331

Salt Documentation, Release 2014.7.6

cmd_async(low)
Execute a wheel function asynchronously; eauth is respected

is function requires that external_auth is configured and the user is authorized to execute runner
functions: (@wheel).

>>> wheel.cmd_async({
'fun': 'key.finger',
'match': 'jerry',
'eauth': 'auto',
'username': 'saltdev',
'password': 'saltdev',

})
{'jid': '20131219224744416681', 'tag': 'salt/wheel/20131219224744416681'}

cmd_sync(low, timeout=None)
Execute a wheel function synchronously; eauth is respected

is function requires that external_auth is configured and the user is authorized to execute runner
functions: (@wheel).

>>> wheel.cmd_sync({
'fun': 'key.finger',
'match': 'jerry',
'eauth': 'auto',
'username': 'saltdev',
'password': 'saltdev',

})
{'minions': {'jerry': '5d:f6:79:43:5e:d4:42:3f:57:b8:45:a8:7e:a4:6e:ca'}}

CloudClient

class salt.cloud.CloudClient(path=None, opts=None, config_dir=None, pillars=None)
e client class to wrap cloud interactions

action(fun=None, cloudmap=None, names=None, provider=None, instance=None, kwargs=None)
Execute a single action via the cloud plugin backend

Examples:

client.action(fun='show_instance', names=['myinstance'])
client.action(fun='show_image', provider='my-ec2-config',

kwargs={'image': 'ami-10314d79'}
)

create(provider, names, **kwargs)
Create the named VMs, without using a profile

Example:

client.create(names=['myinstance'], provider='my-ec2-config',
kwargs={'image': 'ami-1624987f', 'size': 'Micro Instance',

'ssh_username': 'ec2-user', 'securitygroup': 'default',
'delvol_on_destroy': True})

destroy(names)
Destroy the named VMs

332 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

extra_action(names, provider, action, **kwargs)
Perform actions with block storage devices

Example:

client.extra_action(names=['myblock'], action='volume_create',
provider='my-nova', kwargs={'voltype': 'SSD', 'size': 1000}

)
client.extra_action(names=['salt-net'], action='network_create',

provider='my-nova', kwargs={'cidr': '192.168.100.0/24'}
)

full_query(query_type='list_nodes_full')
ery all instance information

list_images(provider=None)
List all available images in configured cloud systems

list_locations(provider=None)
List all available locations in configured cloud systems

list_sizes(provider=None)
List all available sizes in configured cloud systems

low(fun, low)
Pass the cloud function and low data structure to run

map_run(path, **kwargs)
Pass in a location for a map to execute

min_query(query_type='list_nodes_min')
ery select instance information

profile(profile, names, vm_overrides=None, **kwargs)
Pass in a profile to create, names is a list of vm names to allocate

vm_overrides is a special dict that will be per node options overrides

Example:

>>> client= salt.cloud.CloudClient(path='/etc/salt/cloud')
>>> client.profile('do_512_git', names=['minion01',])
{'minion01': {u'backups_active': 'False',

u'created_at': '2014-09-04T18:10:15Z',
u'droplet': {u'event_id': 31000502,

u'id': 2530006,
u'image_id': 5140006,
u'name': u'minion01',
u'size_id': 66},

u'id': '2530006',
u'image_id': '5140006',
u'ip_address': '107.XXX.XXX.XXX',
u'locked': 'True',
u'name': 'minion01',
u'private_ip_address': None,
u'region_id': '4',
u'size_id': '66',
u'status': 'new'}}

query(query_type='list_nodes')
ery basic instance information

22.4. Python client API 333

Salt Documentation, Release 2014.7.6

select_query(query_type='list_nodes_select')
ery select instance information

22.5 Full list of Salt Cloud modules

aliyun AliYun ECS Cloud Module
botocore_aws e AWS Cloud Module
cloudstack CloudStack Cloud Module
digital_ocean DigitalOcean Cloud Module
ec2 e EC2 Cloud Module
gce Copyright 2013 Google Inc.
gogrid GoGrid Cloud Module
joyent Joyent Cloud Module
libcloud_aws e AWS Cloud Module
linode Linode Cloud Module using Apache Libcloud OR linode-python bindings
lxc Install Salt on an LXC Container
msazure Azure Cloud Module
nova OpenStack Nova Cloud Module
opennebula OpenNebula Cloud Module
openstack OpenStack Cloud Module
parallels Parallels Cloud Module
proxmox Proxmox Cloud Module
rackspace Rackspace Cloud Module
saltify Saltify Module ============== e Saltify module is designed to install Salt on a remote machine, virtual or bare metal, using SSH.
softlayer SoLayer Cloud Module
softlayer_hw SoLayer HW Cloud Module
vsphere vSphere Cloud Module

22.5.1 salt.cloud.clouds.aliyun

AliYun ECS Cloud Module

New in version 2014.7.0.

e Aliyun cloud module is used to control access to the aliyun ECS. hp://www.aliyun.com/

Use of this module requires the id and key parameter to be set. Set up the cloud configuration at
/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/aliyun.conf:

my-aliyun-config:
aliyun Access Key ID
id: wFGEwgregeqw3435gDger
aliyun Access Key Secret
key: GDE43t43REGTrkilg43934t34qT43t4dgegerGEgg
location: cn-qingdao
provider: aliyun

depends requests

salt.cloud.clouds.aliyun.avail_images(kwargs=None, call=None)
Return a list of the images that are on the provider

334 Chapter 22. Reference

http://www.aliyun.com/

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.aliyun.avail_locations(call=None)
Return a dict of all available VM locations on the cloud provider with relevant data

salt.cloud.clouds.aliyun.avail_sizes(call=None)
Return a list of the image sizes that are on the provider

salt.cloud.clouds.aliyun.create(vm_)
Create a single VM from a data dict

salt.cloud.clouds.aliyun.create_node(kwargs)
Convenience function to make the rest api call for node creation.

salt.cloud.clouds.aliyun.destroy(name, call=None)
Destroy a node.

CLI Example:

salt-cloud -a destroy myinstance
salt-cloud -d myinstance

salt.cloud.clouds.aliyun.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.aliyun.get_image(vm_)
Return the image object to use

salt.cloud.clouds.aliyun.get_location(vm_=None)

Return the aliyun region to use, in this order:

• CLI parameter

• VM parameter

• Cloud profile seing

salt.cloud.clouds.aliyun.get_securitygroup(vm_)
Return the security group

salt.cloud.clouds.aliyun.get_size(vm_)
Return the VM's size. Used by create_node().

salt.cloud.clouds.aliyun.list_availability_zones(call=None)
List all availability zones in the current region

salt.cloud.clouds.aliyun.list_monitor_data(kwargs=None, call=None)
Get monitor data of the instance. If instance name is missing, will show all the instance monitor data on the
region.

CLI Examples:

salt-cloud -f list_monitor_data aliyun
salt-cloud -f list_monitor_data aliyun name=AY14051311071990225bd

salt.cloud.clouds.aliyun.list_nodes(call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.aliyun.list_nodes_full(call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.aliyun.list_nodes_min(call=None)
Return a list of the VMs that are on the provider. Only a list of VM names, and their state, is returned. is is
the minimum amount of information needed to check for existing VMs.

22.5. Full list of Salt Cloud modules 335

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.aliyun.list_nodes_select(call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.aliyun.list_securitygroup(call=None)
Return a list of security group

salt.cloud.clouds.aliyun.query(params=None)
Make a web call to aliyun ECS REST API

salt.cloud.clouds.aliyun.reboot(name, call=None)
Reboot a node

CLI Examples:

salt-cloud -a reboot myinstance

salt.cloud.clouds.aliyun.script(vm_)
Return the script deployment object

salt.cloud.clouds.aliyun.show_disk(name, call=None)
Show the disk details of the instance

CLI Examples:

salt-cloud -a show_disk aliyun myinstance

salt.cloud.clouds.aliyun.show_image(kwargs, call=None)
Show the details from aliyun image

salt.cloud.clouds.aliyun.show_instance(name, call=None)
Show the details from aliyun instance

salt.cloud.clouds.aliyun.start(name, call=None)
Start a node

CLI Examples:

salt-cloud -a start myinstance

salt.cloud.clouds.aliyun.stop(name, force=False, call=None)
Stop a node

CLI Examples:

salt-cloud -a stop myinstance
salt-cloud -a stop myinstance force=True

22.5.2 salt.cloud.clouds.botocore_aws

The AWS Cloud Module

e AWS cloud module is used to interact with the Amazon Web Services system.

is module has been replaced by the EC2 cloud module, and is no longer supported. e documentation shown
here is for reference only; it is highly recommended to change all usages of this driver over to the EC2 driver.

If this driver is still needed, set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/aws.conf:

336 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

my-aws-botocore-config:
The AWS API authentication id
id: GKTADJGHEIQSXMKKRBJ08H
The AWS API authentication key
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
The ssh keyname to use
keyname: default
The amazon security group
securitygroup: ssh_open
The location of the private key which corresponds to the keyname
private_key: /root/default.pem
provider: aws

salt.cloud.clouds.botocore_aws.disable_term_protect(name, call=None)
Disable termination protection on a node

CLI Example:

salt-cloud -a disable_term_protect mymachine

salt.cloud.clouds.botocore_aws.enable_term_protect(name, call=None)
Enable termination protection on a node

CLI Example:

salt-cloud -a enable_term_protect mymachine

salt.cloud.clouds.botocore_aws.get_configured_provider()
Return the first configured instance.

22.5.3 salt.cloud.clouds.cloudstack

CloudStack Cloud Module

e CloudStack cloud module is used to control access to a CloudStack based Public Cloud.

depends libcloud

Use of this module requires the apikey, secretkey, host and path parameters.

my-cloudstack-cloud-config:
apikey: <your api key >
secretkey: <your secret key >
host: localhost
path: /client/api
provider: cloudstack

salt.cloud.clouds.cloudstack.avail_images(conn=None, call=None)
Return a dict of all available VM images on the cloud provider with relevant data

salt.cloud.clouds.cloudstack.avail_locations(conn=None, call=None)
Return a dict of all available VM locations on the cloud provider with relevant data

salt.cloud.clouds.cloudstack.avail_sizes(conn=None, call=None)
Return a dict of all available VM images on the cloud provider with relevant data

salt.cloud.clouds.cloudstack.create(vm_)
Create a single VM from a data dict

22.5. Full list of Salt Cloud modules 337

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.cloudstack.destroy(name, conn=None, call=None)
Delete a single VM

salt.cloud.clouds.cloudstack.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.cloudstack.get_conn()
Return a conn object for the passed VM data

salt.cloud.clouds.cloudstack.get_image(conn, vm_)
Return the image object to use

salt.cloud.clouds.cloudstack.get_ip(data)
Return the IP address of the VM If the VM has public IP as defined by libcloud module then use it Otherwise
try to extract the private IP and use that one.

salt.cloud.clouds.cloudstack.get_key()
Returns the ssh private key for VM access

salt.cloud.clouds.cloudstack.get_keypair(vm_)
Return the keypair to use

salt.cloud.clouds.cloudstack.get_location(conn, vm_)
Return the node location to use

salt.cloud.clouds.cloudstack.get_networkid(vm_)
Return the networkid to use, only valid for Advanced Zone

salt.cloud.clouds.cloudstack.get_node(conn, name)
Return a libcloud node for the named VM

salt.cloud.clouds.cloudstack.get_password(vm_)
Return the password to use

salt.cloud.clouds.cloudstack.get_size(conn, vm_)
Return the VM's size object

salt.cloud.clouds.cloudstack.list_nodes(conn=None, call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.cloudstack.list_nodes_full(conn=None, call=None)
Return a list of the VMs that are on the provider, with all fields

salt.cloud.clouds.cloudstack.list_nodes_select(conn=None, call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.cloudstack.script(vm_)
Return the script deployment object

salt.cloud.clouds.cloudstack.show_instance(name, call=None)
Show the details from the provider concerning an instance

22.5.4 salt.cloud.clouds.digital_ocean

DigitalOcean Cloud Module

e DigitalOcean cloud module is used to control access to the DigitalOcean VPS system.

Use of this module only requires the api_key parameter to be set. Set up the cloud configuration at
/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/digital_ocean.conf:

338 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

my-digital-ocean-config:
DigitalOcean account keys
client_key: wFGEwgregeqw3435gDger
api_key: GDE43t43REGTrkilg43934t34qT43t4dgegerGEgg
provider: digital_ocean

depends requests

salt.cloud.clouds.digital_ocean.avail_images(call=None)
Return a list of the images that are on the provider

salt.cloud.clouds.digital_ocean.avail_locations(call=None)
Return a dict of all available VM locations on the cloud provider with relevant data

salt.cloud.clouds.digital_ocean.avail_sizes(call=None)
Return a list of the image sizes that are on the provider

salt.cloud.clouds.digital_ocean.create(vm_)
Create a single VM from a data dict

salt.cloud.clouds.digital_ocean.create_node(args)
Create a node

salt.cloud.clouds.digital_ocean.destroy(name, call=None)
Destroy a node. Will check termination protection and warn if enabled.

CLI Example:

salt-cloud --destroy mymachine

salt.cloud.clouds.digital_ocean.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.digital_ocean.get_image(vm_)
Return the image object to use

salt.cloud.clouds.digital_ocean.get_keyid(keyname)
Return the ID of the keyname

salt.cloud.clouds.digital_ocean.get_location(vm_)
Return the VM's location

salt.cloud.clouds.digital_ocean.get_size(vm_)
Return the VM's size. Used by create_node().

salt.cloud.clouds.digital_ocean.list_keypairs(call=None)
Return a dict of all available VM locations on the cloud provider with relevant data

salt.cloud.clouds.digital_ocean.list_nodes(call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.digital_ocean.list_nodes_full(call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.digital_ocean.list_nodes_select(call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.digital_ocean.query(method='droplets', droplet_id=None, command=None,
args=None)

Make a web call to DigitalOcean

salt.cloud.clouds.digital_ocean.script(vm_)
Return the script deployment object

22.5. Full list of Salt Cloud modules 339

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.digital_ocean.show_instance(name, call=None)
Show the details from DigitalOcean concerning a droplet

salt.cloud.clouds.digital_ocean.show_keypair(kwargs=None, call=None)
Show the details of an SSH keypair

22.5.5 salt.cloud.clouds.ec2

The EC2 Cloud Module

e EC2 cloud module is used to interact with the Amazon Elastic Cloud Computing. is driver is highly experi-
mental! Use at your own risk!

To use the EC2 cloud module, set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/ec2.conf:

my-ec2-config:
The EC2 API authentication id
id: GKTADJGHEIQSXMKKRBJ08H
The EC2 API authentication key
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
The ssh keyname to use
keyname: default
The amazon security group
securitygroup: ssh_open
The location of the private key which corresponds to the keyname
private_key: /root/default.pem

Be default, service_url is set to amazonaws.com. If you are using this
driver for something other than Amazon EC2, change it here:
service_url: amazonaws.com

The endpoint that is ultimately used is usually formed using the region
and the service_url. If you would like to override that entirely, you
can explicitly define the endpoint:
endpoint: myendpoint.example.com:1138/services/Cloud

SSH Gateways can be used with this provider. Gateways can be used
when a salt-master is not on the same private network as the instance
that is being deployed.

Defaults to None
Required
ssh_gateway: gateway.example.com

Defaults to port 22
Optional
ssh_gateway_port: 22

Defaults to root
Optional
ssh_gateway_username: root

One authentication method is required. If both
are specified, Private key wins.

Private key defaults to None

340 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

ssh_gateway_private_key: /path/to/key.pem

Password defaults to None
ssh_gateway_password: ExamplePasswordHere

provider: ec2

depends requests

salt.cloud.clouds.ec2.attach_volume(name=None, kwargs=None, instance_id=None,
call=None)

Aach a volume to an instance

salt.cloud.clouds.ec2.avail_images(kwargs=None, call=None)
Return a dict of all available VM images on the cloud provider.

salt.cloud.clouds.ec2.avail_locations(call=None)
List all available locations

salt.cloud.clouds.ec2.avail_sizes(call=None)
Return a dict of all available VM sizes on the cloud provider with relevant data. Latest version can be found
at:

hp://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

salt.cloud.clouds.ec2.block_device_mappings(vm_)
Return the block device mapping:

[{'DeviceName': '/dev/sdb', 'VirtualName': 'ephemeral0'},
{'DeviceName': '/dev/sdc', 'VirtualName': 'ephemeral1'}]

salt.cloud.clouds.ec2.copy_snapshot(kwargs=None, call=None)
Copy a snapshot

salt.cloud.clouds.ec2.create(vm_=None, call=None)
Create a single VM from a data dict

salt.cloud.clouds.ec2.create_attach_volumes(name, kwargs, call=None,
wait_to_finish=True)

Create and aach volumes to created node

salt.cloud.clouds.ec2.create_keypair(kwargs=None, call=None)
Create an SSH keypair

salt.cloud.clouds.ec2.create_snapshot(kwargs=None, call=None, wait_to_finish=False)
Create a snapshot

salt.cloud.clouds.ec2.create_volume(kwargs=None, call=None, wait_to_finish=False)
Create a volume

salt.cloud.clouds.ec2.del_tags(name=None, kwargs=None, call=None, instance_id=None, re-
source_id=None)

Delete tags for a resource. Normally a VM name or instance_id is passed in, but a resource_id may be passed
instead. If both are passed in, the instance_id will be used.

CLI Examples:

salt-cloud -a del_tags mymachine tags=tag1,tag2,tag3
salt-cloud -a del_tags resource_id=vol-3267ab32 tags=tag1,tag2,tag3

salt.cloud.clouds.ec2.delete_keypair(kwargs=None, call=None)
Delete an SSH keypair

22.5. Full list of Salt Cloud modules 341

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.ec2.delete_snapshot(kwargs=None, call=None)
Delete a snapshot

salt.cloud.clouds.ec2.delete_volume(name=None, kwargs=None, instance_id=None,
call=None)

Delete a volume

salt.cloud.clouds.ec2.delvol_on_destroy(name, kwargs=None, call=None)
Delete all/specified EBS volumes upon instance termination

CLI Example:

salt-cloud -a delvol_on_destroy mymachine

salt.cloud.clouds.ec2.describe_snapshots(kwargs=None, call=None)
Describe a snapshot (or snapshots)

snapshot_id One or more snapshot IDs. Multiple IDs must be separated by '',''.

owner Return the snapshots owned by the specified owner. Valid values include: self, amazon, <AWSAccount
ID>. Multiple values must be separated by '',''.

restorable_by One or more AWS accounts IDs that can create volumes from the snapshot. Multiple aws
account IDs must be separated by '',''.

TODO: Add all of the filters.

salt.cloud.clouds.ec2.describe_volumes(kwargs=None, call=None)
Describe a volume (or volumes)

volume_id One or more volume IDs. Multiple IDs must be separated by '',''.

TODO: Add all of the filters.

salt.cloud.clouds.ec2.destroy(name, call=None)
Destroy a node. Will check termination protection and warn if enabled.

CLI Example:

salt-cloud --destroy mymachine

salt.cloud.clouds.ec2.detach_volume(name=None, kwargs=None, instance_id=None,
call=None)

Detach a volume from an instance

salt.cloud.clouds.ec2.disable_term_protect(name, call=None)
Disable termination protection on a node

CLI Example:

salt-cloud -a disable_term_protect mymachine

salt.cloud.clouds.ec2.enable_term_protect(name, call=None)
Enable termination protection on a node

CLI Example:

salt-cloud -a enable_term_protect mymachine

salt.cloud.clouds.ec2.get_availability_zone(vm_)
Return the availability zone to use

salt.cloud.clouds.ec2.get_configured_provider()
Return the first configured instance.

342 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.ec2.get_console_output(name=None, instance_id=None, call=None,
kwargs=None)

Show the console output from the instance.

By default, returns decoded data, not the Base64-encoded data that is actually returned from the EC2 API.

salt.cloud.clouds.ec2.get_location(vm_=None)

Return the EC2 region to use, in this order:

• CLI parameter

• VM parameter

• Cloud profile seing

salt.cloud.clouds.ec2.get_placementgroup(vm_)
Returns the PlacementGroup to use

salt.cloud.clouds.ec2.get_spot_config(vm_)
Returns the spot instance configuration for the provided vm

salt.cloud.clouds.ec2.get_ssh_gateway_config(vm_)
Return the ssh_gateway configuration.

salt.cloud.clouds.ec2.get_subnetid(vm_)
Returns the SubnetId to use

salt.cloud.clouds.ec2.get_tags(name=None, instance_id=None, call=None, location=None,
kwargs=None, resource_id=None)

Retrieve tags for a resource. Normally a VM name or instance_id is passed in, but a resource_id may be passed
instead. If both are passed in, the instance_id will be used.

CLI Examples:

salt-cloud -a get_tags mymachine
salt-cloud -a get_tags resource_id=vol-3267ab32

salt.cloud.clouds.ec2.get_tenancy(vm_)
Returns the Tenancy to use.

Can be ``dedicated'' or ``default''. Cannot be present for spot instances.

salt.cloud.clouds.ec2.iam_profile(vm_)
Return the IAM profile.

e IAM instance profile to associate with the instances. is is either the Amazon Resource Name (ARN) of
the instance profile or the name of the role.

Type: String

Default: None

Required: No

Example: arn:aws:iam::111111111111:instance-profile/s3access

Example: s3access

salt.cloud.clouds.ec2.keepvol_on_destroy(name, kwargs=None, call=None)
Do not delete all/specified EBS volumes upon instance termination

CLI Example:

salt-cloud -a keepvol_on_destroy mymachine

22.5. Full list of Salt Cloud modules 343

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.ec2.keyname(vm_)
Return the keyname

salt.cloud.clouds.ec2.list_availability_zones()
List all availability zones in the current region

salt.cloud.clouds.ec2.list_nodes(call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.ec2.list_nodes_full(location=None, call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.ec2.list_nodes_min(location=None, call=None)
Return a list of the VMs that are on the provider. Only a list of VM names, and their state, is returned. is is
the minimum amount of information needed to check for existing VMs.

salt.cloud.clouds.ec2.list_nodes_select(call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.ec2.optimize_providers(providers)
Return an optimized list of providers.

We want to reduce the duplication of querying the same region.

If a provider is using the same credentials for the same region the same data will be returned for each provider,
thus causing un-wanted duplicate data and API calls to EC2.

salt.cloud.clouds.ec2.query(params=None, setname=None, requesturl=None, location=None, re-
turn_url=False, return_root=False)

salt.cloud.clouds.ec2.query_instance(vm_=None, call=None)
ery an instance upon creation from the EC2 API

salt.cloud.clouds.ec2.queue_instances(instances)
eue a set of instances to be provisioned later. Expects a list.

Currently this only queries node data, and then places it in the cloud cache (if configured). If the salt-cloud-
reactor is being used, these instances will be automatically provisioned using that.

For more information about the salt-cloud-reactor, see:

hps://github.com/saltstack-formulas/salt-cloud-reactor

salt.cloud.clouds.ec2.reboot(name, call=None)
Reboot a node.

CLI Example:

salt-cloud -a reboot mymachine

salt.cloud.clouds.ec2.rename(name, kwargs, call=None)
Properly rename a node. Pass in the new name as ``new name''.

CLI Example:

salt-cloud -a rename mymachine newname=yourmachine

salt.cloud.clouds.ec2.request_instance(vm_=None, call=None)
Put together all of the information necessary to request an instance on EC2, and then fire off the request the
instance.

Returns data about the instance

salt.cloud.clouds.ec2.script(vm_)
Return the script deployment object

344 Chapter 22. Reference

https://github.com/saltstack-formulas/salt-cloud-reactor

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.ec2.securitygroup(vm_)
Return the security group

salt.cloud.clouds.ec2.securitygroupid(vm_)
Returns the SecurityGroupId

salt.cloud.clouds.ec2.set_tags(name=None, tags=None, call=None, location=None, in-
stance_id=None, resource_id=None, kwargs=None)

Set tags for a resource. Normally a VM name or instance_id is passed in, but a resource_id may be passed
instead. If both are passed in, the instance_id will be used.

CLI Examples:

salt-cloud -a set_tags mymachine tag1=somestuff tag2='Other stuff'
salt-cloud -a set_tags resource_id=vol-3267ab32 tag=somestuff

salt.cloud.clouds.ec2.show_delvol_on_destroy(name, kwargs=None, call=None)
Do not delete all/specified EBS volumes upon instance termination

CLI Example:

salt-cloud -a show_delvol_on_destroy mymachine

salt.cloud.clouds.ec2.show_image(kwargs, call=None)
Show the details from EC2 concerning an AMI

salt.cloud.clouds.ec2.show_instance(name=None, instance_id=None, call=None,
kwargs=None)

Show the details from EC2 concerning an AMI.

Can be called as an action (which requires a name):

salt-cloud -a show_instance myinstance

…or as a function (which requires either a name or instance_id):

salt-cloud -f show_instance my-ec2 name=myinstance salt-cloud -f show_instance my-ec2
instance_id=i-d34db33f

salt.cloud.clouds.ec2.show_keypair(kwargs=None, call=None)
Show the details of an SSH keypair

salt.cloud.clouds.ec2.show_term_protect(name=None, instance_id=None, call=None,
quiet=False)

Show the details from EC2 concerning an AMI

salt.cloud.clouds.ec2.show_volume(kwargs=None, call=None)
Wrapper around describe_volumes. Here just to keep functionality. Might be depreciated later.

salt.cloud.clouds.ec2.sign(key, msg)

salt.cloud.clouds.ec2.ssh_interface(vm_)
Return the ssh_interface type to connect to. Either `public_ips' (default) or `private_ips'.

salt.cloud.clouds.ec2.start(name, call=None)
Start a node

salt.cloud.clouds.ec2.stop(name, call=None)
Stop a node

salt.cloud.clouds.ec2.wait_for_instance(vm_=None, data=None, ip_address=None, dis-
play_ssh_output=True, call=None)

Wait for an instance upon creation from the EC2 API, to become available

22.5. Full list of Salt Cloud modules 345

Salt Documentation, Release 2014.7.6

22.5.6 salt.cloud.clouds.gce

Copyright 2013 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the ``License''); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

hp://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, soware distributed under the License is distributed on
an ``AS IS'' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

Google Compute Engine Module

eGoogle Compute Engine module. is module interfaces with Google Compute Engine. To authenticate to GCE,
you will need to create a Service Account.

Setting up Service Account Authentication:

• Go to the Cloud Console at: hps://cloud.google.com/console.

• Create or navigate to your desired Project.

• Make sure Google Compute Engine service is enabled under the Services section.

• Go to ``APIs and auth'' and then the ``Registered apps'' section.

• Click the ``REGISTER APP'' buon and give it a meaningful name.

• Select ``Web Application'' and click ``Register''.

• Select Certificate, then ``Generate Certificate''

• Copy the Email Address for inclusion in your /etc/salt/cloud file in the `service_account_email_address'
seing.

• Download the Private Key

• e key that you download is a PKCS12 key. It needs to be converted to the PEM format.

• Convert the key using OpenSSL (the default password is `notasecret'): C{openssl pkcs12 -in PRIVKEY.p12
-passin pass:notasecret -nodes -nocerts | openssl rsa -out ~/PRIVKEY.pem}

• Add the full path name of the converted private key to your /etc/salt/cloud file as `ser-
vice_account_private_key' seing.

• Consider using a more secure location for your private key.

Supported commands: # Create a few instances fro profile_name in /etc/salt/cloud.profiles - salt-cloud -p pro-
file_name inst1 inst2 inst3 # Delete an instance - salt-cloud -d inst1 # Look up data on an instance - salt-
cloud -a show_instance inst2 # List available locations (aka `zones') for provider `gce' - salt-cloud --list-
locations gce # List available instance sizes (aka `machine types') for provider `gce' - salt-cloud --list-sizes
gce # List available images for provider `gce' - salt-cloud --list-images gce # Create a persistent disk - salt-
cloud -f create_disk gce disk_name=pd location=us-central1-b ima… # Permanently delete a persistent disk
- salt-cloud -f delete_disk gce disk_name=pd # Aach an existing disk to an existing instance - salt-cloud
-a aach_disk myinstance disk_name=mydisk mode=READ_ONLY # Detach a disk from an instance - salt-
cloud -a detach_disk myinstance disk_name=mydisk # Show information about the named disk - salt-cloud
-a show_disk myinstance disk_name=pd - salt-cloud -f show_disk gce disk_name=pd # Create a snapshot of
a persistent disk - salt-cloud -f create_snapshot gce name=snap-1 disk_name=pd # Permanently delete a disk
snapshot - salt-cloud -f delete_snapshot gce name=snap-1 # Show information about the named snapshot - salt-
cloud -f show_snapshot gce name=snap-1 # Create a network - salt-cloud -f create_network gce name=mynet

346 Chapter 22. Reference

http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/console

Salt Documentation, Release 2014.7.6

cidr=10.10.10.0/24 # Delete a network - salt-cloud -f delete_network gce name=mynet # Show info for a net-
work - salt-cloud -f show_network gce name=mynet # Create a firewall rule - salt-cloud -f create_fwrule gce
name=fw1 network=mynet allow=tcp:80 # Delete a firewall rule - salt-cloud -f delete_fwrule gce name=fw1 #
Show info for a firewall rule -salt-cloud -f show_fwrule gce name=fw1 # Create a load-balancer HTTP health
check - salt-cloud -f create_hc gce name=hc path=/ port=80 # Delete a load-balancer HTTP health check - salt-
cloud -f delete_hc gce name=hc # Show info about an HTTP health check - salt-cloud -f show_hc gce name=hc
Create a load-balancer configuration - salt-cloud -f create_lb gce name=lb region=us-central1 ports=80 …
Delete a load-balancer configuration - salt-cloud -f delete_lb gce name=lb # Show details about load-balancer
- salt-cloud -f show_lb gce name=lb # Add member to load-balancer - salt-cloud -f aach_lb gce name=lb
member=www1 # Remove member from load-balancer - salt-cloud -f detach_lb gce name=lb member=www1

my-gce-config:
The Google Cloud Platform Project ID
project: google.com:erjohnso
The Service ACcount client ID
service_account_email_address: 1234567890@developer.gserviceaccount.com
The location of the private key (PEM format)
service_account_private_key: /home/erjohnso/PRIVKEY.pem
provider: gce

maintainer Eric Johnson <erjohnso@google.com>

maturity new

depends libcloud >= 0.14.1

depends pycrypto >= 2.1

salt.cloud.clouds.gce.attach_disk(name=None, kwargs=None, call=None)
Aach an existing disk to an existing instance.

CLI Example:

salt-cloud -a attach_disk myinstance disk_name=mydisk mode=READ_WRITE

salt.cloud.clouds.gce.attach_lb(kwargs=None, call=None)
Add an existing node/member to an existing load-balancer configuration.

CLI Example:

salt-cloud -f attach_lb gce name=lb member=myinstance

salt.cloud.clouds.gce.avail_images(conn=None)
Return a dict of all available VM images on the cloud provider with relevant data

Note that for GCE, there are custom images within the project, but the generic images are in other projects.
is returns a dict of images in the project plus images in `debian-cloud' and `centos-cloud' (If there is overlap
in names, the one in the current project is used.)

salt.cloud.clouds.gce.avail_locations(conn=None, call=None)
Return a dict of all available VM locations on the cloud provider with relevant data

salt.cloud.clouds.gce.avail_sizes(conn=None)
Return a dict of available instances sizes (a.k.amachine types) and convert them to somethingmore serializable.

salt.cloud.clouds.gce.create(vm_=None, call=None)
Create a single GCE instance from a data dict.

salt.cloud.clouds.gce.create_disk(kwargs=None, call=None)
Create a new persistent disk. Must specify disk_name and location. Can also specify an image or snapshot but
if neither of those are specified, a size (in GB) is required.

22.5. Full list of Salt Cloud modules 347

mailto:erjohnso@google.com

Salt Documentation, Release 2014.7.6

CLI Example:

salt-cloud -f create_disk gce disk_name=pd size=300 location=us-central1-b

salt.cloud.clouds.gce.create_fwrule(kwargs=None, call=None)
Create a GCE firewall rule. e `default' network is used if not specified.

CLI Example:

salt-cloud -f create_fwrule gce name=allow-http allow=tcp:80

salt.cloud.clouds.gce.create_hc(kwargs=None, call=None)
Create an HTTP health check configuration.

CLI Example:

salt-cloud -f create_hc gce name=hc path=/healthy port=80

salt.cloud.clouds.gce.create_lb(kwargs=None, call=None)
Create a load-balancer configuration.

CLI Example:

salt-cloud -f create_lb gce name=lb region=us-central1 ports=80

salt.cloud.clouds.gce.create_network(kwargs=None, call=None)
Create a GCE network.

CLI Example:

salt-cloud -f create_network gce name=mynet cidr=10.10.10.0/24

salt.cloud.clouds.gce.create_snapshot(kwargs=None, call=None)
Create a new disk snapshot. Must specify name and disk_name.

CLI Example:

salt-cloud -f create_snapshot gce name=snap1 disk_name=pd

salt.cloud.clouds.gce.delete_disk(kwargs=None, call=None)
Permanently delete a persistent disk.

CLI Example:

salt-cloud -f delete_disk gce disk_name=pd

salt.cloud.clouds.gce.delete_fwrule(kwargs=None, call=None)
Permanently delete a firewall rule.

CLI Example:

salt-cloud -f delete_fwrule gce name=allow-http

salt.cloud.clouds.gce.delete_hc(kwargs=None, call=None)
Permanently delete a health check.

CLI Example:

salt-cloud -f delete_hc gce name=hc

salt.cloud.clouds.gce.delete_lb(kwargs=None, call=None)
Permanently delete a load-balancer.

348 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt-cloud -f delete_lb gce name=lb

salt.cloud.clouds.gce.delete_network(kwargs=None, call=None)
Permanently delete a network.

CLI Example:

salt-cloud -f delete_network gce name=mynet

salt.cloud.clouds.gce.delete_snapshot(kwargs=None, call=None)
Permanently delete a disk snapshot.

CLI Example:

salt-cloud -f delete_snapshot gce name=disk-snap-1

salt.cloud.clouds.gce.destroy(vm_name, call=None)
Call `destroy' on the instance. Can be called with ``-a destroy'' or -d

CLI Example:

salt-cloud -a destroy myinstance1 myinstance2 ...
salt-cloud -d myinstance1 myinstance2 ...

salt.cloud.clouds.gce.detach_disk(name=None, kwargs=None, call=None)
Detach a disk from an instance.

CLI Example:

salt-cloud -a detach_disk myinstance disk_name=mydisk

salt.cloud.clouds.gce.detach_lb(kwargs=None, call=None)
Remove an existing node/member from an existing load-balancer configuration.

CLI Example:

salt-cloud -f detach_lb gce name=lb member=myinstance

salt.cloud.clouds.gce.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.gce.get_conn()
Return a conn object for the passed VM data

salt.cloud.clouds.gce.get_lb_conn(gce_driver=None)
Return a load-balancer conn object

salt.cloud.clouds.gce.list_nodes(conn=None, call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.gce.list_nodes_full(conn=None, call=None)
Return a list of the VMs that are on the provider, with all fields

salt.cloud.clouds.gce.list_nodes_select(conn=None, call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.gce.reboot(vm_name, call=None)
Call GCE `reset' on the instance.

CLI Example:

22.5. Full list of Salt Cloud modules 349

Salt Documentation, Release 2014.7.6

salt-cloud -a reboot myinstance

salt.cloud.clouds.gce.script(vm_)
Return the script deployment object

salt.cloud.clouds.gce.show_disk(name=None, kwargs=None, call=None)
Show the details of an existing disk.

CLI Example:

salt-cloud -a show_disk myinstance disk_name=mydisk
salt-cloud -f show_disk gce disk_name=mydisk

salt.cloud.clouds.gce.show_fwrule(kwargs=None, call=None)
Show the details of an existing firewall rule.

CLI Example:

salt-cloud -f show_fwrule gce name=allow-http

salt.cloud.clouds.gce.show_hc(kwargs=None, call=None)
Show the details of an existing health check.

CLI Example:

salt-cloud -f show_hc gce name=hc

salt.cloud.clouds.gce.show_instance(vm_name, call=None)
Show the details of the existing instance.

salt.cloud.clouds.gce.show_lb(kwargs=None, call=None)
Show the details of an existing load-balancer.

CLI Example:

salt-cloud -f show_lb gce name=lb

salt.cloud.clouds.gce.show_network(kwargs=None, call=None)
Show the details of an existing network.

CLI Example:

salt-cloud -f show_network gce name=mynet

salt.cloud.clouds.gce.show_snapshot(kwargs=None, call=None)
Show the details of an existing snapshot.

CLI Example:

salt-cloud -f show_snapshot gce name=mysnapshot

22.5.7 salt.cloud.clouds.gogrid

GoGrid Cloud Module

e GoGrid cloud module. is module interfaces with the gogrid public cloud service. To use Salt Cloud with
GoGrid log into the GoGrid web interface and create an api key. Do this by clicking on ``My Account'' and then
going to the API Keys tab.

depends libcloud >= 0.13.2

350 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Set up the cloud configuration at/etc/salt/cloud.providers or/etc/salt/cloud.providers.d/gogrid.conf:

my-gogrid-config:
The generated api key to use
apikey: asdff7896asdh789
The apikey's shared secret
sharedsecret: saltybacon

provider: gogrid

salt.cloud.clouds.gogrid.avail_images(conn=None, call=None)
Return a dict of all available VM images on the cloud provider with relevant data

salt.cloud.clouds.gogrid.avail_sizes(conn=None, call=None)
Return a dict of all available VM images on the cloud provider with relevant data

salt.cloud.clouds.gogrid.create(vm_)
Create a single VM from a data dict

salt.cloud.clouds.gogrid.destroy(name, conn=None, call=None)
Delete a single VM

salt.cloud.clouds.gogrid.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.gogrid.get_conn()
Return a conn object for the passed VM data

salt.cloud.clouds.gogrid.get_image(conn, vm_)
Return the image object to use

salt.cloud.clouds.gogrid.get_size(conn, vm_)
Return the VM's size object

salt.cloud.clouds.gogrid.list_nodes(conn=None, call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.gogrid.list_nodes_full(conn=None, call=None)
Return a list of the VMs that are on the provider, with all fields

salt.cloud.clouds.gogrid.list_nodes_select(conn=None, call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.gogrid.script(vm_)
Return the script deployment object

salt.cloud.clouds.gogrid.show_instance(name, call=None)
Show the details from the provider concerning an instance

22.5.8 salt.cloud.clouds.joyent

Joyent Cloud Module

e Joyent Cloud module is used to interact with the Joyent cloud system.

Set up the cloud configuration at/etc/salt/cloud.providers or/etc/salt/cloud.providers.d/joyent.conf:

my-joyent-config:
The Joyent login user
user: fred
The Joyent user's password

22.5. Full list of Salt Cloud modules 351

Salt Documentation, Release 2014.7.6

password: saltybacon
The location of the ssh private key that can log into the new VM
private_key: /root/joyent.pem
provider: joyent

When creating your profiles for the joyent cloud, add the location aribute to the profile, this will automatically get
picked up when performing tasks associated with that vm. An example profile might look like:

joyent_512:
provider: my-joyent-config
size: Extra Small 512 MB
image: centos-6
location: us-east-1

depends requests

salt.cloud.clouds.joyent.avail_images(call=None)
get list of available images

CLI Example:

salt-cloud --list-images

salt.cloud.clouds.joyent.avail_locations(call=None)
List all available locations

salt.cloud.clouds.joyent.avail_sizes(call=None)
get list of available packages

CLI Example:

salt-cloud --list-sizes

salt.cloud.clouds.joyent.create(vm_)
Create a single VM from a data dict

CLI Example:

salt-cloud -p profile_name vm_name

salt.cloud.clouds.joyent.create_node(**kwargs)
convenience function to make the rest api call for node creation.

salt.cloud.clouds.joyent.delete_key(kwargs=None, call=None)
List the keys available

CLI Example:

salt-cloud -f delete_key joyent keyname=mykey

salt.cloud.clouds.joyent.destroy(name, call=None)
destroy a machine by name

Parameters

• name -- name given to the machine

• call -- call value in this case is `action'

Returns array of booleans , true if successfully stopped and true if successfully removed

CLI Example:

352 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt-cloud -d vm_name

salt.cloud.clouds.joyent.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.joyent.get_image(vm_)
Return the image object to use

salt.cloud.clouds.joyent.get_location(vm_=None)

Return the joyent data center to use, in this order:

• CLI parameter

• VM parameter

• Cloud profile seing

salt.cloud.clouds.joyent.get_location_path(location='us-east-1')
create url from location variable :param location: joyent data center location :return: url

salt.cloud.clouds.joyent.get_node(name)
gets the node from the full node list by name :param name: name of the vm :return: node object

salt.cloud.clouds.joyent.get_size(vm_)
Return the VM's size object

salt.cloud.clouds.joyent.has_method(obj, method_name)
Find if the provided object has a specific method

salt.cloud.clouds.joyent.import_key(kwargs=None, call=None)
List the keys available

CLI Example:

salt-cloud -f import_key joyent keyname=mykey keyfile=/tmp/mykey.pub

salt.cloud.clouds.joyent.joyent_node_state(id_)
Convert joyent returned state to state common to other data center return values for consistency

Parameters id -- joyent state value

Returns libcloudfuncs state value

salt.cloud.clouds.joyent.key_list(key='name', items=None)
convert list to dictionary using the key as the identifier :param key: identifier -must exist in the arrays elements
own dictionary :param items: array to iterate over :return: dictionary

salt.cloud.clouds.joyent.list_keys(kwargs=None, call=None)
List the keys available

salt.cloud.clouds.joyent.list_nodes(full=False, call=None)
list of nodes, keeping only a brief listing

CLI Example:

salt-cloud -Q

salt.cloud.clouds.joyent.list_nodes_full(call=None)
list of nodes, maintaining all content provided from joyent listings

CLI Example:

22.5. Full list of Salt Cloud modules 353

Salt Documentation, Release 2014.7.6

salt-cloud -F

salt.cloud.clouds.joyent.list_nodes_select(call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.joyent.query(action=None, command=None, args=None, method='GET', loca-
tion=None, data=None)

Make a web call to Joyent

salt.cloud.clouds.joyent.reboot(name, call=None)
reboot a machine by name :param name: name given to the machine :param call: call value in this case is
`action' :return: true if successful

CLI Example:

salt-cloud -a reboot vm_name

salt.cloud.clouds.joyent.reformat_node(item=None, full=False)
Reformat the returned data from joyent, determine public/private IPs and strip out fields if necessary to provide
either full or brief content.

Parameters

• item -- node dictionary

• full -- full or brief output

Returns dict

salt.cloud.clouds.joyent.show_key(kwargs=None, call=None)
List the keys available

salt.cloud.clouds.joyent.ssh_interface(vm_)
Return the ssh_interface type to connect to. Either `public_ips' (default) or `private_ips'.

salt.cloud.clouds.joyent.start(name, call=None)
start a machine by name :param name: name given to the machine :param call: call value in this case is `action'
:return: true if successful

CLI Example:

salt-cloud -a start vm_name

salt.cloud.clouds.joyent.stop(name, call=None)
stop a machine by name :param name: name given to the machine :param call: call value in this case is `action'
:return: true if successful

CLI Example:

salt-cloud -a stop vm_name

salt.cloud.clouds.joyent.take_action(name=None, call=None, command=None, data=None,
method='GET', location='us-east-1')

take action call used by start,stop, reboot :param name: name given to the machine :param call: call value in
this case is `action' :command: api path :data: any data to be passed to the api, must be in json format :method:
GET,POST,or DELETE :location: data center to execute the command on :return: true if successful

354 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.5.9 salt.cloud.clouds.libcloud_aws

The AWS Cloud Module

e AWS cloud module is used to interact with the Amazon Web Services system.

is module has been replaced by the EC2 cloud module, and is no longer supported. e documentation shown
here is for reference only; it is highly recommended to change all usages of this driver over to the EC2 driver.

If this driver is still needed, set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/aws.conf:

my-aws-config:
The AWS API authentication id
id: GKTADJGHEIQSXMKKRBJ08H
The AWS API authentication key
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
The ssh keyname to use
keyname: default
The amazon security group
securitygroup: ssh_open
The location of the private key which corresponds to the keyname
private_key: /root/default.pem

provider: aws

salt.cloud.clouds.libcloud_aws.block_device_mappings(vm_)
Return the block device mapping:

[{'DeviceName': '/dev/sdb', 'VirtualName': 'ephemeral0'},
{'DeviceName': '/dev/sdc', 'VirtualName': 'ephemeral1'}]

salt.cloud.clouds.libcloud_aws.create(vm_)
Create a single VM from a data dict

salt.cloud.clouds.libcloud_aws.create_attach_volumes(volumes, location, data)
Create and aach volumes to created node

salt.cloud.clouds.libcloud_aws.del_tags(name, kwargs, call=None)
Delete tags for a node

CLI Example:

salt-cloud -a del_tags mymachine tag1,tag2,tag3

salt.cloud.clouds.libcloud_aws.destroy(name)
Wrap core libcloudfuncs destroy method, adding check for termination protection

salt.cloud.clouds.libcloud_aws.get_availability_zone(conn, vm_)
Return the availability zone to use

salt.cloud.clouds.libcloud_aws.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.libcloud_aws.get_conn(**kwargs)
Return a conn object for the passed VM data

salt.cloud.clouds.libcloud_aws.get_location(vm_=None)

Return the AWS region to use, in this order:

• CLI parameter

22.5. Full list of Salt Cloud modules 355

Salt Documentation, Release 2014.7.6

• Cloud profile seing

• Global salt-cloud config

salt.cloud.clouds.libcloud_aws.get_tags(name, call=None)
Retrieve tags for a node

salt.cloud.clouds.libcloud_aws.iam_profile(vm_)
Return the IAM role

salt.cloud.clouds.libcloud_aws.keyname(vm_)
Return the keyname

salt.cloud.clouds.libcloud_aws.rename(name, kwargs, call=None)
Properly rename a node. Pass in the new name as ``new name''.

CLI Example:

salt-cloud -a rename mymachine newname=yourmachine

salt.cloud.clouds.libcloud_aws.securitygroup(vm_)
Return the security group

salt.cloud.clouds.libcloud_aws.set_tags(name, tags, call=None)
Set tags for a node

CLI Example:

salt-cloud -a set_tags mymachine tag1=somestuff tag2='Other stuff'

salt.cloud.clouds.libcloud_aws.ssh_interface(vm_)
Return the ssh_interface type to connect to. Either `public_ips' (default) or `private_ips'.

salt.cloud.clouds.libcloud_aws.ssh_username(vm_)
Return the ssh_username. Defaults to `ec2-user'.

salt.cloud.clouds.libcloud_aws.start(name, call=None)
Start a node

salt.cloud.clouds.libcloud_aws.stop(name, call=None)
Stop a node

22.5.10 salt.cloud.clouds.linode

Linode Cloud Module using Apache Libcloud OR linode-python bindings

e Linode cloud module is used to control access to the Linode VPS system

Use of this module only requires the apikey parameter.

depends linode-python >= 1.1.1

OR :depends: apache-libcloud >= 0.13.2

Note: e linode-python driver will work with earlier versions of linode-python, but it is highly recommended to
use a minimum version of 1.1.1. Earlier versions leak sensitive information into the debug logs.

Set up the cloud configuration at/etc/salt/cloud.providers or/etc/salt/cloud.providers.d/linode.conf:

356 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

my-linode-config: # Linode account api key apikey: JVkbSJDGHSDKUKSDJsdklgsjdkflhjlsdffgdgjkenrtuinv
provider: linode

When used with linode-python, this provider supports cloning existing Linodes. To clone, add a profile with a
clonefrom key, and a script_args: -C.

Clonefrom should be the name of the that is the source for the clone. script_args: -C passes a -C to the
bootstrap script, which only configures the minion and doesn't try to install a new copy of salt-minion. is way
the minion gets new keys and the keys get pre-seeded on the master, and the /etc/salt/minion file has the right `id:'
declaration.

Cloning requires a post 2015-02-01 salt-bootstrap.

salt.cloud.clouds.linode.avail_images(conn=None, call=None)
Return a dict of all available VM images on the cloud provider with relevant data

salt.cloud.clouds.linode.avail_locations(conn=None, call=None)
Return a dict of all available VM locations on the cloud provider with relevant data

salt.cloud.clouds.linode.avail_sizes(conn=None, call=None)
Return a dict of all available VM images on the cloud provider with relevant data

salt.cloud.clouds.linode.boot(LinodeID=None, configid=None)
Execute a boot sequence on a linode

salt.cloud.clouds.linode.create(vm_)
Create a single VM from a data dict

salt.cloud.clouds.linode.create_config(vm_, LinodeID=None, root_disk_id=None,
swap_disk_id=None)

Create a Linode Config

salt.cloud.clouds.linode.create_disk_from_distro(vm_=None, LinodeID=None, swap-
size=None)

Create the disk for the linode

salt.cloud.clouds.linode.create_swap_disk(vm_=None, LinodeID=None, swapsize=None)
Create the disk for the linode

salt.cloud.clouds.linode.destroy(name, conn=None, call=None)
Delete a single VM

salt.cloud.clouds.linode.get_auth(vm_)
Return either NodeAuthSSHKey or NodeAuthPassword, preferring NodeAuthSSHKey if both are provided.

salt.cloud.clouds.linode.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.linode.get_conn()
Return a conn object for the passed VM data

salt.cloud.clouds.linode.get_disk_size(vm_, size, swap)
Return the size of of the root disk in MB

salt.cloud.clouds.linode.get_image(conn, vm_)
Return the image object to use

salt.cloud.clouds.linode.get_kernels(conn=None)
Get Linode's list of kernels available

salt.cloud.clouds.linode.get_location(conn, vm_)
Return the node location to use

22.5. Full list of Salt Cloud modules 357

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.linode.get_node(conn, name)
Return a libcloud node for the named VM

salt.cloud.clouds.linode.get_one_kernel(conn=None, name=None)
Return data on one kernel name=None returns latest kernel

salt.cloud.clouds.linode.get_password(vm_)
Return the password to use

salt.cloud.clouds.linode.get_private_ip(vm_)
Return True if a private ip address is requested

salt.cloud.clouds.linode.get_pubkey(vm_)
Return the SSH pubkey to use

salt.cloud.clouds.linode.get_size(conn, vm_)
Return the VM's size object

salt.cloud.clouds.linode.get_ssh_key_filename(vm_)
Return path to filename if get_auth() returns a NodeAuthSSHKey.

salt.cloud.clouds.linode.get_swap(vm_)
Return the amount of swap space to use in MB

salt.cloud.clouds.linode.list_nodes(conn=None, call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.linode.list_nodes_full(conn=None, call=None)
Return a list of the VMs that are on the provider, with all fields

salt.cloud.clouds.linode.list_nodes_select(conn=None, call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.linode.remove_complex_types(dictionary)
Linode-python is now returning some complex types that are not serializable by msgpack. Kill those.

salt.cloud.clouds.linode.script(vm_)
Return the script deployment object

salt.cloud.clouds.linode.show_instance(name, call=None)
Show the details from the provider concerning an instance

salt.cloud.clouds.linode.waitfor_job(conn=None, LinodeID=None, JobID=None, timeout=300,
quiet=True)

salt.cloud.clouds.linode.waitfor_status(conn=None, LinodeID=None, status=None, time-
out=300, quiet=True)

Wait for a certain status

22.5.11 salt.cloud.clouds.lxc

Install Salt on an LXC Container

New in version 2014.7.0.

Please read core config documentation.

salt.cloud.clouds.lxc.avail_images()

salt.cloud.clouds.lxc.create(vm_, call=None)
Create an lxc Container. is function is idempotent and will try to either provision or finish the provision of
an lxc container.

358 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

NOTE: Most of the initialization code has been moved and merged with the lxc runner and lxc.init functions

salt.cloud.clouds.lxc.destroy(vm_, call=None)
Destroy a lxc container

salt.cloud.clouds.lxc.get_configured_provider(vm_=None)
Return the contextual provider of None if no configured one can be found.

salt.cloud.clouds.lxc.get_provider(name)

salt.cloud.clouds.lxc.list_nodes(conn=None, call=None)

salt.cloud.clouds.lxc.list_nodes_full(conn=None, call=None)

salt.cloud.clouds.lxc.list_nodes_select(call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.lxc.show_instance(name, call=None)
Show the details from the provider concerning an instance

22.5.12 salt.cloud.clouds.msazure

Azure Cloud Module

e Azure cloud module is used to control access to Microso Azure

depends

• Microso Azure SDK for Python

configuration Required provider parameters:

• apikey

• certificate_path

• subscription_id

AManagement Certificate (.pem and .crt files) must be created and the .pem file placed on the same
machine that salt-cloud is run from. Information on creating the pem file to use, and uploading
the associated cer file can be found at:

hp://www.windowsazure.com/en-us/develop/python/how-to-guides/service-management/

Example /etc/salt/cloud.providers or /etc/salt/cloud.providers.d/azure.conf configu-
ration:

my-azure-config:
provider: azure
subscription_id: 3287abc8-f98a-c678-3bde-326766fd3617
certificate_path: /etc/salt/azure.pem
management_host: management.core.windows.net

salt.cloud.clouds.msazure.avail_images(conn=None, call=None)
List available images for Azure

salt.cloud.clouds.msazure.avail_locations(conn=None, call=None)
List available locations for Azure

salt.cloud.clouds.msazure.avail_sizes(call=None)
Because sizes are built into images with Azure, there will be no sizes to return here

22.5. Full list of Salt Cloud modules 359

https://pypi.python.org/pypi/azure/0.9.0
http://www.windowsazure.com/en-us/develop/python/how-to-guides/service-management/

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.msazure.create(vm_)
Create a single VM from a data dict

salt.cloud.clouds.msazure.destroy(name, conn=None, call=None, kwargs=None)
Destroy a VM

CLI Examples:

salt-cloud -d myminion
salt-cloud -a destroy myminion service_name=myservice

salt.cloud.clouds.msazure.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.msazure.get_conn()
Return a conn object for the passed VM data

salt.cloud.clouds.msazure.list_disks(conn=None, call=None)
Destroy a VM

salt.cloud.clouds.msazure.list_hosted_services(conn=None, call=None)
List VMs on this Azure account, with full information

salt.cloud.clouds.msazure.list_nodes(conn=None, call=None)
List VMs on this Azure account

salt.cloud.clouds.msazure.list_nodes_full(conn=None, call=None)
List VMs on this Azure account, with full information

salt.cloud.clouds.msazure.list_nodes_select(conn=None, call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.msazure.list_storage_services(conn=None, call=None)
List VMs on this Azure account, with full information

salt.cloud.clouds.msazure.script(vm_)
Return the script deployment object

salt.cloud.clouds.msazure.show_instance(name, call=None)
Show the details from the provider concerning an instance

22.5.13 salt.cloud.clouds.nova

OpenStack Nova Cloud Module

PLEASE NOTE: is module is currently in early development, and considered to be experimental and unstable. It
is not recommended for production use. Unless you are actively developing code in this module, you should use the
OpenStack module instead.

OpenStack is an open source project that is in use by a number a cloud providers, each of which have their own
ways of using it.

e OpenStack Nova module for Salt Cloud was bootstrapped from the OpenStack module for Salt Cloud, which
uses a libcloud-based connection. e Nova module is designed to use the nova and glance modules already built
into Salt.

ese modules use the Python novaclient and glanceclient libraries, respectively. In order to use this module, the
proper salt configuration must also be in place. is can be specified in the master config, the minion config, a set
of grains or a set of pillars.

360 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

my_openstack_profile:
keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

Note that there is currently a dependency upon netaddr. is can be installed on Debian-based systems by means of
the python-netaddr package.

is module currently requires the latest develop branch of Salt to be installed.

is module has been tested to work with HP Cloud and Rackspace. See the documentation for spe-
cific options for either of these providers. ese examples could be set up in the cloud configuration at
/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/openstack.conf:

my-openstack-config:
The ID of the minion that will execute the salt nova functions
auth_minion: myminion
The name of the configuration profile to use on said minion
config_profile: my_openstack_profile

ssh_key_name: mykey

provider: nova
userdata_file: /tmp/userdata.txt

For local installations that only use private IP address ranges, the following option may be useful. Using the old
syntax:

Note: For api use, you will need an auth plugin. e base novaclient does not support apikeys, but some providers
such as rackspace have extended keystone to accept them

my-openstack-config:
Ignore IP addresses on this network for bootstrap
ignore_cidr: 192.168.50.0/24

my-nova:
identity_url: 'https://identity.api.rackspacecloud.com/v2.0/'
compute_region: IAD
user: myusername
password: mypassword
tenant: <userid>
provider: nova

my-api:
identity_url: 'https://identity.api.rackspacecloud.com/v2.0/'
compute_region: IAD
user: myusername
api_key: <api_key>
os_auth_plugin: rackspace
tenant: <userid>
provider: nova

salt.cloud.clouds.nova.attach_volume(name, server_name, device='/dev/xvdb', **kwargs)
Aach block volume

salt.cloud.clouds.nova.avail_images()
Return a dict of all available VM images on the cloud provider.

22.5. Full list of Salt Cloud modules 361

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.nova.avail_locations(conn=None, call=None)
Return a list of locations

salt.cloud.clouds.nova.avail_sizes()
Return a dict of all available VM sizes on the cloud provider.

salt.cloud.clouds.nova.create(vm_)
Create a single VM from a data dict

salt.cloud.clouds.nova.create_attach_volumes(name, call=None, **kwargs)
Create and aach volumes to created node

salt.cloud.clouds.nova.create_volume(name, size=100, snapshot=None, voltype=None,
**kwargs)

Create block storage device

salt.cloud.clouds.nova.destroy(name, conn=None, call=None)
Delete a single VM

salt.cloud.clouds.nova.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.nova.get_conn()
Return a conn object for the passed VM data

salt.cloud.clouds.nova.get_image(conn, vm_)
Return the image object to use

salt.cloud.clouds.nova.get_size(conn, vm_)
Return the VM's size object

salt.cloud.clouds.nova.ignore_cidr(vm_, ip)
Return True if we are to ignore the specified IP. Compatible with IPv4.

salt.cloud.clouds.nova.list_nodes(call=None, **kwargs)
Return a list of the VMs that in this location

salt.cloud.clouds.nova.list_nodes_full(call=None, **kwargs)
Return a list of the VMs that in this location

salt.cloud.clouds.nova.list_nodes_select(call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.nova.managedcloud(vm_)
Determine if we should wait for the managed cloud automation before running. Either `False' (default) or
`True'.

salt.cloud.clouds.nova.network_create(name, **kwargs)
Create private networks

salt.cloud.clouds.nova.network_list(call=None, **kwargs)
List private networks

salt.cloud.clouds.nova.preferred_ip(vm_, ips)
Return the preferred Internet protocol. Either `ipv4' (default) or `ipv6'.

salt.cloud.clouds.nova.rackconnect(vm_)
Determine if we should wait for rackconnect automation before running. Either `False' (default) or `True'.

salt.cloud.clouds.nova.reboot(name, conn=None)
Reboot a single VM

362 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.nova.request_instance(vm_=None, call=None)
Put together all of the information necessary to request an instance through Novaclient and then fire off the
request the instance.

Returns data about the instance

salt.cloud.clouds.nova.script(vm_)
Return the script deployment object

salt.cloud.clouds.nova.show_instance(name, call=None)
Show the details from the provider concerning an instance

salt.cloud.clouds.nova.ssh_interface(vm_)
Return the ssh_interface type to connect to. Either `public_ips' (default) or `private_ips'.

salt.cloud.clouds.nova.virtual_interface_create(name, net_name, **kwargs)
Create private networks

salt.cloud.clouds.nova.virtual_interface_list(name, **kwargs)
Create private networks

salt.cloud.clouds.nova.volume_attach(name, server_name, device='/dev/xvdb', **kwargs)
Aach block volume

salt.cloud.clouds.nova.volume_create(name, size=100, snapshot=None, voltype=None,
**kwargs)

Create block storage device

salt.cloud.clouds.nova.volume_create_attach(name, call=None, **kwargs)
Create and aach volumes to created node

salt.cloud.clouds.nova.volume_delete(name, **kwargs)
Delete block storage device

salt.cloud.clouds.nova.volume_detach(name, **kwargs)
Detach block volume

salt.cloud.clouds.nova.volume_list(**kwargs)
List block devices

22.5.14 salt.cloud.clouds.opennebula

OpenNebula Cloud Module

e OpenNebula cloud module is used to control access to an OpenNebula cloud.

Use of this module requires the xml_rpc, user and password parameter to be set. Set up the cloud configuration
at /etc/salt/cloud.providers or /etc/salt/cloud.providers.d/opennebula.conf:

my-opennebula-config:
xml_rpc: http://localhost:2633/RPC2
user: oneadmin
password: JHGhgsayu32jsa
provider: opennebula

salt.cloud.clouds.opennebula.avail_images(call=None)
Return a list of the templates that are on the provider

salt.cloud.clouds.opennebula.avail_locations(call=None)
Return a dict of all available VM locations on the cloud provider with relevant data

22.5. Full list of Salt Cloud modules 363

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.opennebula.avail_sizes(call=None)
Because sizes are built into templates with OpenNebula, there will be no sizes to return here

salt.cloud.clouds.opennebula.create(vm_)
Create a single VM from a data dict

salt.cloud.clouds.opennebula.destroy(name, call=None)
Destroy a node. Will check termination protection and warn if enabled.

CLI Example:

salt-cloud --destroy mymachine

salt.cloud.clouds.opennebula.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.opennebula.get_image(vm_)
Return the image object to use

salt.cloud.clouds.opennebula.get_location(vm_)
Return the VM's location

salt.cloud.clouds.opennebula.list_nodes(call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.opennebula.list_nodes_full(call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.opennebula.list_nodes_select(call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.opennebula.script(vm_)
Return the script deployment object

salt.cloud.clouds.opennebula.show_instance(name, call=None)
Show the details from OpenNebula concerning a VM

22.5.15 salt.cloud.clouds.openstack

OpenStack Cloud Module

OpenStack is an open source project that is in use by a number a cloud providers, each of which have their own
ways of using it.

depends libcloud >- 0.13.2

OpenStack provides a number of ways to authenticate. is module uses password- based authentication, using auth
v2.0. It is likely to start supporting other methods of authentication provided by OpenStack in the future.

Note that there is currently a dependency upon netaddr. is can be installed on Debian-based systems by means of
the python-netaddr package.

is module has been tested to work with HP Cloud and Rackspace. See the documentation for specific options for
either of these providers. Some examples, using the old cloud configuration syntax, are provided below:

Set up in the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/openstack.conf:

my-openstack-config:
The OpenStack identity service url
identity_url: https://region-b.geo-1.identity.hpcloudsvc.com:35357/v2.0/

364 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

The OpenStack compute region
compute_region: region-b.geo-1
The OpenStack compute service name
compute_name: Compute
The OpenStack tenant name (not tenant ID)
tenant: myuser-tenant1
The OpenStack user name
user: myuser
The OpenStack keypair name
ssh_key_name: mykey
Skip SSL certificate validation
insecure: false
The ssh key file
ssh_key_file: /path/to/keyfile/test.pem
The OpenStack network UUIDs
networks:

- fixed:
- 4402cd51-37ee-435e-a966-8245956dc0e6

- floating:
- Ext-Net

files:
/path/to/dest.txt:

/local/path/to/src.txt
Skips the service catalog API endpoint, and uses the following
base_url: http://192.168.1.101:3000/v2/12345
provider: openstack
userdata_file: /tmp/userdata.txt
config_drive is required for userdata at rackspace
config_drive: True

For in-house Openstack Essex installation, libcloud needs the service_type :

my-openstack-config:
identity_url: 'http://control.openstack.example.org:5000/v2.0/'
compute_name : Compute Service
service_type : compute

Either a password or an API key must also be specified:

my-openstack-password-or-api-config:
The OpenStack password
password: letmein
The OpenStack API key
apikey: 901d3f579h23c8v73q9

Optionally, if you don't want to save plain-text password in your configuration file, you can use keyring:

my-openstack-keyring-config:
The OpenStack password is stored in keyring
don't forget to set the password by running something like:
salt-cloud --set-password=myuser my-openstack-keyring-config
password: USE_KEYRING

For local installations that only use private IP address ranges, the following option may be useful. Using the old
syntax:

my-openstack-config:
Ignore IP addresses on this network for bootstrap
ignore_cidr: 192.168.50.0/24

22.5. Full list of Salt Cloud modules 365

Salt Documentation, Release 2014.7.6

It is possible to upload a small set of files (no more than 5, and nothing too large) to the remote server. Generally
this should not be needed, as salt itself can upload to the server aer it is spun up, with nowhere near the same
restrictions.

my-openstack-config:
files:

/path/to/dest.txt:
/local/path/to/src.txt

Alternatively, one could use the private IP to connect by specifying:

my-openstack-config:
ssh_interface: private_ips

salt.cloud.clouds.openstack.avail_images(conn=None, call=None)
Return a dict of all available VM images on the cloud provider with relevant data

salt.cloud.clouds.openstack.avail_locations(conn=None, call=None)
Return a dict of all available VM locations on the cloud provider with relevant data

salt.cloud.clouds.openstack.avail_sizes(conn=None, call=None)
Return a dict of all available VM images on the cloud provider with relevant data

salt.cloud.clouds.openstack.create(vm_)
Create a single VM from a data dict

salt.cloud.clouds.openstack.destroy(name, conn=None, call=None)
Delete a single VM

salt.cloud.clouds.openstack.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.openstack.get_conn()
Return a conn object for the passed VM data

salt.cloud.clouds.openstack.get_image(conn, vm_)
Return the image object to use

salt.cloud.clouds.openstack.get_node(conn, name)
Return a libcloud node for the named VM

salt.cloud.clouds.openstack.get_size(conn, vm_)
Return the VM's size object

salt.cloud.clouds.openstack.ignore_cidr(vm_, ip)
Return True if we are to ignore the specified IP. Compatible with IPv4.

salt.cloud.clouds.openstack.list_nodes(conn=None, call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.openstack.list_nodes_full(conn=None, call=None)
Return a list of the VMs that are on the provider, with all fields

salt.cloud.clouds.openstack.list_nodes_select(conn=None, call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.openstack.managedcloud(vm_)
Determine if we should wait for the managed cloud automation before running. Either `False' (default) or
`True'.

salt.cloud.clouds.openstack.networks(vm_, kwargs=None)

366 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.openstack.preferred_ip(vm_, ips)
Return the preferred Internet protocol. Either `ipv4' (default) or `ipv6'.

salt.cloud.clouds.openstack.rackconnect(vm_)
Determine if we should wait for rackconnect automation before running. Either `False' (default) or `True'.

salt.cloud.clouds.openstack.reboot(name, conn=None)
Reboot a single VM

salt.cloud.clouds.openstack.request_instance(vm_=None, call=None)
Put together all of the information necessary to request an instance on Openstack and then fire off the request
the instance.

Returns data about the instance

salt.cloud.clouds.openstack.script(vm_)
Return the script deployment object

salt.cloud.clouds.openstack.show_instance(name, call=None)
Show the details from the provider concerning an instance

salt.cloud.clouds.openstack.ssh_interface(vm_)
Return the ssh_interface type to connect to. Either `public_ips' (default) or `private_ips'.

22.5.16 salt.cloud.clouds.parallels

Parallels Cloud Module

e Parallels cloud module is used to control access to cloud providers using the Parallels VPS system.

Set up the cloud configuration at /etc/salt/cloud.providers or /etc/salt/cloud.providers.d/parallels.conf:

my-parallels-config:
Parallels account information
user: myuser
password: mypassword
url: https://api.cloud.xmission.com:4465/paci/v1.0/
provider: parallels

salt.cloud.clouds.parallels.avail_images(call=None)
Return a list of the images that are on the provider

salt.cloud.clouds.parallels.create(vm_)
Create a single VM from a data dict

salt.cloud.clouds.parallels.create_node(vm_)
Build and submit the XML to create a node

salt.cloud.clouds.parallels.destroy(name, call=None)
Destroy a node.

CLI Example:

salt-cloud --destroy mymachine

salt.cloud.clouds.parallels.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.parallels.get_image(vm_)
Return the image object to use

22.5. Full list of Salt Cloud modules 367

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.parallels.list_nodes(call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.parallels.list_nodes_full(call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.parallels.list_nodes_select(call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.parallels.query(action=None, command=None, args=None, method='GET',
data=None)

Make a web call to a Parallels provider

salt.cloud.clouds.parallels.script(vm_)
Return the script deployment object

salt.cloud.clouds.parallels.show_image(kwargs, call=None)
Show the details from Parallels concerning an image

salt.cloud.clouds.parallels.show_instance(name, call=None)
Show the details from Parallels concerning an instance

salt.cloud.clouds.parallels.start(name, call=None)
Start a node.

CLI Example:

salt-cloud -a start mymachine

salt.cloud.clouds.parallels.stop(name, call=None)
Stop a node.

CLI Example:

salt-cloud -a stop mymachine

salt.cloud.clouds.parallels.wait_until(name, state, timeout=300)
Wait until a specific state has been reached on a node

22.5.17 salt.cloud.clouds.proxmox

Proxmox Cloud Module

New in version 2014.7.0.

e Proxmox cloud module is used to control access to cloud providers using the Proxmox system (KVM / OpenVZ).

Set up the cloud configuration at /etc/salt/cloud.providers or /etc/salt/cloud.providers.d/proxmox.conf:

my-proxmox-config:
Proxmox account information
user: myuser@pam or myuser@pve
password: mypassword
url: hypervisor.domain.tld
provider: proxmox

maintainer Frank Klaassen <frank@cloudright.nl>

maturity new

depends requests >= 2.2.1

368 Chapter 22. Reference

mailto:frank@cloudright.nl

Salt Documentation, Release 2014.7.6

depends IPy >= 0.81

salt.cloud.clouds.proxmox.avail_images(call=None, location='local')
Return a list of the images that are on the provider

CLI Example:

salt-cloud --list-images my-proxmox-config

salt.cloud.clouds.proxmox.avail_locations(call=None)
Return a list of the hypervisors (nodes) which this Proxmox PVE machine manages

CLI Example:

salt-cloud --list-locations my-proxmox-config

salt.cloud.clouds.proxmox.create(vm_)
Create a single VM from a data dict

CLI Example:

salt-cloud -p proxmox-ubuntu vmhostname

salt.cloud.clouds.proxmox.create_node(vm_)
Build and submit the requestdata to create a new node

salt.cloud.clouds.proxmox.destroy(name, call=None)
Destroy a node.

CLI Example:

salt-cloud --destroy mymachine

salt.cloud.clouds.proxmox.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.proxmox.get_resources_nodes(call=None, resFilter=None)
Retrieve all hypervisors (nodes) available on this environment CLI Example:

salt-cloud -f get_resources_nodes my-proxmox-config

salt.cloud.clouds.proxmox.get_resources_vms(call=None, resFilter=None, includeCon-
fig=True)

Retrieve all VMs available on this environment

CLI Example:

salt-cloud -f get_resources_vms my-proxmox-config

salt.cloud.clouds.proxmox.get_vm_status(vmid=None, name=None)
Get the status for a VM, either via the ID or the hostname

salt.cloud.clouds.proxmox.get_vmconfig(vmid, node=None, node_type='openvz')
Get VM configuration

salt.cloud.clouds.proxmox.list_nodes(call=None)
Return a list of the VMs that are managed by the provider

CLI Example:

salt-cloud -Q my-proxmox-config

22.5. Full list of Salt Cloud modules 369

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.proxmox.list_nodes_full(call=None)
Return a list of the VMs that are on the provider

CLI Example:

salt-cloud -F my-proxmox-config

salt.cloud.clouds.proxmox.list_nodes_select(call=None)
Return a list of the VMs that are on the provider, with select fields

CLI Example:

salt-cloud -S my-proxmox-config

salt.cloud.clouds.proxmox.query(conn_type, option, post_data=None)
Execute the HTTP request to the API

salt.cloud.clouds.proxmox.script(vm_)
Return the script deployment object

salt.cloud.clouds.proxmox.set_vm_status(status, name=None, vmid=None)
Convenience function for seing VM status

salt.cloud.clouds.proxmox.show_instance(name, call=None)
Show the details from Proxmox concerning an instance

salt.cloud.clouds.proxmox.shutdown(name=None, vmid=None, call=None)
Shutdown a node via ACPI.

CLI Example:

salt-cloud -a shutdown mymachine

salt.cloud.clouds.proxmox.start(name, vmid=None, call=None)
Start a node.

CLI Example:

salt-cloud -a start mymachine

salt.cloud.clouds.proxmox.stop(name, vmid=None, call=None)
Stop a node (``pulling the plug'').

CLI Example:

salt-cloud -a stop mymachine

salt.cloud.clouds.proxmox.wait_for_created(upid, timeout=300)
Wait until a the vm has been created successfully

salt.cloud.clouds.proxmox.wait_for_state(vmid, node, nodeType, state, timeout=300)
Wait until a specific state has been reached on a node

22.5.18 salt.cloud.clouds.rackspace

Rackspace Cloud Module

e Rackspace cloud module. is module uses the preferred means to set up a libcloud based cloud module and
should be used as the general template for seing up additional libcloud based modules.

depends libcloud >= 0.13.2

370 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Please note that the rackspace driver is only intended for 1st gen instances, aka, ``the old cloud'' at Rackspace. It
is required for 1st gen instances, but will not work with OpenStack-based instances. Unless you explicitly have a
reason to use it, it is highly recommended that you use the openstack driver instead.

e rackspace cloud module interfaces with the Rackspace public cloud service and requires that two configuration
parameters be set for use, user and apikey.

Set up the cloud configuration at/etc/salt/cloud.providers or/etc/salt/cloud.providers.d/rackspace.conf:

my-rackspace-config:
provider: rackspace
The Rackspace login user
user: fred
The Rackspace user's apikey
apikey: 901d3f579h23c8v73q9

salt.cloud.clouds.rackspace.avail_images(conn=None, call=None)
Return a dict of all available VM images on the cloud provider with relevant data

salt.cloud.clouds.rackspace.avail_locations(conn=None, call=None)
Return a dict of all available VM locations on the cloud provider with relevant data

salt.cloud.clouds.rackspace.avail_sizes(conn=None, call=None)
Return a dict of all available VM images on the cloud provider with relevant data

salt.cloud.clouds.rackspace.create(vm_)
Create a single VM from a data dict

salt.cloud.clouds.rackspace.destroy(name, conn=None, call=None)
Delete a single VM

salt.cloud.clouds.rackspace.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.rackspace.get_conn()
Return a conn object for the passed VM data

salt.cloud.clouds.rackspace.get_image(conn, vm_)
Return the image object to use

salt.cloud.clouds.rackspace.get_size(conn, vm_)
Return the VM's size object

salt.cloud.clouds.rackspace.list_nodes(conn=None, call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.rackspace.list_nodes_full(conn=None, call=None)
Return a list of the VMs that are on the provider, with all fields

salt.cloud.clouds.rackspace.list_nodes_select(conn=None, call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.rackspace.preferred_ip(vm_, ips)
Return the preferred Internet protocol. Either `ipv4' (default) or `ipv6'.

salt.cloud.clouds.rackspace.script(vm_)
Return the script deployment object

salt.cloud.clouds.rackspace.show_instance(name, call=None)
Show the details from the provider concerning an instance

salt.cloud.clouds.rackspace.ssh_interface(vm_)
Return the ssh_interface type to connect to. Either `public_ips' (default) or `private_ips'.

22.5. Full list of Salt Cloud modules 371

Salt Documentation, Release 2014.7.6

22.5.19 salt.cloud.clouds.saltify

Saltify Module

e Saltify module is designed to install Salt on a remote machine, virtual or bare metal, using SSH. is module is
useful for provisioning machines which are already installed, but not Salted.

Use of this module requires no configuration in the main cloud configuration file. However, profiles must still be
configured, as described in the core config documentation.

salt.cloud.clouds.saltify.create(vm_)
Provision a single machine

salt.cloud.clouds.saltify.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.saltify.list_nodes()
Because this module is not specific to any cloud providers, there will be no nodes to list.

salt.cloud.clouds.saltify.list_nodes_full()
Because this module is not specific to any cloud providers, there will be no nodes to list.

salt.cloud.clouds.saltify.list_nodes_select()
Because this module is not specific to any cloud providers, there will be no nodes to list.

salt.cloud.clouds.saltify.script(vm_)
Return the script deployment object

22.5.20 salt.cloud.clouds.solayer

SoLayer Cloud Module

e SoLayer cloud module is used to control access to the SoLayer VPS system.

Use of this module only requires the apikey parameter. Set up the cloud configuration at:

/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/softlayer.conf:

my-softlayer-config:
SoftLayer account api key
user: MYLOGIN
apikey: JVkbSJDGHSDKUKSDJfhsdklfjgsjdkflhjlsdfffhgdgjkenrtuinv
provider: softlayer

e SoLayer Python Library needs to be installed in order to use the SoLayer salt.cloud modules. See:
hps://pypi.python.org/pypi/SoLayer

depends solayer

salt.cloud.clouds.softlayer.avail_images(call=None)
Return a dict of all available VM images on the cloud provider.

salt.cloud.clouds.softlayer.avail_locations(call=None)
List all available locations

salt.cloud.clouds.softlayer.avail_sizes(call=None)
Return a dict of all available VM sizes on the cloud provider with relevant data. is data is provided in three
dicts.

salt.cloud.clouds.softlayer.create(vm_)
Create a single VM from a data dict

372 Chapter 22. Reference

https://pypi.python.org/pypi/SoftLayer

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.softlayer.destroy(name, call=None)
Destroy a node.

CLI Example:

salt-cloud --destroy mymachine

salt.cloud.clouds.softlayer.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.softlayer.get_conn(service='SoLayer_Virtual_Guest')
Return a conn object for the passed VM data

salt.cloud.clouds.softlayer.get_location(vm_=None)

Return the location to use, in this order:

• CLI parameter

• VM parameter

• Cloud profile seing

salt.cloud.clouds.softlayer.list_custom_images(call=None)
Return a dict of all custom VM images on the cloud provider.

salt.cloud.clouds.softlayer.list_nodes(call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.softlayer.list_nodes_full(mask='mask[id]', call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.softlayer.list_nodes_select(call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.softlayer.list_vlans(call=None)
List all VLANs associated with the account

salt.cloud.clouds.softlayer.script(vm_)
Return the script deployment object

salt.cloud.clouds.softlayer.show_instance(name, call=None)
Show the details from SoLayer concerning a guest

22.5.21 salt.cloud.clouds.solayer_hw

SoLayer HW Cloud Module

e SoLayer HW cloud module is used to control access to the SoLayer hardware cloud system

Use of this module only requires the apikey parameter. Set up the cloud configuration at:

/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/softlayer.conf:

my-softlayer-config:
SoftLayer account api key
user: MYLOGIN
apikey: JVkbSJDGHSDKUKSDJfhsdklfjgsjdkflhjlsdfffhgdgjkenrtuinv
provider: softlayer_hw

e SoLayer Python Library needs to be installed in order to use the SoLayer salt.cloud modules. See:
hps://pypi.python.org/pypi/SoLayer

22.5. Full list of Salt Cloud modules 373

https://pypi.python.org/pypi/SoftLayer

Salt Documentation, Release 2014.7.6

depends solayer

salt.cloud.clouds.softlayer_hw.avail_images(call=None)
Return a dict of all available VM images on the cloud provider.

salt.cloud.clouds.softlayer_hw.avail_locations(call=None)
List all available locations

salt.cloud.clouds.softlayer_hw.avail_sizes(call=None)
Return a dict of all available VM sizes on the cloud provider with relevant data. is data is provided in three
dicts.

salt.cloud.clouds.softlayer_hw.create(vm_)
Create a single VM from a data dict

salt.cloud.clouds.softlayer_hw.destroy(name, call=None)
Destroy a node.

CLI Example:

salt-cloud --destroy mymachine

salt.cloud.clouds.softlayer_hw.get_configured_provider()
Return the first configured instance.

salt.cloud.clouds.softlayer_hw.get_conn(service='SoLayer_Hardware')
Return a conn object for the passed VM data

salt.cloud.clouds.softlayer_hw.get_location(vm_=None)

Return the location to use, in this order:

• CLI parameter

• VM parameter

• Cloud profile seing

salt.cloud.clouds.softlayer_hw.list_nodes(call=None)
Return a list of the VMs that are on the provider

salt.cloud.clouds.softlayer_hw.list_nodes_full(mask='mask[id, hostname, primaryI-
pAddress, primaryBackendIpAddress,
processorPhysicalCoreAmount, memo-
ryCount]', call=None)

Return a list of the VMs that are on the provider

salt.cloud.clouds.softlayer_hw.list_nodes_select(call=None)
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.softlayer_hw.list_vlans(call=None)
List all VLANs associated with the account

salt.cloud.clouds.softlayer_hw.script(vm_)
Return the script deployment object

salt.cloud.clouds.softlayer_hw.show_instance(name, call=None)
Show the details from SoLayer concerning a guest

374 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.5.22 salt.cloud.clouds.vsphere

vSphere Cloud Module

New in version 2014.7.0.

e vSphere cloud module is used to control access to VMWare vSphere.

depends

• PySphere Python module

Use of this module only requires a URL, username and password. Set up the cloud configuration at:

/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/vsphere.conf:

my-vsphere-config:
provider: vsphere
user: myuser
password: verybadpass
url: 'https://10.1.1.1:443'

folder: Name of the folder that will contain the new VM. If not set, the VM will be added to the folder the origi-
nal VM belongs to.

resourcepool: MOR of the resourcepool to be used for the new vm. If not set, it uses the same resourcepool than
the original vm.

datastore: MOR of the datastore where the virtual maine should be located. If not specified, the current data-
store is used.

host: MOR of the host where the virtual maine should be registered.

IF not specified:

• if resourcepool is not specified, current host is used.

• if resourcepool is specified, and the target pool represents a stand-alone host, the host is used.

• if resourcepool is specified, and the target pool represents a DRS-enabled cluster, a host selected by
DRS is used.

• if resourcepool is specified and the target pool represents a cluster without DRS enabled, an Invali-
dArgument exception will be thrown.

template: Specifies whether or not the new virtual maine should be marked as a template. Default is False.

salt.cloud.clouds.vsphere.avail_images()
Return a dict of all available VM images on the cloud provider.

salt.cloud.clouds.vsphere.avail_locations()
Return a dict of all available VM locations on the cloud provider with relevant data

salt.cloud.clouds.vsphere.create(vm_)
Create a single VM from a data dict

salt.cloud.clouds.vsphere.destroy(name, call=None)
Destroy a node.

CLI Example:

salt-cloud --destroy mymachine

salt.cloud.clouds.vsphere.get_configured_provider()
Return the first configured instance.

22.5. Full list of Salt Cloud modules 375

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.vsphere.get_conn()
Return a conn object for the passed VM data

salt.cloud.clouds.vsphere.list_clusters(kwargs=None, call=None)
List the clusters for this VMware environment

salt.cloud.clouds.vsphere.list_datacenters(kwargs=None, call=None)
List the data centers for this VMware environment

salt.cloud.clouds.vsphere.list_datastores(kwargs=None, call=None)
List the datastores for this VMware environment

salt.cloud.clouds.vsphere.list_folders(kwargs=None, call=None)
List the folders for this VMWare environment

salt.cloud.clouds.vsphere.list_hosts(kwargs=None, call=None)
List the hosts for this VMware environment

salt.cloud.clouds.vsphere.list_nodes()
Return a list of the VMs that are on the provider

salt.cloud.clouds.vsphere.list_nodes_full()
Return a list of the VMs that are on the provider

salt.cloud.clouds.vsphere.list_nodes_min()
Return a list of the nodes in the provider, with no details

salt.cloud.clouds.vsphere.list_nodes_select()
Return a list of the VMs that are on the provider, with select fields

salt.cloud.clouds.vsphere.list_resourcepools(kwargs=None, call=None)
List the hosts for this VMware environment

salt.cloud.clouds.vsphere.script(vm_)
Return the script deployment object

salt.cloud.clouds.vsphere.show_instance(name, call=None)
Show the details from vSphere concerning a guest

22.6 Configuration file examples

• Example master configuration file
• Example minion configuration file

22.6.1 Example master configuration file

Primary configuration settings
##
This configuration file is used to manage the behavior of the Salt Master.
Values that are commented out but have an empty line after the comment are
defaults that do not need to be set in the config. If there is no blank line
after the comment then the value is presented as an example and is not the
default.

Per default, the master will automatically include all config files
from master.d/*.conf (master.d is a directory in the same directory

376 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

as the main master config file).
#default_include: master.d/*.conf

The address of the interface to bind to:
#interface: 0.0.0.0

Whether the master should listen for IPv6 connections. If this is set to True,
the interface option must be adjusted, too. (For example: "interface: '::'")
#ipv6: False

The tcp port used by the publisher:
#publish_port: 4505

The user under which the salt master will run. Salt will update all
permissions to allow the specified user to run the master. The exception is
the job cache, which must be deleted if this user is changed. If the
modified files cause conflicts, set verify_env to False.
#user: root

Max open files
#
Each minion connecting to the master uses AT LEAST one file descriptor, the
master subscription connection. If enough minions connect you might start
seeing on the console (and then salt-master crashes):
Too many open files (tcp_listener.cpp:335)
Aborted (core dumped)
#
By default this value will be the one of `ulimit -Hn`, ie, the hard limit for
max open files.
#
If you wish to set a different value than the default one, uncomment and
configure this setting. Remember that this value CANNOT be higher than the
hard limit. Raising the hard limit depends on your OS and/or distribution,
a good way to find the limit is to search the internet. For example:
raise max open files hard limit debian
#
#max_open_files: 100000

The number of worker threads to start. These threads are used to manage
return calls made from minions to the master. If the master seems to be
running slowly, increase the number of threads.
#worker_threads: 5

The port used by the communication interface. The ret (return) port is the
interface used for the file server, authentication, job returns, etc.
#ret_port: 4506

Specify the location of the daemon process ID file:
#pidfile: /var/run/salt-master.pid

The root directory prepended to these options: pki_dir, cachedir,
sock_dir, log_file, autosign_file, autoreject_file, extension_modules,
key_logfile, pidfile:
#root_dir: /

Directory used to store public key data:
#pki_dir: /etc/salt/pki/master

22.6. Configuration file examples 377

Salt Documentation, Release 2014.7.6

Directory to store job and cache data:
#cachedir: /var/cache/salt/master

Directory for custom modules. This directory can contain subdirectories for
each of Salt's module types such as "runners", "output", "wheel", "modules",
"states", "returners", etc.
#extension_modules: <no default>

Verify and set permissions on configuration directories at startup:
#verify_env: True

Set the number of hours to keep old job information in the job cache:
#keep_jobs: 24

Set the default timeout for the salt command and api. The default is 5
seconds.
#timeout: 5

The loop_interval option controls the seconds for the master's maintenance
process check cycle. This process updates file server backends, cleans the
job cache and executes the scheduler.
#loop_interval: 60

Set the default outputter used by the salt command. The default is "nested".
#output: nested

By default, output is colored. To disable colored output, set the color value
to False.
#color: True

Do not strip off the colored output from nested results and state outputs
(true by default).
strip_colors: False

Set the directory used to hold unix sockets:
#sock_dir: /var/run/salt/master

The master can take a while to start up when lspci and/or dmidecode is used
to populate the grains for the master. Enable if you want to see GPU hardware
data for your master.
enable_gpu_grains: False

The master maintains a job cache. While this is a great addition, it can be
a burden on the master for larger deployments (over 5000 minions).
Disabling the job cache will make previously executed jobs unavailable to
the jobs system and is not generally recommended.
#job_cache: True

Cache minion grains and pillar data in the cachedir.
#minion_data_cache: True

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the
master event bus. The value is expressed in bytes.
#max_event_size: 1048576

By default, the master AES key rotates every 24 hours. The next command
following a key rotation will trigger a key refresh from the minion which may

378 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

result in minions which do not respond to the first command after a key refresh.
#
To tell the master to ping all minions immediately after an AES key refresh, set
ping_on_rotate to True. This should mitigate the issue where a minion does not
appear to initially respond after a key is rotated.
#
Note that ping_on_rotate may cause high load on the master immediately after
the key rotation event as minions reconnect. Consider this carefully if this
salt master is managing a large number of minions.
#
If disabled, it is recommended to handle this event by listening for the
'aes_key_rotate' event with the 'key' tag and acting appropriately.
ping_on_rotate: False

By default, the master deletes its cache of minion data when the key for that
minion is removed. To preserve the cache after key deletion, set
'preserve_minion_cache' to True.
#
WARNING: This may have security implications if compromised minions auth with
a previous deleted minion ID.
#preserve_minion_cache: False

If max_minions is used in large installations, the master might experience
high-load situations because of having to check the number of connected
minions for every authentication. This cache provides the minion-ids of
all connected minions to all MWorker-processes and greatly improves the
performance of max_minions.
con_cache: False

The master can include configuration from other files. To enable this,
pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory
the main master configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option, then the master will log a warning message.
#
Include a config file from some other path:
#include: /etc/salt/extra_config
#
Include config from several files and directories:
#include:
- /etc/salt/extra_config

Security settings
##
Enable "open mode", this mode still maintains encryption, but turns off
authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!
#open_mode: False

Enable auto_accept, this setting will automatically accept all incoming
public keys from the minions. Note that this is insecure.
#auto_accept: False

Time in minutes that a incomming public key with a matching name found in
pki_dir/minion_autosign/keyid is automatically accepted. Expired autosign keys

22.6. Configuration file examples 379

Salt Documentation, Release 2014.7.6

are removed when the master checks the minion_autosign directory.
0 equals no timeout
autosign_timeout: 120

If the autosign_file is specified, incoming keys specified in the
autosign_file will be automatically accepted. This is insecure. Regular
expressions as well as globing lines are supported.
#autosign_file: /etc/salt/autosign.conf

Works like autosign_file, but instead allows you to specify minion IDs for
which keys will automatically be rejected. Will override both membership in
the autosign_file and the auto_accept setting.
#autoreject_file: /etc/salt/autoreject.conf

Enable permissive access to the salt keys. This allows you to run the
master or minion as root, but have a non-root group be given access to
your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure. If an autosign_file
is specified, enabling permissive_pki_access will allow group access to that
specific file.
#permissive_pki_access: False

Allow users on the master access to execute specific commands on minions.
This setting should be treated with care since it opens up execution
capabilities to non root users. By default this capability is completely
disabled.
#client_acl:
larry:
- test.ping
- network.*
#
Blacklist any of the following users or modules
#
This example would blacklist all non sudo users, including root from
running any commands. It would also blacklist any use of the "cmd"
module. This is completely disabled by default.
#
#client_acl_blacklist:
users:
- root
- '^(?!sudo_).*$' # all non sudo users
modules:
- cmd

The external auth system uses the Salt auth modules to authenticate and
validate users to access areas of the Salt system.
#external_auth:
pam:
fred:
- test.*
#
Time (in seconds) for a newly generated token to live. Default: 12 hours
#token_expire: 43200

Allow minions to push files to the master. This is disabled by default, for
security purposes.
#file_recv: False

380 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Set a hard-limit on the size of the files that can be pushed to the master.
It will be interpreted as megabytes. Default: 100
#file_recv_max_size: 100

Signature verification on messages published from the master.
This causes the master to cryptographically sign all messages published to its event
bus, and minions then verify that signature before acting on the message.
#
This is False by default.
#
Note that to facilitate interoperability with masters and minions that are different
versions, if sign_pub_messages is True but a message is received by a minion with
no signature, it will still be accepted, and a warning message will be logged.
Conversely, if sign_pub_messages is False, but a minion receives a signed
message it will be accepted, the signature will not be checked, and a warning message
will be logged. This behavior went away in Salt 2014.1.0 and these two situations
will cause minion to throw an exception and drop the message.
sign_pub_messages: False

Salt-SSH Configuration
##

Pass in an alternative location for the salt-ssh roster file
#roster_file: /etc/salt/roster

Pass in minion option overrides that will be inserted into the SHIM for
salt-ssh calls. The local minion config is not used for salt-ssh. Can be
overridden on a per-minion basis in the roster (`minion_opts`)
#ssh_minion_opts:
gpg_keydir: /root/gpg

Master Module Management
##
Manage how master side modules are loaded.

Add any additional locations to look for master runners:
#runner_dirs: []

Enable Cython for master side modules:
#cython_enable: False

State System settings
##
The state system uses a "top" file to tell the minions what environment to
use and what modules to use. The state_top file is defined relative to the
root of the base environment as defined in "File Server settings" below.
#state_top: top.sls

The master_tops option replaces the external_nodes option by creating
a plugable system for the generation of external top data. The external_nodes
option is deprecated by the master_tops option.
#
To gain the capabilities of the classic external_nodes system, use the
following configuration:
master_tops:
ext_nodes: <Shell command which returns yaml>
#

22.6. Configuration file examples 381

Salt Documentation, Release 2014.7.6

#master_tops: {}

The external_nodes option allows Salt to gather data that would normally be
placed in a top file. The external_nodes option is the executable that will
return the ENC data. Remember that Salt will look for external nodes AND top
files and combine the results if both are enabled!
#external_nodes: None

The renderer to use on the minions to render the state data
#renderer: yaml_jinja

The Jinja renderer can strip extra carriage returns and whitespace
See http://jinja.pocoo.org/docs/api/#high-level-api
#
If this is set to True the first newline after a Jinja block is removed
(block, not variable tag!). Defaults to False, corresponds to the Jinja
environment init variable "trim_blocks".
jinja_trim_blocks: False
#
If this is set to True leading spaces and tabs are stripped from the start
of a line to a block. Defaults to False, corresponds to the Jinja
environment init variable "lstrip_blocks".
jinja_lstrip_blocks: False

The failhard option tells the minions to stop immediately after the first
failure detected in the state execution, defaults to False
#failhard: False

The state_verbose and state_output settings can be used to change the way
state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False
all data that has a result of True and no changes will be suppressed.
#state_verbose: True

The state_output setting changes if the output is the full multi line
output for each changed state if set to 'full', but if set to 'terse'
the output will be shortened to a single line. If set to 'mixed', the output
will be terse unless a state failed, in which case that output will be full.
If set to 'changes', the output will be full unless the state didn't change.
#state_output: full

Automatically aggregate all states that have support for mod_aggregate by
setting to True. Or pass a list of state module names to automatically
aggregate just those types.
#
state_aggregate:
- pkg
#
#state_aggregate: False

File Server settings
##
Salt runs a lightweight file server written in zeromq to deliver files to
minions. This file server is built into the master daemon and does not
require a dedicated port.

The file server works on environments passed to the master, each environment
can have multiple root directories, the subdirectories in the multiple file

382 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.
Example:
file_roots:
base:
- /srv/salt/
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states
#
#file_roots:
base:
- /srv/salt

The hash_type is the hash to use when discovering the hash of a file on
the master server. The default is md5, but sha1, sha224, sha256, sha384
and sha512 are also supported.
#
Prior to changing this value, the master should be stopped and all Salt
caches should be cleared.
#hash_type: md5

The buffer size in the file server can be adjusted here:
#file_buffer_size: 1048576

A regular expression (or a list of expressions) that will be matched
against the file path before syncing the modules and states to the minions.
This includes files affected by the file.recurse state.
For example, if you manage your custom modules and states in subversion
and don't want all the '.svn' folders and content synced to your minions,
you could set this to '/\.svn($|/)'. By default nothing is ignored.
#file_ignore_regex:
- '/\.svn($|/)'
- '/\.git($|/)'

A file glob (or list of file globs) that will be matched against the file
path before syncing the modules and states to the minions. This is similar
to file_ignore_regex above, but works on globs instead of regex. By default
nothing is ignored.
file_ignore_glob:
- '*.pyc'
- '*/somefolder/*.bak'
- '*.swp'

File Server Backend
#
Salt supports a modular fileserver backend system, this system allows
the salt master to link directly to third party systems to gather and
manage the files available to minions. Multiple backends can be
configured and will be searched for the requested file in the order in which
they are defined here. The default setting only enables the standard backend
"roots" which uses the "file_roots" option.
#fileserver_backend:
- roots
#

22.6. Configuration file examples 383

Salt Documentation, Release 2014.7.6

To use multiple backends list them in the order they are searched:
#fileserver_backend:
- git
- roots
#
Uncomment the line below if you do not want the file_server to follow
symlinks when walking the filesystem tree. This is set to True
by default. Currently this only applies to the default roots
fileserver_backend.
#fileserver_followsymlinks: False
#
Uncomment the line below if you do not want symlinks to be
treated as the files they are pointing to. By default this is set to
False. By uncommenting the line below, any detected symlink while listing
files on the Master will not be returned to the Minion.
#fileserver_ignoresymlinks: True
#
By default, the Salt fileserver recurses fully into all defined environments
to attempt to find files. To limit this behavior so that the fileserver only
traverses directories with SLS files and special Salt directories like _modules,
enable the option below. This might be useful for installations where a file root
has a very large number of files and performance is impacted. Default is False.
fileserver_limit_traversal: False
#
The fileserver can fire events off every time the fileserver is updated,
these are disabled by default, but can be easily turned on by setting this
flag to True
#fileserver_events: False

Git File Server Backend Configuration
#
Gitfs can be provided by one of two python modules: GitPython or pygit2. If
using pygit2, both libgit2 and git must also be installed.
#gitfs_provider: gitpython
#
When using the git fileserver backend at least one git remote needs to be
defined. The user running the salt master will need read access to the repo.
#
The repos will be searched in order to find the file requested by a client
and the first repo to have the file will return it.
When using the git backend branches and tags are translated into salt
environments.
Note: file:// repos will be treated as a remote, so refs you want used must
exist in that repo as *local* refs.
#gitfs_remotes:
- git://github.com/saltstack/salt-states.git
- file:///var/git/saltmaster
#
The gitfs_ssl_verify option specifies whether to ignore ssl certificate
errors when contacting the gitfs backend. You might want to set this to
false if you're using a git backend that uses a self-signed certificate but
keep in mind that setting this flag to anything other than the default of True
is a security concern, you may want to try using the ssh transport.
#gitfs_ssl_verify: True
#
The gitfs_root option gives the ability to serve files from a subdirectory
within the repository. The path is defined relative to the root of the
repository and defaults to the repository root.

384 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

#gitfs_root: somefolder/otherfolder
#
#
Pillar settings
##
Salt Pillars allow for the building of global data that can be made selectively
available to different minions based on minion grain filtering. The Salt
Pillar is laid out in the same fashion as the file server, with environments,
a top file and sls files. However, pillar data does not need to be in the
highstate format, and is generally just key/value pairs.
#pillar_roots:
base:
- /srv/pillar
#
#ext_pillar:
- hiera: /etc/hiera.yaml
- cmd_yaml: cat /etc/salt/yaml

The pillar_gitfs_ssl_verify option specifies whether to ignore ssl certificate
errors when contacting the pillar gitfs backend. You might want to set this to
false if you're using a git backend that uses a self-signed certificate but
keep in mind that setting this flag to anything other than the default of True
is a security concern, you may want to try using the ssh transport.
#pillar_gitfs_ssl_verify: True

The pillar_opts option adds the master configuration file data to a dict in
the pillar called "master". This is used to set simple configurations in the
master config file that can then be used on minions.
#pillar_opts: True

The pillar_source_merging_strategy option allows you to configure merging strategy
between different sources. It accepts four values: recurse, aggregate, overwrite,
or smart. Recurse will merge recursively mapping of data. Aggregate instructs
aggregation of elements between sources that use the #!yamlex renderer. Overwrite
will verwrite elements according the order in which they are processed. This is
behavior of the 2014.1 branch and earlier. Smart guesses the best strategy based
on the "renderer" setting and is the default value.
#pillar_source_merging_strategy: smart

Syndic settings
##
The Salt syndic is used to pass commands through a master from a higher
master. Using the syndic is simple, if this is a master that will have
syndic servers(s) below it set the "order_masters" setting to True, if this
is a master that will be running a syndic daemon for passthrough the
"syndic_master" setting needs to be set to the location of the master server
to receive commands from.

Set the order_masters setting to True if this master will command lower
masters' syndic interfaces.
#order_masters: False

If this master will be running a salt syndic daemon, syndic_master tells
this master where to receive commands from.
#syndic_master: masterofmaster

This is the 'ret_port' of the MasterOfMaster:

22.6. Configuration file examples 385

Salt Documentation, Release 2014.7.6

#syndic_master_port: 4506

PID file of the syndic daemon:
#syndic_pidfile: /var/run/salt-syndic.pid

LOG file of the syndic daemon:
#syndic_log_file: syndic.log

Peer Publish settings
##
Salt minions can send commands to other minions, but only if the minion is
allowed to. By default "Peer Publication" is disabled, and when enabled it
is enabled for specific minions and specific commands. This allows secure
compartmentalization of commands based on individual minions.

The configuration uses regular expressions to match minions and then a list
of regular expressions to match functions. The following will allow the
minion authenticated as foo.example.com to execute functions from the test
and pkg modules.
#peer:
foo.example.com:
- test.*
- pkg.*
#
This will allow all minions to execute all commands:
#peer:
.*:
- .*
#
This is not recommended, since it would allow anyone who gets root on any
single minion to instantly have root on all of the minions!

Minions can also be allowed to execute runners from the salt master.
Since executing a runner from the minion could be considered a security risk,
it needs to be enabled. This setting functions just like the peer setting
except that it opens up runners instead of module functions.
#
All peer runner support is turned off by default and must be enabled before
using. This will enable all peer runners for all minions:
#peer_run:
.*:
- .*
#
To enable just the manage.up runner for the minion foo.example.com:
#peer_run:
foo.example.com:
- manage.up
#
#
Mine settings
##
Restrict mine.get access from minions. By default any minion has a full access
to get all mine data from master cache. In acl definion below, only pcre matches
are allowed.
mine_get:
.*:
- .*

386 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

#
The example below enables minion foo.example.com to get 'network.interfaces' mine
data only, minions web* to get all network.* and disk.* mine data and all other
minions won't get any mine data.
mine_get:
foo.example.com:
- network.interfaces
web.*:
- network.*
- disk.*

Logging settings
##
The location of the master log file
The master log can be sent to a regular file, local path name, or network
location. Remote logging works best when configured to use rsyslogd(8) (e.g.:
``file:///dev/log``), with rsyslogd(8) configured for network logging. The URI
format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-facility>
#log_file: /var/log/salt/master
#log_file: file:///dev/log
#log_file: udp://loghost:10514

#log_file: /var/log/salt/master
#key_logfile: /var/log/salt/key

The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.
#log_level: warning

The level of messages to send to the log file.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.
If using 'log_granular_levels' this must be set to the highest desired level.
#log_level_logfile: warning

The date and time format used in log messages. Allowed date/time formating
can be seen here: http://docs.python.org/library/time.html#time.strftime
#log_datefmt: '%H:%M:%S'
#log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

The format of the console logging messages. Allowed formatting options can
be seen here: http://docs.python.org/library/logging.html#logrecord-attributes
#log_fmt_console: '[%(levelname)-8s] %(message)s'
#log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s'

This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets
'salt.modules' to log at the 'debug' level:
log_granular_levels:
'salt': 'warning'
'salt.modules': 'debug'
#
#log_granular_levels: {}

Node Groups
##
Node groups allow for logical groupings of minion nodes. A group consists of a group

22.6. Configuration file examples 387

Salt Documentation, Release 2014.7.6

name and a compound target.
#nodegroups:
group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com and bl*.domain.com'
group2: 'G@os:Debian and foo.domain.com'

Range Cluster settings
##
The range server (and optional port) that serves your cluster information
https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec
#
#range_server: range:80

Windows Software Repo settings
##
Location of the repo on the master:
#win_repo: '/srv/salt/win/repo'
#
Location of the master's repo cache file:
#win_repo_mastercachefile: '/srv/salt/win/repo/winrepo.p'
#
List of git repositories to include with the local repo:
#win_gitrepos:
- 'https://github.com/saltstack/salt-winrepo.git'
#

22.6.2 Example minion configuration file

Primary configuration settings
##
This configuration file is used to manage the behavior of the Salt Minion.
With the exception of the location of the Salt Master Server, values that are
commented out but have an empty line after the comment are defaults that need
not be set in the config. If there is no blank line after the comment, the
value is presented as an example and is not the default.

Per default the minion will automatically include all config files
from minion.d/*.conf (minion.d is a directory in the same directory
as the main minion config file).
#default_include: minion.d/*.conf

Set the location of the salt master server. If the master server cannot be
resolved, then the minion will fail to start.
#master: salt

If multiple masters are specified in the 'master' setting, the default behavior
is to always try to connect to them in the order they are listed. If random_master is
set to True, the order will be randomized instead. This can be helpful in distributing
the load of many minions executing salt-call requests, for example, from a cron job.
If only one master is listed, this setting is ignored and a warning will be logged.
#random_master: False

Set whether the minion should connect to the master via IPv6:
#ipv6: False

388 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Set the number of seconds to wait before attempting to resolve
the master hostname if name resolution fails. Defaults to 30 seconds.
Set to zero if the minion should shutdown and not retry.
retry_dns: 30

Set the port used by the master reply and authentication server.
#master_port: 4506

The user to run salt.
#user: root

Specify the location of the daemon process ID file.
#pidfile: /var/run/salt-minion.pid

The root directory prepended to these options: pki_dir, cachedir, log_file,
sock_dir, pidfile.
#root_dir: /

The directory to store the pki information in
#pki_dir: /etc/salt/pki/minion

Explicitly declare the id for this minion to use, if left commented the id
will be the hostname as returned by the python call: socket.getfqdn()
Since salt uses detached ids it is possible to run multiple minions on the
same machine but with different ids, this can be useful for salt compute
clusters.
#id:

Append a domain to a hostname in the event that it does not exist. This is
useful for systems where socket.getfqdn() does not actually result in a
FQDN (for instance, Solaris).
#append_domain:

Custom static grains for this minion can be specified here and used in SLS
files just like all other grains. This example sets 4 custom grains, with
the 'roles' grain having two values that can be matched against.
#grains:
roles:
- webserver
- memcache
deployment: datacenter4
cabinet: 13
cab_u: 14-15
#
Where cache data goes.
#cachedir: /var/cache/salt/minion

Verify and set permissions on configuration directories at startup.
#verify_env: True

The minion can locally cache the return data from jobs sent to it, this
can be a good way to keep track of jobs the minion has executed
(on the minion side). By default this feature is disabled, to enable, set
cache_jobs to True.
#cache_jobs: False

Set the directory used to hold unix sockets.
#sock_dir: /var/run/salt/minion

22.6. Configuration file examples 389

Salt Documentation, Release 2014.7.6

Set the default outputter used by the salt-call command. The default is
"nested".
#output: nested
#
By default output is colored. To disable colored output, set the color value
to False.
#color: True

Do not strip off the colored output from nested results and state outputs
(true by default).
strip_colors: False

Backup files that are replaced by file.managed and file.recurse under
'cachedir'/file_backups relative to their original location and appended
with a timestamp. The only valid setting is "minion". Disabled by default.
#
Alternatively this can be specified for each file in state files:
/etc/ssh/sshd_config:
file.managed:
- source: salt://ssh/sshd_config
- backup: minion
#
#backup_mode: minion

When waiting for a master to accept the minion's public key, salt will
continuously attempt to reconnect until successful. This is the time, in
seconds, between those reconnection attempts.
#acceptance_wait_time: 10

If this is nonzero, the time between reconnection attempts will increase by
acceptance_wait_time seconds per iteration, up to this maximum. If this is
set to zero, the time between reconnection attempts will stay constant.
#acceptance_wait_time_max: 0

If the master rejects the minion's public key, retry instead of exiting.
Rejected keys will be handled the same as waiting on acceptance.
#rejected_retry: False

When the master key changes, the minion will try to re-auth itself to receive
the new master key. In larger environments this can cause a SYN flood on the
master because all minions try to re-auth immediately. To prevent this and
have a minion wait for a random amount of time, use this optional parameter.
The wait-time will be a random number of seconds between 0 and the defined value.
#random_reauth_delay: 60

When waiting for a master to accept the minion's public key, salt will
continuously attempt to reconnect until successful. This is the timeout value,
in seconds, for each individual attempt. After this timeout expires, the minion
will wait for acceptance_wait_time seconds before trying again. Unless your master
is under unusually heavy load, this should be left at the default.
#auth_timeout: 60

Number of consecutive SaltReqTimeoutError that are acceptable when trying to
authenticate.
#auth_tries: 1

If authentication fails due to SaltReqTimeoutError, continue without stopping the
minion.

390 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

#auth_safemode: False

If the minion hits an error that is recoverable, restart the minion.
#restart_on_error: False

Ping Master to ensure connection is alive (minutes).
#ping_interval: 0

To auto recover minions if master changes IP address (DDNS)
auth_tries: 10
auth_safemode: False
ping_interval: 90
restart_on_error: True
#
Minions won't know master is missing until a ping fails. After the ping fail,
the minion will attempt authentication and likely fails out and cause a restart.
When the minion restarts it will resolve the masters IP and attempt to reconnect.

If you don't have any problems with syn-floods, don't bother with the
three recon_* settings described below, just leave the defaults!
#
The ZeroMQ pull-socket that binds to the masters publishing interface tries
to reconnect immediately, if the socket is disconnected (for example if
the master processes are restarted). In large setups this will have all
minions reconnect immediately which might flood the master (the ZeroMQ-default
is usually a 100ms delay). To prevent this, these three recon_* settings
can be used.
recon_default: the interval in milliseconds that the socket should wait before
trying to reconnect to the master (1000ms = 1 second)
#
recon_max: the maximum time a socket should wait. each interval the time to wait
is calculated by doubling the previous time. if recon_max is reached,
it starts again at recon_default. Short example:
#
reconnect 1: the socket will wait 'recon_default' milliseconds
reconnect 2: 'recon_default' * 2
reconnect 3: ('recon_default' * 2) * 2
reconnect 4: value from previous interval * 2
reconnect 5: value from previous interval * 2
reconnect x: if value >= recon_max, it starts again with recon_default
#
recon_randomize: generate a random wait time on minion start. The wait time will
be a random value between recon_default and recon_default +
recon_max. Having all minions reconnect with the same recon_default
and recon_max value kind of defeats the purpose of being able to
change these settings. If all minions have the same values and your
setup is quite large (several thousand minions), they will still
flood the master. The desired behavior is to have timeframe within
all minions try to reconnect.
#
Example on how to use these settings. The goal: have all minions reconnect within a
60 second timeframe on a disconnect.
recon_default: 1000
recon_max: 59000
recon_randomize: True
#
Each minion will have a randomized reconnect value between 'recon_default'
and 'recon_default + recon_max', which in this example means between 1000ms

22.6. Configuration file examples 391

Salt Documentation, Release 2014.7.6

60000ms (or between 1 and 60 seconds). The generated random-value will be
doubled after each attempt to reconnect. Lets say the generated random
value is 11 seconds (or 11000ms).
reconnect 1: wait 11 seconds
reconnect 2: wait 22 seconds
reconnect 3: wait 33 seconds
reconnect 4: wait 44 seconds
reconnect 5: wait 55 seconds
reconnect 6: wait time is bigger than 60 seconds (recon_default + recon_max)
reconnect 7: wait 11 seconds
reconnect 8: wait 22 seconds
reconnect 9: wait 33 seconds
reconnect x: etc.
#
In a setup with ~6000 thousand hosts these settings would average the reconnects
to about 100 per second and all hosts would be reconnected within 60 seconds.
recon_default: 100
recon_max: 5000
recon_randomize: False
#
#
The loop_interval sets how long in seconds the minion will wait between
evaluating the scheduler and running cleanup tasks. This defaults to a
sane 60 seconds, but if the minion scheduler needs to be evaluated more
often lower this value
#loop_interval: 60

The grains_refresh_every setting allows for a minion to periodically check
its grains to see if they have changed and, if so, to inform the master
of the new grains. This operation is moderately expensive, therefore
care should be taken not to set this value too low.
#
Note: This value is expressed in __minutes__!
#
A value of 10 minutes is a reasonable default.
#
If the value is set to zero, this check is disabled.
#grains_refresh_every: 1

Cache grains on the minion. Default is False.
#grains_cache: False

Grains cache expiration, in seconds. If the cache file is older than this
number of seconds then the grains cache will be dumped and fully re-populated
with fresh data. Defaults to 5 minutes. Will have no effect if 'grains_cache'
is not enabled.
grains_cache_expiration: 300

When healing, a dns_check is run. This is to make sure that the originally
resolved dns has not changed. If this is something that does not happen in
your environment, set this value to False.
#dns_check: True

Windows platforms lack posix IPC and must rely on slower TCP based inter-
process communications. Set ipc_mode to 'tcp' on such systems
#ipc_mode: ipc

Overwrite the default tcp ports used by the minion when in tcp mode

392 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

#tcp_pub_port: 4510
#tcp_pull_port: 4511

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the
minion event bus. The value is expressed in bytes.
#max_event_size: 1048576

The minion can include configuration from other files. To enable this,
pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory
the main minion configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.
#
Include a config file from some other path:
include: /etc/salt/extra_config
#
Include config from several files and directories:
#include:
- /etc/salt/extra_config
- /etc/roles/webserver
#
#
#
Minion module management
##
Disable specific modules. This allows the admin to limit the level of
access the master has to the minion.
#disable_modules: [cmd,test]
#disable_returners: []
#
Modules can be loaded from arbitrary paths. This enables the easy deployment
of third party modules. Modules for returners and minions can be loaded.
Specify a list of extra directories to search for minion modules and
returners. These paths must be fully qualified!
#module_dirs: []
#returner_dirs: []
#states_dirs: []
#render_dirs: []
#utils_dirs: []
#
A module provider can be statically overwritten or extended for the minion
via the providers option, in this case the default module will be
overwritten by the specified module. In this example the pkg module will
be provided by the yumpkg5 module instead of the system default.
#providers:
pkg: yumpkg5
#
Enable Cython modules searching and loading. (Default: False)
#cython_enable: False
#
Specify a max size (in bytes) for modules on import. This feature is currently
only supported on *nix operating systems and requires psutil.
modules_max_memory: -1

State Management Settings

22.6. Configuration file examples 393

Salt Documentation, Release 2014.7.6

###
The state management system executes all of the state templates on the minion
to enable more granular control of system state management. The type of
template and serialization used for state management needs to be configured
on the minion, the default renderer is yaml_jinja. This is a yaml file
rendered from a jinja template, the available options are:
yaml_jinja
yaml_mako
yaml_wempy
json_jinja
json_mako
json_wempy
#
#renderer: yaml_jinja
#
The failhard option tells the minions to stop immediately after the first
failure detected in the state execution. Defaults to False.
#failhard: False
#
autoload_dynamic_modules turns on automatic loading of modules found in the
environments on the master. This is turned on by default. To turn of
autoloading modules when states run, set this value to False.
#autoload_dynamic_modules: True
#
clean_dynamic_modules keeps the dynamic modules on the minion in sync with
the dynamic modules on the master, this means that if a dynamic module is
not on the master it will be deleted from the minion. By default, this is
enabled and can be disabled by changing this value to False.
#clean_dynamic_modules: True
#
Normally, the minion is not isolated to any single environment on the master
when running states, but the environment can be isolated on the minion side
by statically setting it. Remember that the recommended way to manage
environments is to isolate via the top file.
#environment: None
#
If using the local file directory, then the state top file name needs to be
defined, by default this is top.sls.
#state_top: top.sls
#
Run states when the minion daemon starts. To enable, set startup_states to:
'highstate' -- Execute state.highstate
'sls' -- Read in the sls_list option and execute the named sls files
'top' -- Read top_file option and execute based on that file on the Master
#startup_states: ''
#
List of states to run when the minion starts up if startup_states is 'sls':
#sls_list:
- edit.vim
- hyper
#
Top file to execute if startup_states is 'top':
#top_file: ''

Automatically aggregate all states that have support for mod_aggregate by
setting to True. Or pass a list of state module names to automatically
aggregate just those types.
#

394 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

state_aggregate:
- pkg
#
#state_aggregate: False

File Directory Settings
##
The Salt Minion can redirect all file server operations to a local directory,
this allows for the same state tree that is on the master to be used if
copied completely onto the minion. This is a literal copy of the settings on
the master but used to reference a local directory on the minion.

Set the file client. The client defaults to looking on the master server for
files, but can be directed to look at the local file directory setting
defined below by setting it to local.
#file_client: remote

The file directory works on environments passed to the minion, each environment
can have multiple root directories, the subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.
Example:
file_roots:
base:
- /srv/salt/
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states
#
#file_roots:
base:
- /srv/salt

By default, the Salt fileserver recurses fully into all defined environments
to attempt to find files. To limit this behavior so that the fileserver only
traverses directories with SLS files and special Salt directories like _modules,
enable the option below. This might be useful for installations where a file root
has a very large number of files and performance is negatively impacted. Default
is False.
#fileserver_limit_traversal: False

The hash_type is the hash to use when discovering the hash of a file in
the local fileserver. The default is md5, but sha1, sha224, sha256, sha384
and sha512 are also supported.
#
Warning: Prior to changing this value, the minion should be stopped and all
Salt caches should be cleared.
#hash_type: md5

The Salt pillar is searched for locally if file_client is set to local. If
this is the case, and pillar data is defined, then the pillar_roots need to
also be configured on the minion:
#pillar_roots:
base:
- /srv/pillar

22.6. Configuration file examples 395

Salt Documentation, Release 2014.7.6

#
#
Security settings
###
Enable "open mode", this mode still maintains encryption, but turns off
authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!
#open_mode: False

Enable permissive access to the salt keys. This allows you to run the
master or minion as root, but have a non-root group be given access to
your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure.
#permissive_pki_access: False

The state_verbose and state_output settings can be used to change the way
state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False
all data that has a result of True and no changes will be suppressed.
#state_verbose: True

The state_output setting changes if the output is the full multi line
output for each changed state if set to 'full', but if set to 'terse'
the output will be shortened to a single line.
#state_output: full

The state_output_diff setting changes whether or not the output from
successful states is returned. Useful when even the terse output of these
states is cluttering the logs. Set it to True to ignore them.
#state_output_diff: False

Fingerprint of the master public key to double verify the master is valid,
the master fingerprint can be found by running "salt-key -F master" on the
salt master.
#master_finger: ''

Thread settings
###
Disable multiprocessing support, by default when a minion receives a
publication a new process is spawned and the command is executed therein.
#multiprocessing: True

Logging settings
##
The location of the minion log file
The minion log can be sent to a regular file, local path name, or network
location. Remote logging works best when configured to use rsyslogd(8) (e.g.:
``file:///dev/log``), with rsyslogd(8) configured for network logging. The URI
format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-facility>
#log_file: /var/log/salt/minion
#log_file: file:///dev/log
#log_file: udp://loghost:10514
#
#log_file: /var/log/salt/minion
#key_logfile: /var/log/salt/key

396 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.
Default: 'warning'
#log_level: warning

The level of messages to send to the log file.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.
If using 'log_granular_levels' this must be set to the highest desired level.
Default: 'warning'
#log_level_logfile:

The date and time format used in log messages. Allowed date/time formating
can be seen here: http://docs.python.org/library/time.html#time.strftime
#log_datefmt: '%H:%M:%S'
#log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

The format of the console logging messages. Allowed formatting options can
be seen here: http://docs.python.org/library/logging.html#logrecord-attributes
#log_fmt_console: '[%(levelname)-8s] %(message)s'
#log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s'

This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets
'salt.modules' to log at the 'debug' level:
log_granular_levels:
'salt': 'warning'
'salt.modules': 'debug'
#
#log_granular_levels: {}

Module configuration
###
Salt allows for modules to be passed arbitrary configuration data, any data
passed here in valid yaml format will be passed on to the salt minion modules
for use. It is STRONGLY recommended that a naming convention be used in which
the module name is followed by a . and then the value. Also, all top level
data must be applied via the yaml dict construct, some examples:
#
You can specify that all modules should run in test mode:
#test: True
#
A simple value for the test module:
#test.foo: foo
#
A list for the test module:
#test.bar: [baz,quo]
#
A dict for the test module:
#test.baz: {spam: sausage, cheese: bread}
#
#
Update settings
###
Using the features in Esky, a salt minion can both run as a frozen app and
be updated on the fly. These options control how the update process
(saltutil.update()) behaves.
#

22.6. Configuration file examples 397

Salt Documentation, Release 2014.7.6

The url for finding and downloading updates. Disabled by default.
#update_url: False
#
The list of services to restart after a successful update. Empty by default.
#update_restart_services: []

Keepalive settings
##
ZeroMQ now includes support for configuring SO_KEEPALIVE if supported by
the OS. If connections between the minion and the master pass through
a state tracking device such as a firewall or VPN gateway, there is
the risk that it could tear down the connection the master and minion
without informing either party that their connection has been taken away.
Enabling TCP Keepalives prevents this from happening.

Overall state of TCP Keepalives, enable (1 or True), disable (0 or False)
or leave to the OS defaults (-1), on Linux, typically disabled. Default True, enabled.
#tcp_keepalive: True

How long before the first keepalive should be sent in seconds. Default 300
to send the first keepalive after 5 minutes, OS default (-1) is typically 7200 seconds
on Linux see /proc/sys/net/ipv4/tcp_keepalive_time.
#tcp_keepalive_idle: 300

How many lost probes are needed to consider the connection lost. Default -1
to use OS defaults, typically 9 on Linux, see /proc/sys/net/ipv4/tcp_keepalive_probes.
#tcp_keepalive_cnt: -1

How often, in seconds, to send keepalives after the first one. Default -1 to
use OS defaults, typically 75 seconds on Linux, see
/proc/sys/net/ipv4/tcp_keepalive_intvl.
#tcp_keepalive_intvl: -1

Windows Software settings
##
Location of the repository cache file on the master:
#win_repo_cachefile: 'salt://win/repo/winrepo.p'
#
#

22.7 Configuring Salt

Salt configuration is very simple. e default configuration for the master will work for most installations and the
only requirement for seing up a minion is to set the location of the master in the minion configuration file.

e configuration files will be installed to /etc/salt and are named aer the respective components,
/etc/salt/master and /etc/salt/minion.

22.7.1 Master Configuration

By default the Salt master listens on ports 4505 and 4506 on all interfaces (0.0.0.0). To bind Salt to a specific IP,
redefine the ``interface'' directive in the master configuration file, typically /etc/salt/master, as follows:

398 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

- #interface: 0.0.0.0
+ interface: 10.0.0.1

Aer updating the configuration file, restart the Salt master. See the master configuration reference for more details
about other configurable options.

22.7.2 Minion Configuration

Although there are many Salt Minion configuration options, configuring a Salt Minion is very simple. By default
a Salt Minion will try to connect to the DNS name ``salt''; if the Minion is able to resolve that name correctly, no
configuration is needed.

If the DNS name ``salt'' does not resolve to point to the correct location of theMaster, redefine the ``master'' directive
in the minion configuration file, typically /etc/salt/minion, as follows:

- #master: salt
+ master: 10.0.0.1

Aer updating the configuration file, restart the Salt minion. See the minion configuration reference for more details
about other configurable options.

22.7.3 Running Salt

1. Start the master in the foreground (to daemonize the process, pass the -d flag):

salt-master

2. Start the minion in the foreground (to daemonize the process, pass the -d flag):

salt-minion

Having trouble?

e simplest way to troubleshoot Salt is to run the master and minion in the foreground with log level set to
debug:

salt-master --log-level=debug

For information on salt's logging system please see the logging document.

Run as an unprivileged (non-root) user

To run Salt as another user, set the user parameter in the master config file.

Additionally, ownership and permissions need to be set such that the desired user can read from and write to the
following directories (and their subdirectories, where applicable):

• /etc/salt

• /var/cache/salt

• /var/log/salt

• /var/run/salt

More information about running salt as a non-privileged user can be found here.

ere is also a full troubleshooting guide available.

22.7. Configuring Salt 399

Salt Documentation, Release 2014.7.6

22.7.4 Key Management

Salt uses AES encryption for all communication between theMaster and theMinion. is ensures that the commands
sent to the Minions cannot be tampered with, and that communication between Master and Minion is authenticated
through trusted, accepted keys.

Before commands can be sent to a Minion, its key must be accepted on the Master. Run the salt-key command
to list the keys known to the Salt Master:

[root@master ~]# salt-key -L
Unaccepted Keys:
alpha
bravo
charlie
delta
Accepted Keys:

is example shows that the Salt Master is aware of four Minions, but none of the keys has been accepted. To accept
the keys and allow the Minions to be controlled by the Master, again use the salt-key command:

[root@master ~]# salt-key -A
[root@master ~]# salt-key -L
Unaccepted Keys:
Accepted Keys:
alpha
bravo
charlie
delta

e salt-key command allows for signing keys individually or in bulk. e example above, using -A bulk-accepts
all pending keys. To accept keys individually use the lowercase of the same option, -a keyname.

See also:

salt-key manpage

22.7.5 Sending Commands

Communication between the Master and a Minion may be verified by running the test.ping command:

[root@master ~]# salt alpha test.ping
alpha:

True

Communication between the Master and all Minions may be tested in a similar way:

[root@master ~]# salt '*' test.ping
alpha:

True
bravo:

True
charlie:

True
delta:

True

Each of the Minions should send a True response as shown above.

400 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.7.6 What's Next?

Understanding targeting is important. From there, depending on the way you wish to use Salt, you should also
proceed to learn about States and Execution Modules.

22.8 Configuring the Salt Master

e Salt system is amazingly simple and easy to configure, the two components of the Salt system each have a
respective configuration file. e salt-master is configured via the master configuration file, and the salt-
minion is configured via the minion configuration file.

See also:

example master configuration file

e configuration file for the salt-master is located at /etc/salt/master by default. A notable exception is
FreeBSD, where the configuration file is located at /usr/local/etc/salt. e available options are as follows:

22.8.1 Primary Master Configuration

interface

Default: 0.0.0.0 (all interfaces)

e local interface to bind to.

interface: 192.168.0.1

ipv6

Default: False

Whether the master should listen for IPv6 connections. If this is set to True, the interface option must be adjusted
too (for example: ``interface: `::''')

ipv6: True

publish_port

Default: 4505

e network port to set up the publication interface

publish_port: 4505

master_id

Default: None

e id to be passed in the publish job to minions. is is used for MultiSyndics to return the job to the requesting
master. Note, this must be the same string as the syndic is configured with.

22.8. Configuring the Salt Master 401

Salt Documentation, Release 2014.7.6

master_id: MasterOfMaster

user

Default: root

e user to run the Salt processes

user: root

max_open_files

Default: 100000

Each minion connecting to the master uses AT LEAST one file descriptor, the master subscription connection. If
enough minions connect you might start seeing on the console(and then salt-master crashes):

Too many open files (tcp_listener.cpp:335)
Aborted (core dumped)

max_open_files: 100000

By default this value will be the one of ulimit -Hn, i.e., the hard limit for max open files.

To set a different value than the default one, uncomment and configure this seing. Remember that this value
CANNOT be higher than the hard limit. Raising the hard limit depends on the OS and/or distribution, a good way
to find the limit is to search the internet for something like this:

raise max open files hard limit debian

worker_threads

Default: 5

e number of threads to start for receiving commands and replies from minions. If minions are stalling on replies
because you have many minions, raise the worker_threads value.

Worker threads should not be put below 3 when using the peer system, but can drop down to 1 worker otherwise.

worker_threads: 5

ret_port

Default: 4506

e port used by the return server, this is the server used by Salt to receive execution returns and command execu-
tions.

ret_port: 4506

402 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

pidfile

Default: /var/run/salt-master.pid

Specify the location of the master pidfile

pidfile: /var/run/salt-master.pid

root_dir

Default: /

e system root directory to operate from, change this to make Salt run from an alternative root.

root_dir: /

Note: is directory is prepended to the following options: pki_dir, cachedir, sock_dir, log_file,
autosign_file, autoreject_file, pidfile.

pki_dir

Default: /etc/salt/pki

e directory to store the pki authentication keys.

pki_dir: /etc/salt/pki

extension_modules

Directory for custom modules. is directory can contain subdirectories for each of Salt's module types such as
``runners'', ``output'', ``wheel'', ``modules'', ``states'', ``returners'', etc. is path is appended to root_dir.

extension_modules: srv/modules

cachedir

Default: /var/cache/salt

e location used to store cache information, particularly the job information for executed salt commands.

cachedir: /var/cache/salt

verify_env

Default: True

Verify and set permissions on configuration directories at startup.

verify_env: True

22.8. Configuring the Salt Master 403

Salt Documentation, Release 2014.7.6

keep_jobs

Default: 24

Set the number of hours to keep old job information

timeout

Default: 5

Set the default timeout for the salt command and api.

loop_interval

Default: 60

e loop_interval option controls the seconds for themaster's maintenance process check cycle. is process updates
file server backends, cleans the job cache and executes the scheduler.

output

Default: nested

Set the default outpuer used by the salt command.

color

Default: True

By default output is colored, to disable colored output set the color value to False

color: False

sock_dir

Default: /var/run/salt/master

Set the location to use for creating Unix sockets for master process communication

sock_dir: /var/run/salt/master

enable_gpu_grains

Default: False

e master can take a while to start up when lspci and/or dmidecode is used to populate the grains for the master.
Enable if you want to see GPU hardware data for your master.

404 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

job_cache

Default: True

emastermaintains a job cache, while this is a great addition it can be a burden on themaster for larger deployments
(over 5000 minions). Disabling the job cache will make previously executed jobs unavailable to the jobs system and
is not generally recommended. Normally it is wise to make sure the master has access to a faster IO system or a
tmpfs is mounted to the jobs dir

minion_data_cache

Default: True

eminion data cache is a cache of information about the minions stored on the master, this information is primarily
the pillar and grains data. e data is cached in the Master cachedir under the name of the minion and used to pre
determine what minions are expected to reply from executions.

minion_data_cache: True

ext_job_cache

Default: ''

Used to specify a default returner for all minions, when this option is set the specified returner needs to be properly
configured and the minions will always default to sending returns to this returner. is will also disable the local
job cache on the master

ext_job_cache: redis

master_job_cache

New in version 2014.7.

Default: `local_cache'

Specify the returner to use for ther job cache. e job cache will only be interacted with from the salt master and
therefore does not need to be accesible from the minions.

master_job_cache: redis

enforce_mine_cache

Default: False

By-default when disabling the minion_data_cache mine will stop working since it is based on cached data, by en-
abling this option we explicitly enabling only the cache for the mine system.

enforce_mine_cache: False

22.8. Configuring the Salt Master 405

Salt Documentation, Release 2014.7.6

max_minions

Default: 0

e number of minions the master should allow to connect. Use this to accommodate the number of minions per
master if you have different types of hardware serving your minions. e default of 0means unlimited connections.
Please note, that this can slow down the authentication process a bit in large setups.

max_minions: 100

presence_events

Default: False

Causes the master to periodically look for actively connected minions. Presence events are fired on the event bus on
a regular interval with a list of connected minions, as well as events with lists of newly connected or disconnected
minions. is is a master-only operation that does not send executions to minions. Note, this does not detect minions
that connect to a master via localhost.

presence_events: False

22.8.2 Salt-SSH Configuration

roster_file

Default: `/etc/salt/roster'

Pass in an alternative location for the salt-ssh roster file

roster_file: /root/roster

ssh_minion_opts

Default: None

Pass in minion option overrides that will be inserted into the SHIM for salt-ssh calls. e local minion config is not
used for salt-ssh. Can be overridden on a per-minion basis in the roster (minion_opts)

minion_opts:
gpg_keydir: /root/gpg

22.8.3 Master Security Seings

open_mode

Default: False

Open mode is a dangerous security feature. One problem encountered with pki authentication systems is that keys
can become ``mixed up'' and authentication begins to fail. Open mode turns off authentication and tells the master
to accept all authentication. is will clean up the pki keys received from the minions. Open mode should not be
turned on for general use. Open mode should only be used for a short period of time to clean up pki keys. To turn
on open mode set this value to True.

406 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

open_mode: False

auto_accept

Default: False

Enable auto_accept. is seing will automatically accept all incoming public keys from minions.

auto_accept: False

autosign_timeout

New in version 2014.7.0.

Default: 120

Time in minutes that a incoming public key with a matching name found in pki_dir/minion_autosign/keyid is au-
tomatically accepted. Expired autosign keys are removed when the master checks the minion_autosign directory.
is method to auto accept minions can be safer than an autosign_file because the keyid record can expire and is
limited to being an exact name match. is should still be considered a less than secure option, due to the fact that
trust is based on just the requesting minion id.

autosign_file

Default: not defined

If the autosign_file is specified incoming keys specified in the autosign_file will be automatically accepted.
Matches will be searched for first by string comparison, then by globbing, then by full-string regex matching. is
should still be considered a less than secure option, due to the fact that trust is based on just the requesting minion
id.

autoreject_file

New in version 2014.1.0.

Default: not defined

Works like autosign_file, but instead allows you to specify minion IDs for which keys will automatically be
rejected. Will override both membership in the autosign_file and the auto_accept seing.

client_acl

Default: {}

Enable user accounts on the master to execute specific modules. ese modules can be expressed as regular expres-
sions

client_acl:
fred:

- test.ping
- pkg.*

22.8. Configuring the Salt Master 407

Salt Documentation, Release 2014.7.6

client_acl_blacklist

Default: {}

Blacklist users or modules

is example would blacklist all non sudo users, including root from running any commands. It would also blacklist
any use of the ``cmd'' module.

is is completely disabled by default.

client_acl_blacklist:
users:

- root
- '^(?!sudo_).*$' # all non sudo users

modules:
- cmd

external_auth

Default: {}

e external auth system uses the Salt auth modules to authenticate and validate users to access areas of the Salt
system.

external_auth:
pam:

fred:
- test.*

token_expire

Default: 43200

Time (in seconds) for a newly generated token to live. Default: 12 hours

token_expire: 43200

file_recv

Default: False

Allow minions to push files to the master. is is disabled by default, for security purposes.

file_recv: False

master_sign_pubkey

Default: False

Sign the master auth-replies with a cryptographical signature of the masters public key. Please see the tutorial how
to use these seings in the Multimaster-PKI with Failover Tutorial

master_sign_pubkey: True

408 Chapter 22. Reference

http://docs.saltstack.com/en/latest/topics/tutorials/multimaster_pki.html

Salt Documentation, Release 2014.7.6

master_sign_key_name

Default: master_sign

e customizable name of the signing-key-pair without suffix.

master_sign_key_name: <filename_without_suffix>

master_pubkey_signature

Default: master_pubkey_signature

e name of the file in the masters pki-directory that holds the pre-calculated signature of the masters public-key.

master_pubkey_signature: <filename>

master_use_pubkey_signature

Default: False

Instead of computing the signature for each auth-reply, use a pre-calculated signature. e mas-
ter_pubkey_signature must also be set for this.

master_use_pubkey_signature: True

rotate_aes_key

Default: True

Rotate the salt-masters AES-key when a minion-public is deleted with salt-key. is is a very important security-
seing. Disabling it will enable deleted minions to still listen in on the messages published by the salt-master. Do
not disable this unless it is absolutely clear what this does.

rotate_aes_key: True

22.8.4 Master Module Management

runner_dirs

Default: []

Set additional directories to search for runner modules

cython_enable

Default: False

Set to true to enable Cython modules (.pyx files) to be compiled on the fly on the Salt master

cython_enable: False

22.8. Configuring the Salt Master 409

Salt Documentation, Release 2014.7.6

22.8.5 Master State System Seings

state_top

Default: top.sls

e state system uses a ``top'' file to tell theminionswhat environment to use andwhatmodules to use. e state_top
file is defined relative to the root of the base environment

state_top: top.sls

master_tops

Default: {}

e master_tops option replaces the external_nodes option by creating a pluggable system for the generation of
external top data. e external_nodes option is deprecated by the master_tops option. To gain the capabilities of the
classic external_nodes system, use the following configuration:

master_tops:
ext_nodes: <Shell command which returns yaml>

external_nodes

Default: None

e external_nodes option allows Salt to gather data that would normally be placed in a top file from and external
node controller. e external_nodes option is the executable that will return the ENC data. Remember that Salt will
look for external nodes AND top files and combine the results if both are enabled and available!

external_nodes: cobbler-ext-nodes

renderer

Default: yaml_jinja

e renderer to use on the minions to render the state data

renderer: yaml_jinja

failhard

Default: False

Set the global failhard flag, this informs all states to stop running states at the moment a single state fails

failhard: False

state_verbose

Default: True

410 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Controls the verbosity of state runs. By default, the results of all states are returned, but seing this value to False
will cause salt to only display output for states which either failed, or succeeded without making any changes to the
minion.

state_verbose: False

state_output

Default: full

e state_output seing changes if the output is the full multi line output for each changed state if set to `full', but
if set to `terse' the output will be shortened to a single line. If set to `mixed', the output will be terse unless a state
failed, in which case that output will be full. If set to `changes', the output will be full unless the state didn't change.

state_output: full

yaml_utf8

Default: False

Enable extra routines for yaml renderer used states containing UTF characters

yaml_utf8: False

test

Default: False

Set all state calls to only test if they are going to actually make changes or just post what changes are going to be
made

test: False

22.8.6 Master File Server Seings

fileserver_backend

Default: ['roots']

Salt supports a modular fileserver backend system, this system allows the salt master to link directly to third party
systems to gather and manage the files available to minions. Multiple backends can be configured and will be
searched for the requested file in the order in which they are defined here. e default seing only enables the
standard backend roots, which is configured using the file_roots option.

Example:

fileserver_backend:
- roots
- git

22.8. Configuring the Salt Master 411

Salt Documentation, Release 2014.7.6

hash_type

Default: md5

e hash_type is the hash to use when discovering the hash of a file on the master server. e default is md5, but
sha1, sha224, sha256, sha384 and sha512 are also supported.

hash_type: md5

file_buffer_size

Default: 1048576

e buffer size in the file server in bytes

file_buffer_size: 1048576

file_ignore_regex

Default: ''

A regular expression (or a list of expressions) that will be matched against the file path before syncing the modules
and states to the minions. is includes files affected by the file.recurse state. For example, if you manage your
custom modules and states in subversion and don't want all the `.svn' folders and content synced to your minions,
you could set this to `/.svn($|/)'. By default nothing is ignored.

file_ignore_regex:
- '/\.svn($|/)'
- '/\.git($|/)'

file_ignore_glob

Default ''

A file glob (or list of file globs) that will be matched against the file path before syncing the modules and states to
the minions. is is similar to file_ignore_regex above, but works on globs instead of regex. By default nothing is
ignored.

file_ignore_glob:
- '*.pyc'
- '*/somefolder/*.bak'
- '*.swp'

roots: Master's Local File Server

file_roots

Default:

base:
- /srv/salt

412 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Salt runs a lightweight file server wrien in ZeroMQ to deliver files to minions. is file server is built into the
master daemon and does not require a dedicated port.

e file server works on environments passed to the master. Each environment can have multiple root directories.
e subdirectories in the multiple file roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file. Example:

file_roots:
base:

- /srv/salt
dev:

- /srv/salt/dev/services
- /srv/salt/dev/states

prod:
- /srv/salt/prod/services
- /srv/salt/prod/states

git: Git Remote File Server Backend

gitfs_remotes

Default: []

When using the git fileserver backend at least one git remote needs to be defined. e user running the salt master
will need read access to the repo.

e repos will be searched in order to find the file requested by a client and the first repo to have the file will return
it. Branches and tags are translated into salt environments.

gitfs_remotes:
- git://github.com/saltstack/salt-states.git
- file:///var/git/saltmaster

Note: file:// repos will be treated as a remote and copied into the master's gitfs cache, so only the local refs for
those repos will be exposed as fileserver environments.

As of 2014.7.0, it is possible to have per-repo versions of several of the gitfs configuration parameters. For more
information, see the GitFS Walkthrough.

gitfs_provider

New in version 2014.7.0.

Specify the provider to be used for gitfs. More information can be found in the GitFS Walkthrough.

gitfs_provider: dulwich

gitfs_ssl_verify

Default: True

e gitfs_ssl_verify option specifies whether to ignore SSL certificate errors when contacting the gitfs back-
end. You might want to set this to false if you're using a git backend that uses a self-signed certificate but keep in

22.8. Configuring the Salt Master 413

Salt Documentation, Release 2014.7.6

mind that seing this flag to anything other than the default of True is a security concern, you may want to try
using the ssh transport.

gitfs_ssl_verify: True

gitfs_mountpoint

New in version 2014.7.0.

Default: ''

Specifies a path on the salt fileserver from which gitfs remotes are served. Can be used in conjunction with
gitfs_root. Can also be configured on a per-remote basis, see here for more info.

gitfs_mountpoint: salt://foo/bar

Note: e salt:// protocol designation can be le off (in other words, foo/bar and salt://foo/bar are
equivalent).

gitfs_root

Default: ''

Serve files from a subdirectory within the repository, instead of the root. is is useful when there are files in the
repository that should not be available to the Salt fileserver. Can be used in conjunctionwithgitfs_mountpoint.

gitfs_root: somefolder/otherfolder

Changed in version 2014.7.0: Ability to specify gitfs roots on a per-remote basis was added. See here for more info.

gitfs_base

Default: master

Defines which branch/tag should be used as the base environment.

gitfs_base: salt

Changed in version 2014.7.0: Ability to specify the base on a per-remote basis was added. See here for more info.

gitfs_env_whitelist

New in version 2014.7.0.

Default: []

Used to restrict which environments are made available. Can speed up state runs if the repos in gitfs_remotes
contain many branches/tags. More information can be found in the GitFS Walkthrough.

gitfs_env_whitelist:
- base
- v1.*
- 'mybranch\d+'

414 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

gitfs_env_blacklist

New in version 2014.7.0.

Default: []

Used to restrict which environments are made available. Can speed up state runs if the repos in gitfs_remotes
contain many branches/tags. More information can be found in the GitFS Walkthrough.

gitfs_env_blacklist:
- base
- v1.*
- 'mybranch\d+'

GitFS Authentication Options

ese parameters only currently apply to the pygit2 gitfs provider. Examples of how to use these can be found in
the GitFS Walkthrough.

gitfs_user New in version 2014.7.0.

Default: ''

Along with gitfs_password, is used to authenticate to HTTPS remotes.

gitfs_user: git

gitfs_password New in version 2014.7.0.

Default: ''

Alongwithgitfs_user, is used to authenticate to HTTPS remotes. is parameter is not required if the repository
does not use authentication.

gitfs_password: mypassword

gitfs_insecure_auth New in version 2014.7.0.

Default: False

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote. is parameter enables authentication over
HTTP. Enable this at your own risk.

gitfs_insecure_auth: True

gitfs_pubkey New in version 2014.7.0.

Default: ''

Along with gitfs_privkey (and optionally gitfs_passphrase), is used to authenticate to SSH remotes. is
parameter (or its per-remote counterpart) is required for SSH remotes.

gitfs_pubkey: /path/to/key.pub

22.8. Configuring the Salt Master 415

Salt Documentation, Release 2014.7.6

gitfs_privkey New in version 2014.7.0.

Default: ''

Along with gitfs_pubkey (and optionally gitfs_passphrase), is used to authenticate to SSH remotes. is
parameter (or its per-remote counterpart) is required for SSH remotes.

gitfs_privkey: /path/to/key

gitfs_passphrase New in version 2014.7.0.

Default: ''

is parameter is optional, required only when the SSH key being used to authenticate is protected by a passphrase.

gitfs_passphrase: mypassphrase

hg: Mercurial Remote File Server Backend

hgfs_remotes

New in version 0.17.0.

Default: []

When using the hg fileserver backend at least one mercurial remote needs to be defined. e user running the salt
master will need read access to the repo.

e repos will be searched in order to find the file requested by a client and the first repo to have the file will return
it. Branches and/or bookmarks are translated into salt environments, as defined by the hgfs_branch_method
parameter.

hgfs_remotes:
- https://username@bitbucket.org/username/reponame

Note: As of 2014.7.0, it is possible to have per-repo versions of the hgfs_root, hgfs_mountpoint,
hgfs_base, and hgfs_branch_method parameters. For example:

hgfs_remotes:
- https://username@bitbucket.org/username/repo1

- base: saltstates
- https://username@bitbucket.org/username/repo2:

- root: salt
- mountpoint: salt://foo/bar/baz

- https://username@bitbucket.org/username/repo3:
- root: salt/states
- branch_method: mixed

hgfs_branch_method

New in version 0.17.0.

Default: branches

Defines the objects that will be used as fileserver environments.

416 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

• branches - Only branches and tags will be used

• bookmarks - Only bookmarks and tags will be used

• mixed - Branches, bookmarks, and tags will be used

hgfs_branch_method: mixed

Note: Starting in version 2014.1.0, the value of the hgfs_base parameter defines which branch is used as thebase
environment, allowing for a base environment to be used with an hgfs_branch_method of bookmarks.

Prior to this release, the default branch will be used as the base environment.

hgfs_mountpoint

New in version 2014.7.0.

Default: ''

Specifies a path on the salt fileserver from which hgfs remotes are served. Can be used in conjunction with
hgfs_root. Can also be configured on a per-remote basis, see here for more info.

hgfs_mountpoint: salt://foo/bar

Note: e salt:// protocol designation can be le off (in other words, foo/bar and salt://foo/bar are
equivalent).

hgfs_root

New in version 0.17.0.

Default: ''

Serve files from a subdirectory within the repository, instead of the root. is is useful when there are files in the
repository that should not be available to the Salt fileserver. Can be used in conjunction with hgfs_mountpoint.

hgfs_root: somefolder/otherfolder

Changed in version 2014.7.0: Ability to specify hgfs roots on a per-remote basis was added. See here for more info.

hgfs_base

New in version 2014.1.0.

Default: default

Defines which branch should be used as the base environment. Change this if hgfs_branch_method is set to
bookmarks to specify which bookmark should be used as the base environment.

hgfs_base: salt

22.8. Configuring the Salt Master 417

Salt Documentation, Release 2014.7.6

hgfs_env_whitelist

New in version 2014.7.0.

Default: []

Used to restrict which environments are made available. Can speed up state runs if your hgfs remotes contain many
branches/bookmarks/tags. Full names, globs, and regular expressions are supported. If using a regular expression,
the expression must match the entire minion ID.

If used, only branches/bookmarks/tags which match one of the specified expressions will be exposed as fileserver
environments.

If used in conjunction with hgfs_env_blacklist, then the subset of branches/bookmarks/tags which match
the whitelist but do not match the blacklist will be exposed as fileserver environments.

hgfs_env_whitelist:
- base
- v1.*
- 'mybranch\d+'

hgfs_env_blacklist

New in version 2014.7.0.

Default: []

Used to restrict which environments are made available. Can speed up state runs if your hgfs remotes contain many
branches/bookmarks/tags. Full names, globs, and regular expressions are supported. If using a regular expression,
the expression must match the entire minion ID.

If used, branches/bookmarks/tags which match one of the specified expressions will not be exposed as fileserver
environments.

If used in conjunction with hgfs_env_whitelist, then the subset of branches/bookmarks/tags which match
the whitelist but do not match the blacklist will be exposed as fileserver environments.

hgfs_env_blacklist:
- base
- v1.*
- 'mybranch\d+'

svn: Subversion Remote File Server Backend

svnfs_remotes

New in version 0.17.0.

Default: []

When using the svn fileserver backend at least one subversion remote needs to be defined. e user running the
salt master will need read access to the repo.

e repos will be searched in order to find the file requested by a client and the first repo to have the file will return
it. e trunk, branches, and tags become environments, with the trunk being the base environment.

svnfs_remotes:
- svn://foo.com/svn/myproject

418 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Note: As of 2014.7.0, it is possible to have per-repo versions of the following configuration parameters:
• svnfs_root

• svnfs_mountpoint

• svnfs_trunk

• svnfs_branches

• svnfs_tags

For example:

svnfs_remotes:
- svn://foo.com/svn/project1
- svn://foo.com/svn/project2:

- root: salt
- mountpoint: salt://foo/bar/baz

- svn//foo.com/svn/project3:
- root: salt/states
- branches: branch
- tags: tag

svnfs_mountpoint

New in version 2014.7.0.

Default: ''

Specifies a path on the salt fileserver from which svnfs remotes are served. Can be used in conjunction with
svnfs_root. Can also be configured on a per-remote basis, see here for more info.

svnfs_mountpoint: salt://foo/bar

Note: e salt:// protocol designation can be le off (in other words, foo/bar and salt://foo/bar are
equivalent).

svnfs_root

New in version 0.17.0.

Default: ''

Serve files from a subdirectory within the repository, instead of the root. is is useful when there are files in the
repository that should not be available to the Salt fileserver. Can be used in conjunctionwithsvnfs_mountpoint.

svnfs_root: somefolder/otherfolder

Changed in version 2014.7.0: Ability to specify svnfs roots on a per-remote basis was added. See here for more
info.

svnfs_trunk

New in version 2014.7.0.

22.8. Configuring the Salt Master 419

Salt Documentation, Release 2014.7.6

Default: trunk

Path relative to the root of the repository where the trunk is located. Can also be configured on a per-remote basis,
see here for more info.

svnfs_trunk: trunk

svnfs_branches

New in version 2014.7.0.

Default: branches

Path relative to the root of the repository where the branches are located. Can also be configured on a per-remote
basis, see here for more info.

svnfs_branches: branches

svnfs_tags

New in version 2014.7.0.

Default: tags

Path relative to the root of the repository where the tags are located. Can also be configured on a per-remote basis,
see here for more info.

svnfs_tags: tags

svnfs_env_whitelist

New in version 2014.7.0.

Default: []

Used to restrict which environments are made available. Can speed up state runs if your svnfs remotes contain
many branches/tags. Full names, globs, and regular expressions are supported. If using a regular expression, the
expression must match the entire minion ID.

If used, only branches/tags which match one of the specified expressions will be exposed as fileserver environments.

If used in conjunction with svnfs_env_blacklist, then the subset of branches/tags which match the whitelist
but do not match the blacklist will be exposed as fileserver environments.

svnfs_env_whitelist:
- base
- v1.*
- 'mybranch\d+'

svnfs_env_blacklist

New in version 2014.7.0.

Default: []

420 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Used to restrict which environments are made available. Can speed up state runs if your svnfs remotes contain
many branches/tags. Full names, globs, and regular expressions are supported. If using a regular expression, the
expression must match the entire minion ID.

If used, branches/tags which match one of the specified expressions will not be exposed as fileserver environments.

If used in conjunction with svnfs_env_whitelist, then the subset of branches/tags which match the whitelist
but do not match the blacklist will be exposed as fileserver environments.

svnfs_env_blacklist:
- base
- v1.*
- 'mybranch\d+'

minion: MinionFS Remote File Server Backend

minionfs_env

New in version 2014.7.0.

Default: base

Environment from which MinionFS files are made available.

minionfs_env: minionfs

minionfs_mountpoint

New in version 2014.7.0.

Default: ''

Specifies a path on the salt fileserver from which minionfs files are served.

minionfs_mountpoint: salt://foo/bar

Note: e salt:// protocol designation can be le off (in other words, foo/bar and salt://foo/bar are
equivalent).

minionfs_whitelist

New in version 2014.7.0.

Default: []

Used to restrict which minions' pushed files are exposed via minionfs. If using a regular expression, the expression
must match the entire minion ID.

If used, only the pushed files from minions which match one of the specified expressions will be exposed.

If used in conjunction with minionfs_blacklist, then the subset of hosts which match the whitelist but do not
match the blacklist will be exposed.

22.8. Configuring the Salt Master 421

Salt Documentation, Release 2014.7.6

minionfs_whitelist:
- base
- v1.*
- 'mybranch\d+'

minionfs_blacklist

New in version 2014.7.0.

Default: []

Used to restrict which minions' pushed files are exposed via minionfs. If using a regular expression, the expression
must match the entire minion ID.

If used, only the pushed files from minions which match one of the specified expressions will not be exposed.

If used in conjunction with minionfs_whitelist, then the subset of hosts which match the whitelist but do not
match the blacklist will be exposed.

minionfs_blacklist:
- base
- v1.*
- 'mybranch\d+'

22.8.7 Pillar Configuration

pillar_roots

Default:

base:
- /srv/pillar

Set the environments and directories used to hold pillar sls data. is configuration is the same as file_roots:

pillar_roots:
base:

- /srv/pillar
dev:

- /srv/pillar/dev
prod:

- /srv/pillar/prod

ext_pillar

e ext_pillar option allows for any number of external pillar interfaces to be called when populating pillar data.
e configuration is based on ext_pillar functions. e available ext_pillar functions can be found herein:

hps://github.com/saltstack/salt/blob/develop/salt/pillar

By default, the ext_pillar interface is not configured to run.

Default: None

422 Chapter 22. Reference

https://github.com/saltstack/salt/blob/develop/salt/pillar

Salt Documentation, Release 2014.7.6

ext_pillar:
- hiera: /etc/hiera.yaml
- cmd_yaml: cat /etc/salt/yaml
- reclass:

inventory_base_uri: /etc/reclass

ere are additional details at Pillars

pillar_source_merging_strategy

Default: smart

e pillar_source_merging_strategy option allows to configure merging strategy between different sources. It ac-
cepts 4 values:

• recurse:

it will merge recursively mapping of data. For example, theses 2 sources:

foo: 42
bar:

element1: True

bar:
element2: True

baz: quux

will be merged as:

foo: 42
bar:

element1: True
element2: True

baz: quux

• aggregate:

instructs aggregation of elements between sources that use the #!yamlex renderer.

For example, these two documents:

#!yamlex
foo: 42
bar: !aggregate {

element1: True
}
baz: !aggregate quux

#!yamlex
bar: !aggregate {

element2: True
}
baz: !aggregate quux2

will be merged as:

foo: 42
bar:

element1: True

22.8. Configuring the Salt Master 423

Salt Documentation, Release 2014.7.6

element2: True
baz:

- quux
- quux2

• overwrite:

Will use the behaviour of the 2014.1 branch and earlier.

Overwrites elements according the order in which they are processed.

First pillar processed:

A:
first_key: blah
second_key: blah

Second pillar processed:

A:
third_key: blah
fourth_key: blah

will be merged as:

A:
third_key: blah
fourth_key: blah

• smart (default):

Guesses the best strategy based on the ``renderer'' seing.

22.8.8 Syndic Server Seings

A Salt syndic is a Salt master used to pass commands from a higher Salt master to minions below the syndic. Using
the syndic is simple. If this is a master that will have syndic servers(s) below it, set the ``order_masters'' seing to
True. If this is a master that will be running a syndic daemon for passthrough the ``syndic_master'' seing needs to
be set to the location of the master server

Do not not forget that in other word it means that it shares with the local minion it's ID and PKI_DIR.

order_masters

Default: False

Extra data needs to be sent with publications if the master is controlling a lower level master via a syndic minion. If
this is the case the order_masters value must be set to True

order_masters: False

syndic_master

Default: None

If this master will be running a salt-syndic to connect to a higher level master, specify the higher level master with
this configuration value

424 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

syndic_master: masterofmasters

syndic_master_port

Default: 4506

If this master will be running a salt-syndic to connect to a higher level master, specify the higher level master port
with this configuration value

syndic_master_port: 4506

syndic_pidfile

Default: salt-syndic.pid

If this master will be running a salt-syndic to connect to a higher level master, specify the pidfile of the syndic
daemon.

syndic_pidfile: syndic.pid

syndic_log_file

Default: syndic.log

If this master will be running a salt-syndic to connect to a higher level master, specify the log_file of the syndic
daemon.

syndic_log_file: salt-syndic.log

22.8.9 Peer Publish Seings

Salt minions can send commands to other minions, but only if the minion is allowed to. By default ``Peer Publi-
cation'' is disabled, and when enabled it is enabled for specific minions and specific commands. is allows secure
compartmentalization of commands based on individual minions.

peer

Default: {}

econfiguration uses regular expressions tomatchminions and then a list of regular expressions tomatch functions.
e following will allow the minion authenticated as foo.example.com to execute functions from the test and pkg
modules
peer:

foo.example.com:
- test.*
- pkg.*

is will allow all minions to execute all commands:
peer:

.*:
- .*

22.8. Configuring the Salt Master 425

Salt Documentation, Release 2014.7.6

is is not recommended, since it would allow anyone who gets root on any single minion to instantly have root on
all of the minions!

By adding an additional layer you can limit the target hosts in addition to the accessible commands:
peer:

foo.example.com:
'db*':

- test.*
- pkg.*

peer_run

Default: {}

epeer_run option is used to open up runners on themaster to access from theminions. e peer_run configuration
matches the format of the peer configuration.

e following example would allow foo.example.com to execute the manage.up runner:
peer_run:

foo.example.com:
- manage.up

22.8.10 Master Logging Seings

log_file

Default: /var/log/salt/master

e master log can be sent to a regular file, local path name, or network location. See also log_file.

Examples:

log_file: /var/log/salt/master

log_file: file:///dev/log

log_file: udp://loghost:10514

log_level

Default: warning

e level of messages to send to the console. See also log_level.

log_level: warning

log_level_logfile

Default: warning

e level of messages to send to the log file. See also log_level_logfile.

426 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

log_level_logfile: warning

log_datefmt

Default: %H:%M:%S

e date and time format used in console log messages. See also log_datefmt.

log_datefmt: '%H:%M:%S'

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

e date and time format used in log file messages. See also log_datefmt_logfile.

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

log_fmt_console

Default: [%(levelname)-8s] %(message)s

e format of the console logging messages. See also log_fmt_console.

log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: %(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s

e format of the log file logging messages. See also log_fmt_logfile.

log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

is can be used to control logging levels more specifically. See also log_granular_levels.

22.8.11 Node Groups

Default: {}

Node groups allow for logical groupings of minion nodes. A group consists of a group name and a compound target.

nodegroups:
group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com or bl*.domain.com'
group2: 'G@os:Debian and foo.domain.com'

22.8. Configuring the Salt Master 427

Salt Documentation, Release 2014.7.6

22.8.12 Range Cluster Seings

range_server

Default: ''

e range server (and optional port) that serves your cluster information
hps://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

range_server: range:80

22.8.13 Include Configuration

default_include

Default: master.d/*.conf

e master can include configuration from other files. Per default the master will automatically include all config
files from master.d/*.conf where master.d is relative to the directory of the master configuration file.

include

Default: not defined

e master can include configuration from other files. To enable this, pass a list of paths to this option. e paths
can be either relative or absolute; if relative, they are considered to be relative to the directory the main minion
configuration file lives in. Paths can make use of shell-style globbing. If no files are matched by a path passed to this
option then the master will log a warning message.

Include files from a master.d directory in the same
directory as the master config file
include: master.d/*

Include a single extra file into the configuration
include: /etc/roles/webserver

Include several files and the master.d directory
include:

- extra_config
- master.d/*
- /etc/roles/webserver

22.8.14 Windows Soware Repo Seings

win_repo

Default: /srv/salt/win/repo

Location of the repo on the master

win_repo: '/srv/salt/win/repo'

428 Chapter 22. Reference

https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

Salt Documentation, Release 2014.7.6

win_repo_mastercachefile

Default: /srv/salt/win/repo/winrepo.p

win_repo_mastercachefile: '/srv/salt/win/repo/winrepo.p'

win_gitrepos

Default: ''

List of git repositories to include with the local repo

win_gitrepos:
- 'https://github.com/saltstack/salt-winrepo.git'

22.9 Configuring the Salt Minion

e Salt system is amazingly simple and easy to configure. e two components of the Salt system each have a
respective configuration file. e salt-master is configured via the master configuration file, and the salt-
minion is configured via the minion configuration file.

See also:

example minion configuration file

e Salt Minion configuration is very simple. Typically, the only value that needs to be set is the master value so the
minion knows where to locate its master.

By default, the salt-minion configuration will be in /etc/salt/minion. A notable exception is FreeBSD, where
the configuration will be in /usr/local/etc/salt/minion.

22.9.1 Minion Primary Configuration

master

Default: salt

e hostname or ipv4 of the master.

Default: salt

master: salt

e option can can also be set to a list of masters, enabling multi-master mode.

master:
- address1
- address2

Changed in version 2014.7.0: e master can be dynamically configured. e master value can be set to an module
function which will be executed and will assume that the returning value is the ip or hostname of the desired master.
If a function is being specified, then the master_type option must be set to func, to tell the minion that the value
is a function to be run and not a fully-qualified domain name.

master: module.function
master_type: func

22.9. Configuring the Salt Minion 429

Salt Documentation, Release 2014.7.6

In addition, instead of using multi-master mode, the minion can be configured to use the list of master addresses as
a failover list, trying the first address, then the second, etc. until the minion successfully connects. To enable this
behavior, set master_type to failover:

master:
- address1
- address2

master_type: failover

master_type

New in version 2014.7.0.

Default: str

e type of the master variable. Can be either func or failover.

If the master needs to be dynamically assigned by executing a function instead of reading in the static master value,
set this to func. is can be used to manage the minion's master seing from an execution module. By simply
changing the algorithm in the module to return a new master ip/fqdn, restart the minion and it will connect to the
new master.

master_type: func

If this option is set to failover, mastermust be a list of master addresses. e minion will then try each master
in the order specified in the list until it successfully connects.

master_type: failover

master_shuffle

New in version 2014.7.0.

Default: False

If master is a list of addresses, shuffle them before trying to connect to distribute the minions over all available
masters. is uses Python's random.shuffle method.

master_shuffle: True

retry_dns

Default: 30

Set the number of seconds to wait before aempting to resolve the master hostname if name resolution fails. Defaults
to 30 seconds. Set to zero if the minion should shutdown and not retry.

retry_dns: 30

master_port

Default: 4506

e port of the master ret server, this needs to coincide with the ret_port option on the Salt master.

430 Chapter 22. Reference

http://docs.python.org/2/library/random.html#random.shuffle

Salt Documentation, Release 2014.7.6

master_port: 4506

user

Default: root

e user to run the Salt processes

user: root

pidfile

Default: /var/run/salt-minion.pid

e location of the daemon's process ID file

pidfile: /var/run/salt-minion.pid

root_dir

Default: /

is directory is prepended to the following options: pki_dir, cachedir, log_file, sock_dir, and pid-
file.

root_dir: /

pki_dir

Default: /etc/salt/pki

e directory used to store the minion's public and private keys.

pki_dir: /etc/salt/pki

id

Default: the system's hostname

See also:

Salt Walkthrough

e Setting up a Salt Minion section contains detailed information on how the hostname is determined.

Explicitly declare the id for this minion to use. Since Salt uses detached ids it is possible to run multiple minions on
the same machine but with different ids.

id: foo.bar.com

22.9. Configuring the Salt Minion 431

Salt Documentation, Release 2014.7.6

append_domain

Default: None

Append a domain to a hostname in the event that it does not exist. is is useful for systems where
socket.getfqdn() does not actually result in a FQDN (for instance, Solaris).

append_domain: foo.org

cachedir

Default: /var/cache/salt

e location for minion cache data.

cachedir: /var/cache/salt

verify_env

Default: True

Verify and set permissions on configuration directories at startup.

verify_env: True

Note: Whenmarked as True the verify_env option requiresWRITE access to the configuration directory (/etc/salt/).
In certain situations such as mounting /etc/salt/ as read-only for templating this will create a stack trace when
state.highstate is called.

cache_jobs

Default: False

e minion can locally cache the return data from jobs sent to it, this can be a good way to keep track of the minion
side of the jobs the minion has executed. By default this feature is disabled, to enable set cache_jobs to True.

cache_jobs: False

sock_dir

Default: /var/run/salt/minion

e directory where Unix sockets will be kept.

sock_dir: /var/run/salt/minion

backup_mode

Default: []

Backup files replaced by file.managed and file.recurse under cachedir.

432 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

backup_mode: minion

acceptance_wait_time

Default: 10

e number of seconds to wait until aempting to re-authenticate with the master.

acceptance_wait_time: 10

random_reauth_delay

When the master key changes, the minion will try to re-auth itself to receive the new master key. In larger envi-
ronments this can cause a syn-flood on the master because all minions try to re-auth immediately. To prevent this
and have a minion wait for a random amount of time, use this optional parameter. e wait-time will be a random
number of seconds between 0 and the defined value.

random_reauth_delay: 60

acceptance_wait_time_max

Default: None

e maximum number of seconds to wait until aempting to re-authenticate with the master. If set, the wait will
increase by acceptance_wait_time seconds each iteration.

acceptance_wait_time_max: None

recon_default

Default: 1000

e interval in milliseconds that the socket should wait before trying to reconnect to the master (1000ms = 1 second).

recon_default: 1000

recon_max

Default: 10000

e maximum time a socket should wait. Each interval the time to wait is calculated by doubling the previous time.
If recon_max is reached, it starts again at the recon_default.

Short example:

• reconnect 1: the socket will wait `recon_default' milliseconds

• reconnect 2: `recon_default' * 2

• reconnect 3: (`recon_default' * 2) * 2

• reconnect 4: value from previous interval * 2

• reconnect 5: value from previous interval * 2

22.9. Configuring the Salt Minion 433

Salt Documentation, Release 2014.7.6

• reconnect x: if value >= recon_max, it starts again with recon_default

recon_max: 10000

recon_randomize

Default: True

Generate a random wait time on minion start. e wait time will be a random value between recon_default and
recon_default and recon_max. Having all minions reconnect with the same recon_default and recon_max value
kind of defeats the purpose of being able to change these seings. If all minions have the same values and the setup
is quite large (several thousand minions), they will still flood the master. e desired behavior is to have time-frame
within all minions try to reconnect.

recon_randomize: True

dns_check

Default: True

When healing, a dns_check is run. is is to make sure that the originally resolved dns has not changed. If this is
something that does not happen in your environment, set this value to False.

dns_check: True

ipc_mode

Default: ipc

Windows platforms lack POSIX IPC andmust rely on slower TCP based inter- process communications. Set ipc_mode
to tcp on such systems.

ipc_mode: ipc

tcp_pub_port

Default: 4510

Publish port used when ipc_mode is set to tcp.

tcp_pub_port: 4510

tcp_pull_port

Default: 4511

Pull port used when ipc_mode is set to tcp.

tcp_pull_port: 4511

434 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.9.2 Minion Module Management

disable_modules

Default: [] (all modules are enabled by default)

e event may occur in which the administrator desires that a minion should not be able to execute a certain module.
e sys module is built into the minion and cannot be disabled.

is seing can also tune the minion, as all modules are loaded into ram disabling modules will lover the minion's
ram footprint.

disable_modules:
- test
- solr

disable_returners

Default: [] (all returners are enabled by default)

If certain returners should be disabled, this is the place

disable_returners:
- mongo_return

module_dirs

Default: []

A list of extra directories to search for Salt modules

module_dirs:
- /var/lib/salt/modules

returner_dirs

Default: []

A list of extra directories to search for Salt returners

returners_dirs:
- /var/lib/salt/returners

states_dirs

Default: []

A list of extra directories to search for Salt states

states_dirs:
- /var/lib/salt/states

22.9. Configuring the Salt Minion 435

Salt Documentation, Release 2014.7.6

grains_dirs

Default: []

A list of extra directories to search for Salt grains

grains_dirs:
- /var/lib/salt/grains

render_dirs

Default: []

A list of extra directories to search for Salt renderers

render_dirs:
- /var/lib/salt/renderers

cython_enable

Default: False

Set this value to true to enable auto-loading and compiling of .pyx modules, is seing requires that gcc and
cython are installed on the minion

cython_enable: False

providers

Default: (empty)

A module provider can be statically overwrien or extended for the minion via the providers option. is can
be done on an individual basis in an SLS file, or globally here in the minion config, like below.

providers:
service: systemd

22.9.3 State Management Seings

renderer

Default: yaml_jinja

e default renderer used for local state executions

renderer: yaml_jinja

state_verbose

Default: False

state_verbose allows for the data returned from the minion to be more verbose. Normally only states that fail or
states that have changes are returned, but seing state_verbose to True will return all states that were checked

436 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

state_verbose: True

state_output

Default: full

e state_output seing changes if the output is the full multi line output for each changed state if set to `full', but
if set to `terse' the output will be shortened to a single line.

state_output: full

autoload_dynamic_modules

Default: True

autoload_dynamic_modules Turns on automatic loading of modules found in the environments on the master. is
is turned on by default, to turn of auto-loading modules when states run set this value to False

autoload_dynamic_modules: True

Default: True

clean_dynamic_modules keeps the dynamic modules on theminion in sync with the dynamic modules on themaster,
this means that if a dynamic module is not on the master it will be deleted from the minion. By default this is enabled
and can be disabled by changing this value to False

clean_dynamic_modules: True

environment

Default: None

Normally the minion is not isolated to any single environment on the master when running states, but the environ-
ment can be isolated on the minion side by statically seing it. Remember that the recommended way to manage
environments is to isolate via the top file.

environment: None

22.9.4 File Directory Seings

file_client

Default: remote

e client defaults to looking on the master server for files, but can be directed to look on the minion by seing this
parameter to local.

file_client: remote

22.9. Configuring the Salt Minion 437

Salt Documentation, Release 2014.7.6

file_roots

Default:

base:
- /srv/salt

When using a local file_client, this parameter is used to setup the fileserver's environments. is parameter
operates identically to the master config parameter of the same name.

file_roots:
base:

- /srv/salt
dev:

- /srv/salt/dev/services
- /srv/salt/dev/states

prod:
- /srv/salt/prod/services
- /srv/salt/prod/states

hash_type

Default: md5

e hash_type is the hash to use when discovering the hash of a file on the local fileserver. e default is md5, but
sha1, sha224, sha256, sha384 and sha512 are also supported.

hash_type: md5

pillar_roots

Default:

base:
- /srv/pillar

When using a local file_client, this parameter is used to setup the pillar environments.

pillar_roots:
base:

- /srv/pillar
dev:

- /srv/pillar/dev
prod:

- /srv/pillar/prod

22.9.5 Security Seings

open_mode

Default: False

Openmode can be used to clean out the PKI key received from the Salt master, turn on openmode, restart the minion,
then turn off open mode and restart the minion to clean the keys.

438 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

open_mode: False

verify_master_pubkey_sign

Default: False

Enables verification of the master-public-signature returned by the master in auth-replies. Please see the tutorial on
how to configure this properly Multimaster-PKI with Failover Tutorial

New in version 2014.7.0.

verify_master_pubkey_sign: True

If this is set to True, master_sign_pubkey must be also set to True in the master configuration file.

master_sign_key_name

Default: master_sign

e filename without the .pub suffix of the public key that should be used for verifying the signature from the master.
e file must be located in the minion's pki directory.

New in version 2014.7.0.

master_sign_key_name: <filename_without_suffix>

always_verify_signature

Default: False

If verify_master_pubkey_sign is enabled, the signature is only verified, if the public-key of the master
changes. If the signature should always be verified, this can be set to True.

New in version 2014.7.0.

always_verify_signature: True

22.9.6 Thread Seings

Default: True

Disable multiprocessing support by default when a minion receives a publication a new process is spawned and the
command is executed therein.

multiprocessing: True

22.9.7 Minion Logging Seings

log_file

Default: /var/log/salt/minion

e minion log can be sent to a regular file, local path name, or network location. See also log_file.

22.9. Configuring the Salt Minion 439

http://docs.saltstack.com/en/latest/topics/tutorials/multimaster_pki.html

Salt Documentation, Release 2014.7.6

Examples:

log_file: /var/log/salt/minion

log_file: file:///dev/log

log_file: udp://loghost:10514

log_level

Default: warning

e level of messages to send to the console. See also log_level.

log_level: warning

log_level_logfile

Default: warning

e level of messages to send to the log file. See also log_level_logfile.

log_level_logfile: warning

log_datefmt

Default: %H:%M:%S

e date and time format used in console log messages. See also log_datefmt.

log_datefmt: '%H:%M:%S'

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

e date and time format used in log file messages. See also log_datefmt_logfile.

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

log_fmt_console

Default: [%(levelname)-8s] %(message)s

e format of the console logging messages. See also log_fmt_console.

log_fmt_console: '[%(levelname)-8s] %(message)s'

440 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

log_fmt_logfile

Default: %(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s

e format of the log file logging messages. See also log_fmt_logfile.

log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

is can be used to control logging levels more specifically. See also log_granular_levels.

failhard

Default: False

Set the global failhard flag, this informs all states to stop running states at the moment a single state fails

failhard: False

22.9.8 Include Configuration

default_include

Default: minion.d/*.conf

e minion can include configuration from other files. Per default the minion will automatically include all config
files from minion.d/*.conf where minion.d is relative to the directory of the minion configuration file.

include

Default: not defined

e minion can include configuration from other files. To enable this, pass a list of paths to this option. e paths
can be either relative or absolute; if relative, they are considered to be relative to the directory the main minion
configuration file lives in. Paths can make use of shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.

Include files from a minion.d directory in the same
directory as the minion config file
include: minion.d/*.conf

Include a single extra file into the configuration
include: /etc/roles/webserver

Include several files and the minion.d directory
include:

- extra_config
- minion.d/*
- /etc/roles/webserver

22.9. Configuring the Salt Minion 441

Salt Documentation, Release 2014.7.6

22.9.9 Frozen Build Update Seings

ese options control how salt.modules.saltutil.update() works with esky frozen apps. For more in-
formation look at hps://github.com/cloudmatrix/esky/.

update_url

Default: False (Update feature is disabled)

e url to use when looking for application updates. Esky depends on directory listings to search for new versions.
A webserver running on your Master is a good starting point for most setups.

update_url: 'http://salt.example.com/minion-updates'

update_restart_services

Default: [] (service restarting on update is disabled)

A list of services to restart when the minion soware is updated. is would typically just be a list containing the
minion's service name, but you may have other services that need to go with it.

update_restart_services: ['salt-minion']

22.10 Running the Salt Master/Minion as an Unprivileged User

While the default setup runs the master and minion as the root user, some may consider it an extra measure of
security to run the master as a non-root user. Keep in mind that doing so does not change the master's capability
to access minions as the user they are running as. Due to this many feel that running the master as a non-root user
does not grant any real security advantage which is why the master has remained as root by default.

Note: Some of Salt's operations cannot execute correctly when the master is not running as root, specifically the
pam external auth system, as this system needs root access to check authentication.

As of Salt 0.9.10 it is possible to run Salt as a non-root user. is can be done by seing the user parameter in the
master configuration file. and restarting the salt-master service.

e minion has it's own user parameter as well, but running the minion as an unprivileged user will keep it from
making changes to things like users, installed packages, etc. unless access controls (sudo, etc.) are setup on the
minion to permit the non-root user to make the needed changes.

In order to allow Salt to successfully run as a non-root user, ownership and permissions need to be set such that the
desired user can read from and write to the following directories (and their subdirectories, where applicable):

• /etc/salt

• /var/cache/salt

• /var/log/salt

• /var/run/salt

Ownership can be easily changed with chown, like so:

chown -R user /etc/salt /var/cache/salt /var/log/salt /var/run/salt

442 Chapter 22. Reference

https://github.com/cloudmatrix/esky/

Salt Documentation, Release 2014.7.6

Warning: Running either the master or minion with the root_dir parameter specified will affect these paths,
as will seing options like pki_dir, cachedir, log_file, and other options that normally live in the above
directories.

22.11 Logging

e salt project tries to get the logging to work for you and help us solve any issues you might find along the way.

If you want to get some more information on the niy-griy of salt's logging system, please head over to the logging
development document, if all you're aer is salt's logging configurations, please continue reading.

22.11.1 Available Configuration Seings

log_file

e log records can be sent to a regular file, local path name, or network location. Remote logging works best when
configured to use rsyslogd(8) (e.g.: file:///dev/log), with rsyslogd(8) configured for network logging. e for-
mat for remote addresses is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-
facility>.

Default: Dependent of the binary being executed, for example, for salt-master, /var/log/salt/master.

Examples:

log_file: /var/log/salt/master

log_file: /var/log/salt/minion

log_file: file:///dev/log

log_file: udp://loghost:10514

log_level

Default: warning

e level of log record messages to send to the console. One of all, garbage, trace, debug, info, warning,
error, critical, quiet.

log_level: warning

log_level_logfile

Default: warning

e level of messages to send to the log file. One of all, garbage, trace, debug, info, warning, error,
critical, quiet.

log_level_logfile: warning

22.11. Logging 443

Salt Documentation, Release 2014.7.6

log_datefmt

Default: %H:%M:%S

e date and time format used in console log messages. Allowed date/time formaing can be seen on
time.strftime.

log_datefmt: '%H:%M:%S'

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

e date and time format used in log file messages. Allowed date/time formaing can be seen on time.strftime.

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

log_fmt_console

Default: [%(levelname)-8s] %(message)s

e format of the console logging messages. Allowed formaing options can be seen on the LogRecord aributes.

log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: %(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s

e format of the log file logging messages. Allowed formaing options can be seen on the LogRecord aributes.

log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

is can be used to control logging levels more specifically. e example sets the main salt library at the `warning'
level, but sets salt.modules to log at the debug level:

log_granular_levels:
'salt': 'warning'
'salt.modules': 'debug'

External Logging Handlers

Besides the internal logging handlers used by salt, there are some external which can be used, see the external logging
handlers document.

22.12 External Logging Handlers

444 Chapter 22. Reference

http://docs.python.org/2/library/time.html#time.strftime
http://docs.python.org/2/library/time.html#time.strftime
http://docs.python.org/2/library/logging.html#logrecord-attributes
http://docs.python.org/2/library/logging.html#logrecord-attributes

Salt Documentation, Release 2014.7.6

logstash_mod Logstash Logging Handler
sentry_mod Sentry Logging Handler

22.12.1 Logstash Logging Handler

New in version 0.17.0.

is module provides some Logstash logging handlers.

UDP Logging Handler

For versions of Logstash before 1.2.0:

In the salt configuration file:

logstash_udp_handler:
host: 127.0.0.1
port: 9999
version: 0

In the Logstash configuration file:

input {
udp {

type => "udp-type"
format => "json_event"

}
}

For version 1.2.0 of Logstash and newer:

In the salt configuration file:

logstash_udp_handler:
host: 127.0.0.1
port: 9999
version: 1

In the Logstash configuration file:

input {
udp {

port => 9999
codec => json

}
}

Please read the UDP input configuration page for additional information.

ZeroMQ Logging Handler

For versions of Logstash before 1.2.0:

In the salt configuration file:

22.12. External Logging Handlers 445

http://logstash.net
http://logstash.net
http://logstash.net
http://logstash.net
http://logstash.net
http://logstash.net/docs/latest/inputs/udp
http://logstash.net

Salt Documentation, Release 2014.7.6

logstash_zmq_handler:
address: tcp://127.0.0.1:2021
version: 0

In the Logstash configuration file:

input {
zeromq {

type => "zeromq-type"
mode => "server"
topology => "pubsub"
address => "tcp://0.0.0.0:2021"
charset => "UTF-8"
format => "json_event"

}
}

For version 1.2.0 of Logstash and newer:

In the salt configuration file:

logstash_zmq_handler:
address: tcp://127.0.0.1:2021
version: 1

In the Logstash configuration file:

input {
zeromq {

topology => "pubsub"
address => "tcp://0.0.0.0:2021"
codec => json

}
}

Please read the ZeroMQ input configuration page for additional information.

Important Logstash Setting

One of the most important seings that you should not forget on your Logstash configuration file regarding these
logging handlers is format. Both the UDP and ZeroMQ inputs need to have format as json_event which is
what we send over the wire.

Log Level

Both the logstash_udp_handler and the logstash_zmq_handler configuration sections accept an addi-
tional seing log_level. If not set, the logging level used will be the one defined for log_level in the global
configuration file section.

HWM

e high water mark for the ZMQ socket seing. Only applicable for the logstash_zmq_handler.

Inspiration

is work was inspired in pylogstash, python-logstash, canary and the PyZMQ logging handler.

446 Chapter 22. Reference

http://logstash.net
http://logstash.net
http://logstash.net
http://logstash.net/docs/latest/inputs/zeromq
http://logstash.net
http://api.zeromq.org/3-2:zmq-setsockopt
https://github.com/turtlebender/pylogstash
https://github.com/vklochan/python-logstash
https://github.com/ryanpetrello/canary
https://github.com/zeromq/pyzmq/blob/master/zmq/log/handlers.py

Salt Documentation, Release 2014.7.6

22.12.2 Sentry Logging Handler

New in version 0.17.0.

is module provides a Sentry logging handler.

Note

e Raven library needs to be installed on the system for this logging handler to be available.

Configuring the python Sentry client, Raven, should be done under the sentry_handler configuration key. At
the bare minimum, you need to define the DSN. As an example:

sentry_handler:
dsn: https://pub-key:secret-key@app.getsentry.com/app-id

More complex configurations can be achieved, for example:

sentry_handler:
servers:

- https://sentry.example.com
- http://192.168.1.1

project: app-id
public_key: deadbeefdeadbeefdeadbeefdeadbeef
secret_key: beefdeadbeefdeadbeefdeadbeefdead

All the client configuration keys are supported, please see the Raven client documentation.

e default logging level for the sentry handler is ERROR. If you wish to define a different one, define log_level
under the sentry_handler configuration key:

sentry_handler:
dsn: https://pub-key:secret-key@app.getsentry.com/app-id
log_level: warning

e available log levels are those also available for the salt cli tools and configuration; salt --help should give
you the required information.

Threaded Transports

Raven's documents rightly suggest using its threaded transport for critical applications. However, don't forget that
if you start having troubles with Salt aer enabling the threaded transport, please try switching to a non-threaded
transport to see if that fixes your problem.

22.13 Salt File Server

Salt comes with a simple file server suitable for distributing files to the Salt minions. e file server is a stateless
ZeroMQ server that is built into the Salt master.

e main intent of the Salt file server is to present files for use in the Salt state system. With this said, the Salt file
server can be used for any general file transfer from the master to the minions.

22.13. Salt File Server 447

https://getsentry.com
http://raven.readthedocs.org
https://getsentry.com
http://raven.readthedocs.org
http://raven.readthedocs.org/en/latest/config/index.html#the-sentry-dsn
http://raven.readthedocs.org/en/latest/config/index.html#client-arguments

Salt Documentation, Release 2014.7.6

22.13.1 File Server Backends

In Salt 0.12.0, the modular fileserver was introduced. is feature added the ability for the Salt Master to integrate
different file server backends. File server backends allow the Salt file server to act as a transparent bridge to external
resources. A good example of this is the git backend, which allows Salt to serve files sourced from one or more git
repositories, but there are several others as well. Click here for a full list of Salt's fileserver backends.

Enabling a Fileserver Backend

Fileserver backends can be enabled with the fileserver_backend option.

fileserver_backend:
- git

See the documentation for each backend to find the correct value to add to fileserver_backend in order to
enable them.

Using Multiple Backends

If fileserver_backend is not defined in the Master config file, Salt will use the roots backend, but the file-
server_backend option supports multiple backends. When more than one backend is in use, the files from the
enabled backends are merged into a single virtual filesystem. When a file is requested, the backends will be searched
in order for that file, and the first backend to match will be the one which returns the file.

fileserver_backend:
- roots
- git

With this configuration, the environments and files defined in the file_roots parameter will be searched first,
and if the file is not found then the git repositories defined in gitfs_remotes will be searched.

Environments

Just as the order of the values in fileserver_backend maers, so too does the order in which differ-
ent sources are defined within a fileserver environment. For example, given the below file_roots con-
figuration, if both /srv/salt/dev/foo.txt and /srv/salt/prod/foo.txt exist on the Master, then
salt://foo.txt would point to /srv/salt/dev/foo.txt in the dev environment, but it would point
to /srv/salt/prod/foo.txt in the base environment.

file_roots:
base:

- /srv/salt/prod
qa:

- /srv/salt/qa
- /srv/salt/prod

dev:
- /srv/salt/dev
- /srv/salt/qa
- /srv/salt/prod

Similarly, when using the git backend, if both repositories defined below have a hotfix23 branch/tag, and both
of them also contain the file bar.txt in the root of the repository at that branch/tag, then salt://bar.txt in
the hotfix23 environment would be served from the first repository.

448 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

gitfs_remotes:
- https://mydomain.tld/repos/first.git
- https://mydomain.tld/repos/second.git

Note: Environments map differently based on the fileserver backend. For instance, the mappings are explic-
itly defined in roots backend, while in the VCS backends (git, hg, svn) the environments are created from
branches/tags/bookmarks/etc. For the minion backend, the files are all in a single environment, which is specified
by the minionfs_env option.

See the documentation for each backend for a more detailed explanation of how environments are mapped.

22.13.2 Dynamic Module Distribution

New in version 0.9.5.

Salt Python modules can be distributed automatically via the Salt file server. Under the root of any environment
defined via the file_roots option on the master server directories corresponding to the type of module can be
used.

e directories are prepended with an underscore:

1. _modules

2. _grains

3. _renderers

4. _returners

5. _states

e contents of these directories need to be synced over to the minions aer Python modules have been created in
them. ere are a number of ways to sync the modules.

Sync Via States

e minion configuration contains an option autoload_dynamic_modules which defaults to True. is op-
tion makes the state system refresh all dynamic modules when states are run. To disable this behavior set au-
toload_dynamic_modules to False in the minion config.

When dynamic modules are autoloaded via states, modules only pertinent to the environments matched in the
master's top file are downloaded.

is is important to remember, because modules can be manually loaded from any specific environment that envi-
ronment specific modules will be loaded when a state run is executed.

Sync Via the saltutil Module

e saltutil module has a number of functions that can be used to sync all or specific dynamic modules. e saltutil
module function saltutil.sync_all will sync all module types over to a minion. For more information see:
salt.modules.saltutil

22.13. Salt File Server 449

Salt Documentation, Release 2014.7.6

22.13.3 File Server Configuration

e Salt file server is a high performance file server wrien in ZeroMQ. It manages large files quickly and with lile
overhead, and has been optimized to handle small files in an extremely efficient manner.

e Salt file server is an environment aware file server. is means that files can be allocated within many root
directories and accessed by specifying both the file path and the environment to search. e individual environments
can span across multiple directory roots to create overlays and to allow for files to be organized in many flexible
ways.

Environments

e Salt file server defaults to the mandatory base environment. is environment MUST be defined and is used
to download files when no environment is specified.

Environments allow for files and sls data to be logically separated, but environments are not isolated from each other.
is allows for logical isolation of environments by the engineer using Salt, but also allows for information to be
used in multiple environments.

Directory Overlay

e environment seing is a list of directories to publish files from. ese directories are searched in order to
find the specified file and the first file found is returned.

is means that directory data is prioritized based on the order in which they are listed. In the case of this
file_roots configuration:

file_roots:
base:

- /srv/salt/base
- /srv/salt/failover

If a file's URI is salt://httpd/httpd.conf, it will first search for the file at
/srv/salt/base/httpd/httpd.conf. If the file is found there it will be returned. If the file is not
found there, then /srv/salt/failover/httpd/httpd.conf will be used for the source.

is allows for directories to be overlaid and prioritized based on the order they are defined in the configuration.

It is also possible to have file_roots which supports multiple environments:

file_roots:
base:

- /srv/salt/base
dev:

- /srv/salt/dev
- /srv/salt/base

prod:
- /srv/salt/prod
- /srv/salt/base

is example ensures that each environment will check the associated environment directory for files first. If a file
is not found in the appropriate directory, the system will default to using the base directory.

Local File Server

New in version 0.9.8.

450 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

e file server can be rerouted to run from the minion. is is primarily to enable running Salt states without a Salt
master. To use the local file server interface, copy the file server data to the minion and set the file_roots option on
the minion to point to the directories copied from the master. Once the minion file_roots option has been set,
change the file_client option to local to make sure that the local file server interface is used.

22.13.4 The cp Module

e cp module is the home of minion side file server operations. e cp module is used by the Salt state system,
salt-cp and can be used to distribute files presented by the Salt file server.

Environments

Since the file server is made to work with the Salt state system, it supports environments. e environments are
defined in the master config file and when referencing an environment the file specified will be based on the root
directory of the environment.

get_file

e cp.get_file function can be used on the minion to download a file from the master, the syntax looks like this:

salt '*' cp.get_file salt://vimrc /etc/vimrc

is will instruct all Salt minions to download the vimrc file and copy it to /etc/vimrc

Template rendering can be enabled on both the source and destination file names like so:

salt '*' cp.get_file "salt://{{grains.os}}/vimrc" /etc/vimrc template=jinja

is example would instruct all Salt minions to download the vimrc from a directory with the same name as their
OS grain and copy it to /etc/vimrc

For larger files, the cp.get_file module also supports gzip compression. Because gzip is CPU-intensive, this should
only be used in scenarios where the compression ratio is very high (e.g. prey-printed JSON or YAML files).

To use compression, use the gzip named argument. Valid values are integers from 1 to 9, where 1 is the lightest
compression and 9 the heaviest. In other words, 1 uses the least CPU on the master (and minion), while 9 uses the
most.

salt '*' cp.get_file salt://vimrc /etc/vimrc gzip=5

Finally, note that by default cp.get_file does not create new destination directories if they do not exist. To change
this, use the makedirs argument:

salt '*' cp.get_file salt://vimrc /etc/vim/vimrc makedirs=True

In this example, /etc/vim/ would be created if it didn't already exist.

get_dir

e cp.get_dir function can be used on the minion to download an entire directory from the master. e syntax is
very similar to get_file:

salt '*' cp.get_dir salt://etc/apache2 /etc

cp.get_dir supports template rendering and gzip compression arguments just like get_file:

22.13. Salt File Server 451

Salt Documentation, Release 2014.7.6

salt '*' cp.get_dir salt://etc/{{pillar.webserver}} /etc gzip=5 template=jinja

22.13.5 File Server Client API

A client API is available which allows for modules and applications to be wrien which make use of the Salt file
server.

e file server uses the same authentication and encryption used by the rest of the Salt system for network commu-
nication.

FileClient Class

e FileClient class is used to set up the communication from the minion to the master. When creating a FileClient
object the minion configuration needs to be passed in. When using the FileClient from within a minion module the
built in __opts__ data can be passed:

import salt.minion

def get_file(path, dest, env='base'):
'''
Used to get a single file from the Salt master

CLI Example:
salt '*' cp.get_file salt://vimrc /etc/vimrc
'''
Create the FileClient object
client = salt.minion.FileClient(__opts__)
Call get_file
return client.get_file(path, dest, False, env)

Using the FileClient class outside of a minion module where the __opts__ data is not available, it needs to be
generated:

import salt.minion
import salt.config

def get_file(path, dest, env='base'):
'''
Used to get a single file from the Salt master
'''
Get the configuration data
opts = salt.config.minion_config('/etc/salt/minion')
Create the FileClient object
client = salt.minion.FileClient(opts)
Call get_file
return client.get_file(path, dest, False, env)

22.14 Full list of builtin fileserver modules

gitfs Git Fileserver Backend
hgfs Mercurial Fileserver Backend

Continued on next page

452 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Table 22.4 -- continued from previous page
minionfs Fileserver backend which serves files pushed to the Master
roots e default file server backend
s3fs Amazon S3 Fileserver Backend
svnfs Subversion Fileserver Backend

22.14.1 salt.fileserver.gitfs

Git Fileserver Backend

With this backend, branches and tags in a remote git repository are exposed to salt as different environments.

To enable, add git to the fileserver_backend option in the Master config file.

fileserver_backend:
- git

As of Salt 2014.7.0, the Git fileserver backend supports GitPython, pygit2, and dulwich to provide the Python interface
to git. If more than one of these are present, the order of preference for which one will be chosen is the same as the
order in which they were listed: pygit2, GitPython, dulwich (keep in mind, this order is subject to change).

An optional master config parameter (gitfs_provider) can be used to specify which provider should be used.

More detailed information on how to use gitfs can be found in the Gitfs Walkthrough.

Note: Minimum requirements
To use GitPython for gitfs requires a minimum GitPython version of 0.3.0, as well as the git CLI utility. Instructions
for installing GitPython can be found here.

To use pygit2 for gitfs requires a minimum pygit2 version of 0.20.3. pygit2 0.20.3 requires libgit2 0.20.0. pygit2 and
libgit2 are developed alongside one another, so it is recommended to keep them both at the same major release to
avoid unexpected behavior. For example, pygit2 0.21.x requires libgit2 0.21.x, pygit2 0.22.x will require libgit2 0.22.x,
etc.

To find stale refs, pygit2 additionally requires the git CLI utility to be installed.

salt.fileserver.gitfs.clear_cache()
Completely clear gitfs cache

salt.fileserver.gitfs.clear_lock(remote=None)
Clear update.lk

remote can either be a dictionary containing repo configuration information, or a paern. If the laer, then
remotes for which the URL matches the paern will be locked.

salt.fileserver.gitfs.dir_list(load)
Return a list of all directories on the master

salt.fileserver.gitfs.envs(ignore_cache=False, skip_clean=False)
Return a list of refs that can be used as environments

salt.fileserver.gitfs.file_hash(load, fnd)
Return a file hash, the hash type is set in the master config file

salt.fileserver.gitfs.file_list(load)
Return a list of all files on the file server in a specified environment

salt.fileserver.gitfs.file_list_emptydirs(load)
Return a list of all empty directories on the master

22.14. Full list of builtin fileserver modules 453

https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://www.samba.org/~jelmer/dulwich/
https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://libgit2.github.com/
https://github.com/libgit2/pygit2
https://libgit2.github.com/
https://github.com/libgit2/pygit2
https://libgit2.github.com/
https://github.com/libgit2/pygit2
https://libgit2.github.com/

Salt Documentation, Release 2014.7.6

salt.fileserver.gitfs.find_file(path, tgt_env='base', **kwargs)
Find the first file to match the path and ref, read the file out of git and send the path to the newly cached file

salt.fileserver.gitfs.init()
Return the git repo object for this session

salt.fileserver.gitfs.lock(remote=None)
Place an update.lk

remote can either be a dictionary containing repo configuration information, or a paern. If the laer, then
remotes for which the URL matches the paern will be locked.

salt.fileserver.gitfs.serve_file(load, fnd)
Return a chunk from a file based on the data received

salt.fileserver.gitfs.symlink_list(load)
Return a dict of all symlinks based on a given path in the repo

salt.fileserver.gitfs.update()
Execute a git fetch on all of the repos

22.14.2 salt.fileserver.hgfs

Mercurial Fileserver Backend

To enable, add hg to the fileserver_backend option in the Master config file.

fileserver_backend:
- hg

Aer enabling this backend, branches, bookmarks, and tags in a remote mercurial repository are exposed to salt as
different environments. is feature is managed by the fileserver_backend option in the salt master config
file.

is fileserver has an additional option hgfs_branch_method that will set the desired branch method. Possible
values are: branches, bookmarks, or mixed. If using branches or mixed, the default branch will be
mapped to base.

Changed in version 2014.1.0: e hgfs_basemaster config parameter was added, allowing for a branch other than
default to be used for the base environment, and allowing for a base environment to be specified when using
an hgfs_branch_method of bookmarks.

depends

• mercurial

• python bindings for mercurial (python-hglib)

salt.fileserver.hgfs.clear_cache()
Completely clear hgfs cache

salt.fileserver.hgfs.clear_lock(remote=None)
Clear update.lk

remote can either be a dictionary containing repo configuration information, or a paern. If the laer, then
remotes for which the URL matches the paern will be locked.

salt.fileserver.hgfs.dir_list(load)
Return a list of all directories on the master

salt.fileserver.hgfs.envs(ignore_cache=False)
Return a list of refs that can be used as environments

454 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.fileserver.hgfs.file_hash(load, fnd)
Return a file hash, the hash type is set in the master config file

salt.fileserver.hgfs.file_list(load)
Return a list of all files on the file server in a specified environment

salt.fileserver.hgfs.file_list_emptydirs(load)
Return a list of all empty directories on the master

salt.fileserver.hgfs.find_file(path, tgt_env='base', **kwargs)
Find the first file to match the path and ref, read the file out of hg and send the path to the newly cached file

salt.fileserver.hgfs.init()
Return a list of hglib objects for the various hgfs remotes

salt.fileserver.hgfs.lock(remote=None)
Place an update.lk

remote can either be a dictionary containing repo configuration information, or a paern. If the laer, then
remotes for which the URL matches the paern will be locked.

salt.fileserver.hgfs.serve_file(load, fnd)
Return a chunk from a file based on the data received

salt.fileserver.hgfs.update()
Execute an hg pull on all of the repos

22.14.3 salt.fileserver.minionfs

Fileserver backend which serves files pushed to the Master

e cp.push function allows Minions to push files up to the Master. Using this backend, these pushed files are
exposed to other Minions via the Salt fileserver.

To enable minionfs, file_recv needs to be set to True in the master config file (otherwise cp.push will not be
allowed to push files to the Master), and minion must be added to the fileserver_backends list.

fileserver_backend:
- minion

Other minionfs seings include: minionfs_whitelist, minionfs_blacklist, min-
ionfs_mountpoint, and minionfs_env.

See also:

MinionFS Backend Walkthrough

salt.fileserver.minionfs.dir_list(load)
Return a list of all directories on the master

CLI Example:

$ salt 'source-minion' cp.push /absolute/path/file # Push the file to the master
$ salt 'destination-minion' cp.list_master_dirs
destination-minion:

- source-minion/absolute
- source-minion/absolute/path

salt.fileserver.minionfs.envs()
Returns the one environment specified for minionfs in the master configuration.

22.14. Full list of builtin fileserver modules 455

Salt Documentation, Release 2014.7.6

salt.fileserver.minionfs.file_hash(load, fnd)
Return a file hash, the hash type is set in the master config file

salt.fileserver.minionfs.file_list(load)
Return a list of all files on the file server in a specified environment

salt.fileserver.minionfs.find_file(path, tgt_env='base', **kwargs)
Search the environment for the relative path

salt.fileserver.minionfs.serve_file(load, fnd)
Return a chunk from a file based on the data received

CLI Example:

Push the file to the master
$ salt 'source-minion' cp.push /path/to/the/file
$ salt 'destination-minion' cp.get_file salt://source-minion/path/to/the/file /destination/file

salt.fileserver.minionfs.update()
When we are asked to update (regular interval) lets reap the cache

22.14.4 salt.fileserver.roots

e default file server backend

is fileserver backend serves files from the Master's local filesystem. If fileserver_backend is not defined in
the Master config file, then this backend is enabled by default. If it is defined then roots must be in the file-
server_backend list to enable this backend.

fileserver_backend:
- roots

Fileserver environments are defined using the file_roots configuration option.

salt.fileserver.roots.dir_list(load)
Return a list of all directories on the master

salt.fileserver.roots.envs()
Return the file server environments

salt.fileserver.roots.file_hash(load, fnd)
Return a file hash, the hash type is set in the master config file

salt.fileserver.roots.file_list(load)
Return a list of all files on the file server in a specified environment

salt.fileserver.roots.file_list_emptydirs(load)
Return a list of all empty directories on the master

salt.fileserver.roots.find_file(path, saltenv='base', env=None, **kwargs)
Search the environment for the relative path

salt.fileserver.roots.serve_file(load, fnd)
Return a chunk from a file based on the data received

salt.fileserver.roots.symlink_list(load)
Return a dict of all symlinks based on a given path on the Master

salt.fileserver.roots.update()
When we are asked to update (regular interval) lets reap the cache

456 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.14.5 salt.fileserver.s3fs

Amazon S3 Fileserver Backend

is backend exposes directories in S3 buckets as Salt environments. To enable this backend, add s3fs to the
fileserver_backend option in the Master config file.

fileserver_backend:
- s3fs

S3 credentials must also be set in the master config file:

s3.keyid: GKTADJGHEIQSXMKKRBJ08H
s3.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

Alternatively, if on EC2 these credentials can be automatically loaded from instance metadata.

is fileserver supports two modes of operation for the buckets:

1. A single buet per environment

s3.buckets:
production:

- bucket1
- bucket2

staging:
- bucket3
- bucket4

2. Multiple environments per buet

s3.buckets:
- bucket1
- bucket2
- bucket3
- bucket4

Note that bucket names must be all lowercase both in the AWS console and in Salt, otherwise you may encounter
SignatureDoesNotMatch errors.

A multiple-environment bucket must adhere to the following root directory structure:

s3://<bucket name>/<environment>/<files>

Note: is fileserver back-end requires the use of the MD5 hashing algorithm. MD5 may not be compliant with all
security policies.

salt.fileserver.s3fs.dir_list(load)
Return a list of all directories on the master

salt.fileserver.s3fs.envs()
Return a list of directories within the bucket that can be used as environments.

salt.fileserver.s3fs.file_hash(load, fnd)
Return an MD5 file hash

salt.fileserver.s3fs.file_list(load)
Return a list of all files on the file server in a specified environment

salt.fileserver.s3fs.file_list_emptydirs(load)
Return a list of all empty directories on the master

22.14. Full list of builtin fileserver modules 457

Salt Documentation, Release 2014.7.6

salt.fileserver.s3fs.find_file(path, saltenv='base', env=None, **kwargs)
Look through the buckets cache file for a match. If the field is found, it is retrieved from S3 only if its cached
version is missing, or if the MD5 does not match.

salt.fileserver.s3fs.serve_file(load, fnd)
Return a chunk from a file based on the data received

salt.fileserver.s3fs.update()
Update the cache file for the bucket.

22.14.6 salt.fileserver.svnfs

Subversion Fileserver Backend

Aer enabling this backend, branches, and tags in a remote subversion repository are exposed to salt as different
environments. To enable this backend, add svn to the fileserver_backend option in the Master config file.

fileserver_backend:
- svn

is backend assumes a standard svn layout with directories for branches, tags, and trunk, at the repository
root.

depends

• subversion

• pysvn

Changed in version 2014.7.0: e paths to the trunk, branches, and tags have been made configurable, via the config
options svnfs_trunk, svnfs_branches, and svnfs_tags. svnfs_mountpoint was also added. Finally,
support for per-remote configuration parameters was added. See the documentation for more information.

salt.fileserver.svnfs.clear_cache()
Completely clear svnfs cache

salt.fileserver.svnfs.clear_lock(remote=None)
Clear update.lk

remote can either be a dictionary containing repo configuration information, or a paern. If the laer, then
remotes for which the URL matches the paern will be locked.

salt.fileserver.svnfs.dir_list(load)
Return a list of all directories on the master

salt.fileserver.svnfs.envs(ignore_cache=False)
Return a list of refs that can be used as environments

salt.fileserver.svnfs.file_hash(load, fnd)
Return a file hash, the hash type is set in the master config file

salt.fileserver.svnfs.file_list(load)
Return a list of all files on the file server in a specified environment

salt.fileserver.svnfs.file_list_emptydirs(load)
Return a list of all empty directories on the master

salt.fileserver.svnfs.find_file(path, tgt_env='base', **kwargs)
Find the first file to match the path and ref. is operates similarly to the roots file sever but with assumptions
of the directory structure based on svn standard practices.

458 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.fileserver.svnfs.init()
Return the list of svn remotes and their configuration information

salt.fileserver.svnfs.lock(remote=None)
Place an update.lk

remote can either be a dictionary containing repo configuration information, or a paern. If the laer, then
remotes for which the URL matches the paern will be locked.

salt.fileserver.svnfs.serve_file(load, fnd)
Return a chunk from a file based on the data received

salt.fileserver.svnfs.update()
Execute an svn update on all of the repos

22.15 Salt code and internals

Reference documentation on Salt's internal code.

22.15.1 Contents

salt.serializers

salt.utils.aggregation

is library allows to introspect dataset and aggregate nodes when it is instructed.

Note: e following examples with be expressed in YAML for convenience sake:
• !aggr-scalar will refer to Scalar python function

• !aggr-map will refer to Map python object

• !aggr-seq will refer for Sequence python object

How to instructs merging is yaml document have duplicate keys:

foo: !aggr-scalar first
foo: !aggr-scalar second
bar: !aggr-map {first: foo}
bar: !aggr-map {second: bar}
baz: !aggr-scalar 42

but tagged values instruct salt that overlapping values they can be merged together:

foo: !aggr-seq [first, second]
bar: !aggr-map {first: foo, second: bar}
baz: !aggr-seq [42]

Default merge strategy is keep untoued For example, this yaml document have still duplicate keys, but does
not instruct aggregation:

22.15. Salt code and internals 459

Salt Documentation, Release 2014.7.6

foo: first
foo: second
bar: {first: foo}
bar: {second: bar}
baz: 42

So the late found values prevail:

foo: second
bar: {second: bar}
baz: 42

Limitations Aggregation is permied between tagged objects that share the same type. If not, the default merge
strategy prevails.

For example, these examples:

foo: {first: value}
foo: !aggr-map {second: value}

bar: !aggr-map {first: value}
bar: 42

baz: !aggr-seq [42]
baz: [fail]

qux: 42
qux: !aggr-scalar fail

are interpreted like this:

foo: !aggr-map{second: value}

bar: 42

baz: [fail]

qux: !aggr-seq [fail]

Introspection TODO: write this part

salt.utils.aggregation.aggregate(obj_a, obj_b, level=False, map_class=<class
`salt.utils.aggregation.Map'>, sequence_class=<class
`salt.utils.aggregation.Sequence'>)

Merge obj_b into obj_a.

>>> aggregate('first', 'second', True) == ['first', 'second']
True

class salt.utils.aggregation.Aggregate
Aggregation base.

class salt.utils.aggregation.Map(*args, **kwds)
Map aggregation.

salt.utils.aggregation.Scalar(obj)
Shortcut for Sequence creation

460 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

>>> Scalar('foo') == Sequence(['foo'])
True

class salt.utils.aggregation.Sequence
Sequence aggregation.

Exceptions

Salt-specific exceptions should be thrown as oen as possible so the various interfaces to Salt (CLI, API, etc) can
handle those errors appropriately and display error messages appropriately.

salt.exceptions is module is a central location for all salt exceptions

salt.exceptions

is module is a central location for all salt exceptions

exception salt.exceptions.AuthenticationError
If sha256 signature fails during decryption

exception salt.exceptions.AuthorizationError
rown when runner or wheel execution fails due to permissions

exception salt.exceptions.CommandExecutionError
Used when a module runs a command which returns an error and wants to show the user the output gracefully
instead of dying

exception salt.exceptions.CommandNotFoundError
Used in modules or grains when a required binary is not available

exception salt.exceptions.EauthAuthenticationError
rown when eauth authentication fails

exception salt.exceptions.FileserverConfigError
Used when invalid fileserver seings are detected

exception salt.exceptions.LoaderError
Problems loading the right renderer

exception salt.exceptions.MasterExit
Rise when the master exits

exception salt.exceptions.MinionError
Minion problems reading uris such as salt:// or hp://

exception salt.exceptions.PkgParseError
Usedwhen of the pkgmodules cannot correctly parse the output from the CLI tool (pacman, yum, apt, aptitude,
etc)

exception salt.exceptions.SaltClientError
Problem reading the master root key

exception salt.exceptions.SaltClientTimeout(msg, jid=None, *args, **kwargs)
rown when a job sent through one of the Client interfaces times out

Takes the jid as a parameter

exception salt.exceptions.SaltCloudConfigError
Raised when a configuration seing is not found and should exist.

22.15. Salt code and internals 461

Salt Documentation, Release 2014.7.6

exception salt.exceptions.SaltCloudException
Generic Salt Cloud Exception

exception salt.exceptions.SaltCloudExecutionFailure
Raised when too much failures have occurred while querying/waiting for data.

exception salt.exceptions.SaltCloudExecutionTimeout
Raised when too much time has passed while querying/waiting for data.

exception salt.exceptions.SaltCloudNotFound
Raised when some cloud provider function cannot find what's being searched.

exception salt.exceptions.SaltCloudPasswordError
Raise when virtual terminal password input failed

exception salt.exceptions.SaltCloudSystemExit(message, exit_code=1)
is exception is raised when the execution should be stopped.

exception salt.exceptions.SaltException
Base exception class; all Salt-specific exceptions should subclass this

exception salt.exceptions.SaltInvocationError
Used when the wrong number of arguments are sent to modules or invalid arguments are specified on the
command line

exception salt.exceptions.SaltMasterError
Problem reading the master root key

exception salt.exceptions.SaltRenderError(error, line_num=None, buf='`, marker='
<======================', trace=None)

Used when a renderer needs to raise an explicit error. If a line number and buffer string are passed, get_context
will be invoked to get the location of the error.

exception salt.exceptions.SaltReqTimeoutError
rown when a salt master request call fails to return within the timeout

exception salt.exceptions.SaltRunnerError
Problem in runner

exception salt.exceptions.SaltSyndicMasterError
Problem while proxying a request in the syndication master

exception salt.exceptions.SaltSystemExit(code=0, msg=None)
is exception is raised when an unsolvable problem is found. ere's nothing else to do, salt should just exit.

exception salt.exceptions.SaltWheelError
Problem in wheel

exception salt.exceptions.TimedProcTimeoutError
rown when a timed subprocess does not terminate within the timeout, or if the specified timeout is not an
int or a float

exception salt.exceptions.TokenAuthenticationError
rown when token authentication fails

salt.exceptions

is module is a central location for all salt exceptions

exception salt.exceptions.AuthenticationError
If sha256 signature fails during decryption

462 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

exception salt.exceptions.AuthorizationError
rown when runner or wheel execution fails due to permissions

exception salt.exceptions.CommandExecutionError
Used when a module runs a command which returns an error and wants to show the user the output gracefully
instead of dying

exception salt.exceptions.CommandNotFoundError
Used in modules or grains when a required binary is not available

exception salt.exceptions.EauthAuthenticationError
rown when eauth authentication fails

exception salt.exceptions.FileserverConfigError
Used when invalid fileserver seings are detected

exception salt.exceptions.LoaderError
Problems loading the right renderer

exception salt.exceptions.MasterExit
Rise when the master exits

exception salt.exceptions.MinionError
Minion problems reading uris such as salt:// or hp://

exception salt.exceptions.PkgParseError
Usedwhen of the pkgmodules cannot correctly parse the output from the CLI tool (pacman, yum, apt, aptitude,
etc)

exception salt.exceptions.SaltClientError
Problem reading the master root key

exception salt.exceptions.SaltClientTimeout(msg, jid=None, *args, **kwargs)
rown when a job sent through one of the Client interfaces times out

Takes the jid as a parameter

exception salt.exceptions.SaltCloudConfigError
Raised when a configuration seing is not found and should exist.

exception salt.exceptions.SaltCloudException
Generic Salt Cloud Exception

exception salt.exceptions.SaltCloudExecutionFailure
Raised when too much failures have occurred while querying/waiting for data.

exception salt.exceptions.SaltCloudExecutionTimeout
Raised when too much time has passed while querying/waiting for data.

exception salt.exceptions.SaltCloudNotFound
Raised when some cloud provider function cannot find what's being searched.

exception salt.exceptions.SaltCloudPasswordError
Raise when virtual terminal password input failed

exception salt.exceptions.SaltCloudSystemExit(message, exit_code=1)
is exception is raised when the execution should be stopped.

exception salt.exceptions.SaltException
Base exception class; all Salt-specific exceptions should subclass this

exception salt.exceptions.SaltInvocationError
Used when the wrong number of arguments are sent to modules or invalid arguments are specified on the
command line

22.15. Salt code and internals 463

Salt Documentation, Release 2014.7.6

exception salt.exceptions.SaltMasterError
Problem reading the master root key

exception salt.exceptions.SaltRenderError(error, line_num=None, buf='`, marker='
<======================', trace=None)

Used when a renderer needs to raise an explicit error. If a line number and buffer string are passed, get_context
will be invoked to get the location of the error.

exception salt.exceptions.SaltReqTimeoutError
rown when a salt master request call fails to return within the timeout

exception salt.exceptions.SaltRunnerError
Problem in runner

exception salt.exceptions.SaltSyndicMasterError
Problem while proxying a request in the syndication master

exception salt.exceptions.SaltSystemExit(code=0, msg=None)
is exception is raised when an unsolvable problem is found. ere's nothing else to do, salt should just exit.

exception salt.exceptions.SaltWheelError
Problem in wheel

exception salt.exceptions.TimedProcTimeoutError
rown when a timed subprocess does not terminate within the timeout, or if the specified timeout is not an
int or a float

exception salt.exceptions.TokenAuthenticationError
rown when token authentication fails

salt.serializers

salt.utils.serializers

is module implements all the serializers needed by salt. Each serializer offers the same functions and aributes:

deserialize function for deserializing string or stream

serialize function for serializing a Python object

available flag that tells if the serializer is available (all dependencies are met etc.)

salt.utils.serializers.json

Implements JSON serializer.

It's just a wrapper around json (or simplejson if available).

salt.utils.serializers.json.deserialize(stream_or_string, **options)
Deserialize any string of stream like object into a Python data structure.

Parameters

• stream_or_string -- stream or string to deserialize.

• options -- options given to lower json/simplejson module.

salt.utils.serializers.json.serialize(obj, **options)
Serialize Python data to JSON.

Parameters

464 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

• obj -- the data structure to serialize

• options -- options given to lower json/simplejson module.

salt.utils.serializers.yaml

Implements YAML serializer.

Underneath, it is based on pyyaml and use the safe dumper and loader. It also use C bindings if they are available.

salt.utils.serializers.yaml.deserialize(stream_or_string, **options)
Deserialize any string of stream like object into a Python data structure.

Parameters

• stream_or_string -- stream or string to deserialize.

• options -- options given to lower yaml module.

salt.utils.serializers.yaml.serialize(obj, **options)
Serialize Python data to YAML.

Parameters

• obj -- the data structure to serialize

• options -- options given to lower yaml module.

salt.utils.serializers.msgpack

Implements MsgPack serializer.

salt.utils.serializers.msgpack.deserialize(stream_or_string, **options)
Deserialize any string of stream like object into a Python data structure.

Parameters

• stream_or_string -- stream or string to deserialize.

• options -- options given to lower msgpack module.

salt.utils.serializers.msgpack.serialize(obj, **options)
Serialize Python data to MsgPack.

Parameters

• obj -- the data structure to serialize

• options -- options given to lower msgpack module.

22.16 Full list of builtin execution modules

Virtual modules

22.16. Full list of builtin execution modules 465

Salt Documentation, Release 2014.7.6

22.16.1 salt.modules.pkg

pkg is a virtual module that is fulfilled by one of the following modules:

• salt.modules.aptpkg

• salt.modules.brew

• salt.modules.ebuild

• salt.modules.freebsdpkg

• salt.modules.openbsdpkg

• salt.modules.pacman

• salt.modules.pkgin

• salt.modules.pkgng

• salt.modules.pkgutil

• salt.modules.solarispkg

• salt.modules.win_pkg

• salt.modules.yumpkg

• salt.modules.zypper

aliases Manage the information in the aliases file
alternatives Support for Alternatives system
apache Support for Apache
aptpkg Support for APT (Advanced Packaging Tool)
archive A module to wrap (non-Windows) archive calls
at Wrapper module for at(1)
augeas_cfg Manages configuration files via augeas
aws_sqs Support for the Amazon Simple eue Service.
blockdev Module for managing block devices
bluez Support for Bluetooth (using BlueZ in Linux).
boto_asg Connection module for Amazon Autoscale Groups
boto_cloudwatch Connection module for Amazon CloudWatch
boto_elasticache Connection module for Amazon Elasticache
boto_elb Connection module for Amazon ELB
boto_iam Connection module for Amazon IAM
boto_route53 Connection module for Amazon Route53
boto_secgroup Connection module for Amazon Security Groups
boto_sqs Connection module for Amazon SQS
brew Homebrew for Mac OS X
bridge Module for gathering and managing bridging information
bsd_shadow Manage the password database on BSD systems
cassandra Cassandra NoSQL Database Module
chef Execute chef in server or solo mode
chocolatey A dead simple module wrapping calls to the Chocolatey package manager
cloud Salt-specific interface for calling Salt Cloud directly
cmdmod A module for shelling out
composer Use composer to install PHP dependencies for a directory
config Return config information

Continued on next page

466 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Table 22.6 -- continued from previous page
cp Minion side functions for salt-cp
cron Work with cron
daemontools daemontools service module. is module will create daemontools type
darwin_sysctl Module for viewing and modifying sysctl parameters
data Manage a local persistent data structure that can hold any arbitrary data
ddns Support for RFC 2136 dynamic DNS updates.
deb_apache Support for Apache
debconfmod Support for Debconf
debian_ip e networking module for Debian based distros
debian_service Service support for Debian systems (uses update-rc.d and /sbin/service)
defaults
dig Compendium of generic DNS utilities
disk Module for gathering disk information
djangomod Manage Django sites
dnsmasq Module for managing dnsmasq
dnsutil Compendium of generic DNS utilities
dockerio Management of Dockers
dpkg Support for DEB packages
ebuild Support for Portage
eix Support for Eix
environ Support for geing and seing the environment variables of the current salt process.
eselect Support for eselect, Gentoo's configuration and management tool.
etcd_mod Execution module to work with etcd
event Use the Salt Event System to fire events from the master to the minion and vice-versa.
extfs Module for managing ext2/3/4 file systems
file Manage information about regular files, directories,
freebsd_sysctl Module for viewing and modifying sysctl parameters
freebsdjail e jail module for FreeBSD
freebsdkmod Module to manage FreeBSD kernel modules
freebsdpkg Remote package support using pkg_add(1)
freebsdports Install soware from the FreeBSD ports(7) system
freebsdservice e service module for FreeBSD
gem Manage ruby gems.
genesis Module for managing container and VM images
gentoo_service Top level package command wrapper, used to translate the os detected by grains
gentoolkitmod Support for Gentoolkit
git Support for the Git SCM
glance Module for handling openstack glance calls.
glusterfs Manage a glusterfs pool
gnomedesktop GNOME implementations
grains Return/control aspects of the grains data
groupadd Manage groups on Linux and OpenBSD
grub_legacy Support for GRUB Legacy
guestfs Interact with virtual machine images via libguestfs
hadoop Support for hadoop
haproxyconn Support for haproxy
hashutil A collection of hashing and encoding functions
hg Support for the Mercurial SCM
hosts Manage the information in the hosts file
htpasswd Support for htpasswd command

Continued on next page

22.16. Full list of builtin execution modules 467

Salt Documentation, Release 2014.7.6

Table 22.6 -- continued from previous page
img Virtual machine image management tools
incron Work with incron
influx InfluxDB - A distributed time series database
ini_manage Edit ini files
introspect Functions to perform introspection on a minion, and return data in a format
ipset Support for ipset
iptables Support for iptables
junos Module for interfacing to Junos devices
key Functions to view the minion's public key information
keyboard Module for managing keyboards on supported POSIX-like systems using systemd, or such as Redhat, Debian and Gentoo.
keystone Module for handling openstack keystone calls.
kmod Module to manage Linux kernel modules
launchctl Module for the management of MacOS systems that use launchd/launchctl
layman Support for Layman
ldapmod Salt interface to LDAP commands
linux_acl Support for Linux File Access Control Lists
linux_lvm Support for Linux LVM2
linux_sysctl Module for viewing and modifying sysctl parameters
localemod Module for managing locales on POSIX-like systems.
locate Module for using the locate utilities
logadm Module for managing Solaris logadm based log rotations.
logrotate Module for managing logrotate.
lvs Support for LVS (Linux Virtual Server)
lxc Control Linux Containers via Salt
mac_group Manage groups on Mac OS 10.7+
mac_user Manage users on Mac OS 10.7+
macports Support for MacPorts under Mac OSX.
makeconf Support for modifying make.conf under Gentoo
match e match module allows for match routines to be run and determine target specs
mdadm Salt module to manage RAID arrays with mdadm
memcached Module for Management of Memcached Keys
mine e function cache system allows for data to be stored on the master so it can be easily read by other minions
mod_random New in version 2014.7.0.
modjk Control Modjk via the Apache Tomcat ``Status'' worker
mongodb Module to provide MongoDB functionality to Salt
monit Monit service module.
moosefs Module for gathering and managing information about MooseFS
mount Salt module to manage unix mounts and the fstab file
munin Run munin plugins/checks from salt and format the output as data.
mysql Module to provide MySQL compatibility to salt.
nagios Run nagios plugins/checks from salt and get the return as data.
netbsd_sysctl Module for viewing and modifying sysctl parameters
netbsdservice e service module for NetBSD
network Module for gathering and managing network information
nfs3 Module for managing NFS version 3.
nftables Support for nables
nginx Support for nginx
nova Module for handling OpenStack Nova calls
npm Manage and query NPM packages.
omapi is module interacts with an ISC DHCP Server via OMAPI.

Continued on next page

468 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Table 22.6 -- continued from previous page
openbsdpkg Package support for OpenBSD
openbsdservice e service module for OpenBSD
openstack_config Modify, retrieve, or delete values from OpenStack configuration files.
oracle Oracle DataBase connection module
osxdesktop Mac OS X implementations of various commands in the ``desktop'' interface
pacman A module to wrap pacman calls, since Arch is the best
pagerduty Module for Firing Events via PagerDuty
pam Support for pam
parted Module for managing partitions on POSIX-like systems.
pecl Manage PHP pecl extensions.
pillar Extract the pillar data for this minion
pip Install Python packages with pip to either the system or a virtualenv
pkg_resource Resources needed by pkg providers
pkgin Package support for pkgin based systems, inspired from freebsdpkg module
pkgng Support for pkgng, the new package manager for FreeBSD
pkgutil Pkgutil support for Solaris
portage_config Configure portage(5)
postfix Support for Postfix
postgres Module to provide Postgres compatibility to salt.
poudriere Support for poudriere
powerpath powerpath support.
ps A salt interface to psutil, a system and process library.
publish Publish a command from a minion to a target
puppet Execute puppet routines
pw_group Manage groups on FreeBSD
pw_user Manage users with the useradd command
pyenv Manage python installations with pyenv.
qemu_img Qemu-img Command Wrapper
qemu_nbd Qemu Command Wrapper
quota Module for managing quotas on POSIX-like systems.
rabbitmq Module to provide RabbitMQ compatibility to Salt.
raet_publish Publish a command from a minion to a target
rbenv Manage ruby installations with rbenv.
rdp Manage RDP Service on Windows servers
redismod Module to provide redis functionality to Salt
reg Manage the registry on Windows
rest_package Service support for the REST example
rest_sample Module for interfacing to the REST example
rest_service Service support for the REST example
ret Module to integrate with the returner system and retrieve data sent to a salt returner
rh_ip e networking module for RHEL/Fedora based distros
rh_service Service support for RHEL-based systems, including support for both upstart and sysvinit
riak Riak Salt Module
rpm Support for rpm
rsync Wrapper for rsync
rvm Manage ruby installations and gemsets with RVM, the Ruby Version Manager.
s3 Connection module for Amazon S3
saltcloudmod Control a salt cloud system
saltutil e Saltutil module is used to manage the state of the salt minion itself.
schedule Module for manging the Salt schedule on a minion

Continued on next page

22.16. Full list of builtin execution modules 469

Salt Documentation, Release 2014.7.6

Table 22.6 -- continued from previous page
seed Virtual machine image management tools
selinux Execute calls on selinux
sensors Read lm-sensors
serverdensity_device Wrapper around Server Density API
service e default service module, if not otherwise specified salt will fall back
shadow Manage the shadow file
smartos_imgadm Module for running imgadm command on SmartOS
smartos_vmadm Module for managing VMs on SmartOS
smf Service support for Solaris 10 and 11, should work with other systems that use SMF also.
smtp Module for Sending Messages via SMTP
softwareupdate Support for the sowareupdate command on MacOS.
solaris_group Manage groups on Solaris
solaris_shadow Manage the password database on Solaris systems
solaris_user Manage users with the useradd command
solarispkg Package support for Solaris
solr Apache Solr Salt Module
sqlite3 Support for SQLite3
ssh Manage client ssh components
state Control the state system on the minion
status Module for returning various status data about a minion.
supervisord Provide the service module for system supervisord or supervisord in a
svn Subversion SCM
swift Module for handling OpenStack Swi calls
sysbench e `sysbench' module is used to analyze the performance of the minions, right from the master! It measures various system parameters such as CPU, Memory, File I/O, reads and Mutex.
sysmod e sys module provides information about the available functions on the minion
system Support for reboot, shutdown, etc
systemd Provide the service module for systemd
test Module for running arbitrary tests
timezone Module for managing timezone on POSIX-like systems.
tls A salt module for SSL/TLS.
tomcat Support for Tomcat
twilio_notify Module for notifications via Twilio
upstart Module for the management of upstart systems.
useradd Manage users with the useradd command
uwsgi uWSGI stats server hp://uwsgi-docs.readthedocs.org/en/latest/StatsServer.html
varnish Support for Varnish
virt Work with virtual machines managed by libvirt
virtualenv_mod Create virtualenv environments
win_autoruns Module for listing programs that automatically run on startup
win_disk Module for gathering disk information on Windows
win_dns_client Module for configuring DNS Client on Windows systems
win_file Manage information about files on the minion, set/read user, group
win_firewall Module for configuring Windows Firewall
win_groupadd Manage groups on Windows
win_ip e networking module for Windows based systems
win_network Module for gathering and managing network information
win_ntp Management of NTP servers on Windows
win_path Manage the Windows System PATH
win_pkg A module to manage soware on Windows
win_repo Module to manage Windows soware repo on a Standalone Minion

Continued on next page

470 Chapter 22. Reference

http://uwsgi-docs.readthedocs.org/en/latest/StatsServer.html

Salt Documentation, Release 2014.7.6

Table 22.6 -- continued from previous page
win_servermanager Manage Windows features via the ServerManager powershell module
win_service Windows Service module.
win_shadow Manage the shadow file
win_status Module for returning various status data about a minion.
win_system Support for reboot, shutdown, etc
win_timezone Module for managing timezone on Windows systems.
win_update Module for running windows updates.
win_useradd Manage Windows users with the net user command
xapi is module (mostly) uses the XenAPI to manage Xen virtual machines.
xmpp Module for Sending Messages via XMPP (a.k.a.
yumpkg Support for YUM
zcbuildout Management of zc.buildout
zfs Salt interface to ZFS commands
znc znc - An advanced IRC bouncer
zpool Module for running ZFS zpool command
zypper Package support for openSUSE via the zypper package manager

22.16.2 salt.modules.aliases

Manage the information in the aliases file

salt.modules.aliases.get_target(alias)
Return the target associated with an alias

CLI Example:

salt '*' aliases.get_target alias

salt.modules.aliases.has_target(alias, target)
Return true if the alias/target is set

CLI Example:

salt '*' aliases.has_target alias target

salt.modules.aliases.list_aliases()
Return the aliases found in the aliases file in this format:

{'alias': 'target'}

CLI Example:

salt '*' aliases.list_aliases

salt.modules.aliases.rm_alias(alias)
Remove an entry from the aliases file

CLI Example:

salt '*' aliases.rm_alias alias

salt.modules.aliases.set_target(alias, target)
Set the entry in the aliases file for the given alias, this will overwrite any previous entry for the given alias or
create a new one if it does not exist.

CLI Example:

22.16. Full list of builtin execution modules 471

Salt Documentation, Release 2014.7.6

salt '*' aliases.set_target alias target

22.16.3 salt.modules.alternatives

Support for Alternatives system

codeauthor Radek Rada <radek.rada@gmail.com>

salt.modules.alternatives.auto(name)
Trigger alternatives to set the path for <name> as specified by priority.

CLI Example:

salt '*' alternatives.auto name

salt.modules.alternatives.check_installed(name, path)
Check if the current highest-priority match for a given alternatives link is set to the desired path

CLI Example:

salt '*' alternatives.check_installed name path

salt.modules.alternatives.display(name)
Display alternatives seings for defined command name

CLI Example:

salt '*' alternatives.display editor

salt.modules.alternatives.install(name, link, path, priority)
Install symbolic links determining default commands

CLI Example:

salt '*' alternatives.install editor /usr/bin/editor /usr/bin/emacs23 50

salt.modules.alternatives.remove(name, path)
Remove symbolic links determining the default commands.

CLI Example:

salt '*' alternatives.remove name path

salt.modules.alternatives.set_(name, path)
Manually set the alternative <path> for <name>.

CLI Example:

salt '*' alternatives.set name path

salt.modules.alternatives.show_current(name)
Display the current highest-priority alternative for a given alternatives link

CLI Example:

salt '*' alternatives.show_current editor

472 Chapter 22. Reference

mailto:radek.rada@gmail.com

Salt Documentation, Release 2014.7.6

22.16.4 salt.modules.apache

Support for Apache

Please note: e functions in here are generic functions designed to work with all implementations of Apache.
Debian-specific functions have been moved into deb_apache.py, but will still load under the apache namespace
when a Debian-based system is detected.

salt.modules.apache.config(name, config, edit=True)
Create VirtualHost configuration files

name File for the virtual host

config VirtualHost configurations

Note: is function is not meant to be used from the command line. Config is meant to be an ordered dict of
all of the apache configs.

CLI Examples:

salt '*' apache.config /etc/httpd/conf.d/ports.conf config="[{'Listen': '22'}]"

salt.modules.apache.directives()
Return list of directives together with expected arguments and places where the directive is valid (apachectl
-L)

CLI Example:

salt '*' apache.directives

salt.modules.apache.fullversion()
Return server version from apachectl -V

CLI Example:

salt '*' apache.fullversion

salt.modules.apache.modules()
Return list of static and shared modules from apachectl -M

CLI Example:

salt '*' apache.modules

salt.modules.apache.server_status(profile='default')
Get Information from the Apache server-status handler

NOTE: the server-status handler is disabled by default. in order for this function to work it needs to be enabled.
hp://hpd.apache.org/docs/2.2/mod/mod_status.html

e following configuration needs to exists in pillar/grains each entry nested in apache.server-status is a profile
of a vhost/server this would give support for multiple apache servers/vhosts

apae.server-status:

`default': `url': hp://localhost/server-status `user': someuser `pass': password `realm': `authentication
realm for digest passwords' `timeout': 5

CLI Examples:

salt '*' apache.server_status
salt '*' apache.server_status other-profile

22.16. Full list of builtin execution modules 473

http://httpd.apache.org/docs/2.2/mod/mod_status.html
http://localhost/server-status

Salt Documentation, Release 2014.7.6

salt.modules.apache.servermods()
Return list of modules compiled into the server (apachectl -l)

CLI Example:

salt '*' apache.servermods

salt.modules.apache.signal(signal=None)
Signals hpd to start, restart, or stop.

CLI Example:

salt '*' apache.signal restart

salt.modules.apache.useradd(pwfile, user, password, opts='`)
Add an HTTP user using the htpasswd command. If the htpasswd file does not exist, it will be created. Valid
options that can be passed are:

n Don't update file; display results on stdout. m Force MD5 encryption of the password (default). d
Force CRYPT encryption of the password. p Do not encrypt the password (plaintext). s Force SHA
encryption of the password.

CLI Examples:

salt '*' apache.useradd /etc/httpd/htpasswd larry badpassword
salt '*' apache.useradd /etc/httpd/htpasswd larry badpass opts=ns

salt.modules.apache.userdel(pwfile, user)
Delete an HTTP user from the specified htpasswd file.

CLI Examples:

salt '*' apache.userdel /etc/httpd/htpasswd larry

salt.modules.apache.version()
Return server version from apachectl -v

CLI Example:

salt '*' apache.version

salt.modules.apache.vhosts()
Show the seings as parsed from the config file (currently only shows the virtualhost seings). (apachectl
-S) Because each additional virtual host adds to the execution time, this command may require a long timeout
be specified.

CLI Example:

salt -t 10 '*' apache.vhosts

22.16.5 salt.modules.aptpkg

Support for APT (Advanced Packaging Tool)

Note: For virtual package support, either the python-apt or dctrl-tools package must be installed.
For repository management, the python-apt package must be installed.

474 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.aptpkg.del_repo(repo, **kwargs)
Delete a repo from the sources.list / sources.list.d

If the .list file is in the sources.list.d directory and the file that the repo exists in does not contain any other
repo configuration, the file itself will be deleted.

e repo passed in must be a fully formed repository definition string.

CLI Examples:

salt '*' pkg.del_repo "myrepo definition"

salt.modules.aptpkg.expand_repo_def(repokwargs)
Take a repository definition and expand it to the full pkg repository dict that can be used for comparison. is
is a helper function to make the Debian/Ubuntu apt sources sane for comparison in the pkgrepo states.

ere is no use to calling this function via the CLI.

salt.modules.aptpkg.file_dict(*packages)
List the files that belong to a package, grouped by package. Not specifying any packages will return a list of
every file on the system's package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

salt.modules.aptpkg.file_list(*packages)
List the files that belong to a package. Not specifying any packages will return a list of _every_ file on the
system's package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

salt.modules.aptpkg.get_repo(repo, **kwargs)
Display a repo from the sources.list / sources.list.d

e repo passed in needs to be a complete repo entry.

CLI Examples:

salt '*' pkg.get_repo "myrepo definition"

salt.modules.aptpkg.get_selections(paern=None, state=None)
View package state from the dpkg database.

Returns a dict of dicts containing the state, and package names:

{'<host>':
{'<state>': ['pkg1',

...
]

},
...

}

CLI Example:

22.16. Full list of builtin execution modules 475

Salt Documentation, Release 2014.7.6

salt '*' pkg.get_selections
salt '*' pkg.get_selections 'python-*'
salt '*' pkg.get_selections state=hold
salt '*' pkg.get_selections 'openssh*' state=hold

salt.modules.aptpkg.hold(name=None, pkgs=None, sources=None, **kwargs)
New in version 2014.7.0.

Set package in `hold' state, meaning it will not be upgraded.

name e name of the package, e.g., `tmux'

CLI Example:

salt '*' pkg.hold <package name>

pkgs A list of packages to hold. Must be passed as a python list.

CLI Example:

salt '*' pkg.hold pkgs='["foo", "bar"]'

salt.modules.aptpkg.install(name=None, refresh=False, fromrepo=None, skip_verify=False, deb-
conf=None, pkgs=None, sources=None, **kwargs)

Install the passed package, add refresh=True to update the dpkg database.

name e name of the package to be installed. Note that this parameter is ignored if either ``pkgs'' or
``sources'' is passed. Additionally, please note that this option can only be used to install packages
from a soware repository. To install a package file manually, use the ``sources'' option.

32-bit packages can be installed on 64-bit systems by appending the architecture designation (:i386,
etc.) to the end of the package name.

CLI Example:

salt '*' pkg.install <package name>

refresh Whether or not to refresh the package database before installing.

fromrepo Specify a package repository to install from (e.g., apt-get -t unstable install
somepackage)

skip_verify Skip the GPG verification check (e.g., --allow-unauthenticated, or --force-bad-
verify for install from package file).

debconf Provide the path to a debconf answers file, processed before installation.

version Install a specific version of the package, e.g. 1.2.3~0ubuntu0. Ignored if ``pkgs'' or ``sources'' is
passed.

Multiple Package Installation Options:

pkgs A list of packages to install from a soware repository. Must be passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-0ubuntu0"}]'

sources A list of DEB packages to install. Must be passed as a list of dicts, with the keys being package
names, and the values being the source URI or local path to the package. Dependencies are automatically
resolved and marked as auto-installed.

476 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

32-bit packages can be installed on 64-bit systems by appending the architecture designation (:i386,
etc.) to the end of the package name.

Changed in version 2014.7.0.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.deb"},{"bar": "salt://bar.deb"}]'

force_yes Passes --force-yes to the apt-get command. Don't use this unless you knowwhat you're doing.

New in version 0.17.4.

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

salt.modules.aptpkg.latest_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation. If more than one package
name is specified, a dict of name/version pairs is returned.

If the latest version of a given package is already installed, an empty string will be returned for that package.

A specific repo can be requested using the fromrepo keyword argument.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name> fromrepo=unstable
salt '*' pkg.latest_version <package1> <package2> <package3> ...

salt.modules.aptpkg.list_pkgs(versions_as_list=False, removed=False, purge_desired=False,
**kwargs)

List the packages currently installed in a dict:

{'<package_name>': '<version>'}

removed If True, then only packages which have been removed (but not purged) will be returned.

purge_desired If True, then only packages which have been marked to be purged, but can't be purged due
to their status as dependencies for other installed packages, will be returned. Note that these packages
will appear in installed

Changed in version 2014.1.1: Packages in this state now correctly show up in the output of this function.

Note: External dependencies
Virtual package resolution requires the dctrl-tools package to be installed. Virtual packages will show a
version of 1.

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs versions_as_list=True

salt.modules.aptpkg.list_repos()
Lists all repos in the sources.list (and sources.lists.d) files

CLI Example:

22.16. Full list of builtin execution modules 477

Salt Documentation, Release 2014.7.6

salt '*' pkg.list_repos
salt '*' pkg.list_repos disabled=True

salt.modules.aptpkg.list_upgrades(refresh=True)
List all available package upgrades.

CLI Example:

salt '*' pkg.list_upgrades

salt.modules.aptpkg.mod_repo(repo, saltenv='base', **kwargs)
Modify one or more values for a repo. If the repo does not exist, it will be created, so long as the definition is
well formed. For Ubuntu the ``ppa:<project>/repo'' format is acceptable. ``ppa:'' format can only be used to
create a new repository.

e following options are available to modify a repo definition:

comps (a comma separated list of components for the repo, e.g. "main")
file (a file name to be used)
keyserver (keyserver to get gpg key from)
keyid (key id to load with the keyserver argument)
key_url (URL to a gpg key to add to the apt gpg keyring)
consolidate (if true, will attempt to de-dup and consolidate sources)

* Note: Due to the way keys are stored for apt, there is a known issue
where the key wont be updated unless another change is made
at the same time. Keys should be properly added on initial
configuration.

CLI Examples:

salt '*' pkg.mod_repo 'myrepo definition' uri=http://new/uri
salt '*' pkg.mod_repo 'myrepo definition' comps=main,universe

salt.modules.aptpkg.owner(*paths)
New in version 2014.7.0.

Return the name of the package that owns the file. Multiple file paths can be passed. Like pkg.version
<salt.modules.aptpkg.version, if a single path is passed, a string will be returned, and if multiple
paths are passed, a dictionary of file/package name pairs will be returned.

If the file is not owned by a package, or is not present on the minion, then an empty string will be returned
for that path.

CLI Example:

salt `*' pkg.owner /usr/bin/apachectl salt `*' pkg.owner /usr/bin/apachectl /usr/bin/basename

salt.modules.aptpkg.purge(name=None, pkgs=None, **kwargs)
Remove packages via apt-get purge along with all configuration files.

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

478 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

salt.modules.aptpkg.refresh_db()
Updates the APT database to latest packages based upon repositories

Returns a dict, with the keys being package databases and the values being the result of the update aempt.
Values can be one of the following:

•True: Database updated successfully

•False: Problem updating database

•None: Database already up-to-date

CLI Example:

salt '*' pkg.refresh_db

salt.modules.aptpkg.remove(name=None, pkgs=None, **kwargs)
Remove packages using apt-get remove.

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

salt.modules.aptpkg.set_selections(path=None, selection=None, clear=False, saltenv='base')
Change package state in the dpkg database.

e state can be any one of, documented in dpkg(1):

•install

•hold

•deinstall

•purge

is command is commonly used to mark specific packages to be held from being upgraded, that is, to be
kept at a certain version. When a state is changed to anything but being held, then it is typically followed by
apt-get -u dselect-upgrade.

Note: Be careful with the clear argument, since it will start with seing all packages to deinstall state.

Returns a dict of dicts containing the package names, and the new and old versions:

{'<host>':
{'<package>': {'new': '<new-state>',

'old': '<old-state>'}
},

22.16. Full list of builtin execution modules 479

Salt Documentation, Release 2014.7.6

...
}

CLI Example:

salt '*' pkg.set_selections selection='{"install": ["netcat"]}'
salt '*' pkg.set_selections selection='{"hold": ["openssh-server", "openssh-client"]}'
salt '*' pkg.set_selections salt://path/to/file
salt '*' pkg.set_selections salt://path/to/file clear=True

salt.modules.aptpkg.unhold(name=None, pkgs=None, sources=None, **kwargs)
New in version 2014.7.0.

Set package current in `hold' state to install state, meaning it will be upgraded.

name e name of the package, e.g., `tmux'

CLI Example:

salt '*' pkg.unhold <package name>

pkgs A list of packages to hold. Must be passed as a python list.

CLI Example:

salt '*' pkg.unhold pkgs='["foo", "bar"]'

salt.modules.aptpkg.upgrade(refresh=True, dist_upgrade=True)
Upgrades all packages via apt-get dist-upgrade

Returns a dict containing the changes.

{`<paage>': {`old': `<old-version>', `new': `<new-version>'}}

dist_upgrade Whether to perform the upgrade using dist-upgrade vs upgrade. Default is to use dist-upgrade.

New in version 2014.7.0.

CLI Example:

salt '*' pkg.upgrade

salt.modules.aptpkg.upgrade_available(name)
Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

salt.modules.aptpkg.version(*names, **kwargs)
Returns a string representing the package version or an empty string if not installed. If more than one package
name is specified, a dict of name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.aptpkg.version_cmp(pkg1, pkg2)
Do a cmp-style comparison on two packages. Return -1 if pkg1 < pkg2, 0 if pkg1 == pkg2, and 1 if pkg1 >
pkg2. Return None if there was a problem making the comparison.

CLI Example:

480 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' pkg.version_cmp '0.2.4-0ubuntu1' '0.2.4.1-0ubuntu1'

22.16.6 salt.modules.archive

A module to wrap (non-Windows) archive calls

New in version 2014.1.0.

salt.modules.archive.gunzip(gzipfile, template=None)
Uses the gunzip command to unpack gzip files

template [None] Can be set to `jinja' or another supported template engine to render the command arguments
before execution:

salt '*' archive.gunzip template=jinja /tmp/{{grains.id}}.txt.gz

CLI Example:

Create /tmp/sourcefile.txt
salt '*' archive.gunzip /tmp/sourcefile.txt.gz

salt.modules.archive.gzip(sourcefile, template=None)
Uses the gzip command to create gzip files

template [None] Can be set to `jinja' or another supported template engine to render the command arguments
before execution:

salt '*' archive.gzip template=jinja /tmp/{{grains.id}}.txt

CLI Example:

Create /tmp/sourcefile.txt.gz
salt '*' archive.gzip /tmp/sourcefile.txt

salt.modules.archive.rar(rarfile, sources, template=None, cwd=None)
Uses rar for Linux to create rar files

rarfile Path of rar file to be created

sources Comma-separated list of sources to include in the rar file. Sources can also be passed in a python list.

cwd [None] Run the rar command from the specified directory. Use this argument along with relative file
paths to create rar files which do not contain the leading directories. If not specified, this will default to
the home directory of the user under which the salt minion process is running.

New in version 2014.7.1.

template [None] Can be set to `jinja' or another supported template engine to render the command arguments
before execution:

salt '*' archive.rar template=jinja /tmp/rarfile.rar '/tmp/sourcefile1,/tmp/{{grains.id}}.txt'

CLI Example:

salt '*' archive.rar /tmp/rarfile.rar /tmp/sourcefile1,/tmp/sourcefile2

salt.modules.archive.tar(options, tarfile, sources=None, dest=None, cwd=None, template=None)

Note: is function has changed for version 0.17.0. In prior versions, the cwd and template arguments

22.16. Full list of builtin execution modules 481

http://www.rarlab.com/

Salt Documentation, Release 2014.7.6

must be specified, with the source directories/files coming as a space-separated list at the end of the command.
Beginning with 0.17.0, sources must be a comma-separated list, and the cwd and template arguments
are optional.

Uses the tar command to pack, unpack, etc. tar files

options Options to pass to the tar command

tarfile e filename of the tar archive to pack/unpack

sources Comma delimited list of files to pa into the tarfile. Can also be passed as a python list.

dest e destination directory into which to unpa the tarfile

cwd [None] e directory in which the tar command should be executed. If not specified, will default to the
home directory of the user under which the salt minion process is running.

template [None] Can be set to `jinja' or another supported template engine to render the command arguments
before execution:

salt '*' archive.tar cjvf /tmp/salt.tar.bz2 {{grains.saltpath}} template=jinja

CLI Examples:

Create a tarfile
salt '*' archive.tar cjvf /tmp/tarfile.tar.bz2 /tmp/file_1,/tmp/file_2
Unpack a tarfile
salt '*' archive.tar xf foo.tar dest=/target/directory

salt.modules.archive.unrar(rarfile, dest, excludes=None, template=None)
Uses rar for Linux to unpack rar files

rarfile Name of rar file to be unpacked

dest e destination directory into which to unpa the rar file

template [None] Can be set to `jinja' or another supported template engine to render the command arguments
before execution:

salt '*' archive.unrar template=jinja /tmp/rarfile.rar /tmp/{{grains.id}}/ excludes=file_1,file_2

CLI Example:

salt '*' archive.unrar /tmp/rarfile.rar /home/strongbad/ excludes=file_1,file_2

salt.modules.archive.unzip(zipfile, dest, excludes=None, template=None, options=None)

Uses the unzip command to unpa zip files. is command is part of the Info-ZIP suite of tools, and is
typically packaged as simply unzip.

zipfile Path of zip file to be unpacked

dest e destination directory into which the file should be unpacked

excludes [None] Comma-separated list of files not to unpack. Can also be passed in a Python list.

template [None] Can be set to `jinja' or another supported template engine to render the command
arguments before execution:

salt '*' archive.unzip template=jinja /tmp/zipfile.zip /tmp/{{grains.id}}/ excludes=file_1,file_2

options [None] Additional command-line options to pass to the unzip binary.

482 Chapter 22. Reference

http://www.rarlab.com/
http://www.info-zip.org/

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' archive.unzip /tmp/zipfile.zip /home/strongbad/ excludes=file_1,file_2

salt.modules.archive.zip_(zipfile, sources, template=None, cwd=None)
Uses the zip command to create zip files. is command is part of the Info-ZIP suite of tools, and is typically
packaged as simply zip.

zipfile Path of zip file to be created

sources Comma-separated list of sources to include in the zip file. Sources can also be passed in a Python list.

template [None] Can be set to `jinja' or another supported template engine to render the command arguments
before execution:

salt '*' archive.zip template=jinja /tmp/zipfile.zip /tmp/sourcefile1,/tmp/{{grains.id}}.txt

cwd [None] Use this argument along with relative paths in sources to create zip files which do not contain
the leading directories. If not specified, the zip file will be created as if the cwd was /, and creating a
zip file of /foo/bar/baz.txt will contain the parent directories foo and bar. To create a zip file
containing just baz.txt, the following command would be used:

salt '*' archive.zip /tmp/baz.zip baz.txt cwd=/foo/bar

New in version 2014.7.1.

CLI Example:

salt '*' archive.zip /tmp/zipfile.zip /tmp/sourcefile1,/tmp/sourcefile2

22.16.7 salt.modules.at

Wrapper module for at(1)

Also, a `tag' feature has been added to more easily tag jobs.

salt.modules.at.at(*args, **kwargs)
Add a job to the queue.

e `timespec' follows the format documented in the at(1) manpage.

CLI Example:

salt '*' at.at <timespec> <cmd> [tag=<tag>] [runas=<user>]
salt '*' at.at 12:05am '/sbin/reboot' tag=reboot
salt '*' at.at '3:05am +3 days' 'bin/myscript' tag=nightly runas=jim

salt.modules.at.atc(jobid)
Print the at(1) script that will run for the passed job id. is is mostly for debugging so the output will just be
text.

CLI Example:

salt '*' at.atc <jobid>

salt.modules.at.atq(tag=None)
List all queued and running jobs or only those with an optional `tag'.

CLI Example:

22.16. Full list of builtin execution modules 483

http://www.info-zip.org/

Salt Documentation, Release 2014.7.6

salt '*' at.atq
salt '*' at.atq [tag]
salt '*' at.atq [job number]

salt.modules.at.atrm(*args)
Remove jobs from the queue.

CLI Example:

salt '*' at.atrm <jobid> <jobid> .. <jobid>
salt '*' at.atrm all
salt '*' at.atrm all [tag]

salt.modules.at.jobcheck(**kwargs)
Check the job from queue. e kwargs dict include `hour minute day month year tag runas' Other parameters
will be ignored.

CLI Example:

salt '*' at.jobcheck runas=jam day=13
salt '*' at.jobcheck day=13 month=12 year=13 tag=rose

22.16.8 salt.modules.augeas_cfg

Manages configuration files via augeas

is module requires the augeas Python module.

Warning: Minimal installations of Debian and Ubuntu have been seen to have packaging bugs with python-
augeas, causing the augeas module to fail to import. If the minion has the augeas module installed, but the
functions in this execution module fail to run due to being unavailable, first restart the salt-minion service. If the
problem persists past that, the following command can be run from the master to determine what is causing the
import to fail:

salt minion-id cmd.run 'python -c "from augeas import Augeas"'

For affected Debian/Ubuntu hosts, installing libpython2.7 has been known to resolve the issue.

salt.modules.augeas_cfg.execute(context=None, lens=None, commands=())
Execute Augeas commands

New in version 2014.7.0.

CLI Example:

salt '*' augeas.execute /files/etc/redis/redis.conf commands='["set bind 0.0.0.0", "set maxmemory 1G"]'

salt.modules.augeas_cfg.get(path, value='`)
Get a value for a specific augeas path

CLI Example:

salt '*' augeas.get /files/etc/hosts/1/ ipaddr

salt.modules.augeas_cfg.ls(path)
List the direct children of a node

CLI Example:

484 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' augeas.ls /files/etc/passwd

salt.modules.augeas_cfg.match(path, value='`)
Get matches for path expression

CLI Example:

salt '*' augeas.match /files/etc/services/service-name ssh

salt.modules.augeas_cfg.remove(path)
Get matches for path expression

CLI Example:

salt '*' augeas.remove /files/etc/sysctl.conf/net.ipv4.conf.all.log_martians

salt.modules.augeas_cfg.setvalue(*args)
Set a value for a specific augeas path

CLI Example:

salt '*' augeas.setvalue /files/etc/hosts/1/canonical localhost

is will set the first entry in /etc/hosts to localhost

CLI Example:

salt '*' augeas.setvalue /files/etc/hosts/01/ipaddr 192.168.1.1 \
/files/etc/hosts/01/canonical test

Adds a new host to /etc/hosts the ip address 192.168.1.1 and hostname test

CLI Example:

salt '*' augeas.setvalue prefix=/files/etc/sudoers/ \
"spec[user = '%wheel']/user" "%wheel" \
"spec[user = '%wheel']/host_group/host" 'ALL' \
"spec[user = '%wheel']/host_group/command[1]" 'ALL' \
"spec[user = '%wheel']/host_group/command[1]/tag" 'PASSWD' \
"spec[user = '%wheel']/host_group/command[2]" '/usr/bin/apt-get' \
"spec[user = '%wheel']/host_group/command[2]/tag" NOPASSWD

Ensures that the following line is present in /etc/sudoers:

%wheel ALL = PASSWD : ALL , NOPASSWD : /usr/bin/apt-get , /usr/bin/aptitude

salt.modules.augeas_cfg.tree(path)
Returns recursively the complete tree of a node

CLI Example:

salt '*' augeas.tree /files/etc/

22.16.9 salt.modules.aws_sqs

Support for the Amazon Simple eue Service.

salt.modules.aws_sqs.create_queue(name, region, opts=None, user=None)
Creates a queue with the correct name.

22.16. Full list of builtin execution modules 485

Salt Documentation, Release 2014.7.6

name Name of the SQS queue to create

region Region to create the SQS queue in

opts [None] Any additional options to add to the command line

user [None] Run hg as a user other than what the minion runs as

salt.modules.aws_sqs.delete_message(queue, region, receipthandle, opts=None, user=None)
Delete one or more messages from a queue in a region

queue e name of the queue to delete messages from

region Region where SQS queues exists

receipthandle e ReceiptHandle of the message to delete. e ReceiptHandle is obtained in the return from
receive_message

opts [None] Any additional options to add to the command line

user [None] Run as a user other than what the minion runs as

CLI Example:

salt '*' aws_sqs.delete_message <sqs queue> <region> receipthandle='<sqs ReceiptHandle>'

New in version 2014.7.0.

salt.modules.aws_sqs.delete_queue(name, region, opts=None, user=None)
Deletes a queue in the region.

name Name of the SQS queue to deletes

region Name of the region to delete the queue from

opts [None] Any additional options to add to the command line

user [None] Run hg as a user other than what the minion runs as

salt.modules.aws_sqs.list_queues(region, opts=None, user=None)
List the queues in the selected region.

region Region to list SQS queues for

opts [None] Any additional options to add to the command line

user [None] Run hg as a user other than what the minion runs as

salt.modules.aws_sqs.queue_exists(name, region, opts=None, user=None)
Returns True or False on whether the queue exists in the region

name Name of the SQS queue to search for

region Name of the region to search for the queue in

opts [None] Any additional options to add to the command line

user [None] Run hg as a user other than what the minion runs as

salt.modules.aws_sqs.receive_message(queue, region, num=1, opts=None, user=None)
Receive one or more messages from a queue in a region

queue e name of the queue to receive messages from

region Region where SQS queues exists

num [1] e max number of messages to receive

opts [None] Any additional options to add to the command line

486 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

user [None] Run as a user other than what the minion runs as

CLI Example:

salt '*' aws_sqs.receive_message <sqs queue> <region>
salt '*' aws_sqs.receive_message <sqs queue> <region> num=10

New in version 2014.7.0.

22.16.10 salt.modules.blockdev

Module for managing block devices

New in version 2014.7.0.

salt.modules.blockdev.dump(device, args=None)
Return all contents of dumpe2fs for a specified device

CLI Example: .. code-block:: bash

salt `*' extfs.dump /dev/sda1

salt.modules.blockdev.tune(device, **kwargs)
Set aributes for the specified device

CLI Example:

salt '*' blockdev.tune /dev/sda1 read-ahead=1024 read-write=True

Valid options are: read-ahead, filesystem-read-ahead, read-only, read-write.

See the blockdev(8) manpage for a more complete description of these options.

salt.modules.blockdev.wipe(device)
Remove the filesystem information

CLI Example:

salt '*' blockdev.wipe /dev/sda1

22.16.11 salt.modules.bluez

Support for Bluetooth (using BlueZ in Linux).

e following packages are required packages for this module:

bluez >= 5.7 bluez-libs >= 5.7 bluez-utils >= 5.7 pybluez >= 0.18

salt.modules.bluez.address_()
Get the many addresses of the Bluetooth adapter

CLI Example:

salt '*' bluetooth.address

salt.modules.bluez.block(bdaddr)
Block a specific bluetooth device by BD Address

CLI Example:

salt '*' bluetooth.block DE:AD:BE:EF:CA:FE

22.16. Full list of builtin execution modules 487

Salt Documentation, Release 2014.7.6

salt.modules.bluez.discoverable(dev)
Enable this bluetooth device to be discoverable.

CLI Example:

salt '*' bluetooth.discoverable hci0

salt.modules.bluez.noscan(dev)
Turn off scanning modes on this device.

CLI Example:

salt '*' bluetooth.noscan hci0

salt.modules.bluez.pair(address, key)
Pair the bluetooth adapter with a device

CLI Example:

salt '*' bluetooth.pair DE:AD:BE:EF:CA:FE 1234

Where DE:AD:BE:EF:CA:FE is the address of the device to pair with, and 1234 is the passphrase.

TODO: is function is currently broken, as the bluez-simple-agent program no longer ships with BlueZ >=
5.0. It needs to be refactored.

salt.modules.bluez.power(dev, mode)
Power a bluetooth device on or off

CLI Examples:

salt '*' bluetooth.power hci0 on
salt '*' bluetooth.power hci0 off

salt.modules.bluez.scan()
Scan for bluetooth devices in the area

CLI Example:

salt '*' bluetooth.scan

salt.modules.bluez.start()
Start the bluetooth service.

CLI Example:

salt '*' bluetooth.start

salt.modules.bluez.stop()
Stop the bluetooth service.

CLI Example:

salt '*' bluetooth.stop

salt.modules.bluez.unblock(bdaddr)
Unblock a specific bluetooth device by BD Address

CLI Example:

salt '*' bluetooth.unblock DE:AD:BE:EF:CA:FE

488 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.bluez.unpair(address)
Unpair the bluetooth adapter from a device

CLI Example:

salt '*' bluetooth.unpair DE:AD:BE:EF:CA:FE

Where DE:AD:BE:EF:CA:FE is the address of the device to unpair.

TODO: is function is currently broken, as the bluez-simple-agent program no longer ships with BlueZ >=
5.0. It needs to be refactored.

salt.modules.bluez.version()
Return Bluez version from bluetoothd -v

CLI Example:

salt '*' bluetoothd.version

22.16.12 salt.modules.boto_asg

Connection module for Amazon Autoscale Groups

New in version 2014.7.0.

configuration is module accepts explicit autoscale credentials but can also utilize IAM roles assigned
to the instance trough Instance Profiles. Dynamic credentials are then automatically obtained from
AWS API and no further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or in the minion's config file:

asg.keyid: GKTADJGHEIQSXMKKRBJ08H
asg.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

asg.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either as a passed in dict, or as a
string to pull from pillars or minion config:

myprofile: keyid: GKTADJGHEIQSXMKKRBJ08H key: askdjghsdkghWupUjasdflkd-
lgjsdajkghs region: us-east-1

depends boto

salt.modules.boto_asg.create(name, launch_config_name, availability_zones, min_size,
max_size, desired_capacity=None, load_balancers=None,
default_cooldown=None, health_check_type=None,
health_check_period=None, placement_group=None,
vpc_zone_identifier=None, tags=None, termination_policies=None,
suspended_processes=None, scaling_policies=None, region=None,
key=None, keyid=None, profile=None)

Create an autoscale group.

CLI example:

22.16. Full list of builtin execution modules 489

Salt Documentation, Release 2014.7.6

salt myminion boto_asg.create myasg mylc '["us-east-1a", "us-east-1e"]' 1 10 load_balancers='["myelb", "myelb2"]' tags='[{"key": "Name", value="myasg", "propagate_at_launch": True}]'

salt.modules.boto_asg.create_launch_configuration(name, image_id, key_name=None,
security_groups=None,
user_data=None, in-
stance_type='m1.small', ker-
nel_id=None, ramdisk_id=None,
block_device_mappings=None,
instance_monitoring=False,
spot_price=None, in-
stance_profile_name=None,
ebs_optimized=False, asso-
ciate_public_ip_address=None,
volume_type=None,
delete_on_termination=True,
iops=None,
use_block_device_types=False, re-
gion=None, key=None, keyid=None,
profile=None)

Create a launch configuration.

CLI example:

salt myminion boto_asg.create_launch_configuration mylc image_id=ami-0b9c9f62 key_name='mykey' security_groups='["mygroup"]' instance_type='c3.2xlarge'

salt.modules.boto_asg.delete(name, force=False, region=None, key=None, keyid=None, pro-
file=None)

Delete an autoscale group.

CLI example:

salt myminion boto_asg.delete myasg region=us-east-1

salt.modules.boto_asg.delete_launch_configuration(name, region=None, key=None,
keyid=None, profile=None)

Delete a launch configuration.

CLI example:

salt myminion boto_asg.delete_launch_configuration mylc

salt.modules.boto_asg.exists(name, region=None, key=None, keyid=None, profile=None)
Check to see if an autoscale group exists.

CLI example:

salt myminion boto_asg.exists myasg region=us-east-1

salt.modules.boto_asg.get_cloud_init_mime(cloud_init)
Get a mime multipart encoded string from a cloud-init dict. Currently supports scripts and cloud-config.

CLI Example:

salt myminion boto.get_cloud_init_mime <cloud init>

salt.modules.boto_asg.get_config(name, region=None, key=None, keyid=None, profile=None)
Get the configuration for an autoscale group.

CLI example:

490 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt myminion boto_asg.get_config myasg region=us-east-1

salt.modules.boto_asg.get_scaling_policy_arn(as_group, scaling_policy_name, re-
gion=None, key=None, keyid=None,
profile=None)

Return the arn for a scaling policy in a specific autoscale group or None if not found. Mainly used as a helper
method for boto_cloudwatch_alarm, for linking alarms to scaling policies.

CLI Example:

salt '*' boto_asg.get_scaling_policy_arn mygroup mypolicy

salt.modules.boto_asg.launch_configuration_exists(name, region=None, key=None,
keyid=None, profile=None)

Check for a launch configuration's existence.

CLI example:

salt myminion boto_asg.launch_configuration_exists mylc

salt.modules.boto_asg.update(name, launch_config_name, availability_zones, min_size,
max_size, desired_capacity=None, load_balancers=None,
default_cooldown=None, health_check_type=None,
health_check_period=None, placement_group=None,
vpc_zone_identifier=None, tags=None, termination_policies=None,
suspended_processes=None, scaling_policies=None, region=None,
key=None, keyid=None, profile=None)

Update an autoscale group.

CLI example:

salt myminion boto_asg.update myasg mylc '["us-east-1a", "us-east-1e"]' 1 10 load_balancers='["myelb", "myelb2"]' tags='[{"key": "Name", value="myasg", "propagate_at_launch": True}]'

22.16.13 salt.modules.boto_cloudwatch

Connection module for Amazon CloudWatch

New in version 2014.7.0.

configuration is module accepts explicit credentials but can also utilize IAM roles assigned to the
instance trough Instance Profiles. Dynamic credentials are then automatically obtained from AWS
API and no further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or in the minion's config file:

cloudwatch.keyid: GKTADJGHEIQSXMKKRBJ08H
cloudwatch.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

cloudwatch.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either as a passed in dict, or as a
string to pull from pillars or minion config:

22.16. Full list of builtin execution modules 491

Salt Documentation, Release 2014.7.6

myprofile: keyid: GKTADJGHEIQSXMKKRBJ08H key: askdjghsdkghWupUjasdflkd-
lgjsdajkghs region: us-east-1

depends boto

salt.modules.boto_cloudwatch.convert_to_arn(arns, region=None, key=None, keyid=None,
profile=None)

Convert a list of strings into actual arns. Converts convenience names such as `scaling_policy:…'

CLI Example:

salt '*' convert_to_arn 'scaling_policy:'

salt.modules.boto_cloudwatch.create_or_update_alarm(connection=None, name=None,
metric=None, names-
pace=None, statistic=None,
comparison=None, thresh-
old=None, period=None, evalu-
ation_periods=None, unit=None,
description='`, dimensions=None,
alarm_actions=None, insuf-
ficient_data_actions=None,
ok_actions=None, region=None,
key=None, keyid=None, pro-
file=None)

Create or update a cloudwatch alarm.

Params are the same as: hp://boto.readthedocs.org/en/latest/ref/cloudwatch.html#boto.ec2.cloudwatch.alarm.MetricAlarm.

Dimensions must be a dict. If the value of Dimensions is a string, it will be json decoded to produce
a dict. alarm_actions, insufficient_data_actions, and ok_actions must be lists of string. If the passed-in
value is a string, it will be split on '','' to produce a list. e strings themselves for alarm_actions, insuf-
ficient_data_actions, and ok_actions must be Amazon resource names (ARN's); however, this method also
supports an arn lookup notation, as follows:

arn:aws:…. ARN as per hp://docs.aws.amazon.com/general/latest/gr/aws-arns-and-
namespaces.html scaling_policy:<as_name>:<scaling_policy_name> e named autoscale
group scaling policy, for the named group (e.g. scaling_policy:my-asg:ScaleDown)

is is convenient for seing up autoscaling as follows. First specify a boto_asg.present state for an ASG
with scaling_policies, and then set up boto_cloudwatch_alarm.present states which have alarm_actions that
reference the scaling_policy.

CLI example:

salt myminion boto_cloudwatch.create_alarm name=myalarm … region=us-east-1

salt.modules.boto_cloudwatch.delete_alarm(name, region=None, key=None, keyid=None, pro-
file=None)

Delete a cloudwatch alarm

CLI example to delete a queue:

salt myminion boto_cloudwatch.delete_alarm myalarm region=us-east-1

salt.modules.boto_cloudwatch.get_alarm(name, region=None, key=None, keyid=None, pro-
file=None)

Get alarm details. Also can be used to check to see if an alarm exists.

CLI example:

492 Chapter 22. Reference

http://boto.readthedocs.org/en/latest/ref/cloudwatch.html#boto.ec2.cloudwatch.alarm.MetricAlarm

Salt Documentation, Release 2014.7.6

salt myminion boto_cloudwatch.get_alarm myalarm region=us-east-1

salt.modules.boto_cloudwatch.get_all_alarms(region=None, prefix=None, key=None,
keyid=None, profile=None)

Get all alarm details. Produces results that can be used to create an sls file.

If prefix parameter is given, alarm names in the output will be prepended with the prefix; alarms that have the
prefix will be skipped. is can be used to convert existing alarms to be managed by salt, as follows:

1.Make a ``baup'' of all existing alarms $ salt-call boto_cloudwatch.get_all_alarms --out=txt | sed
``s/local: //'' > legacy_alarms.sls

2.Get all alarms with new prefixed names $ salt-call boto_cloudwatch.get_all_alarms ``pre-
fix=**MANAGED BY SALT** '' --out=txt | sed ``s/local: //'' > managed_alarms.sls

3.Insert the managed alarms into cloudwat $ salt-call state.template managed_alarms.sls

4.Manually verify that the new alarms look right

5.Delete the original alarms $ sed s/present/absent/ legacy_alarms.sls > remove_legacy_alarms.sls $ salt-
call state.template remove_legacy_alarms.sls

6.Get all alarms again, verify no changes $ salt-call boto_cloudwatch.get_all_alarms --out=txt | sed
``s/local: //'' > final_alarms.sls $ diff final_alarms.sls managed_alarms.sls

CLI example:

salt myminion boto_cloudwatch.get_all_alarms region=us-east-1 --out=txt

22.16.14 salt.modules.boto_elasticache

Connection module for Amazon Elasticache

New in version 2014.7.0.

configuration is module accepts explicit elasticache credentials but can also utilize IAM roles as-
signed to the instance trough Instance Profiles. Dynamic credentials are then automatically ob-
tained from AWS API and no further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or in the minion's config file:

elasticache.keyid: GKTADJGHEIQSXMKKRBJ08H
elasticache.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

elasticache.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either as a passed in dict, or as a
string to pull from pillars or minion config:

myprofile: keyid: GKTADJGHEIQSXMKKRBJ08H key: askdjghsdkghWupUjasdflkd-
lgjsdajkghs region: us-east-1

depends boto

22.16. Full list of builtin execution modules 493

Salt Documentation, Release 2014.7.6

salt.modules.boto_elasticache.authorize_cache_security_group_ingress(name,
ec2_security_group_name,
ec2_security_group_owner_id,
re-
gion=None,
key=None,
keyid=None,
pro-
file=None)

Authorize network ingress from an ec2 security group to a cache security group.

CLI example:

salt myminion boto_elasticache.authorize_cache_security_group_ingress myelasticachesg myec2sg 879879

salt.modules.boto_elasticache.create(name, num_cache_nodes, engine, cache_node_type,
replication_group_id=None, engine_version=None,
cache_parameter_group_name=None,
cache_subnet_group_name=None,
cache_security_group_names=None, secu-
rity_group_ids=None, snapshot_arns=None,
preferred_availability_zone=None, pre-
ferred_maintenance_window=None,
port=None, notification_topic_arn=None,
auto_minor_version_upgrade=True, wait=False, re-
gion=None, key=None, keyid=None, profile=None)

Create a cache cluster.

CLI example:

salt myminion boto_elasticache.create myelasticache 1 redis cache.t1.micro cache_security_group_names='["myelasticachesg"]'

salt.modules.boto_elasticache.create_cache_security_group(name, description, re-
gion=None, key=None,
keyid=None, pro-
file=None)

Create a cache security group.

CLI example:

salt myminion boto_elasticache.create_cache_security_group myelasticachesg 'My Cache Security Group'

salt.modules.boto_elasticache.delete(name, wait=False, region=None, key=None, keyid=None,
profile=None)

Delete a cache cluster.

CLI example:

salt myminion boto_elasticache.delete myelasticache

salt.modules.boto_elasticache.delete_cache_security_group(name, region=None,
key=None, keyid=None,
profile=None)

Delete a cache security group.

CLI example:

salt myminion boto_elasticache.delete_cache_security_group myelasticachesg 'My Cache Security Group'

494 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.boto_elasticache.exists(name, region=None, key=None, keyid=None, pro-
file=None)

Check to see if a cache cluster exists.

CLI example:

salt myminion boto_elasticache.exists myelasticache

salt.modules.boto_elasticache.get_cache_subnet_group(name, region=None, key=None,
keyid=None, profile=None)

Get information about a cache subnet group.

CLI example:

salt myminion boto_elasticache.get_cache_subnet_group mycache_subnet_group

salt.modules.boto_elasticache.get_config(name, region=None, key=None, keyid=None, pro-
file=None)

Get the configuration for a cache cluster.

CLI example:

salt myminion boto_elasticache.get_config myelasticache

salt.modules.boto_elasticache.revoke_cache_security_group_ingress(name,
ec2_security_group_name,
ec2_security_group_owner_id,
re-
gion=None,
key=None,
keyid=None,
pro-
file=None)

Revoke network ingress from an ec2 security group to a cache security group.

CLI example:

salt myminion boto_elasticache.revoke_cache_security_group_ingress myelasticachesg myec2sg 879879

22.16.15 salt.modules.boto_elb

Connection module for Amazon ELB

New in version 2014.7.0.

configuration is module accepts explicit elb credentials but can also utilize IAM roles assigned to the
instance trough Instance Profiles. Dynamic credentials are then automatically obtained from AWS
API and no further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or in the minion's config file:

elb.keyid: GKTADJGHEIQSXMKKRBJ08H
elb.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

22.16. Full list of builtin execution modules 495

Salt Documentation, Release 2014.7.6

elb.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either as a passed in dict, or as a
string to pull from pillars or minion config:

myprofile: keyid: GKTADJGHEIQSXMKKRBJ08H key: askdjghsdkghWupUjasdflkd-
lgjsdajkghs region: us-east-1

depends boto

salt.modules.boto_elb.attach_subnets(name, subnets, region=None, key=None, keyid=None,
profile=None)

Aach ELB to subnets.

CLI example:

salt myminion boto_elb.attach_subnets myelb '["mysubnet"]'

salt.modules.boto_elb.create(name, availability_zones, listeners=None, subnets=None, se-
curity_groups=None, scheme='internet-facing', region=None,
key=None, keyid=None, profile=None)

Create an ELB

CLI example to create an ELB:

salt myminion boto_elb.create myelb '["us-east-1a", "us-east-1e"]' listeners='[["HTTPS", "HTTP", 443, 80, "arn:aws:iam::1111111:server-certificate/mycert"]]' region=us-east-1

salt.modules.boto_elb.create_listeners(name, listeners=None, region=None, key=None,
keyid=None, profile=None)

Create listeners on an ELB.

CLI example:

salt myminion boto_elb.create_listeners myelb listeners='[["HTTPS", "HTTP", 443, 80, "arn:aws:iam::11 11111:server-certificate/mycert"]]'

salt.modules.boto_elb.delete(name, region=None, key=None, keyid=None, profile=None)
Delete an ELB.

CLI example to delete an ELB:

salt myminion boto_elb.delete myelb region=us-east-1

salt.modules.boto_elb.delete_listeners(name, ports, region=None, key=None, keyid=None,
profile=None)

Delete listeners on an ELB.

CLI example:

salt myminion boto_elb.delete_listeners myelb '[80,443]'

salt.modules.boto_elb.deregister_instances(name, instances, region=None, key=None,
keyid=None, profile=None)

Deregister instances with an ELB. Instances is either a string instance id or a list of string instance id's.

Returns:

•True: instance(s) deregistered successfully

•False: instance(s) failed to be deregistered

•None: instance(s) not valid or not registered, no action taken

496 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI example:

salt myminion boto_elb.deregister_instances myelb instance_id
salt myminion boto_elb.deregister_instances myelb "[instance_id, instance_id]"

salt.modules.boto_elb.detach_subnets(name, subnets, region=None, key=None, keyid=None,
profile=None)

Detach ELB from subnets.

CLI example:

salt myminion boto_elb.detach_subnets myelb '["mysubnet"]'

salt.modules.boto_elb.disable_availability_zones(name, availability_zones, re-
gion=None, key=None, keyid=None,
profile=None)

Disable availability zones for ELB.

CLI example:

salt myminion boto_elb.disable_availability_zones myelb '["us-east-1a"]'

salt.modules.boto_elb.enable_availability_zones(name, availability_zones, region=None,
key=None, keyid=None, profile=None)

Enable availability zones for ELB.

CLI example:

salt myminion boto_elb.enable_availability_zones myelb '["us-east-1a"]'

salt.modules.boto_elb.exists(name, region=None, key=None, keyid=None, profile=None)
Check to see if an ELB exists.

CLI example:

salt myminion boto_elb.exists myelb region=us-east-1

salt.modules.boto_elb.get_attributes(name, region=None, key=None, keyid=None, pro-
file=None)

Check to see if aributes are set on an ELB.

CLI example:

salt myminion boto_elb.get_attributes myelb

salt.modules.boto_elb.get_elb_config(name, region=None, key=None, keyid=None, pro-
file=None)

Check to see if an ELB exists.

CLI example:

salt myminion boto_elb.exists myelb region=us-east-1

salt.modules.boto_elb.get_health_check(name, region=None, key=None, keyid=None, pro-
file=None)

Get the health check configured for this ELB.

CLI example:

salt myminion boto_elb.get_health_check myelb

22.16. Full list of builtin execution modules 497

Salt Documentation, Release 2014.7.6

salt.modules.boto_elb.get_instance_health(name, region=None, key=None, keyid=None, pro-
file=None, instances=None)

Get a list of instances and their health state

CLI example:

salt myminion boto_elb.get_instance_health myelb
salt myminion boto_elb.get_instance_health myelb region=us-east-1 instances="[instance_id,instance_id]"

salt.modules.boto_elb.register_instances(name, instances, region=None, key=None,
keyid=None, profile=None)

Register instances with an ELB. Instances is either a string instance id or a list of string instance id's.

Returns:

•True: instance(s) registered successfully

•False: instance(s) failed to be registered

CLI example:

salt myminion boto_elb.register_instances myelb instance_id
salt myminion boto_elb.register_instances myelb "[instance_id,instance_id]"

salt.modules.boto_elb.set_attributes(name, aributes, region=None, key=None, keyid=None,
profile=None)

Set aributes on an ELB.

CLI example to set aributes on an ELB:

salt myminion boto_elb.set_attributes myelb '{"access_log": {"enabled": "true", "s3_bucket_name": "mybucket", "s3_bucket_prefix": "mylogs/", "emit_interval": "5"}}' region=us-east-1

salt.modules.boto_elb.set_health_check(name, health_check, region=None, key=None,
keyid=None, profile=None)

Set aributes on an ELB.

CLI example to set aributes on an ELB:

salt myminion boto_elb.set_health_check myelb '{"target": "HTTP:80/"}'

22.16.16 salt.modules.boto_iam

Connection module for Amazon IAM

New in version 2014.7.0.

configuration is module accepts explicit iam credentials but can also utilize IAM roles assigned to
the instance trough Instance Profiles. Dynamic credentials are then automatically obtained from
AWS API and no further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or in the minion's config file:

iam.keyid: GKTADJGHEIQSXMKKRBJ08H
iam.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
iam.region: us-east-1

It's also possible to specify key, keyid and region via a profile, either as a passed in dict, or as a
string to pull from pillars or minion config:

498 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

myprofile: keyid: GKTADJGHEIQSXMKKRBJ08H key: askdjghsdkghWupUjasdflkd-
lgjsdajkghs region: us-east-1

depends boto

salt.modules.boto_iam.associate_profile_to_role(profile_name, role_name, region=None,
key=None, keyid=None, profile=None)

Associate an instance profile with an IAM role.

CLI example:

salt myminion boto_iam.associate_profile_to_role myirole myiprofile

salt.modules.boto_iam.create_instance_profile(name, region=None, key=None,
keyid=None, profile=None)

Create an instance profile.

CLI example:

salt myminion boto_iam.create_instance_profile myiprofile

salt.modules.boto_iam.create_role(name, policy_document=None, path=None, region=None,
key=None, keyid=None, profile=None)

Create an instance role.

CLI example:

salt myminion boto_iam.create_role myrole

salt.modules.boto_iam.create_role_policy(role_name, policy_name, policy, region=None,
key=None, keyid=None, profile=None)

Create or modify a role policy.

CLI example:

salt myminion boto_iam.create_role_policy myirole mypolicy '{"MyPolicy": "Statement": [{"Action": ["sqs:*"], "Effect": "Allow", "Resource": ["arn:aws:sqs:*:*:*"], "Sid": "MyPolicySqs1"}]}'

salt.modules.boto_iam.delete_instance_profile(name, region=None, key=None,
keyid=None, profile=None)

Delete an instance profile.

CLI example:

salt myminion boto_iam.delete_instance_profile myiprofile

salt.modules.boto_iam.delete_role(name, region=None, key=None, keyid=None, profile=None)
Delete an IAM role.

CLI example:

salt myminion boto_iam.delete_role myirole

salt.modules.boto_iam.delete_role_policy(role_name, policy_name, region=None, key=None,
keyid=None, profile=None)

Delete a role policy.

CLI example:

salt myminion boto_iam.delete_role_policy myirole mypolicy

22.16. Full list of builtin execution modules 499

Salt Documentation, Release 2014.7.6

salt.modules.boto_iam.disassociate_profile_from_role(profile_name, role_name,
region=None, key=None,
keyid=None, profile=None)

Disassociate an instance profile from an IAM role.

CLI example:

salt myminion boto_iam.disassociate_profile_from_role myirole myiprofile

salt.modules.boto_iam.get_role_policy(role_name, policy_name, region=None, key=None,
keyid=None, profile=None)

Get a role policy.

CLI example:

salt myminion boto_iam.get_role_policy myirole mypolicy

salt.modules.boto_iam.instance_profile_exists(name, region=None, key=None,
keyid=None, profile=None)

Check to see if an instance profile exists.

CLI example:

salt myminion boto_iam.instance_profile_exists myiprofile

salt.modules.boto_iam.list_role_policies(role_name, region=None, key=None, keyid=None,
profile=None)

Get a list of policy names from a role.

CLI example:

salt myminion boto_iam.list_role_policies myirole

salt.modules.boto_iam.profile_associated(role_name, profile_name, region, key, keyid, pro-
file)

Check to see if an instance profile is associated with an IAM role.

CLI example:

salt myminion boto_iam.profile_associated myirole myiprofile

salt.modules.boto_iam.role_exists(name, region=None, key=None, keyid=None, profile=None)
Check to see if an IAM role exists.

CLI example:

salt myminion boto_iam.role_exists myirole

22.16.17 salt.modules.boto_route53

Connection module for Amazon Route53

New in version 2014.7.0.

configuration is module accepts explicit route53 credentials but can also utilize IAM roles assigned
to the instance trough Instance Profiles. Dynamic credentials are then automatically obtained from
AWS API and no further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

500 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

If IAM roles are not used you need to specify them either in a pillar or in the minion's config file:

route53.keyid: GKTADJGHEIQSXMKKRBJ08H
route53.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

route53.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either as a passed in dict, or as a
string to pull from pillars or minion config:

myprofile: keyid: GKTADJGHEIQSXMKKRBJ08H key: askdjghsdkghWupUjasdflkd-
lgjsdajkghs region: us-east-1

depends boto

salt.modules.boto_route53.add_record(name, value, zone, record_type, identifier=None,
l=None, region=None, key=None, keyid=None, pro-
file=None, sync_wait=False)

Add a record to a zone.

CLI example:

salt myminion boto_route53.add_record test.example.org 1.1.1.1 example.org A

salt.modules.boto_route53.delete_record(name, zone, record_type, identifier=None,
all_records=False, region=None, key=None,
keyid=None, profile=None, sync_wait=False)

Modify a record in a zone.

CLI example:

salt myminion boto_route53.delete_record test.example.org example.org A

salt.modules.boto_route53.get_record(name, zone, record_type, fetch_all=False, region=None,
key=None, keyid=None, profile=None)

Get a record from a zone.

CLI example:

salt myminion boto_route53.get_record test.example.org example.org A

salt.modules.boto_route53.update_record(name, value, zone, record_type, identifier=None,
l=None, region=None, key=None, keyid=None, pro-
file=None, sync_wait=False)

Modify a record in a zone.

CLI example:

salt myminion boto_route53.modify_record test.example.org 1.1.1.1 example.org A

22.16.18 salt.modules.boto_secgroup

Connection module for Amazon Security Groups

New in version 2014.7.0.

22.16. Full list of builtin execution modules 501

Salt Documentation, Release 2014.7.6

configuration is module accepts explicit ec2 credentials but can also utilize IAM roles assigned to the
instance trough Instance Profiles. Dynamic credentials are then automatically obtained from AWS
API and no further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or in the minion's config file:

secgroup.keyid: GKTADJGHEIQSXMKKRBJ08H
secgroup.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

secgroup.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either as a passed in dict, or as a
string to pull from pillars or minion config:

myprofile: keyid: GKTADJGHEIQSXMKKRBJ08H key: askdjghsdkghWupUjasdflkd-
lgjsdajkghs region: us-east-1

depends boto

salt.modules.boto_secgroup.authorize(name=None, source_group_name=None,
source_group_owner_id=None, ip_protocol=None,
from_port=None, to_port=None, cidr_ip=None,
group_id=None, source_group_group_id=None, re-
gion=None, key=None, keyid=None, profile=None,
vpc_id=None)

Add a new rule to an existing security group.

CLI example:

salt myminion boto_secgroup.authorize mysecgroup ip_protocol=tcp from_port=80 to_port=80 cidr_ip='['10.0.0.0/8', '192.168.0.0/24']'

salt.modules.boto_secgroup.convert_to_group_ids(groups, vpc_id, region=None, key=None,
keyid=None, profile=None)

Given a list of security groups and a vpc_id, convert_to_group_ids will convert all list items in the given list
to security group ids.

CLI example:

salt myminion boto_secgroup.convert_to_group_ids mysecgroup vpc-89yhh7h

salt.modules.boto_secgroup.create(name, description, vpc_id=None, region=None, key=None,
keyid=None, profile=None)

Create an autoscale group.

CLI example:

salt myminion boto_secgroup.create mysecgroup 'My Security Group'

salt.modules.boto_secgroup.delete(name=None, group_id=None, region=None, key=None,
keyid=None, profile=None, vpc_id=None)

Delete an autoscale group.

CLI example:

salt myminion boto_secgroup.delete mysecgroup

502 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.boto_secgroup.exists(name=None, region=None, key=None, keyid=None, pro-
file=None, vpc_id=None, group_id=None)

Check to see if an security group exists.

CLI example:

salt myminion boto_secgroup.exists mysecgroup

salt.modules.boto_secgroup.get_config(name=None, group_id=None, region=None, key=None,
keyid=None, profile=None, vpc_id=None)

Get the configuration for a security group.

CLI example:

salt myminion boto_secgroup.get_config mysecgroup

salt.modules.boto_secgroup.get_group_id(name, vpc_id=None, region=None, key=None,
keyid=None, profile=None)

Get a Group ID given a Group Name or Group Name and VPC ID

CLI example:

salt myminion boto_secgroup.get_group_id mysecgroup

salt.modules.boto_secgroup.revoke(name=None, source_group_name=None,
source_group_owner_id=None, ip_protocol=None,
from_port=None, to_port=None, cidr_ip=None,
group_id=None, source_group_group_id=None, region=None,
key=None, keyid=None, profile=None, vpc_id=None)

Remove a rule from an existing security group.

CLI example:

salt myminion boto_secgroup.revoke mysecgroup ip_protocol=tcp from_port=80 to_port=80 cidr_ip='10.0.0.0/8'

22.16.19 salt.modules.boto_sqs

Connection module for Amazon SQS

New in version 2014.7.0.

configuration is module accepts explicit sqs credentials but can also utilize IAM roles assigned to the
instance trough Instance Profiles. Dynamic credentials are then automatically obtained from AWS
API and no further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or in the minion's config file:

sqs.keyid: GKTADJGHEIQSXMKKRBJ08H
sqs.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

sqs.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either as a passed in dict, or as a
string to pull from pillars or minion config:

22.16. Full list of builtin execution modules 503

Salt Documentation, Release 2014.7.6

myprofile: keyid: GKTADJGHEIQSXMKKRBJ08H key: askdjghsdkghWupUjasdflkd-
lgjsdajkghs region: us-east-1

depends boto

salt.modules.boto_sqs.create(name, region=None, key=None, keyid=None, profile=None)
Create an SQS queue.

CLI example to create a queue:

salt myminion boto_sqs.create myqueue region=us-east-1

salt.modules.boto_sqs.delete(name, region=None, key=None, keyid=None, profile=None)
Delete an SQS queue.

CLI example to delete a queue:

salt myminion boto_sqs.delete myqueue region=us-east-1

salt.modules.boto_sqs.exists(name, region=None, key=None, keyid=None, profile=None)
Check to see if a queue exists.

CLI example:

salt myminion boto_sqs.exists myqueue region=us-east-1

salt.modules.boto_sqs.get_attributes(name, region=None, key=None, keyid=None, pro-
file=None)

Check to see if aributes are set on an SQS queue.

CLI example:

salt myminion boto_sqs.get_attributes myqueue

salt.modules.boto_sqs.set_attributes(name, aributes, region=None, key=None, keyid=None,
profile=None)

Set aributes on an SQS queue.

CLI example to set aributes on a queue:

salt myminion boto_sqs.set_attributes myqueue '{ReceiveMessageWaitTimeSeconds: 20}' region=us-east-1

22.16.20 salt.modules.brew

Homebrew for Mac OS X

salt.modules.brew.install(name=None, pkgs=None, taps=None, options=None, **kwargs)
Install the passed package(s) with brew install

name e name of the formula to be installed. Note that this parameter is ignored if ``pkgs'' is passed.

CLI Example:

salt '*' pkg.install <package name>

taps Unofficial Github repos to use when updating and installing formulas.

CLI Example:

salt '*' pkg.install <package name> tap='<tap>'
salt '*' pkg.install zlib taps='homebrew/dupes'
salt '*' pkg.install php54 taps='["josegonzalez/php", "homebrew/dupes"]'

504 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

options Options to pass to brew. Only applies to initial install. Due to how brew works, modifying chosen
options requires a full uninstall followed by a fresh install. Note that if ``pkgs'' is used, all options will
be passed to all packages. Unrecognized options for a package will be silently ignored by brew.

CLI Example:

salt '*' pkg.install <package name> tap='<tap>'
salt '*' pkg.install php54 taps='["josegonzalez/php", "homebrew/dupes"]' options='["--with-fpm"]'

Multiple Package Installation Options:

pkgs A list of formulas to install. Must be passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo","bar"]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install 'package package package'

salt.modules.brew.latest_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation

Note that this currently not fully implemented but needs to return something to avoid a traceback when calling
pkg.latest.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3>

salt.modules.brew.list_pkgs(versions_as_list=False, **kwargs)
List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

salt.modules.brew.list_upgrades()
Check whether or not an upgrade is available for all packages

CLI Example:

salt '*' pkg.list_upgrades

salt.modules.brew.refresh_db()
Update the homebrew package repository.

CLI Example:

salt '*' pkg.refresh_db

salt.modules.brew.remove(name=None, pkgs=None, **kwargs)
Removes packages with brew uninstall.

22.16. Full list of builtin execution modules 505

Salt Documentation, Release 2014.7.6

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

salt.modules.brew.upgrade(refresh=True)
Upgrade outdated, unpinned brews.

refresh Fetch the newest version of Homebrew and all formulae from GitHub before installing.

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

salt.modules.brew.upgrade_available(pkg)
Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

salt.modules.brew.version(*names, **kwargs)
Returns a string representing the package version or an empty string if not installed. If more than one package
name is specified, a dict of name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3>

22.16.21 salt.modules.bridge

Module for gathering and managing bridging information

salt.modules.bridge.add(br=None)
Creates a bridge

CLI Example:

salt '*' bridge.add br0

salt.modules.bridge.addif(br=None, iface=None)
Adds an interface to a bridge

CLI Example:

506 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' bridge.addif br0 eth0

salt.modules.bridge.delete(br=None)
Deletes a bridge

CLI Example:

salt '*' bridge.delete br0

salt.modules.bridge.delif(br=None, iface=None)
Removes an interface from a bridge

CLI Example:

salt '*' bridge.delif br0 eth0

salt.modules.bridge.find_interfaces(*args)
Returns the bridge to which the interfaces are bond to

CLI Example:

salt '*' bridge.find_interfaces eth0 [eth1...]

salt.modules.bridge.interfaces(br=None)
Returns interfaces aached to a bridge

CLI Example:

salt '*' bridge.interfaces br0

salt.modules.bridge.list_()
Returns the machine's bridges list

CLI Example:

salt '*' bridge.list

salt.modules.bridge.show(br=None)
Returns bridges interfaces along with enslaved physical interfaces. If no interface is given, all bridges are
shown, else only the specified bridge values are returned.

CLI Example:

salt '*' bridge.show
salt '*' bridge.show br0

salt.modules.bridge.stp(br=None, state='disable', iface=None)
Sets Spanning Tree Protocol state for a bridge

CLI Example:

salt '*' bridge.stp br0 enable
salt '*' bridge.stp br0 disable

For BSD-like operating systems, it is required to add the interface on which to enable the STP.

CLI Example:

salt '*' bridge.stp bridge0 enable fxp0
salt '*' bridge.stp bridge0 disable fxp0

22.16. Full list of builtin execution modules 507

Salt Documentation, Release 2014.7.6

22.16.22 salt.modules.bsd_shadow

Manage the password database on BSD systems

salt.modules.bsd_shadow.default_hash()
Returns the default hash used for unset passwords

CLI Example:

salt '*' shadow.default_hash

salt.modules.bsd_shadow.info(name)
Return information for the specified user

CLI Example:

salt '*' shadow.info someuser

salt.modules.bsd_shadow.set_password(name, password)
Set the password for a named user. e password must be a properly defined hash. e password hash can be
generated with this command:

python -c "import crypt; print crypt.crypt('password', ciphersalt)"

NOTE: When constructing the ciphersalt string, you must escape any dollar signs, to avoid them being
interpolated by the shell.

'password' is, of course, the password for which you want to generate a hash.

ciphersalt is a combination of a cipher identifier, an optional number of rounds, and the cryptographic
salt. e arrangement and format of these fields depends on the cipher and which flavor of BSD you are using.
For more information on this, see themanpage for crpyt(3). On NetBSD, additional information is available
in passwd.conf(5).

It is important to make sure that a supported cipher is used.

CLI Example:

salt '*' shadow.set_password someuser '1UYCIxa628.9qXjpQCjM4a..'

22.16.23 salt.modules.cassandra

Cassandra NoSQL Database Module

depends

• pycassa Cassandra Python adapter

configuration e location of the `nodetool' command, host, and thri port needs to be specified via
pillar:

cassandra.nodetool: /usr/local/bin/nodetool
cassandra.host: localhost
cassandra.thrift_port: 9160

salt.modules.cassandra.column_families(keyspace=None)
Return existing column families for all keyspaces or just the provided one.

CLI Example:

508 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' cassandra.column_families
salt '*' cassandra.column_families <keyspace>

salt.modules.cassandra.column_family_definition(keyspace=None, col-
umn_family=None)

Return a dictionary of column family definitions for the given keyspace/column_family

CLI Example:

salt '*' cassandra.column_family_definition <keyspace> <column_family>

salt.modules.cassandra.compactionstats()
Return compactionstats info

CLI Example:

salt '*' cassandra.compactionstats

salt.modules.cassandra.info()
Return cassandra node info

CLI Example:

salt '*' cassandra.info

salt.modules.cassandra.keyspaces()
Return existing keyspaces

CLI Example:

salt '*' cassandra.keyspaces

salt.modules.cassandra.netstats()
Return netstats info

CLI Example:

salt '*' cassandra.netstats

salt.modules.cassandra.ring()
Return cassandra ring info

CLI Example:

salt '*' cassandra.ring

salt.modules.cassandra.tpstats()
Return tpstats info

CLI Example:

salt '*' cassandra.tpstats

salt.modules.cassandra.version()
Return the cassandra version

CLI Example:

salt '*' cassandra.version

22.16. Full list of builtin execution modules 509

Salt Documentation, Release 2014.7.6

22.16.24 salt.modules.chef

Execute chef in server or solo mode

salt.modules.chef.client(whyrun=False, localmode=False, logfile=None, **kwargs)
Execute a chef client run and return a dict with the stderr, stdout, return code, and pid.

CLI Example:

salt '*' chef.client server=https://localhost

server e chef server URL

client_key Set the client key file location

config e configuration file to use

config-file-jail Directory under which config files are allowed to be loaded (no client.rb or knife.rb outside
this path will be loaded).

environment Set the Chef Environment on the node

group Group to set privilege to

json-attributes Load aributes from a JSON file or URL

localmode Point chef-client at local repository if True

log_level Set the log level (debug, info, warn, error, fatal)

logfile Set the log file location

node-name e node name for this client

override-runlist Replace current run list with specified items for a single run

pid Set the PID file location, defaults to /tmp/chef-client.pid

run-lo-timeout Set maximum duration to wait for another client run to finish, default is indefinitely.

runlist Permanently replace current run list with specified items

user User to set privilege to

validation_key Set the validation key file location, used for registering new clients

whyrun Enable whyrun mode when set to True

salt.modules.chef.solo(whyrun=False, logfile=None, **kwargs)
Execute a chef solo run and return a dict with the stderr, stdout, return code, and pid.

CLI Example:

salt '*' chef.solo override-runlist=test

config e configuration file to use

environment Set the Chef Environment on the node

group Group to set privilege to

json-attributes Load aributes from a JSON file or URL

log_level Set the log level (debug, info, warn, error, fatal)

logfile Set the log file location

510 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

node-name e node name for this client

override-runlist Replace current run list with specified items for a single run

recipe-url Pull down a remote gzipped tarball of recipes and untar it to the cookbook cache

run-lo-timeout Set maximum duration to wait for another client run to finish, default is indefinitely.

user User to set privilege to

whyrun Enable whyrun mode when set to True

22.16.25 salt.modules.chocolatey

A dead simple module wrapping calls to the Chocolatey package manager (hp://chocolatey.org)

New in version 2014.1.0.

salt.modules.chocolatey.bootstrap(force=False)
Download and install the latest version of the Chocolatey package manager via the official bootstrap.

Chocolatey requiresWindows PowerShell and the .NET v4.0 runtime. Depending on the host's version ofWin-
dows, chocolatey.bootstrap will aempt to ensure these prerequisites are met by downloading and executing
the appropriate installers from Microso.

Note that if PowerShell is installed, you may have to restart the host machine for Chocolatey to work.

force Run the bootstrap process even if Chocolatey is found in the path.

CLI Example:

salt '*' chocolatey.bootstrap
salt '*' chocolatey.bootstrap force=True

salt.modules.chocolatey.chocolatey_version()
New in version 2014.7.0.

Returns the version of Chocolatey installed on the minion.

CLI Example:

salt '*' chocolatey.chocolatey_version

salt.modules.chocolatey.install(name, version=None, source=None, force=False)
Instructs Chocolatey to install a package.

name e name of the package to be installed. Only accepts a single argument.

version Install a specific version of the package. Defaults to latest version.

source Chocolatey repository (directory, share or remote URL feed) the package comes from. Defaults to the
official Chocolatey feed.

force Reinstall the current version of an existing package.

CLI Example:

salt '*' chocolatey.install <package name>
salt '*' chocolatey.install <package name> version=<package version>

salt.modules.chocolatey.install_cygwin(name)
Instructs Chocolatey to install a package via Cygwin.

name e name of the package to be installed. Only accepts a single argument.

22.16. Full list of builtin execution modules 511

http://chocolatey.org

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' chocolatey.install_cygwin <package name>

salt.modules.chocolatey.install_gem(name, version=None)
Instructs Chocolatey to install a package via Ruby's Gems.

name e name of the package to be installed. Only accepts a single argument.

version Install a specific version of the package. Defaults to latest version available.

CLI Example:

salt '*' chocolatey.install_gem <package name>
salt '*' chocolatey.install_gem <package name> version=<package version>

salt.modules.chocolatey.install_missing(name, version=None, source=None)
Instructs Chocolatey to install a package if it doesn't already exist.

Changed in version 2014.7.0: If the minion has Chocolatey >= 0.9.8.24 installed, this function calls choco-
latey.install instead, as installmissing is deprecated as of that version and will be removed in
Chocolatey 1.0.

name e name of the package to be installed. Only accepts a single argument.

version Install a specific version of the package. Defaults to latest version available.

source Chocolatey repository (directory, share or remote URL feed) the package comes from. Defaults to the
official Chocolatey feed.

CLI Example:

salt '*' chocolatey.install_missing <package name>
salt '*' chocolatey.install_missing <package name> version=<package version>

salt.modules.chocolatey.install_python(name, version=None)
Instructs Chocolatey to install a package via Python's easy_install.

name e name of the package to be installed. Only accepts a single argument.

version Install a specific version of the package. Defaults to latest version available.

CLI Example:

salt '*' chocolatey.install_python <package name>
salt '*' chocolatey.install_python <package name> version=<package version>

salt.modules.chocolatey.install_webpi(name)
Instructs Chocolatey to install a package via the Microso Web PI service.

name e name of the package to be installed. Only accepts a single argument.

CLI Example:

salt '*' chocolatey.install_webpi <package name>

salt.modules.chocolatey.install_windowsfeatures(name)
Instructs Chocolatey to install a Windows Feature via the Deployment Image Servicing and Management tool.

name e name of the feature to be installed. Only accepts a single argument.

CLI Example:

512 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' chocolatey.install_windowsfeatures <package name>

salt.modules.chocolatey.list_(narrow, all_versions=False, pre_versions=False, source=None)
Instructs Chocolatey to pull a vague package list from the repository.

narrow Term used to narrow down results. Searches against name/description/tag.

all_versions Display all available package versions in results. Defaults to False.

pre_versions Display pre-release packages in results. Defaults to False.

source Chocolatey repository (directory, share or remote URL feed) the package comes from. Defaults to the
official Chocolatey feed.

CLI Example:

salt '*' chocolatey.list <narrow>
salt '*' chocolatey.list <narrow> all_versions=True

salt.modules.chocolatey.list_webpi()
Instructs Chocolatey to pull a full package list from the Microso Web PI repository.

CLI Example:

salt '*' chocolatey.list_webpi

salt.modules.chocolatey.list_windowsfeatures()
Instructs Chocolatey to pull a full package list from the Windows Features list, via the Deployment Image
Servicing and Management tool.

CLI Example:

salt '*' chocolatey.list_windowsfeatures

salt.modules.chocolatey.uninstall(name, version=None)
Instructs Chocolatey to uninstall a package.

name e name of the package to be uninstalled. Only accepts a single argument.

version Uninstalls a specific version of the package. Defaults to latest version installed.

CLI Example:

salt '*' chocolatey.uninstall <package name>
salt '*' chocolatey.uninstall <package name> version=<package version>

salt.modules.chocolatey.update(name, source=None, pre_versions=False)
Instructs Chocolatey to update packages on the system.

name e name of the package to update, or ``all'' to update everything installed on the system.

source Chocolatey repository (directory, share or remote URL feed) the package comes from. Defaults to the
official Chocolatey feed.

pre_versions Include pre-release packages in comparison. Defaults to False.

CLI Example:

salt "*" chocolatey.update all
salt "*" chocolatey.update <package name> pre_versions=True

salt.modules.chocolatey.version(name, check_remote=False, source=None, pre_versions=False)
Instructs Chocolatey to check an installed package version, and optionally compare it to one available from a
remote feed.

22.16. Full list of builtin execution modules 513

Salt Documentation, Release 2014.7.6

name e name of the package to check.

e_remote Get the version number of the latest package from the remote feed. Defaults to False.

source Chocolatey repository (directory, share or remote URL feed) the package comes from. Defaults to the
official Chocolatey feed.

pre_versions Include pre-release packages in comparison. Defaults to False.

CLI Example:

salt "*" chocolatey.version <package name>
salt "*" chocolatey.version <package name> check_remote=True

22.16.26 salt.modules.cloud

Salt-specific interface for calling Salt Cloud directly

salt.modules.cloud.action(fun=None, cloudmap=None, names=None, provider=None, in-
stance=None, **kwargs)

Execute a single action on the given provider/instance

CLI Example:

salt '*' cloud.action start instance=myinstance
salt '*' cloud.action stop instance=myinstance
salt '*' cloud.action show_image provider=my-ec2-config image=ami-1624987f

salt.modules.cloud.create(provider, names, **kwargs)
Create an instance using Salt Cloud

CLI Example:

salt minionname cloud.create my-ec2-config myinstance image=ami-1624987f size='Micro Instance' ssh_username=ec2-user securitygroup=default delvol_on_destroy=True

salt.modules.cloud.destroy(names)
Destroy the named VM(s)

CLI Example:

salt '*' cloud.destroy myinstance

salt.modules.cloud.full_query(query_type='list_nodes_full')
List all available cloud provider data

CLI Example:

salt '*' cloud.full_query

salt.modules.cloud.list_images(provider='all')
List cloud provider images for the given providers

CLI Example:

salt '*' cloud.list_images my-gce-config

salt.modules.cloud.list_locations(provider='all')
List cloud provider locations for the given providers

CLI Example:

514 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' cloud.list_locations my-gce-config

salt.modules.cloud.list_sizes(provider='all')
List cloud provider sizes for the given providers

CLI Example:

salt '*' cloud.list_sizes my-gce-config

salt.modules.cloud.network_create(provider, names, **kwargs)
Create private network

CLI Example:

salt minionname cloud.network_create my-nova names=['salt'] cidr='192.168.100.0/24'

salt.modules.cloud.network_list(provider)
List private networks

CLI Example:

salt minionname cloud.network_list my-nova

salt.modules.cloud.profile_(profile, names, vm_overrides=None, **kwargs)
Spin up an instance using Salt Cloud

CLI Example:

salt '*' cloud.profile my-gce-config myinstance

salt.modules.cloud.query(query_type='list_nodes')
List cloud provider data for all providers

CLI Examples:

salt '*' cloud.query
salt '*' cloud.query list_nodes_full
salt '*' cloud.query list_nodes_select

salt.modules.cloud.select_query(query_type='list_nodes_select')
List selected nodes

CLI Example:

salt '*' cloud.select_query

salt.modules.cloud.virtual_interface_create(provider, names, **kwargs)
Aach private interfaces to a server

CLI Example:

salt minionname cloud.virtual_interface_create my-nova names=['salt-master'] net_name='salt'

salt.modules.cloud.virtual_interface_list(provider, names, **kwargs)
List virtual interfaces on a server

CLI Example:

salt minionname cloud.virtual_interface_list my-nova names=['salt-master']

22.16. Full list of builtin execution modules 515

Salt Documentation, Release 2014.7.6

salt.modules.cloud.volume_attach(provider, names, **kwargs)
Aach volume to a server

CLI Example:

salt minionname cloud.volume_attach my-nova myblock server_name=myserver device='/dev/xvdf'

salt.modules.cloud.volume_create(provider, names, **kwargs)
Create volume

CLI Example:

salt minionname cloud.volume_create my-nova myblock size=100 voltype=SSD

salt.modules.cloud.volume_delete(provider, names, **kwargs)
Delete volume

CLI Example:

salt minionname cloud.volume_delete my-nova myblock

salt.modules.cloud.volume_detach(provider, names, **kwargs)
Detach volume from a server

CLI Example:

salt minionname cloud.volume_detach my-nova myblock server_name=myserver

salt.modules.cloud.volume_list(provider)
List block storage volumes

CLI Example:

salt minionname cloud.volume_list my-nova

22.16.27 salt.modules.cmdmod

A module for shelling out

Keep in mind that this module is insecure, in that it can give whomever has access to the master root execution
access to all salt minions.

salt.modules.cmdmod.exec_code(lang, code, cwd=None)
Pass in two strings, the first naming the executable language, aka - python2, python3, ruby, perl, lua, etc. the
second string containing the code you wish to execute. e stdout and stderr will be returned

CLI Example:

salt '*' cmd.exec_code ruby 'puts "cheese"'

salt.modules.cmdmod.has_exec(cmd)
Returns true if the executable is available on the minion, false otherwise

CLI Example:

salt '*' cmd.has_exec cat

516 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.cmdmod.retcode(cmd, cwd=None, stdin=None, runas=None, shell='/bin/bash',
python_shell=True, env=None, clean_env=False, template=None,
umask=None, output_loglevel='debug', quiet=False, timeout=None,
reset_system_locale=True, ignore_retcode=False, saltenv='base',
use_vt=False, **kwargs)

Execute a shell command and return the command's return code.

Note that env represents the environment variables for the command, and should be formaed as a dict, or a
YAML string which resolves to a dict.

Return type int

Return type None

Returns Return Code as an int or None if there was an exception.

CLI Example:

salt '*' cmd.retcode "file /bin/bash"

e template arg can be set to `jinja' or another supported template engine to render the command arguments
before execution. For example:

salt '*' cmd.retcode template=jinja "file {{grains.pythonpath[0]}}/python"

A string of standard input can be specified for the command to be run using the stdin parameter. is can
be useful in cases where sensitive information must be read from standard input.:

salt '*' cmd.retcode "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

salt.modules.cmdmod.run(cmd, cwd=None, stdin=None, runas=None, shell='/bin/bash',
python_shell=True, env=None, clean_env=False, template=None, rstrip=True,
umask=None, output_loglevel='debug', quiet=False, timeout=None, re-
set_system_locale=True, ignore_retcode=False, saltenv='base', use_vt=False,
**kwargs)

Execute the passed command and return the output as a string

Note that env represents the environment variables for the command, and should be formaed as a dict, or a
YAML string which resolves to a dict.

CLI Example:

salt '*' cmd.run "ls -l | awk '/foo/{print \$2}'"

e template arg can be set to `jinja' or another supported template engine to render the command arguments
before execution. For example:

salt '*' cmd.run template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \$2}'"

Specify an alternate shell with the shell parameter:

salt '*' cmd.run "Get-ChildItem C:\ " shell='powershell'

A string of standard input can be specified for the command to be run using the stdin parameter. is can
be useful in cases where sensitive information must be read from standard input.:

salt '*' cmd.run "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

If an equal sign (=) appears in an argument to a Salt command it is interpreted as a keyword argument in the
format key=val. at processing can be bypassed in order to pass an equal sign through to the remote shell
command by manually specifying the kwarg:

22.16. Full list of builtin execution modules 517

http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/constants.html#None

Salt Documentation, Release 2014.7.6

salt '*' cmd.run cmd='sed -e s/=/:/g'

salt.modules.cmdmod.run_all(cmd, cwd=None, stdin=None, runas=None, shell='/bin/bash',
python_shell=True, env=None, clean_env=False, template=None,
rstrip=True, umask=None, output_loglevel='debug', quiet=False,
timeout=None, reset_system_locale=True, ignore_retcode=False,
saltenv='base', use_vt=False, **kwargs)

Execute the passed command and return a dict of return data

Note that env represents the environment variables for the command, and should be formaed as a dict, or a
YAML string which resolves to a dict.

CLI Example:

salt '*' cmd.run_all "ls -l | awk '/foo/{print \$2}'"

e template arg can be set to `jinja' or another supported template engine to render the command arguments
before execution. For example:

salt '*' cmd.run_all template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \$2}'"

A string of standard input can be specified for the command to be run using the stdin parameter. is can
be useful in cases where sensitive information must be read from standard input.:

salt '*' cmd.run_all "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

salt.modules.cmdmod.run_chroot(root, cmd, cwd=None, stdin=None, runas=None, shell='/bin/bash',
python_shell=True, env=None, clean_env=False, template=None,
rstrip=True, umask=None, output_loglevel='quiet', quiet=False,
timeout=None, reset_system_locale=True, ignore_retcode=False,
saltenv='base', use_vt=False, **kwargs)

New in version 2014.7.0.

is function runs cmd.run_all wrapped within a chroot, with dev and proc mounted in the chroot

CLI Example:

salt '*' cmd.run_chroot /var/lib/lxc/container_name/rootfs 'sh /tmp/bootstrap.sh'

salt.modules.cmdmod.run_stderr(cmd, cwd=None, stdin=None, runas=None, shell='/bin/bash',
python_shell=True, env=None, clean_env=False, template=None,
rstrip=True, umask=None, output_loglevel='debug', quiet=False,
timeout=None, reset_system_locale=True, ignore_retcode=False,
saltenv='base', use_vt=False, **kwargs)

Execute a command and only return the standard error

Note that env represents the environment variables for the command, and should be formaed as a dict, or a
YAML string which resolves to a dict.

CLI Example:

salt '*' cmd.run_stderr "ls -l | awk '/foo/{print \$2}'"

e template arg can be set to `jinja' or another supported template engine to render the command arguments
before execution. For example:

salt '*' cmd.run_stderr template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \$2}'"

A string of standard input can be specified for the command to be run using the stdin parameter. is can
be useful in cases where sensitive information must be read from standard input.:

518 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' cmd.run_stderr "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

salt.modules.cmdmod.run_stdout(cmd, cwd=None, stdin=None, runas=None, shell='/bin/bash',
python_shell=True, env=None, clean_env=False, template=None,
rstrip=True, umask=None, output_loglevel='debug', quiet=False,
timeout=None, reset_system_locale=True, ignore_retcode=False,
saltenv='base', use_vt=False, **kwargs)

Execute a command, and only return the standard out

Note that env represents the environment variables for the command, and should be formaed as a dict, or a
YAML string which resolves to a dict.

CLI Example:

salt '*' cmd.run_stdout "ls -l | awk '/foo/{print \$2}'"

e template arg can be set to `jinja' or another supported template engine to render the command arguments
before execution. For example:

salt '*' cmd.run_stdout template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \$2}'"

A string of standard input can be specified for the command to be run using the stdin parameter. is can
be useful in cases where sensitive information must be read from standard input.:

salt '*' cmd.run_stdout "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

salt.modules.cmdmod.script(source, args=None, cwd=None, stdin=None, runas=None,
shell='/bin/bash', python_shell=True, env=None, template='jinja',
umask=None, output_loglevel='debug', quiet=False, timeout=None,
reset_system_locale=True, __env__=None, saltenv='base', use_vt=False,
**kwargs)

Download a script from a remote location and execute the script locally. e script can be located on the salt
master file server or on an HTTP/FTP server.

e script will be executed directly, so it can be wrien in any available programming language.

e script can also be formaed as a template, the default is jinja. Arguments for the script can be specified
as well.

CLI Example:

salt '*' cmd.script salt://scripts/runme.sh
salt '*' cmd.script salt://scripts/runme.sh 'arg1 arg2 "arg 3"'
salt '*' cmd.script salt://scripts/windows_task.ps1 args=' -Input c:\tmp\infile.txt' shell='powershell'

A string of standard input can be specified for the command to be run using the stdin parameter. is can
be useful in cases where sensitive information must be read from standard input.:

salt '*' cmd.script salt://scripts/runme.sh stdin='one\ntwo\nthree\nfour\nfive\n'

salt.modules.cmdmod.script_retcode(source, cwd=None, stdin=None, runas=None,
shell='/bin/bash', python_shell=True, env=None,
template='jinja', umask=None, timeout=None, re-
set_system_locale=True, __env__=None, saltenv='base',
output_loglevel='debug', use_vt=False, **kwargs)

Download a script from a remote location and execute the script locally. e script can be located on the salt
master file server or on an HTTP/FTP server.

e script will be executed directly, so it can be wrien in any available programming language.

22.16. Full list of builtin execution modules 519

Salt Documentation, Release 2014.7.6

e script can also be formaed as a template, the default is jinja.

Only evaluate the script return code and do not block for terminal output

CLI Example:

salt '*' cmd.script_retcode salt://scripts/runme.sh

A string of standard input can be specified for the command to be run using the stdin parameter. is can
be useful in cases where sensitive information must be read from standard input.:

salt '*' cmd.script_retcode salt://scripts/runme.sh stdin='one\ntwo\nthree\nfour\nfive\n'

salt.modules.cmdmod.tty(device, echo=None)
Echo a string to a specific y

CLI Example:

salt '*' cmd.tty tty0 'This is a test'
salt '*' cmd.tty pts3 'This is a test'

salt.modules.cmdmod.which(cmd)
Returns the path of an executable available on the minion, None otherwise

CLI Example:

salt '*' cmd.which cat

salt.modules.cmdmod.which_bin(cmds)
Returns the first command found in a list of commands

CLI Example:

salt '*' cmd.which_bin '[pip2, pip, pip-python]'

22.16.28 salt.modules.composer

Use composer to install PHP dependencies for a directory

salt.modules.composer.did_composer_install(dir)
Test to see if the vendor directory exists in this directory

dir Directory location of the composer.json file

CLI Example:

salt '*' composer.did_composer_install /var/www/application

salt.modules.composer.install(dir, composer=None, php=None, runas=None, prefer_source=None,
prefer_dist=None, no_scripts=None, no_plugins=None, opti-
mize=None, no_dev=None, quiet=False, composer_home='/root')

Install composer dependencies for a directory.

If composer has not been installed globally making it available in the system PATH & making it executable,
the composer and php parameters will need to be set to the location of the executables.

dir Directory location of the composer.json file.

composer Location of the composer.phar file. If not set composer will just execute ``composer'' as if it is
installed globally. (i.e. /path/to/composer.phar)

php Location of the php executable to use with composer. (i.e. /usr/bin/php)

520 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

runas Which system user to run composer as.

prefer_source --prefer-source option of composer.

prefer_dist --prefer-dist option of composer.

no_scripts --no-scripts option of composer.

no_plugins --no-plugins option of composer.

optimize --optimize-autoloader option of composer. Recommended for production.

no_dev --no-dev option for composer. Recommended for production.

quiet --quiet option for composer. Whether or not to return output from composer.

composer_home $COMPOSER_HOME environment variable

CLI Example:

salt '*' composer.install /var/www/application

salt '*' composer.install /var/www/application no_dev=True optimize=True

salt.modules.composer.selfupdate(composer=None, php=None, runas=None, quiet=False, com-
poser_home='/root')

Update composer itself.

If composer has not been installed globally making it available in the system PATH & making it executable,
the composer and php parameters will need to be set to the location of the executables.

composer Location of the composer.phar file. If not set composer will just execute ``composer'' as if it is
installed globally. (i.e. /path/to/composer.phar)

php Location of the php executable to use with composer. (i.e. /usr/bin/php)

runas Which system user to run composer as.

quiet --quiet option for composer. Whether or not to return output from composer.

composer_home $COMPOSER_HOME environment variable

CLI Example:

salt '*' composer.selfupdate

salt.modules.composer.update(dir, composer=None, php=None, runas=None, prefer_source=None,
prefer_dist=None, no_scripts=None, no_plugins=None, opti-
mize=None, no_dev=None, quiet=False, composer_home='/root')

Update composer dependencies for a directory.

If composer install has not yet been run, this runs composer install instead.

If composer has not been installed globally making it available in the system PATH & making it executable,
the composer and php parameters will need to be set to the location of the executables.

dir Directory location of the composer.json file.

composer Location of the composer.phar file. If not set composer will just execute ``composer'' as if it is
installed globally. (i.e. /path/to/composer.phar)

php Location of the php executable to use with composer. (i.e. /usr/bin/php)

runas Which system user to run composer as.

prefer_source --prefer-source option of composer.

22.16. Full list of builtin execution modules 521

Salt Documentation, Release 2014.7.6

prefer_dist --prefer-dist option of composer.

no_scripts --no-scripts option of composer.

no_plugins --no-plugins option of composer.

optimize --optimize-autoloader option of composer. Recommended for production.

no_dev --no-dev option for composer. Recommended for production.

quiet --quiet option for composer. Whether or not to return output from composer.

composer_home $COMPOSER_HOME environment variable

CLI Example:

salt '*' composer.update /var/www/application

salt '*' composer.update /var/www/application no_dev=True optimize=True

22.16.29 salt.modules.config

Return config information

salt.modules.config.backup_mode(backup='`)
Return the backup mode

CLI Example:

salt '*' config.backup_mode

salt.modules.config.dot_vals(value)
Pass in a configuration value that should be preceded by the module name and a dot, this will return a list of
all read key/value pairs

CLI Example:

salt '*' config.dot_vals host

salt.modules.config.gather_bootstrap_script(bootstrap=None)
Download the salt-bootstrap script, and return its location

bootstrap URL of alternate bootstrap script

CLI Example:

salt '*' config.gather_bootstrap_script

salt.modules.config.get(key, default='`)
Aempt to retrieve the named value from opts, pillar, grains or the master config, if the named value is not
available return the passed default. e default return is an empty string.

e value can also represent a value in a nested dict using a '':'' delimiter for the dict. is means that if a dict
looks like this:

{'pkg': {'apache': 'httpd'}}

To retrieve the value associated with the apache key in the pkg dict this key can be passed:

pkg:apache

is routine traverses these data stores in this order:

522 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

•Local minion config (opts)

•Minion's grains

•Minion's pillar

•Master config

CLI Example:

salt '*' config.get pkg:apache

salt.modules.config.manage_mode(mode)
Return a mode value, normalized to a string

CLI Example:

salt '*' config.manage_mode

salt.modules.config.merge(value, default='`, omit_opts=False, omit_master=False,
omit_pillar=False)

Retrieves an option based on key, merging all matches.

Same as option() except that it merges all matches, rather than taking the first match.

CLI Example:

salt '*' config.merge schedule

salt.modules.config.option(value, default='`, omit_opts=False, omit_master=False,
omit_pillar=False)

Pass in a generic option and receive the value that will be assigned

CLI Example:

salt '*' config.option redis.host

salt.modules.config.valid_fileproto(uri)
Returns a boolean value based on whether or not the URI passed has a valid remote file protocol designation

CLI Example:

salt '*' config.valid_fileproto salt://path/to/file

22.16.30 salt.modules.cp

Minion side functions for salt-cp

salt.modules.cp.cache_dir(path, saltenv='base', include_empty=False, include_pat=None, ex-
clude_pat=None, env=None)

Download and cache everything under a directory from the master

include_pat [None] Glob or regex to narrow down the files cached from the given path. If matching with a
regex, the regex must be prefixed with E@, otherwise the expression will be interpreted as a glob.

New in version 2014.7.0.

exclude_pat [None] Glob or regex to exclude certain files from being cached from the given path. If matching
with a regex, the regex must be prefixed with E@, otherwise the expression will be interpreted as a glob.

Note: If used with include_pat, files matching this paern will be excluded from the subset of files
defined by include_pat.

22.16. Full list of builtin execution modules 523

Salt Documentation, Release 2014.7.6

New in version 2014.7.0.

CLI Examples:

salt '*' cp.cache_dir salt://path/to/dir
salt '*' cp.cache_dir salt://path/to/dir include_pat='E@*.py$'

salt.modules.cp.cache_file(path, saltenv='base', env=None)
Used to cache a single file on the salt-minion Returns the location of the new cached file on the minion

CLI Example:

salt '*' cp.cache_file salt://path/to/file

salt.modules.cp.cache_files(paths, saltenv='base', env=None)
Used to gather many files from the master, the gathered files will be saved in the minion cachedir reflective to
the paths retrieved from the master.

CLI Example:

salt '*' cp.cache_files salt://pathto/file1,salt://pathto/file1

salt.modules.cp.cache_local_file(path)
Cache a local file on the minion in the localfiles cache

CLI Example:

salt '*' cp.cache_local_file /etc/hosts

salt.modules.cp.cache_master(saltenv='base', env=None)
Retrieve all of the files on the master and cache them locally

CLI Example:

salt '*' cp.cache_master

salt.modules.cp.get_dir(path, dest, saltenv='base', template=None, gzip=None, env=None)
Used to recursively copy a directory from the salt master

CLI Example:

salt '*' cp.get_dir salt://path/to/dir/ /minion/dest

get_dir supports the same template and gzip arguments as get_file.

salt.modules.cp.get_file(path, dest, saltenv='base', makedirs=False, template=None, gzip=None,
env=None)

Used to get a single file from the salt master

CLI Example:

salt '*' cp.get_file salt://path/to/file /minion/dest

Template rendering can be enabled on both the source and destination file names like so:

salt '*' cp.get_file "salt://{{grains.os}}/vimrc" /etc/vimrc template=jinja

is example would instruct all Salt minions to download the vimrc from a directory with the same name as
their os grain and copy it to /etc/vimrc

524 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

For larger files, the cp.get_file module also supports gzip compression. Because gzip is CPU-intensive, this
should only be used in scenarios where the compression ratio is very high (e.g. prey-printed JSON or YAML
files).

Use the gzip named argument to enable it. Valid values are 1..9, where 1 is the lightest compression and 9 the
heaviest. 1 uses the least CPU on the master (and minion), 9 uses the most.

salt.modules.cp.get_file_str(path, saltenv='base', env=None)
Return the contents of a file from a URL

CLI Example:

salt '*' cp.get_file_str salt://my/file

salt.modules.cp.get_template(path, dest, template='jinja', saltenv='base', env=None,
makedirs=False, **kwargs)

Render a file as a template before seing it down. Warning, order is not the same as in fileclient.cp for non
breaking old API.

CLI Example:

salt '*' cp.get_template salt://path/to/template /minion/dest

salt.modules.cp.get_url(path, dest, saltenv='base', env=None)
Used to get a single file from a URL.

CLI Example:

salt '*' cp.get_url salt://my/file /tmp/mine
salt '*' cp.get_url http://www.slashdot.org /tmp/index.html

salt.modules.cp.hash_file(path, saltenv='base', env=None)
Return the hash of a file, to get the hash of a file on the salt master file server prepend the path with salt://<file
on server> otherwise, prepend the file with / for a local file.

CLI Example:

salt '*' cp.hash_file salt://path/to/file

salt.modules.cp.is_cached(path, saltenv='base', env=None)
Return a boolean if the given path on the master has been cached on the minion

CLI Example:

salt '*' cp.is_cached salt://path/to/file

salt.modules.cp.list_master(saltenv='base', prefix='`, env=None)
List all of the files stored on the master

CLI Example:

salt '*' cp.list_master

salt.modules.cp.list_master_dirs(saltenv='base', prefix='`, env=None)
List all of the directories stored on the master

CLI Example:

salt '*' cp.list_master_dirs

salt.modules.cp.list_master_symlinks(saltenv='base', prefix='`, env=None)
List all of the symlinks stored on the master

22.16. Full list of builtin execution modules 525

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' cp.list_master_symlinks

salt.modules.cp.list_minion(saltenv='base', env=None)
List all of the files cached on the minion

CLI Example:

salt '*' cp.list_minion

salt.modules.cp.list_states(saltenv='base', env=None)
List all of the available state modules in an environment

CLI Example:

salt '*' cp.list_states

salt.modules.cp.push(path)
Push a file from the minion up to the master, the file will be saved to the salt master in the master's minion
files cachedir (defaults to /var/cache/salt/master/minions/minion-id/files)

Since this feature allows a minion to push a file up to the master server it is disabled by default for security
purposes. To enable, set file_recv to True in the master configuration file, and restart the master.

CLI Example:

salt '*' cp.push /etc/fstab

salt.modules.cp.push_dir(path, glob=None)
Push a directory from the minion up to the master, the files will be saved to the salt master in the master's
minion files cachedir (defaults to /var/cache/salt/master/minions/minion-id/files). It also
has a glob for matching specific files using globbing.

New in version 2014.7.0.

Since this feature allows a minion to push files up to the master server it is disabled by default for security
purposes. To enable, set file_recv to True in the master configuration file, and restart the master.

CLI Example:

salt '*' cp.push /usr/lib/mysql
salt '*' cp.push_dir /etc/modprobe.d/ glob='*.conf'

salt.modules.cp.recv(files, dest)
Used with salt-cp, pass the files dict, and the destination.

is function receives small fast copy files from the master via salt-cp. It does not work via the CLI.

22.16.31 salt.modules.cron

Work with cron

salt.modules.cron.list_tab(user)
Return the contents of the specified user's crontab

CLI Example:

salt '*' cron.list_tab root

526 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.cron.ls(user)
Return the contents of the specified user's crontab

CLI Example:

salt '*' cron.list_tab root

salt.modules.cron.raw_cron(user)
Return the contents of the user's crontab

CLI Example:

salt '*' cron.raw_cron root

salt.modules.cron.rm(user, cmd, minute=None, hour=None, daymonth=None, month=None, day-
week=None, identifier=None)

Remove a cron job for a specified user. If any of the day/time params are specified, the job will only be removed
if the specified params match.

CLI Example:

salt '*' cron.rm_job root /usr/local/weekly
salt '*' cron.rm_job root /usr/bin/foo dayweek=1

salt.modules.cron.rm_env(user, name)
Remove cron environment variable for a specified user.

CLI Example:

salt '*' cron.rm_env root MAILTO

salt.modules.cron.rm_job(user, cmd, minute=None, hour=None, daymonth=None, month=None, day-
week=None, identifier=None)

Remove a cron job for a specified user. If any of the day/time params are specified, the job will only be removed
if the specified params match.

CLI Example:

salt '*' cron.rm_job root /usr/local/weekly
salt '*' cron.rm_job root /usr/bin/foo dayweek=1

salt.modules.cron.set_env(user, name, value=None)
Set up an environment variable in the crontab.

CLI Example:

salt '*' cron.set_env root MAILTO user@example.com

salt.modules.cron.set_job(user, minute, hour, daymonth, month, dayweek, cmd, comment=None,
identifier=None)

Sets a cron job up for a specified user.

CLI Example:

salt '*' cron.set_job root '*' '*' '*' '*' 1 /usr/local/weekly

salt.modules.cron.set_special(user, special, cmd)
Set up a special command in the crontab.

CLI Example:

22.16. Full list of builtin execution modules 527

Salt Documentation, Release 2014.7.6

salt '*' cron.set_special root @hourly 'echo foobar'

salt.modules.cron.write_cron_file(user, path)
Writes the contents of a file to a user's crontab

CLI Example:

salt '*' cron.write_cron_file root /tmp/new_cron

salt.modules.cron.write_cron_file_verbose(user, path)
Writes the contents of a file to a user's crontab and return error message on error

CLI Example:

salt '*' cron.write_cron_file_verbose root /tmp/new_cron

22.16.32 salt.modules.daemontools

daemontools service module. is module will create daemontools type service watcher.

is module is compatible with the service states, so it can be used to maintain services using the provider
argument:

myservice:
service.running:

- provider: daemontools

salt.modules.daemontools.available(name)
Returns True if the specified service is available, otherwise returns False.

CLI Example:

salt '*' daemontools.available foo

salt.modules.daemontools.full_restart(name)
Calls daemontools.restart() function

CLI Example:

salt '*' daemontools.full_restart <service name>

salt.modules.daemontools.get_all()
Return a list of all available services

CLI Example:

salt '*' daemontools.get_all

salt.modules.daemontools.missing(name)
e inverse of daemontools.available. Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' daemontools.missing foo

salt.modules.daemontools.reload_(name)
Wrapper for term()

CLI Example:

528 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' daemontools.reload <service name>

salt.modules.daemontools.restart(name)
Restart service via daemontools. is will stop/start service

CLI Example:

salt '*' daemontools.restart <service name>

salt.modules.daemontools.start(name)
Starts service via daemontools

CLI Example:

salt '*' daemontools.start <service name>

salt.modules.daemontools.status(name, sig=None)
Return the status for a service via daemontools, return pid if running

CLI Example:

salt '*' daemontools.status <service name>

salt.modules.daemontools.stop(name)
Stops service via daemontools

CLI Example:

salt '*' daemontools.stop <service name>

salt.modules.daemontools.term(name)
Send a TERM to service via daemontools

CLI Example:

salt '*' daemontools.term <service name>

22.16.33 salt.modules.darwin_sysctl

Module for viewing and modifying sysctl parameters

salt.modules.darwin_sysctl.assign(name, value)
Assign a single sysctl parameter for this minion

name e name of the sysctl value to edit.

value e sysctl value to apply.

CLI Example:

salt '*' sysctl.assign net.inet.icmp.icmplim 50

salt.modules.darwin_sysctl.get(name)
Return a single sysctl parameter for this minion

name e name of the sysctl value to display.

CLI Example:

salt '*' sysctl.get hw.physmem

22.16. Full list of builtin execution modules 529

Salt Documentation, Release 2014.7.6

salt.modules.darwin_sysctl.persist(name, value, config='/etc/sysctl.conf', apply_change=False)
Assign and persist a simple sysctl parameter for this minion

name e name of the sysctl value to edit.

value e sysctl value to apply.

config e location of the sysctl configuration file.

apply_ange Default is False; Default behavior only creates or edits the sysctl.conf file. If apply is set to
True, the changes are applied to the system.

CLI Example:

salt '*' sysctl.persist net.inet.icmp.icmplim 50
salt '*' sysctl.persist coretemp_load NO config=/etc/sysctl.conf

salt.modules.darwin_sysctl.show(config_file=False)
Return a list of sysctl parameters for this minion

CLI Example:

salt '*' sysctl.show

22.16.34 salt.modules.data

Manage a local persistent data structure that can hold any arbitrary data specific to the minion

salt.modules.data.cas(key, value, old_value)
Check and set a value in the minion datastore

CLI Example:

salt '*' data.cas <key> <value> <old_value>

salt.modules.data.clear()
Clear out all of the data in the minion datastore, this function is destructive!

CLI Example:

salt '*' data.clear

salt.modules.data.dump(new_data)
Replace the entire datastore with a passed data structure

CLI Example:

salt '*' data.dump '{'eggs': 'spam'}'

salt.modules.data.getval(key)
Get a value from the minion datastore

CLI Example:

salt '*' data.getval <key>

salt.modules.data.getvals(*keys)
Get values from the minion datastore

CLI Example:

530 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' data.getvals <key> [<key> ...]

salt.modules.data.load()
Return all of the data in the minion datastore

CLI Example:

salt '*' data.load

salt.modules.data.update(key, value)
Update a key with a value in the minion datastore

CLI Example:

salt '*' data.update <key> <value>

22.16.35 salt.modules.ddns

Support for RFC 2136 dynamic DNS updates.

depends

• dnspython Python module

configuration If you want to use TSIG authentication for the server, there are a couple of optional
configuration parameters made available to support this (the keyname is only needed if the keyring
contains more than one key):

keyring: keyring file (default=None)
keyname: key name in file (default=None)

e keyring file needs to be in json format and the key name needs to end with an extra period in
the file, similar to this:

{"keyname.": "keycontent"}

salt.modules.ddns.add_host(zone, name, l, ip, nameserver=`127.0.0.1', replace=True, **kwargs)
Add, replace, or update the A and PTR (reverse) records for a host.

CLI Example:

salt ns1 ddns.add_host example.com host1 60 10.1.1.1

salt.modules.ddns.delete(zone, name, rdtype=None, data=None, nameserver=`127.0.0.1', **kwargs)
Delete a DNS record.

CLI Example:

salt ns1 ddns.delete example.com host1 A

salt.modules.ddns.delete_host(zone, name, nameserver=`127.0.0.1', **kwargs)
Delete the forward and reverse records for a host.

Returns true if any records are deleted.

CLI Example:

salt ns1 ddns.delete_host example.com host1

22.16. Full list of builtin execution modules 531

Salt Documentation, Release 2014.7.6

salt.modules.ddns.update(zone, name, l, rdtype, data, nameserver=`127.0.0.1', replace=False,
**kwargs)

Add, replace, or update a DNS record. nameserver must be an IP address and the minion running this module
must have update privileges on that server. If replace is true, first deletes all records for this name and type.

CLI Example:

salt ns1 ddns.update example.com host1 60 A 10.0.0.1

22.16.36 salt.modules.deb_apache

Support for Apache

Please note: e functions in here are Debian-specific. Placing them in this separate file will allow them to load only
on Debian-based systems, while still loading under the apache namespace.

salt.modules.deb_apache.a2dismod(mod)
Runs a2dismod for the given mod.

is will only be functional on Debian-based operating systems (Ubuntu, Mint, etc).

CLI Examples:

salt '*' apache.a2dismod vhost_alias

salt.modules.deb_apache.a2dissite(site)
Runs a2dissite for the given site.

is will only be functional on Debian-based operating systems (Ubuntu, Mint, etc).

CLI Examples:

salt '*' apache.a2dissite example.com

salt.modules.deb_apache.a2enmod(mod)
Runs a2enmod for the given mod.

is will only be functional on Debian-based operating systems (Ubuntu, Mint, etc).

CLI Examples:

salt '*' apache.a2enmod vhost_alias

salt.modules.deb_apache.a2ensite(site)
Runs a2ensite for the given site.

is will only be functional on Debian-based operating systems (Ubuntu, Mint, etc).

CLI Examples:

salt '*' apache.a2ensite example.com

salt.modules.deb_apache.check_mod_enabled(mod)
Checks to see if the specific mod symlink is in /etc/apache2/mods-enabled.

is will only be functional on Debian-based operating systems (Ubuntu, Mint, etc).

CLI Examples:

salt '*' apache.check_mod_enabled status.conf
salt '*' apache.check_mod_enabled status.load

532 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.deb_apache.check_site_enabled(site)
Checks to see if the specific Site symlink is in /etc/apache2/sites-enabled.

is will only be functional on Debian-based operating systems (Ubuntu, Mint, etc).

CLI Examples:

salt '*' apache.check_site_enabled example.com

22.16.37 salt.modules.debconfmod

Support for Debconf

salt.modules.debconfmod.get_selections(fetchempty=True)
Answers to debconf questions for all packages in the following format:

{'package': [['question', 'type', 'value'], ...]}

CLI Example:

salt '*' debconf.get_selections

salt.modules.debconfmod.set_(package, question, type, value, *extra)
Set answers to debconf questions for a package.

CLI Example:

salt '*' debconf.set <package> <question> <type> <value> [<value> ...]

salt.modules.debconfmod.set_file(path, saltenv='base', **kwargs)
Set answers to debconf questions from a file.

CLI Example:

salt '*' debconf.set_file salt://pathto/pkg.selections

salt.modules.debconfmod.show(name)
Answers to debconf questions for a package in the following format:

[['question', 'type', 'value'], ...]

If debconf doesn't know about a package, we return None.

CLI Example:

salt '*' debconf.show <package name>

22.16.38 salt.modules.debian_ip

e networking module for Debian based distros

References:

• hp://www.debian.org/doc/manuals/debian-reference/ch05.en.html

salt.modules.debian_ip.apply_network_settings(**seings)
Apply global network configuration.

CLI Example:

22.16. Full list of builtin execution modules 533

http://www.debian.org/doc/manuals/debian-reference/ch05.en.html

Salt Documentation, Release 2014.7.6

salt '*' ip.apply_network_settings

salt.modules.debian_ip.build_bond(iface, **seings)
Create a bond script in /etc/modprobe.d with the passed seings and load the bonding kernel module.

CLI Example:

salt '*' ip.build_bond bond0 mode=balance-alb

salt.modules.debian_ip.build_interface(iface, iface_type, enabled, **seings)
Build an interface script for a network interface.

CLI Example:

salt '*' ip.build_interface eth0 eth <settings>

salt.modules.debian_ip.build_network_settings(**seings)
Build the global network script.

CLI Example:

salt '*' ip.build_network_settings <settings>

salt.modules.debian_ip.build_routes(iface, **seings)
Add route scripts for a network interface using up commands.

CLI Example:

salt '*' ip.build_routes eth0 <settings>

salt.modules.debian_ip.down(iface, iface_type)
Shutdown a network interface

CLI Example:

salt '*' ip.down eth0

salt.modules.debian_ip.get_bond(iface)
Return the content of a bond script

CLI Example:

salt '*' ip.get_bond bond0

salt.modules.debian_ip.get_interface(iface)
Return the contents of an interface script

CLI Example:

salt '*' ip.get_interface eth0

salt.modules.debian_ip.get_network_settings()
Return the contents of the global network script.

CLI Example:

salt '*' ip.get_network_settings

salt.modules.debian_ip.get_routes(iface)
Return the routes for the interface

CLI Example:

534 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' ip.get_interface eth0

salt.modules.debian_ip.up(iface, iface_type)
Start up a network interface

CLI Example:

salt '*' ip.up eth0

22.16.39 salt.modules.debian_service

Service support for Debian systems (uses update-rc.d and /sbin/service)

salt.modules.debian_service.available(name)
Returns True if the specified service is available, otherwise returns False.

CLI Example:

salt '*' service.available sshd

salt.modules.debian_service.disable(name, **kwargs)
Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

salt.modules.debian_service.disabled(name)
Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.disabled <service name>

salt.modules.debian_service.enable(name, **kwargs)
Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

salt.modules.debian_service.enabled(name)
Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.enabled <service name>

salt.modules.debian_service.force_reload(name)
Force-reload the named service

CLI Example:

salt '*' service.force_reload <service name>

salt.modules.debian_service.get_all()
Return all available boot services

CLI Example:

22.16. Full list of builtin execution modules 535

Salt Documentation, Release 2014.7.6

salt '*' service.get_all

salt.modules.debian_service.get_disabled()
Return a set of services that are installed but disabled

CLI Example:

salt '*' service.get_disabled

salt.modules.debian_service.get_enabled()
Return a list of service that are enabled on boot

CLI Example:

salt '*' service.get_enabled

salt.modules.debian_service.missing(name)
e inverse of service.available. Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing sshd

salt.modules.debian_service.reload_(name)
Reload the named service

CLI Example:

salt '*' service.reload <service name>

salt.modules.debian_service.restart(name)
Restart the named service

CLI Example:

salt '*' service.restart <service name>

salt.modules.debian_service.start(name)
Start the specified service

CLI Example:

salt '*' service.start <service name>

salt.modules.debian_service.status(name, sig=None)
Return the status for a service, pass a signature to use to find the service via ps

CLI Example:

salt '*' service.status <service name>

salt.modules.debian_service.stop(name)
Stop the specified service

CLI Example:

salt '*' service.stop <service name>

536 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.16.40 salt.modules.defaults

salt.modules.defaults.get(key, default='`)
defaults.get is used much like pillar.get except that it will read a default value for a pillar from defaults.json or
defaults.yaml files that are stored in the root of a salt formula.

When called from the CLI it works exactly like pillar.get.

CLI Example:

salt '*' defaults.get core:users:root

When called from an SLS file, it works by first reading a defaults.json and second a defaults.yaml file. If the
key exists in these files and does not exist in a pillar named aer the formula, the value from the defaults file
is used.

Example core/defaults.json file for the `core' formula:

{
"users": {

"root": 0
}

}

With this, from a state file you can use salt['defaults.get'](`users:root') to read the `0' value from defaults.json
if a core:users:root pillar key is not defined.

22.16.41 salt.modules.dig

Compendium of generic DNS utilities

salt.modules.dig.A(host, nameserver=None)
Return the A record for host.

Always returns a list.

CLI Example:

salt ns1 dig.A www.google.com

salt.modules.dig.AAAA(host, nameserver=None)
Return the AAAA record for host.

Always returns a list.

CLI Example:

salt ns1 dig.AAAA www.google.com

salt.modules.dig.MX(domain, resolve=False, nameserver=None)
Return a list of lists for the MX of domain.

If the resolve argument is True, resolve IPs for the servers.

It's limited to one IP, because although in practice it's very rarely a round robin, it is an acceptable configuration
and pulling just one IP lets the data be similar to the non-resolved version. If you think an MX has multiple
IPs, don't use the resolver here, resolve them in a separate step.

CLI Example:

22.16. Full list of builtin execution modules 537

Salt Documentation, Release 2014.7.6

salt ns1 dig.MX google.com

salt.modules.dig.NS(domain, resolve=True, nameserver=None)
Return a list of IPs of the nameservers for domain

If resolve is False, don't resolve names.

CLI Example:

salt ns1 dig.NS google.com

salt.modules.dig.SPF(domain, record='SPF', nameserver=None)
Return the allowed IPv4 ranges in the SPF record for domain.

If record is SPF and the SPF record is empty, the TXT record will be searched automatically. If you know the
domain uses TXT and not SPF, specifying that will save a lookup.

CLI Example:

salt ns1 dig.SPF google.com

salt.modules.dig.TXT(host, nameserver=None)
Return the TXT record for host.

Always returns a list.

CLI Example:

salt ns1 dig.TXT google.com

salt.modules.dig.check_ip(addr)
Check if address is a valid IP. returns True if valid, otherwise False.

CLI Example:

salt ns1 dig.check_ip 127.0.0.1
salt ns1 dig.check_ip 1111:2222:3333:4444:5555:6666:7777:8888

22.16.42 salt.modules.disk

Module for gathering disk information

salt.modules.disk.blkid(device=None)
Return block device aributes: UUID, LABEL, etc. is function only works on systems where blkid is avail-
able.

CLI Example:

salt '*' disk.blkid
salt '*' disk.blkid /dev/sda

salt.modules.disk.inodeusage(args=None)
Return inode usage information for volumes mounted on this minion

CLI Example:

salt '*' disk.inodeusage

salt.modules.disk.percent(args=None)
Return partition information for volumes mounted on this minion

538 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' disk.percent /var

salt.modules.disk.usage(args=None)
Return usage information for volumes mounted on this minion

CLI Example:

salt '*' disk.usage

22.16.43 salt.modules.djangomod

Manage Django sites

salt.modules.djangomod.collectstatic(seings_module, bin_env=None, no_post_process=False,
ignore=None, dry_run=False, clear=False, link=False,
no_default_ignore=False, pythonpath=None, env=None)

Collect static files from each of your applications into a single location that can easily be served in production.

CLI Example:

salt '*' django.collectstatic <settings_module>

salt.modules.djangomod.command(seings_module, command, bin_env=None, pythonpath=None,
env=None, *args, **kwargs)

Run arbitrary django management command

CLI Example:

salt '*' django.command <settings_module> <command>

salt.modules.djangomod.createsuperuser(seings_module, username, email, bin_env=None,
database=None, pythonpath=None, env=None)

Create a super user for the database. is function defaults to use the --noinput flag which prevents the
creation of a password for the superuser.

CLI Example:

salt '*' django.createsuperuser <settings_module> user user@example.com

salt.modules.djangomod.loaddata(seings_module, fixtures, bin_env=None, database=None,
pythonpath=None, env=None)

Load fixture data

Fixtures: comma separated list of fixtures to load

CLI Example:

salt '*' django.loaddata <settings_module> <comma delimited list of fixtures>

salt.modules.djangomod.syncdb(seings_module, bin_env=None, migrate=False, database=None,
pythonpath=None, env=None, noinput=True)

Run syncdb

Execute the Django-Admin syncdb command, if South is available on the minion the migrate option can be
passed as True calling the migrations to run aer the syncdb completes

CLI Example:

22.16. Full list of builtin execution modules 539

Salt Documentation, Release 2014.7.6

salt '*' django.syncdb <settings_module>

22.16.44 salt.modules.dnsmasq

Module for managing dnsmasq

salt.modules.dnsmasq.fullversion()
Shows installed version of dnsmasq and compile options.

CLI Example:

salt '*' dnsmasq.version

salt.modules.dnsmasq.get_config(config_file='/etc/dnsmasq.conf')
Dumps all options from the config file.

CLI Examples:

salt '*' dnsmasq.get_config
salt '*' dnsmasq.get_config file=/etc/dnsmasq.conf

salt.modules.dnsmasq.set_config(config_file='/etc/dnsmasq.conf', follow=True, **kwargs)
Sets a value or a set of values in the specified file. By default, if conf-dir is configured in this file, salt will
aempt to set the option in any file inside the conf-dir where it has already been enabled. If it does not find it
inside any files, it will append it to the main config file. Seing follow to False will turn off this behavior.

If a config option currently appears multiple times (such as dhcp-host, which is specified at least once per
host), the new option will be added to the end of the main config file (and not to any includes). If you need an
option added to a specific include file, specify it as the config_file.

CLI Examples:

salt '*' dnsmasq.set_config domain=mydomain.com
salt '*' dnsmasq.set_config follow=False domain=mydomain.com
salt '*' dnsmasq.set_config file=/etc/dnsmasq.conf domain=mydomain.com

salt.modules.dnsmasq.version()
Shows installed version of dnsmasq.

CLI Example:

salt '*' dnsmasq.version

22.16.45 salt.modules.dnsutil

Compendium of generic DNS utilities

salt.modules.dnsutil.A(host, nameserver=None)
Return the A record(s) for host.

Always returns a list.

CLI Example:

salt ns1 dnsutil.A www.google.com

540 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.dnsutil.AAAA(host, nameserver=None)
Return the AAAA record(s) for host.

Always returns a list.

New in version 2014.7.5.

CLI Example:

salt ns1 dnsutil.AAAA www.google.com

salt.modules.dnsutil.MX(domain, resolve=False, nameserver=None)
Return a list of lists for the MX of domain.

If the `resolve' argument is True, resolve IPs for the servers.

It's limited to one IP, because although in practice it's very rarely a round robin, it is an acceptable configuration
and pulling just one IP lets the data be similar to the non-resolved version. If you think an MX has multiple
IPs, don't use the resolver here, resolve them in a separate step.

CLI Example:

salt ns1 dig.MX google.com

salt.modules.dnsutil.NS(domain, resolve=True, nameserver=None)
Return a list of IPs of the nameservers for domain

If `resolve' is False, don't resolve names.

CLI Example:

salt ns1 dig.NS google.com

salt.modules.dnsutil.SPF(domain, record='SPF', nameserver=None)
Return the allowed IPv4 ranges in the SPF record for domain.

If record is SPF and the SPF record is empty, the TXT record will be searched automatically. If you know the
domain uses TXT and not SPF, specifying that will save a lookup.

CLI Example:

salt ns1 dig.SPF google.com

salt.modules.dnsutil.check_ip(ip_addr)
Check that string ip_addr is a valid IP

CLI Example:

salt ns1 dig.check_ip 127.0.0.1

salt.modules.dnsutil.hosts_append(hostsfile='/etc/hosts', ip_addr=None, entries=None)
Append a single line to the /etc/hosts file.

CLI Example:

salt '*' dnsutil.hosts_append /etc/hosts 127.0.0.1 ad1.yuk.co,ad2.yuk.co

salt.modules.dnsutil.hosts_remove(hostsfile='/etc/hosts', entries=None)
Remove a host from the /etc/hosts file. If doing so will leave a line containing only an IP address, then the line
will be deleted. is function will leave comments and blank lines intact.

CLI Examples:

22.16. Full list of builtin execution modules 541

Salt Documentation, Release 2014.7.6

salt '*' dnsutil.hosts_remove /etc/hosts ad1.yuk.co
salt '*' dnsutil.hosts_remove /etc/hosts ad2.yuk.co,ad1.yuk.co

salt.modules.dnsutil.parse_hosts(hostsfile='/etc/hosts', hosts=None)
Parse /etc/hosts file.

CLI Example:

salt '*' dnsutil.parse_hosts

salt.modules.dnsutil.parse_zone(zonefile=None, zone=None)
Parses a zone file. Can be passed raw zone data on the API level.

CLI Example:

salt ns1 dnsutil.parse_zone /var/lib/named/example.com.zone

22.16.46 salt.modules.dockerio

Management of Dockers

New in version 2014.1.0.

Note: e DockerIO integration is still in beta; the API is subject to change

General Notes

As we use states, we don't want to be continuously popping dockers, so we will map each container id (or image)
with a grain whenever it is relevant.

As a corollary, we will resolve a container id either directly by the id or try to find a container id matching something
stocked in grain.

Installation Prerequisites

• Youwill need thedocker-py python package in your python installation path that is running salt. Its version
should support Docker Remote API v1.12.

Currently, docker-py 0.5.0 is known to support Docker Remote API v1.12

pip install docker-py==0.5.0

Prerequisite Pillar Configuration for Authentication

• To push or pull you will need to be authenticated as the docker-py bindings require it

• For this to happen, youwill need to configure amapping in the pillar representing your per URL authentication
bits:

docker-registries:
registry_url:

email: foo@foo.com

542 Chapter 22. Reference

http://docs.docker.io/en/latest/reference/api/docker_remote_api_v1.12
http://docs.docker.io/en/latest/reference/api/docker_remote_api_v1.12

Salt Documentation, Release 2014.7.6

password: s3cr3t
username: foo

• You need at least an entry to the default docker index:

docker-registries:
https://index.docker.io/v1/:

email: foo@foo.com
password: s3cr3t
username: foo

• You can define multiple registry blocks for them to be aggregated. e only thing to keep in mind is that their
ID must finish with -docker-registries:

ac-docker-registries:
https://index.bar.io/v1/:

email: foo@foo.com
password: s3cr3t
username: foo

ab-docker-registries:
https://index.foo.io/v1/:

email: foo@foo.com
password: s3cr3t
username: foo

is could be also wrien as:

docker-registries:
https://index.bar.io/v1/:

email: foo@foo.com
password: s3cr3t
username: foo

https://index.foo.io/v1/:
email: foo@foo.com
password: s3cr3t
username: foo

Methods

• Registry Dialog

– login

– push

– pull

• Doer Management

– version

– info

• Image Management

– search

– inspect_image

– get_images

– remove_image

22.16. Full list of builtin execution modules 543

Salt Documentation, Release 2014.7.6

– import_image

– build

– tag

• Container Management

– start

– stop

– restart

– kill

– wait

– get_containers

– inspect_container

– remove_container

– is_running

– top

– port

– logs

– diff

– commit

– create_container

– export

– get_container_root

Runtime Execution within a specific, already existing/running container

Idea is to use lxc-aach to execute inside the container context. We do not want to use docker run but want to
execute something inside a running container.

ese are the available methods:

• retcode

• run

• run_all

• run_stderr

• run_stdout

• script

• script_retcode

salt.modules.dockerio.build(path=None, tag=None, quiet=False, fileobj=None, nocache=False,
rm=True, timeout=None)

Build a docker image from a dockerfile or an URL

path url/branch/docker_dir or path on the filesystem to the dockerfile

544 Chapter 22. Reference

http://linux.die.net/man/1/lxc-attach

Salt Documentation, Release 2014.7.6

tag tag of the image

quiet quiet mode, Default is False

nocae do not use docker image cache, Default is False

rm remove intermediate commits, Default is True

timeout timeout value before aborting (in seconds)

CLI Example:

salt '*' docker.build vieux/apache
salt '*' docker.build github.com/creack/docker-firefox

salt.modules.dockerio.commit(container, repository=None, tag=None, message=None, author=None,
conf=None)

Commit a container (promotes it to an image)

container container id

repository repository/image to commit to

tag tag of the image (Optional)

message commit message (Optional)

author author name (Optional)

conf conf (Optional)

CLI Example:

salt '*' docker.commit <container id>

salt.modules.dockerio.create_container(image, command=None, hostname=None, user=None,
detach=True, stdin_open=False, y=False,
mem_limit=0, ports=None, environment=None,
dns=None, volumes=None, volumes_from=None,
name=None)

Create a new container

image image to create the container from

command command to execute while starting

hostname hostname of the container

user user to run docker as

deta daemon mode, Default is True

environment environment variable mapping ({'foo':'BAR'})

ports port redirections ({'222': {}})

volumes list of volume mappings:

(['/mountpoint/in/container:/guest/foo', '/same/path/mounted/point'])

tty aach ys, Default is False

stdin_open let stdin open, Default is False

name name given to container

CLI Example:

22.16. Full list of builtin execution modules 545

Salt Documentation, Release 2014.7.6

salt '*' docker.create_container o/ubuntu volumes="['/s','/m:/f']"

salt.modules.dockerio.diff(container)
Get container diffs

container container id

CLI Example:

salt '*' docker.diff <container id>

salt.modules.dockerio.exists(container)
Check if a given container exists

container container id

Returns True if container exists otherwise returns False

CLI Example:

salt '*' docker.exists <container id>

salt.modules.dockerio.export(container, path)
Export a container to a file

container container id

path path to which file is to be exported

CLI Example:

salt '*' docker.export <container id>

salt.modules.dockerio.get_container_root(container)
Get the container rootfs path

container container id or grain

CLI Example:

salt '*' docker.get_container_root <container id>

salt.modules.dockerio.get_containers(all=True, trunc=False, since=None, before=None, limit=-
1, host=False, inspect=False)

Get a list of mappings representing all containers

all return all containers, Default is True

trunc set it to True to have the short ID, Default is False

host include the Docker host's ipv4 and ipv6 address in return, Default is False

inspect Get more granular information about each container by running a docker inspect

CLI Example:

salt '*' docker.get_containers
salt '*' docker.get_containers host=True
salt '*' docker.get_containers host=True inspect=True

salt.modules.dockerio.get_images(name=None, quiet=False, all=True)
List docker images

name repository name

546 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

quiet only show image id, Default is False

all show all images, Default is True

CLI Example:

salt '*' docker.get_images <name> [quiet=True|False] [all=True|False]

salt.modules.dockerio.import_image(src, repo, tag=None)
Import content from a local tarball or a URL to a docker image

src content to import (URL or absolute path to a tarball)

repo repository to import to

tag set tag of the image (Optional)

CLI Example:

salt '*' docker.import_image <src> <repo> [tag]

salt.modules.dockerio.info()
Get the version information about docker. is is similar to docker info command

CLI Example:

salt '*' docker.info

salt.modules.dockerio.inspect_container(container)
Get container information. is is similar to docker inspect command but only for containers

container container id

CLI Example:

salt '*' docker.inspect_container <container id>

salt.modules.dockerio.inspect_image(image)
Inspect the status of an image and return relative data. is is similar to docker inspect command but
only for images

image name of the image

CLI Example:

salt '*' docker.inspect_image <image>

salt.modules.dockerio.is_running(container)
Check if the specified container is running

container container id

Returns True if container is running otherwise returns False

CLI Example:

salt '*' docker.is_running <container id>

salt.modules.dockerio.kill(container)
Kill a running container

container container id

CLI Example:

22.16. Full list of builtin execution modules 547

Salt Documentation, Release 2014.7.6

salt '*' docker.kill <container id>

salt.modules.dockerio.login(url=None, username=None, password=None, email=None)
Wrapper to the docker.py login method (does not do much yet)

url registry url to authenticate to

username username to authenticate

password password to authenticate

email email to authenticate

CLI Example:

salt '*' docker.login <url> <username> <password> <email>

salt.modules.dockerio.logs(container)
Return logs for a specified container

container container id

CLI Example:

salt '*' docker.logs <container id>

salt.modules.dockerio.port(container, private_port)
Private port mapping allocation information. is method is broken on docker-py side. Just use the result of
inspect to mangle port allocation

container container id

private_port private port on the container to query for

CLI Example:

salt '*' docker.port <container id> <private port>

salt.modules.dockerio.pull(repo, tag=None)
Pulls an image from any registry. See documentation at top of this page to configure authenticated access

repo name of repository

tag specific tag to pull (Optional)

CLI Example:

salt '*' docker.pull <repository> [tag]

salt.modules.dockerio.push(repo, tag=None, quiet=False)
Pushes an image to any registry. See documentation at top of this page to configure authenticated access

repo name of repository

tag specific tag to push (Optional)

quiet set as True to quiet output, Default is False

CLI Example:

salt '*' docker.push <repository> [tag] [quiet=True|False]

salt.modules.dockerio.remove_container(container, force=False, v=False)
Remove a container from a docker installation

548 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

container container id

force remove a running container, Default is False

v remove the volumes associated to the container, Default is False

CLI Example:

salt '*' docker.remove_container <container id> [force=True|False] [v=True|False]

salt.modules.dockerio.remove_image(image)
Remove an image from a system.

image name of image

CLI Example:

salt '*' docker.remove_image <image>

salt.modules.dockerio.restart(container, timeout=10)
Restart a running container

container container id

timeout timeout for container to exit gracefully before killing it, Default is 10 seconds

CLI Example:

salt '*' docker.restart <container id> [timeout=20]

salt.modules.dockerio.retcode(container, cmd)
Wrapper for cmdmod.retcode inside a container context

container container id (or grain)

cmd command to execute

Note: e return is a bit different as we use the docker struct. Output of the command is in `out' and result
is False if command failed to execute.

Warning: Be advised that this function allows for raw shell access to the named container! If allowing
users to execute this directly it may allow more rights than intended!

CLI Example:

salt '*' docker.retcode <container id> 'ls -l /etc'

salt.modules.dockerio.run(container, cmd)
Wrapper for cmdmod.run inside a container context

container container id (or grain)

cmd command to execute

Note: e return is a bit different as we use the docker struct. Output of the command is in `out' and result
is always True.

Warning: Be advised that this function allows for raw shell access to the named container! If allowing
users to execute this directly it may allow more rights than intended!

22.16. Full list of builtin execution modules 549

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' docker.run <container id> 'ls -l /etc'

salt.modules.dockerio.run_all(container, cmd)
Wrapper for cmdmod.run_all inside a container context

container container id (or grain)

cmd command to execute

Note: e return is a bit different as we use the docker struct. Output of the command is in `out' and result
is False if command failed to execute.

Warning: Be advised that this function allows for raw shell access to the named container! If allowing
users to execute this directly it may allow more rights than intended!

CLI Example:

salt '*' docker.run_all <container id> 'ls -l /etc'

salt.modules.dockerio.run_stderr(container, cmd)
Wrapper for cmdmod.run_stderr inside a container context

container container id (or grain)

cmd command to execute

Note: e return is a bit different as we use the docker struct. Output of the command is in `out' and result
is always True.

Warning: Be advised that this function allows for raw shell access to the named container! If allowing
users to execute this directly it may allow more rights than intended!

CLI Example:

salt '*' docker.run_stderr <container id> 'ls -l /etc'

salt.modules.dockerio.run_stdout(container, cmd)
Wrapper for cmdmod.run_stdout inside a container context

container container id (or grain)

cmd command to execute

Note: e return is a bit different as we use the docker struct. Output of the command is in `out' and result
is always True.

Warning: Be advised that this function allows for raw shell access to the named container! If allowing
users to execute this directly it may allow more rights than intended!

CLI Example:

salt '*' docker.run_stdout <container id> 'ls -l /etc'

550 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.dockerio.script(container, source, args=None, cwd=None, stdin=None, runas=None,
shell='/bin/bash', env=None, template='jinja', umask=None,
timeout=None, reset_system_locale=True, no_clean=False,
saltenv='base')

Wrapper for cmdmod.script inside a container context

container container id (or grain)

additional parameters See cmd.script

Warning: Be advised that this function allows for raw shell access to the named container! If allowing
users to execute this directly it may allow more rights than intended!

Download a script from a remote location and execute the script in the container. e script can be located on
the salt master file server or on an HTTP/FTP server.

e script will be executed directly, so it can be wrien in any available programming language.

e script can also be formaed as a template, the default is jinja. Arguments for the script can be specified
as well.

CLI Example:

salt '*' docker.script <container id> salt://docker_script.py
salt '*' docker.script <container id> salt://scripts/runme.sh 'arg1 arg2 "arg 3"'
salt '*' docker.script <container id> salt://scripts/windows_task.ps1 args=' -Input c:\tmp\infile.txt' shell='powershell'

A string of standard input can be specified for the command to be run using the stdin parameter. is can be
useful in cases where sensitive information must be read from standard input:

CLI Example:

salt '*' docker.script <container id> salt://scripts/runme.sh stdin='one\ntwo\nthree\nfour\nfive\n'

salt.modules.dockerio.script_retcode(container, source, cwd=None, stdin=None, runas=None,
shell='/bin/bash', env=None, template='jinja',
umask=None, timeout=None, reset_system_locale=True,
no_clean=False, saltenv='base')

Wrapper for cmdmod.script_retcode inside a container context

container container id (or grain)

additional parameters See cmd.script_retcode

Warning: Be advised that this function allows for raw shell access to the named container! If allowing
users to execute this directly it may allow more rights than intended!

CLI Example:

salt '*' docker.script_retcode <container id> salt://docker_script.py

salt.modules.dockerio.search(term)
Search for an image on the registry

term search keyword

CLI Example:

salt '*' docker.search <term>

22.16. Full list of builtin execution modules 551

Salt Documentation, Release 2014.7.6

salt.modules.dockerio.start(container, binds=None, port_bindings=None, lxc_conf=None, pub-
lish_all_ports=None, links=None, privileged=False, dns=None,
volumes_from=None, network_mode=None, restart_policy=None,
cap_add=None, cap_drop=None)

Start the specified container

container container id

CLI Example:

salt '*' docker.start <container id>

salt.modules.dockerio.stop(container, timeout=10)
Stop a running container

container container id

timeout timeout for container to exit gracefully before killing it, Default is 10 seconds

CLI Example:

salt '*' docker.stop <container id> [timeout=20]

salt.modules.dockerio.tag(image, repository, tag=None, force=False)
Tag an image into a repository

image name of image

repository name of repository

tag tag to apply (Optional)

force force apply tag, Default is False

CLI Example:

salt '*' docker.tag <image> <repository> [tag] [force=True|False]

salt.modules.dockerio.top(container)
Run the docker top command on a specific container

container container id

CLI Example:

salt '*' docker.top <container id>

salt.modules.dockerio.version()
Get docker version

CLI Example:

salt '*' docker.version

salt.modules.dockerio.wait(container)
Wait for a container to exit gracefully

container container id

CLI Example:

salt '*' docker.wait <container id>

552 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.16.47 salt.modules.dpkg

Support for DEB packages

salt.modules.dpkg.file_dict(*packages)
List the files that belong to a package, grouped by package. Not specifying any packages will return a list of
every file on the system's package database (not generally recommended).

CLI Examples:

salt '*' lowpkg.file_list httpd
salt '*' lowpkg.file_list httpd postfix
salt '*' lowpkg.file_list

salt.modules.dpkg.file_list(*packages)
List the files that belong to a package. Not specifying any packages will return a list of _every_ file on the
system's package database (not generally recommended).

CLI Examples:

salt '*' lowpkg.file_list httpd
salt '*' lowpkg.file_list httpd postfix
salt '*' lowpkg.file_list

salt.modules.dpkg.list_pkgs(*packages)
List the packages currently installed in a dict:

{'<package_name>': '<version>'}

External dependencies:

Virtual package resolution requires aptitude. Because this function
uses dpkg, virtual packages will be reported as not installed.

CLI Example:

salt '*' lowpkg.list_pkgs
salt '*' lowpkg.list_pkgs httpd

salt.modules.dpkg.unpurge(*packages)
Change package selection for each package specified to `install'

CLI Example:

salt '*' lowpkg.unpurge curl

22.16.48 salt.modules.ebuild

Support for Portage

optdepends

• portage Python adapter

For now all package names MUST include the package category, i.e. 'vim'will not work, 'app-editors/vim'
will.

salt.modules.ebuild.check_db(*names, **kwargs)
New in version 0.17.0.

Returns a dict containing the following information for each specified package:

22.16. Full list of builtin execution modules 553

Salt Documentation, Release 2014.7.6

1.A key found, which will be a boolean value denoting if a match was found in the package database.

2.If found is False, then a second key called suggestions will be present, which will contain a list
of possible matches. is list will be empty if the package name was specified in category/pkgname
format, since the suggestions are only intended to disambiguate ambiguous package names (ones sub-
mied without a category).

CLI Examples:

salt '*' pkg.check_db <package1> <package2> <package3>

salt.modules.ebuild.check_extra_requirements(pkgname, pkgver)
Check if the installed package already has the given requirements.

CLI Example:

salt '*' pkg.check_extra_requirements 'sys-devel/gcc' '~>4.1.2:4.1::gentoo[nls,fortran]'

salt.modules.ebuild.depclean(name=None, slot=None, fromrepo=None, pkgs=None)
Portage has a function to remove unused dependencies. If a package is provided, it will only removed the
package if no other package depends on it.

name e name of the package to be cleaned.

slot Restrict the remove to a specific slot. Ignored if name is None.

fromrepo Restrict the remove to a specific slot. Ignored if name is None.

pkgs Cleanmultiple packages. slot and fromrepo arguments are ignored if this argument is present. Must
be passed as a python list.

Return a list containing the removed packages:

CLI Example:

salt '*' pkg.depclean <package name>

salt.modules.ebuild.ex_mod_init(low)
If the config option ebuild.enforce_nice_config is set to True, this module will enforce a nice tree
structure for /etc/portage/package.* configuration files.

New in version 0.17.0: Initial automatic enforcement added when pkg is used on a Gentoo system.

Changed in version 2014.1.0: Configure option added to make this behavior optional, defaulting to off.

See also:

ebuild.ex_mod_init is called automatically when a state invokes a pkg state on a Gentoo system.
salt.states.pkg.mod_init()

ebuild.ex_mod_init uses portage_config.enforce_nice_config to do the liing.
salt.modules.portage_config.enforce_nice_config()

CLI Example:

salt '*' pkg.ex_mod_init

salt.modules.ebuild.install(name=None, refresh=False, pkgs=None, sources=None, slot=None,
fromrepo=None, uses=None, **kwargs)

Install the passed package(s), add refresh=True to sync the portage tree before package is installed.

name e name of the package to be installed. Note that this parameter is ignored if either ``pkgs'' or
``sources'' is passed. Additionally, please note that this option can only be used to emerge a package
from the portage tree. To install a tbz2 package manually, use the ``sources'' option described below.

554 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' pkg.install <package name>

refresh Whether or not to sync the portage tree before installing.

version Install a specific version of the package, e.g. 1.0.9-r1. Ignored if ``pkgs'' or ``sources'' is passed.

slot Similar to version, but specifies a valid slot to be installed. It will install the latest available version in the
specified slot. Ignored if ``pkgs'' or ``sources'' or ``version'' is passed.

CLI Example:

salt '*' pkg.install sys-devel/gcc slot='4.4'

fromrepo Similar to slot, but specifies the repository from the package will be installed. It will install the latest
available version in the specified repository. Ignored if ``pkgs'' or ``sources'' or ``version'' is passed.

CLI Example:

salt '*' pkg.install salt fromrepo='gentoo'

uses Similar to slot, but specifies a list of use flag. Ignored if ``pkgs'' or ``sources'' or ``version'' is passed.

CLI Example:

salt '*' pkg.install sys-devel/gcc uses='["nptl","-nossp"]'

Multiple Package Installation Options:

pkgs A list of packages to install from the portage tree. Must be passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo","bar","~category/package:slot::repository[use]"]'

sources A list of tbz2 packages to install. Must be passed as a list of dicts, with the keys being package names,
and the values being the source URI or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.tbz2"},{"bar": "salt://bar.tbz2"}]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

salt.modules.ebuild.latest_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation. If more than one package
name is specified, a dict of name/version pairs is returned.

If the latest version of a given package is already installed, an empty string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

salt.modules.ebuild.list_pkgs(versions_as_list=False, **kwargs)
List the packages currently installed in a dict:

22.16. Full list of builtin execution modules 555

Salt Documentation, Release 2014.7.6

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

salt.modules.ebuild.list_upgrades(refresh=True)
List all available package upgrades.

CLI Example:

salt '*' pkg.list_upgrades

salt.modules.ebuild.porttree_matches(name)
Returns a list containing the matches for a given package name from the portage tree. Note that the specific
version of the package will not be provided for packages that have several versions in the portage tree, but
rather the name of the package (i.e. ``dev-python/paramiko'').

salt.modules.ebuild.purge(name=None, slot=None, fromrepo=None, pkgs=None, **kwargs)
Portage does not have a purge, this function calls remove followed by depclean to emulate a purge process

name e name of the package to be deleted.

slot Restrict the remove to a specific slot. Ignored if name is None.

fromrepo Restrict the remove to a specific slot. Ignored if name is None.

Multiple Package Options:

pkgs Uninstall multiple packages. slot and fromrepo arguments are ignored if this argument is present.
Must be passed as a python list.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package name> slot=4.4
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

salt.modules.ebuild.refresh_db()
Updates the portage tree (emerge --sync). Uses eix-sync if available.

CLI Example:

salt '*' pkg.refresh_db

salt.modules.ebuild.remove(name=None, slot=None, fromrepo=None, pkgs=None, **kwargs)
Remove packages via emerge --unmerge.

name e name of the package to be deleted.

slot Restrict the remove to a specific slot. Ignored if name is None.

fromrepo Restrict the remove to a specific slot. Ignored if name is None.

Multiple Package Options:

pkgs Uninstall multiple packages. slot and fromrepo arguments are ignored if this argument is present.
Must be passed as a python list.

556 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package name> slot=4.4 fromrepo=gentoo
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

salt.modules.ebuild.update(pkg, slot=None, fromrepo=None, refresh=False)
Updates the passed package (emerge --update package)

slot Restrict the update to a particular slot. It will update to the latest version within the slot.

fromrepo Restrict the update to a particular repository. It will update to the latest version within the reposi-
tory.

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

salt '*' pkg.update <package name>

salt.modules.ebuild.upgrade(refresh=True)
Run a full system upgrade (emerge --update world)

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

salt.modules.ebuild.upgrade_available(name)
Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

salt.modules.ebuild.version(*names, **kwargs)
Returns a string representing the package version or an empty string if not installed. If more than one package
name is specified, a dict of name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.ebuild.version_clean(version)
Clean the version string removing extra data.

CLI Example:

salt '*' pkg.version_clean <version_string>

22.16. Full list of builtin execution modules 557

Salt Documentation, Release 2014.7.6

salt.modules.ebuild.version_cmp(pkg1, pkg2)
Do a cmp-style comparison on two packages. Return -1 if pkg1 < pkg2, 0 if pkg1 == pkg2, and 1 if pkg1 >
pkg2. Return None if there was a problem making the comparison.

CLI Example:

salt '*' pkg.version_cmp '0.2.4-0' '0.2.4.1-0'

22.16.49 salt.modules.eix

Support for Eix

salt.modules.eix.sync()
Sync portage/overlay trees and update the eix database

CLI Example:

salt '*' eix.sync

salt.modules.eix.update()
Update the eix database

CLI Example:

salt '*' eix.update

22.16.50 salt.modules.environ

Support for geing and seing the environment variables of the current salt process.

salt.modules.environ.get(key, default='`)
Get a single salt process environment variable.

key String used as the key for environment lookup.

default If the key is not found in the environment, return this value. Default: `'

CLI Example:

salt '*' environ.get foo
salt '*' environ.get baz default=False

salt.modules.environ.has_value(key, value=None)
Determine whether the key exists in the current salt process environment dictionary. Optionally compare the
current value of the environment against the supplied value string.

key Must be a string. Used as key for environment lookup.

value: Optional. If key exists in the environment, compare the current value with this value. Return True if
they are equal.

CLI Example:

salt '*' environ.has_value foo

salt.modules.environ.item(keys, default='`)
Get one or more salt process environment variables. Returns a dict.

keys Either a string or a list of strings that will be used as the keys for environment lookup.

558 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

default If the key is not found in the environment, return this value. Default: `'

CLI Example:

salt '*' environ.item foo
salt '*' environ.item '[foo, baz]' default=None

salt.modules.environ.items()
Return a dict of the entire environment set for the salt process

CLI Example:

salt '*' environ.items

salt.modules.environ.setenv(environ, false_unsets=False, clear_all=False, update_minion=False)
Set multiple salt process environment variables from a dict. Returns a dict.

environ Must be a dict. e top-level keys of the dict are the names of the environment variables to set. Each
key's value must be a string or False. Refer to the `false_unsets' parameter for behavior when a value set
to False.

false_unsets If a key's value is False and false_unsets is True, then the key will be removed from the salt
processes environment dict entirely. If a key's value is False and false_unsets is not True, then the key's
value will be set to an empty string. Default: False

clear_all USE WITH CAUTION! is option can unset environment variables needed for salt to function
properly. If clear_all is True, then any environment variables not defined in the environ dict will be
deleted. Default: False

update_minion If True, apply these environ changes to the main salt-minion process. If False, the environ
changes will only affect the current salt subprocess. Default: False

CLI Example:

salt '*' environ.setenv '{"foo": "bar", "baz": "quux"}'
salt '*' environ.setenv '{"a": "b", "c": False}' false_unsets=True

salt.modules.environ.setval(key, val, false_unsets=False)
Set a single salt process environment variable. Returns True on success.

key e environment key to set. Must be a string.

val e value to set. Must be a string or False. Refer to the `false_unsets' parameter for behavior when set to
False.

false_unsets If val is False and false_unsets is True, then the key will be removed from the salt processes
environment dict entirely. If val is False and false_unsets is not True, then the key's value will be set to
an empty string. Default: False.

CLI Example:

salt '*' environ.setval foo bar
salt '*' environ.setval baz val=False false_unsets=True

22.16.51 salt.modules.eselect

Support for eselect, Gentoo's configuration and management tool.

salt.modules.eselect.exec_action(module, action, module_parameter=None, ac-
tion_parameter=None, parameter=None, state_only=False)

Execute an arbitrary action on a module.

22.16. Full list of builtin execution modules 559

Salt Documentation, Release 2014.7.6

module name of the module to be executed

action name of the module's action to be run

module_parameter additional params passed to the defined module

action_parameter additional params passed to the defined action

parameter additional params passed to the defined action .. deprecated:: Lithium

state_only don't return any output but only the success/failure of the operation

CLI Example (updating the php implementation used for apache2):

salt '*' eselect.exec_action php update action_parameter='apache2'

salt.modules.eselect.get_current_target(module, module_parameter=None, ac-
tion_parameter=None)

Get the currently selected target for the given module.

module name of the module to be queried for its current target

module_parameter additional params passed to the defined module

action_parameter additional params passed to the `show' action

CLI Example (current target of system-wide java-vm):

salt '*' eselect.get_current_target java-vm action_parameter='system'

CLI Example (current target of kernel symlink):

salt '*' eselect.get_current_target kernel

salt.modules.eselect.get_modules()
List available eselect modules.

CLI Example:

salt '*' eselect.get_modules

salt.modules.eselect.get_target_list(module)
List available targets for the given module.

module name of the module to be queried for its targets

CLI Example:

salt '*' eselect.get_target_list kernel

salt.modules.eselect.set_target(module, target, module_parameter=None, ac-
tion_parameter=None)

Set the target for the given module. Target can be specified by index or name.

module name of the module for which a target should be set

target name of the target to be set for this module

module_parameter additional params passed to the defined module

action_parameter additional params passed to the defined action

CLI Example (seing target of system-wide java-vm):

salt '*' eselect.set_target java-vm icedtea-bin-7 action_parameter='system'

560 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example (seing target of kernel symlink):

salt '*' eselect.set_target kernel linux-3.17.5-gentoo

22.16.52 salt.modules.etcd_mod

Execution module to work with etcd

depends

• python-etcd

In order to use an etcd server, a profile should be created in the master configuration file:

my_etd_config:
etcd.host: 127.0.0.1
etcd.port: 4001

It is technically possible to configure etcd without using a profile, but this is not considered to be a best practice,
especially when multiple etcd servers or clusters are available.

etcd.host: 127.0.0.1
etcd.port: 4001

salt.modules.etcd_mod.get_(key, recurse=False, profile=None)
New in version 2014.7.0.

Get a value from etcd, by direct path

CLI Examples:

salt myminion etcd.get /path/to/key
salt myminion etcd.get /path/to/key profile=my_etcd_config
salt myminion etcd.get /path/to/key recurse=True profile=my_etcd_config

salt.modules.etcd_mod.ls_(path='/', profile=None)
New in version 2014.7.0.

Return all keys and dirs inside a specific path

CLI Example:

salt myminion etcd.ls /path/to/dir/
salt myminion etcd.ls /path/to/dir/ profile=my_etcd_config

salt.modules.etcd_mod.rm_(key, recurse=False, profile=None)
New in version 2014.7.0.

Delete a key from etcd

CLI Example:

salt myminion etcd.rm /path/to/key
salt myminion etcd.rm /path/to/key profile=my_etcd_config
salt myminion etcd.rm /path/to/dir recurse=True profile=my_etcd_config

salt.modules.etcd_mod.set_(key, value, profile=None)
New in version 2014.7.0.

Set a value in etcd, by direct path

CLI Example:

22.16. Full list of builtin execution modules 561

Salt Documentation, Release 2014.7.6

salt myminion etcd.set /path/to/key value
salt myminion etcd.set /path/to/key value profile=my_etcd_config

salt.modules.etcd_mod.tree(path='/', profile=None)
New in version 2014.7.0.

Recurse through etcd and return all values

CLI Example:

salt myminion etcd.tree
salt myminion etcd.tree profile=my_etcd_config
salt myminion etcd.tree /path/to/keys profile=my_etcd_config

22.16.53 salt.modules.event

Use the Salt Event System to fire events from the master to the minion and vice-versa.

salt.modules.event.fire(data, tag)
Fire an event on the local minion event bus. Data must be formed as a dict.

CLI Example:

salt '*' event.fire '{"data":"my event data"}' 'tag'

salt.modules.event.fire_master(data, tag, preload=None)
Fire an event off up to the master server

CLI Example:

salt '*' event.fire_master '{"data":"my event data"}' 'tag'

salt.modules.event.send(tag, data=None, preload=None, with_env=False, with_grains=False,
with_pillar=False, **kwargs)

Send an event to the Salt Master

New in version 2014.7.0.

Parameters

• tag -- A tag to give the event. Use slashes to create a names-
pace for related events. E.g., myco/build/buildserver1/start,
myco/build/buildserver1/success, myco/build/buildserver1/failure.

• data -- A dictionary of data to send in the event. is is free-form. Send any data points
that are needed for whoever is consuming the event. Arguments on the CLI are interpreted
as YAML so complex data structures are possible.

• with_env (Specify True to include all environment variables, or specify a list of strings
of variable names to include.) -- Include environment variables from the current shell
environment in the event data asenviron.. is is a short-hand for workingwith systems
that seed the environment with relevant data such as Jenkins.

• with_grains (Specify True to include all grains, or specify a list of strings of grain
names to include.) -- Include grains from the current minion in the event data as grains.

• with_pillar (Specify True to include all Pillar values, or specify a list of strings of
Pillar keys to include. It is a best-practice to only specify a relevant subset of Pillar data.)
-- Include Pillar values from the current minion in the event data as pillar. Remember
Pillar data is oen sensitive data so be careful. is is useful for passing ephemeral Pillar

562 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

values through an event. Such as passing the pillar={} kwarg in state.sls from
the Master, through an event on the Minion, then back to the Master.

• kwargs -- Any additional keyword arguments passed to this function will be interpreted
as key-value pairs and included in the event data. is provides a convenient alternative
to YAML for simple values.

CLI Example:

salt-call event.send myco/mytag foo=Foo bar=Bar
salt-call event.send 'myco/mytag' '{foo: Foo, bar: Bar}'

A convenient way to allow Jenkins to execute salt-call is via sudo. e following rule in sudoers will
allow the jenkins user to run only the following command.

/etc/sudoers (allow preserving the environment):

jenkins ALL=(ALL) NOPASSWD:SETENV: /usr/bin/salt-call event.send*

Call Jenkins via sudo (preserve the environment):

sudo -E salt-call event.send myco/jenkins/build/success with_env=[BUILD_ID, BUILD_URL, GIT_BRANCH, GIT_COMMIT]

22.16.54 salt.modules.extfs

Module for managing ext2/3/4 file systems

salt.modules.extfs.attributes(device, args=None)
Return aributes from dumpe2fs for a specified device

CLI Example:

salt '*' extfs.attributes /dev/sda1

salt.modules.extfs.blocks(device, args=None)
Return block and inode info from dumpe2fs for a specified device

CLI Example:

salt '*' extfs.blocks /dev/sda1

salt.modules.extfs.dump(device, args=None)
Return all contents of dumpe2fs for a specified device

CLI Example:

salt '*' extfs.dump /dev/sda1

salt.modules.extfs.mkfs(device, fs_type, **kwargs)
Create a file system on the specified device

CLI Example:

salt '*' extfs.mkfs /dev/sda1 fs_type=ext4 opts='acl,noexec'

Valid options are:

•blo_size: 1024, 2048 or 4096

•e: check for bad blocks

•direct: use direct IO

22.16. Full list of builtin execution modules 563

Salt Documentation, Release 2014.7.6

•ext_opts: extended file system options (comma-separated)

•fragment_size: size of fragments

•force: seing force to True will cause mke2fs to specify the -F option twice (it is already set once); this
is truly dangerous

•blos_per_group: number of blocks in a block group

•number_of_groups: ext4 option for a virtual block group

•bytes_per_inode: set the bytes/inode ratio

•inode_size: size of the inode

•journal: set to True to create a journal (default on ext3/4)

•journal_opts: options for the fs journal (comma separated)

•blos_file: read bad blocks from file

•label: label to apply to the file system

•reserved: percentage of blocks reserved for super-user

•last_dir: last mounted directory

•test: set to True to not actually create the file system (mke2fs -n)

•number_of_inodes: override default number of inodes

•creator_os: override ``creator operating system'' field

•opts: mount options (comma separated)

•revision: set the filesystem revision (default 1)

•super: write superblock and group descriptors only

•fs_type: set the filesystem type (REQUIRED)

•usage_type: how the filesystem is going to be used

•uuid: set the UUID for the file system

See the mke2fs(8) manpage for a more complete description of these options.

salt.modules.extfs.tune(device, **kwargs)
Set aributes for the specified device (using tune2fs)

CLI Example:

salt '*' extfs.tune /dev/sda1 force=True label=wildstallyns opts='acl,noexec'

Valid options are:

•max: max mount count

•count: mount count

•error: error behavior

•extended_opts: extended options (comma separated)

•force: force, even if there are errors (set to True)

•group: group name or gid that can use the reserved blocks

•interval: interval between checks

564 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

•journal: set to True to create a journal (default on ext3/4)

•journal_opts: options for the fs journal (comma separated)

•label: label to apply to the file system

•reserved: percentage of blocks reserved for super-user

•last_dir: last mounted directory

•opts: mount options (comma separated)

•feature: set or clear a feature (comma separated)

•mmp_e: mmp check interval

•reserved: reserved blocks count

•quota_opts: quota options (comma separated)

•time: time last checked

•user: user or uid who can use the reserved blocks

•uuid: set the UUID for the file system

See the mke2fs(8) manpage for a more complete description of these options.

22.16.55 salt.modules.file

Manage information about regular files, directories, and special files on the minion, set/read user, group, mode, and
data

salt.modules.file.access(path, mode)
New in version 2014.1.0.

Test whether the Salt process has the specified access to the file. One of the following modes must be specified:

f: Test the existence of the path r: Test the readability of the path w: Test the writability of the path
x: Test whether the path can be executed

CLI Example:

salt '*' file.access /path/to/file f
salt '*' file.access /path/to/file x

salt.modules.file.append(path, *args, **kwargs)
New in version 0.9.5.

Append text to the end of a file

path path to file

args strings to append to file

CLI Example:

salt '*' file.append /etc/motd \
"With all thine offerings thou shalt offer salt." \
"Salt is what makes things taste bad when it isn't in them."

Attention

If you need to pass a string to append and that string contains an equal sign, you must include the argument
name, args. For example:

22.16. Full list of builtin execution modules 565

Salt Documentation, Release 2014.7.6

salt '*' file.append /etc/motd args='cheese=spam'

salt '*' file.append /etc/motd args="['cheese=spam','spam=cheese']"

salt.modules.file.blockreplace(path, marker_start='#-- start managed zone --`, marker_end='#--
end managed zone --`, content='`, append_if_not_found=False,
prepend_if_not_found=False, backup='.bak', dry_run=False,
show_changes=True)

New in version 2014.1.0.

Replace content of a text block in a file, delimited by line markers

A block of content delimited by comments can help you manage several lines entries without worrying about
old entries removal.

Note: is function will store two copies of the file in-memory (the original version and the edited version)
in order to detect changes and only edit the targeted file if necessary.

path Filesystem path to the file to be edited

marker_start e line content identifying a line as the start of the content block. Note that the whole line
containing this marker will be considered, so whitespace or extra content before or aer the marker is
included in final output

marker_end e line content identifying a line as the end of the content block. Note that the whole line
containing this marker will be considered, so whitespace or extra content before or aer the marker is
included in final output

content e content to be used between the two lines identified by marker_start and marker_stop.

append_if_not_found [False] If markers are not found and set to True then, the markers and content will be
appended to the file.

prepend_if_not_found [False] If markers are not found and set to True then, the markers and content will
be prepended to the file.

baup e file extension to use for a backup of the file if any edit is made. Set to False to skip making a
backup.

dry_run Don't make any edits to the file.

show_anges Output a unified diff of the old file and the new file. If False, return a boolean if any changes
were made.

CLI Example:

salt '*' file.blockreplace /etc/hosts '#-- start managed zone foobar : DO NOT EDIT --' \
'#-- end managed zone foobar --' $'10.0.1.1 foo.foobar\n10.0.1.2 bar.foobar' True

salt.modules.file.check_file_meta(name, sfn, source, source_sum, user, group, mode, saltenv,
template=None, contents=None)

Check for the changes in the file metadata.

CLI Example:

salt '*' file.check_file_meta /etc/httpd/conf.d/httpd.conf salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' root, root, '755' base

Note: Supported hash types include sha512, sha384, sha256, sha224, sha1, and md5.

566 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.file.check_hash(path, file_hash)
Check if a file matches the given hash string

Returns true if the hash matched, otherwise false. Raises ValueError if the hash was not formaed correctly.

path A file path

hash A string in the form <hash_type>:<hash_value>. For example:
md5:e138491e9d5b97023cea823fe17bac22

CLI Example:

salt '*' file.check_hash /etc/fstab md5:<md5sum>

salt.modules.file.check_managed(name, source, source_hash, user, group, mode, template, context,
defaults, saltenv, contents=None, **kwargs)

Check to see what changes need to be made for a file

CLI Example:

salt '*' file.check_managed /etc/httpd/conf.d/httpd.conf salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' root, root, '755' jinja True None None base

salt.modules.file.check_managed_changes(name, source, source_hash, user, group, mode, tem-
plate, context, defaults, saltenv, contents=None,
**kwargs)

Return a dictionary of what changes need to be made for a file

CLI Example:

salt '*' file.check_managed_changes /etc/httpd/conf.d/httpd.conf salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' root, root, '755' jinja True None None base

salt.modules.file.check_perms(name, ret, user, group, mode, follow_symlinks=False)
Check the permissions on files and chown if needed

CLI Example:

salt '*' file.check_perms /etc/sudoers '{}' root root 400

Changed in version 2014.1.3: follow_symlinks option added

salt.modules.file.chgrp(path, group)
Change the group of a file

path path to the file or directory

group group owner

CLI Example:

salt '*' file.chgrp /etc/passwd root

salt.modules.file.chown(path, user, group)
Chown a file, pass the file the desired user and group

path path to the file or directory

user user owner

group group owner

CLI Example:

salt '*' file.chown /etc/passwd root root

22.16. Full list of builtin execution modules 567

Salt Documentation, Release 2014.7.6

salt.modules.file.comment(path, regex, char='#', backup='.bak')
Deprecated since version 0.17.0: Use replace() instead.

Comment out specified lines in a file

path e full path to the file to be edited

regex A regular expression used to find the lines that are to be commented; this paern will be wrapped
in parenthesis and will move any preceding/trailing ^ or $ characters outside the parenthesis (e.g., the
paern ^foo$ will be rewrien as ^(foo)$)

ar [#] e character to be inserted at the beginning of a line in order to comment it out

baup [.bak] e file will be backed up before edit with this file extension

Warning: is backup will be overwrien each time sed / comment / uncomment is called.
Meaning the backup will only be useful aer the first invocation.

CLI Example:

salt '*' file.comment /etc/modules pcspkr

salt.modules.file.contains(path, text)
Deprecated since version 0.17.0: Use search() instead.

Return True if the file at path contains text

CLI Example:

salt '*' file.contains /etc/crontab 'mymaintenance.sh'

salt.modules.file.contains_glob(path, glob_expr)
Deprecated since version 0.17.0: Use search() instead.

Return True if the given glob matches a string in the named file

CLI Example:

salt '*' file.contains_glob /etc/foobar '*cheese*'

salt.modules.file.contains_regex(path, regex, lchar='`)
Deprecated since version 0.17.0: Use search() instead.

Return True if the given regular expression matches on any line in the text of a given file.

If the lchar argument (leading char) is specified, it will strip lchar from the le side of each line before trying
to match

CLI Example:

salt '*' file.contains_regex /etc/crontab

salt.modules.file.contains_regex_multiline(path, regex)
Deprecated since version 0.17.0: Use search() instead.

Return True if the given regular expression matches anything in the text of a given file

Traverses multiple lines at a time, via the salt BufferedReader (reads in chunks)

CLI Example:

salt '*' file.contains_regex_multiline /etc/crontab '^maint'

568 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.file.copy(src, dst, recurse=False, remove_existing=False)
Copy a file or directory from source to dst

In order to copy a directory, the recurse flag is required, and will by default overwrite files in the destination
with the same path, and retain all other existing files. (similar to cp -r on unix)

remove_existing will remove all files in the target directory, and then copy files from the source.

CLI Example:

salt '*' file.copy /path/to/src /path/to/dst
salt '*' file.copy /path/to/src_dir /path/to/dst_dir recurse=True
salt '*' file.copy /path/to/src_dir /path/to/dst_dir recurse=True remove_existing=True

salt.modules.file.delete_backup(path, backup_id)
New in version 0.17.0.

Delete a previous version of a file that was backed up using Salt's file state backup system.

path e path on the minion to check for backups

baup_id e numeric id for the backup you wish to delete, as found using file.list_backups

CLI Example:

salt '*' file.restore_backup /foo/bar/baz.txt 0

salt.modules.file.directory_exists(path)
Tests to see if path is a valid directory. Returns True/False.

CLI Example:

salt '*' file.directory_exists /etc

salt.modules.file.extract_hash(hash_fn, hash_type='sha256', file_name='`)
is routine is called from the file.managed state to pull a hash from a remote file. Regular expressions
are used line by line on the source_hash file, to find a potential candidate of the indicated hash type. is
avoids many problems of arbitrary file lay out rules. It specifically permits pulling hash codes from debian
*.dsc files.

For example:

openerp_7.0-latest-1.tar.gz:
file.managed:

- name: /tmp/openerp_7.0-20121227-075624-1_all.deb
- source: http://nightly.openerp.com/7.0/nightly/deb/openerp_7.0-20121227-075624-1.tar.gz
- source_hash: http://nightly.openerp.com/7.0/nightly/deb/openerp_7.0-20121227-075624-1.dsc

CLI Example:

salt '*' file.extract_hash /etc/foo sha512 /path/to/hash/file

salt.modules.file.file_exists(path)
Tests to see if path is a valid file. Returns True/False.

CLI Example:

salt '*' file.file_exists /etc/passwd

salt.modules.file.find(path, **kwargs)
Approximate the Unix find(1) command and return a list of paths that meet the specified criteria.

e options include match criteria:

22.16. Full list of builtin execution modules 569

Salt Documentation, Release 2014.7.6

name = path-glob # case sensitive
iname = path-glob # case insensitive
regex = path-regex # case sensitive
iregex = path-regex # case insensitive
type = file-types # match any listed type
user = users # match any listed user
group = groups # match any listed group
size = [+-]number[size-unit] # default unit = byte
mtime = interval # modified since date
grep = regex # search file contents

and/or actions:

delete [= file-types] # default type = 'f'
exec = command [arg ...] # where {} is replaced by pathname
print [= print-opts]

e default action is `print=path'.

file-glob:

* = match zero or more chars
? = match any char
[abc] = match a, b, or c
[!abc] or [^abc] = match anything except a, b, and c
[x-y] = match chars x through y
[!x-y] or [^x-y] = match anything except chars x through y
{a,b,c} = match a or b or c

path-regex: a Python re (regular expression) paern to match pathnames

file-types: a string of one or more of the following:

a: all file types
b: block device
c: character device
d: directory
p: FIFO (named pipe)
f: plain file
l: symlink
s: socket

users: a space and/or comma separated list of user names and/or uids

groups: a space and/or comma separated list of group names and/or gids

size-unit:

b: bytes
k: kilobytes
m: megabytes
g: gigabytes
t: terabytes

interval:

[<num>w] [<num>d] [<num>h] [<num>m] [<num>s]

where:
w: week
d: day

570 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

h: hour
m: minute
s: second

print-opts: a comma and/or space separated list of one or more of the following:
group: group name
md5: MD5 digest of file contents
mode: file permissions (as integer)
mtime: last modification time (as time_t)
name: file basename
path: file absolute path
size: file size in bytes
type: file type
user: user name

CLI Examples:

salt '*' file.find / type=f name=*.bak size=+10m
salt '*' file.find /var mtime=+30d size=+10m print=path,size,mtime
salt '*' file.find /var/log name=*.[0-9] mtime=+30d size=+10m delete

salt.modules.file.get_devmm(name)
Get major/minor info from a device

CLI Example:

salt '*' file.get_devmm /dev/chr

salt.modules.file.get_diff(minionfile, masterfile, env=None, saltenv='base')
Return unified diff of file compared to file on master

CLI Example:

salt '*' file.get_diff /home/fred/.vimrc salt://users/fred/.vimrc

salt.modules.file.get_gid(path, follow_symlinks=True)
Return the id of the group that owns a given file

path file or directory of which to get the gid

follow_symlinks indicated if symlinks should be followed

CLI Example:

salt '*' file.get_gid /etc/passwd

Changed in version 0.16.4: follow_symlinks option added

salt.modules.file.get_group(path, follow_symlinks=True)
Return the group that owns a given file

path file or directory of which to get the group

follow_symlinks indicated if symlinks should be followed

CLI Example:

salt '*' file.get_group /etc/passwd

Changed in version 0.16.4: follow_symlinks option added

22.16. Full list of builtin execution modules 571

Salt Documentation, Release 2014.7.6

salt.modules.file.get_hash(path, form='sha256', chunk_size=4096)
Get the hash sum of a file

is is better than get_sum for the following reasons:

• It does not read the entire file into memory.

• It does not return a string on error. e returned value of get_sum cannot really be trusted
since it is vulnerable to collisions: get_sum(..., 'xyz') == 'Hash xyz not sup-
ported'

path path to the file or directory

form desired sum format

unk_size amount to sum at once

CLI Example:

salt '*' file.get_hash /etc/shadow

salt.modules.file.get_managed(name, template, source, source_hash, user, group, mode, saltenv,
context, defaults, **kwargs)

Return the managed file data for file.managed

name location where the file lives on the server

template template format

source managed source file

source_hash hash of the source file

user user owner

group group owner

mode file mode

context variables to add to the environment

default default values of for context_dict

CLI Example:

salt '*' file.get_managed /etc/httpd/conf.d/httpd.conf jinja salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' root root '755' base None None

salt.modules.file.get_mode(path, follow_symlinks=True)
Return the mode of a file

path file or directory of which to get the mode

follow_symlinks indicated if symlinks should be followed

CLI Example:

salt '*' file.get_mode /etc/passwd

Changed in version 2014.1.0: follow_symlinks option added

salt.modules.file.get_selinux_context(path)
Get an SELinux context from a given path

CLI Example:

salt '*' file.get_selinux_context /etc/hosts

572 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.file.get_sum(path, form='sha256')
Return the sum for the given file, default is md5, sha1, sha224, sha256, sha384, sha512 are supported

path path to the file or directory

form desired sum format

CLI Example:

salt '*' file.get_sum /etc/passwd sha512

salt.modules.file.get_uid(path, follow_symlinks=True)
Return the id of the user that owns a given file

path file or directory of which to get the uid

follow_symlinks indicated if symlinks should be followed

CLI Example:

salt '*' file.get_uid /etc/passwd

Changed in version 0.16.4: follow_symlinks option added

salt.modules.file.get_user(path, follow_symlinks=True)
Return the user that owns a given file

path file or directory of which to get the user

follow_symlinks indicated if symlinks should be followed

CLI Example:

salt '*' file.get_user /etc/passwd

Changed in version 0.16.4: follow_symlinks option added

salt.modules.file.gid_to_group(gid)
Convert the group id to the group name on this system

gid gid to convert to a group name

CLI Example:

salt '*' file.gid_to_group 0

salt.modules.file.grep(path, paern, *args)
Grep for a string in the specified file

Note: is function's return value is slated for refinement in future versions of Salt

path A file path

pattern A string. For example: test a[0-5]

args grep options. For example: " -v" " -i -B2"

CLI Example:

salt '*' file.grep /etc/passwd nobody
salt '*' file.grep /etc/sysconfig/network-scripts/ifcfg-eth0 ipaddr " -i"
salt '*' file.grep /etc/sysconfig/network-scripts/ifcfg-eth0 ipaddr " -i -B2"
salt '*' file.grep "/etc/sysconfig/network-scripts/*" ipaddr " -i -l"

22.16. Full list of builtin execution modules 573

Salt Documentation, Release 2014.7.6

salt.modules.file.group_to_gid(group)
Convert the group to the gid on this system

group group to convert to its gid

CLI Example:

salt '*' file.group_to_gid root

salt.modules.file.is_blkdev(name)
Check if a file exists and is a block device.

CLI Example:

salt '*' file.is_blkdev /dev/blk

salt.modules.file.is_chrdev(name)
Check if a file exists and is a character device.

CLI Example:

salt '*' file.is_chrdev /dev/chr

salt.modules.file.is_fifo(name)
Check if a file exists and is a FIFO.

CLI Example:

salt '*' file.is_fifo /dev/fifo

salt.modules.file.is_link(path)
Check if the path is a symlink

CLI Example:

salt '*' file.is_link /path/to/link

salt.modules.file.join(*args)
Return a normalized file system path for the underlying OS

New in version 2014.7.0.

is can be useful at the CLI but is frequently useful when scripting combining path variables:

{% set www_root = '/var' %}
{% set app_dir = 'myapp' %}

myapp_config:
file:

- managed
- name: {{ salt['file.join'](www_root, app_dir, 'config.yaml') }}

CLI Example:

salt '*' file.join '/' 'usr' 'local' 'bin'

salt.modules.file.lchown(path, user, group)
Chown a file, pass the file the desired user and group without following symlinks.

path path to the file or directory

user user owner

group group owner

574 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' file.chown /etc/passwd root root

salt.modules.file.link(src, path)
New in version 2014.1.0.

Create a hard link to a file

CLI Example:

salt '*' file.link /path/to/file /path/to/link

salt.modules.file.list_backups(path, limit=None)
New in version 0.17.0.

Lists the previous versions of a file backed up using Salt's file state backup system.

path e path on the minion to check for backups

limit Limit the number of results to the most recent N backups

CLI Example:

salt '*' file.list_backups /foo/bar/baz.txt

salt.modules.file.lstat(path)
New in version 2014.1.0.

Returns the lstat aributes for the given file or dir. Does not support symbolic links.

CLI Example:

salt '*' file.lstat /path/to/file

salt.modules.file.makedirs_(path, user=None, group=None, mode=None)
Ensure that the directory containing this path is available.

Note: e path must end with a trailing slash otherwise the directory/directories will be created up to the
parent directory. For example if path is /opt/code, then it would be treated as /opt/ but if the path ends
with a trailing slash like /opt/code/, then it would be treated as /opt/code/.

CLI Example:

salt '*' file.makedirs /opt/code/

salt.modules.file.makedirs_perms(name, user=None, group=None, mode=`0755')
Taken and modified from os.makedirs to set user, group and mode for each directory created.

CLI Example:

salt '*' file.makedirs_perms /opt/code

salt.modules.file.manage_file(name, sfn, ret, source, source_sum, user, group, mode, saltenv,
backup, makedirs=False, template=None, show_diff=True, con-
tents=None, dir_mode=None, follow_symlinks=True)

Checks the destination against what was retrievedwith get_managed andmakes the appropriate modifications
(if necessary).

name location to place the file

22.16. Full list of builtin execution modules 575

Salt Documentation, Release 2014.7.6

sfn location of cached file on the minion

is is the path to the file stored on the minion. is file is placed on the minion using cp.cache_file. If
the hash sum of that file matches the source_sum, we do not transfer the file to the minion again.

is file is then grabbed and if it has template set, it renders the file to be placed into the correct place
on the system using salt.files.utils.copyfile()

source file reference on the master

source_hash sum hash for source

user user owner

group group owner

baup backup_mode

makedirs make directories if they do not exist

template format of templating

show_diff Include diff in state return

contents: contents to be placed in the file

dir_mode mode for directories created with makedirs

CLI Example:

salt '*' file.manage_file /etc/httpd/conf.d/httpd.conf '' '{}' salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' root root '755' base ''

Changed in version 2014.7.0: follow_symlinks option added

salt.modules.file.mkdir(dir_path, user=None, group=None, mode=None)
Ensure that a directory is available.

CLI Example:

salt '*' file.mkdir /opt/jetty/context

salt.modules.file.mknod(name, ntype, major=0, minor=0, user=None, group=None, mode=`0600')

New in version 0.17.0.

Create a block device, character device, or fifo pipe. Identical to the gnu mknod.

CLI Examples:

salt '*' file.mknod /dev/chr c 180 31
salt '*' file.mknod /dev/blk b 8 999
salt '*' file.nknod /dev/fifo p

salt.modules.file.mknod_blkdev(name, major, minor, user=None, group=None, mode=`0660')
New in version 0.17.0.

Create a block device.

CLI Example:

salt '*' file.mknod_blkdev /dev/blk 8 999

salt.modules.file.mknod_chrdev(name, major, minor, user=None, group=None, mode=`0660')
New in version 0.17.0.

Create a character device.

576 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' file.mknod_chrdev /dev/chr 180 31

salt.modules.file.mknod_fifo(name, user=None, group=None, mode=`0660')
New in version 0.17.0.

Create a FIFO pipe.

CLI Example:

salt '*' file.mknod_fifo /dev/fifo

salt.modules.file.open_files(by_pid=False)
Return a list of all physical open files on the system.

CLI Examples:

salt `*' file.open_files salt `*' file.open_files by_pid=True

salt.modules.file.pardir()
Return the relative parent directory path symbol for underlying OS

New in version 2014.7.0.

is can be useful when constructing Salt Formulas.

{% set pardir = salt['file.pardir']() %}
{% set final_path = salt['file.join']('subdir', pardir, 'confdir') %}

CLI Example:

salt '*' file.pardir

salt.modules.file.patch(originalfile, patchfile, options='`, dry_run=False)
New in version 0.10.4.

Apply a patch to a file

Equivalent to:

patch <options> <originalfile> <patchfile>

originalfile e full path to the file or directory to be patched

patfile A patch file to apply to originalfile

options Options to pass to patch.

CLI Example:

salt '*' file.patch /opt/file.txt /tmp/file.txt.patch

salt.modules.file.path_exists_glob(path)
Tests to see if path aer expansion is a valid path (file or directory). Expansion allows usage of ? * and character
ranges []. Tilde expansion is not supported. Returns True/False.

New in version Hellium.

CLI Example:

salt '*' file.path_exists_glob /etc/pam*/pass*

22.16. Full list of builtin execution modules 577

Salt Documentation, Release 2014.7.6

salt.modules.file.prepend(path, *args, **kwargs)
New in version 2014.7.0.

Prepend text to the beginning of a file

path path to file

args strings to prepend to the file

CLI Example:

salt '*' file.prepend /etc/motd \
"With all thine offerings thou shalt offer salt." \
"Salt is what makes things taste bad when it isn't in them."

Attention

If you need to pass a string to append and that string contains an equal sign, you must include the argument
name, args. For example:

salt '*' file.prepend /etc/motd args='cheese=spam'

salt '*' file.prepend /etc/motd args="['cheese=spam','spam=cheese']"

salt.modules.file.psed(path, before, aer, limit='`, backup='.bak', flags='gMS', escape_all=False,
multi=False)

Deprecated since version 0.17.0: Use replace() instead.

Make a simple edit to a file (pure Python version)

Equivalent to:

sed <backup> <options> "/<limit>/ s/<before>/<after>/<flags> <file>"

path e full path to the file to be edited

before A paern to find in order to replace with after

aer Text that will replace before

limit [''] An initial paern to search for before searching for before

baup [.bak] e file will be backed up before edit with this file extension; WARNING: each time
sed/comment/uncomment is called will overwrite this backup

flags [gMS]

Flags to modify the sear. Valid values are:

• g: Replace all occurrences of the paern, not just the first.

• I: Ignore case.

• L: Make \w, \W, \b, \B, \s and \S dependent on the locale.

• M: Treat multiple lines as a single line.

• S: Make . match all characters, including newlines.

• U: Make \w, \W, \b, \B, \d, \D, \s and \S dependent on Unicode.

• X: Verbose (whitespace is ignored).

multi: False If True, treat the entire file as a single line

578 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Forward slashes and single quotes will be escaped automatically in the before and after paerns.

CLI Example:

salt '*' file.sed /etc/httpd/httpd.conf 'LogLevel warn' 'LogLevel info'

salt.modules.file.readdir(path)
New in version 2014.1.0.

Return a list containing the contents of a directory

CLI Example:

salt '*' file.readdir /path/to/dir/

salt.modules.file.readlink(path)
New in version 2014.1.0.

Return the path that a symlink points to

CLI Example:

salt '*' file.readlink /path/to/link

salt.modules.file.remove(path)
Remove the named file

CLI Example:

salt '*' file.remove /tmp/foo

salt.modules.file.rename(src, dst)
Rename a file or directory

CLI Example:

salt '*' file.rename /path/to/src /path/to/dst

salt.modules.file.replace(path, paern, repl, count=0, flags=0, bufsize=1, ap-
pend_if_not_found=False, prepend_if_not_found=False,
not_found_content=None, backup='.bak', dry_run=False,
search_only=False, show_changes=True)

New in version 0.17.0.

Replace occurrences of a paern in a file

is is a pure Python implementation that wraps Python's sub().

Parameters

• path -- Filesystem path to the file to be edited

• pattern -- Python's regular expression search hps://docs.python.org/2/library/re.html

salt '*' file.replace /path/to/file pattern="bind-address\s*=" repl='bind-address:'

Parameters

• repl -- e replacement text

• count -- Maximum number of paern occurrences to be replaced

22.16. Full list of builtin execution modules 579

http://docs.python.org/3/library/re.html#re.sub
https://docs.python.org/2/library/re.html

Salt Documentation, Release 2014.7.6

• flags (list or int) -- A list of flags defined in the re module documentation. Each list item
should be a string that will correlate to the human-friendly flag name. E.g., ['IGNORE-
CASE', 'MULTILINE']. Note: multiline searches must specify file as the bufsize
argument below.

• bufsize (int or str) -- How much of the file to buffer into memory at once. e default
value 1 processes one line at a time. e special value file may be specified which will
read the entire file into memory before processing. Note: multiline searches must specify
file buffering.

• append_if_not_found -- If paern is not found and set to True then, the content
will be appended to the file.

New in version 2014.7.0.

• prepend_if_not_found -- If paern is not found and set to True then, the content
will be prepended to the file.

New in version 2014.7.0.

• not_found_content -- Content to use for append/prepend if not found. If None (de-
fault), uses repl. Useful when repl uses references to group in paern.

New in version 2014.7.0.

• backup -- e file extension to use for a backup of the file before editing. Set to False
to skip making a backup.

• dry_run -- Don't make any edits to the file

• search_only -- Just search for the paern; ignore the replacement; stop on the first
match

• show_changes -- Output a unified diff of the old file and the new file. If False return
a boolean if any changes were made. Note: using this option will store two copies of the
file in-memory (the original version and the edited version) in order to generate the diff.

Return type bool or str

If an equal sign (=) appears in an argument to a Salt command it is interpreted as a keyword argument in the
format key=val. at processing can be bypassed in order to pass an equal sign through to the remote shell
command by manually specifying the kwarg:

salt '*' file.replace /path/to/file pattern='=' repl=':'

CLI Example:

salt '*' file.replace /etc/httpd/httpd.conf pattern='LogLevel warn' repl='LogLevel info'
salt '*' file.replace /some/file pattern='before' repl='after' flags='[MULTILINE, IGNORECASE]'

salt.modules.file.restore_backup(path, backup_id)
New in version 0.17.0.

Restore a previous version of a file that was backed up using Salt's file state backup system.

path e path on the minion to check for backups

baup_id e numeric id for the backup you wish to restore, as found using file.list_backups

CLI Example:

salt '*' file.restore_backup /foo/bar/baz.txt 0

580 Chapter 22. Reference

http://docs.python.org/3/library/re.html#contents-of-module-re

Salt Documentation, Release 2014.7.6

salt.modules.file.restorecon(path, recursive=False)
Reset the SELinux context on a given path

CLI Example:

salt '*' file.restorecon /home/user/.ssh/authorized_keys

salt.modules.file.rmdir(path)
New in version 2014.1.0.

Remove the specified directory. Fails if a directory is not empty.

CLI Example:

salt '*' file.rmdir /tmp/foo/

salt.modules.file.search(path, paern, flags=0, bufsize=1)
New in version 0.17.0.

Search for occurrences of a paern in a file

Params are identical to replace().

CLI Example:

salt '*' file.search /etc/crontab 'mymaintenance.sh'

salt.modules.file.sed(path, before, aer, limit='`, backup='.bak', options='-r -e', flags='g', es-
cape_all=False, negate_match=False)

Deprecated since version 0.17.0: Use replace() instead.

Make a simple edit to a file

Equivalent to:

sed <backup> <options> "/<limit>/ s/<before>/<after>/<flags> <file>"

path e full path to the file to be edited

before A paern to find in order to replace with after

aer Text that will replace before

limit [''] An initial paern to search for before searching for before

baup [.bak] e file will be backed up before edit with this file extension; WARNING: each time
sed/comment/uncomment is called will overwrite this backup

options [-r -e] Options to pass to sed

flags [g] Flags to modify the sed search; e.g., i for case-insensitive paern matching

negate_mat [False] Negate the search command (!)

New in version 0.17.0.

Forward slashes and single quotes will be escaped automatically in the before and after paerns.

CLI Example:

salt '*' file.sed /etc/httpd/httpd.conf 'LogLevel warn' 'LogLevel info'

22.16. Full list of builtin execution modules 581

Salt Documentation, Release 2014.7.6

salt.modules.file.sed_contains(path, text, limit='`, flags='g')
Deprecated since version 0.17.0: Use search() instead.

Return True if the file at path contains text. Utilizes sed to perform the search (line-wise search).

Note: the p flag will be added to any flags you pass in.

CLI Example:

salt '*' file.contains /etc/crontab 'mymaintenance.sh'

salt.modules.file.seek_read(path, size, offset)
New in version 2014.1.0.

Seek to a position on a file and read it

path path to file

seek amount to read at once

offset offset to start into the file

CLI Example:

salt '*' file.seek_read /path/to/file 4096 0

salt.modules.file.seek_write(path, data, offset)
New in version 2014.1.0.

Seek to a position on a file and write to it

path path to file

data data to write to file

offset position in file to start writing

CLI Example:

salt '*' file.seek_write /path/to/file 'some data' 4096

salt.modules.file.set_mode(path, mode)
Set the mode of a file

path file or directory of which to set the mode

mode mode to set the path to

CLI Example:

salt '*' file.set_mode /etc/passwd 0644

salt.modules.file.set_selinux_context(path, user=None, role=None, type=None, range=None)
Set a specific SELinux label on a given path

CLI Example:

salt '*' file.set_selinux_context path <role> <type> <range>

salt.modules.file.source_list(source, source_hash, saltenv)
Check the source list and return the source to use

CLI Example:

salt '*' file.source_list salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' base

582 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.file.stats(path, hash_type=None, follow_symlinks=True)
Return a dict containing the stats for a given file

CLI Example:

salt '*' file.stats /etc/passwd

salt.modules.file.statvfs(path)
New in version 2014.1.0.

Perform a statvfs call against the filesystem that the file resides on

CLI Example:

salt '*' file.statvfs /path/to/file

salt.modules.file.symlink(src, path)
Create a symbolic link to a file

CLI Example:

salt '*' file.symlink /path/to/file /path/to/link

salt.modules.file.touch(name, atime=None, mtime=None)
New in version 0.9.5.

Just like the touch command, create a file if it doesn't exist or simply update the atime and mtime if it already
does.

atime: Access time in Unix epoch time

mtime: Last modification in Unix epoch time

CLI Example:

salt '*' file.touch /var/log/emptyfile

salt.modules.file.truncate(path, length)
New in version 2014.1.0.

Seek to a position on a file and delete everything aer that point

path path to file

length offset into file to truncate

CLI Example:

salt '*' file.truncate /path/to/file 512

salt.modules.file.uid_to_user(uid)
Convert a uid to a user name

uid uid to convert to a username

CLI Example:

salt '*' file.uid_to_user 0

salt.modules.file.uncomment(path, regex, char='#', backup='.bak')
Deprecated since version 0.17.0: Use replace() instead.

Uncomment specified commented lines in a file

path e full path to the file to be edited

22.16. Full list of builtin execution modules 583

Salt Documentation, Release 2014.7.6

regex A regular expression used to find the lines that are to be uncommented. is regex should not include
the comment character. A leading ^ character will be stripped for convenience (for easily switching
between comment() and uncomment()).

ar [#] e character to remove in order to uncomment a line

baup [.bak] e file will be backed up before edit with this file extension; WARNING: each time
sed/comment/uncomment is called will overwrite this backup

CLI Example:

salt '*' file.uncomment /etc/hosts.deny 'ALL: PARANOID'

salt.modules.file.user_to_uid(user)
Convert user name to a uid

user user name to convert to its uid

CLI Example:

salt '*' file.user_to_uid root

salt.modules.file.write(path, *args, **kwargs)
New in version 2014.7.0.

Write text to a file, overwriting any existing contents.

path path to file

args strings to write to the file

CLI Example:

salt '*' file.write /etc/motd \
"With all thine offerings thou shalt offer salt."

Attention

If you need to pass a string to append and that string contains an equal sign, you must include the argument
name, args. For example:

salt '*' file.write /etc/motd args='cheese=spam'

salt '*' file.write /etc/motd args="['cheese=spam','spam=cheese']"

22.16.56 salt.modules.freebsd_sysctl

Module for viewing and modifying sysctl parameters

salt.modules.freebsd_sysctl.assign(name, value)
Assign a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.assign net.inet.icmp.icmplim 50

salt.modules.freebsd_sysctl.get(name)
Return a single sysctl parameter for this minion

CLI Example:

584 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' sysctl.get hw.physmem

salt.modules.freebsd_sysctl.persist(name, value, config='/etc/sysctl.conf')
Assign and persist a simple sysctl parameter for this minion

CLI Example:

salt '*' sysctl.persist net.inet.icmp.icmplim 50
salt '*' sysctl.persist coretemp_load NO config=/boot/loader.conf

salt.modules.freebsd_sysctl.show(config_file=False)
Return a list of sysctl parameters for this minion

CLI Example:

salt '*' sysctl.show

22.16.57 salt.modules.freebsdjail

e jail module for FreeBSD

salt.modules.freebsdjail.fstab(jail)
Display contents of a fstab(5) file defined in specified jail's configuration. If no file is defined, return False.

CLI Example:

salt '*' jail.fstab <jail name>

salt.modules.freebsdjail.get_enabled()
Return which jails are set to be run

CLI Example:

salt '*' jail.get_enabled

salt.modules.freebsdjail.is_enabled()
See if jail service is actually enabled on boot

CLI Example:

salt '*' jail.is_enabled <jail name>

salt.modules.freebsdjail.restart(jail='`)
Restart the specified jail or all, if none specified

CLI Example:

salt '*' jail.restart [<jail name>]

salt.modules.freebsdjail.show_config(jail)
Display specified jail's configuration

CLI Example:

salt '*' jail.show_config <jail name>

salt.modules.freebsdjail.start(jail='`)
Start the specified jail or all, if none specified

CLI Example:

22.16. Full list of builtin execution modules 585

Salt Documentation, Release 2014.7.6

salt '*' jail.start [<jail name>]

salt.modules.freebsdjail.status(jail)
See if specified jail is currently running

CLI Example:

salt '*' jail.status <jail name>

salt.modules.freebsdjail.stop(jail='`)
Stop the specified jail or all, if none specified

CLI Example:

salt '*' jail.stop [<jail name>]

salt.modules.freebsdjail.sysctl()
Dump all jail related kernel states (sysctl)

CLI Example:

salt '*' jail.sysctl

22.16.58 salt.modules.freebsdkmod

Module to manage FreeBSD kernel modules

salt.modules.freebsdkmod.available()
Return a list of all available kernel modules

CLI Example:

salt '*' kmod.available

salt.modules.freebsdkmod.check_available(mod)
Check to see if the specified kernel module is available

CLI Example:

salt '*' kmod.check_available vmm

salt.modules.freebsdkmod.is_loaded(mod)
Check to see if the specified kernel module is loaded

CLI Example:

salt '*' kmod.is_loaded vmm

salt.modules.freebsdkmod.load(mod, persist=False)
Load the specified kernel module

mod Name of the module to add

persist Write the module to sysrc kld_modules to make it load on system reboot

CLI Example:

salt '*' kmod.load bhyve

586 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.freebsdkmod.lsmod()
Return a dict containing information about currently loaded modules

CLI Example:

salt '*' kmod.lsmod

salt.modules.freebsdkmod.mod_list(only_persist=False)
Return a list of the loaded module names

CLI Example:

salt '*' kmod.mod_list

salt.modules.freebsdkmod.remove(mod, persist=False)
Remove the specified kernel module

CLI Example:

salt '*' kmod.remove vmm

22.16.59 salt.modules.freebsdpkg

Remote package support using pkg_add(1)

Warning: is module has been completely rewrien. Up to and including version 0.17.0, it supported
pkg_add(1), but checked for the existence of a pkgng local database and, if found, would provide some of
pkgng's functionality. e rewrite of this module has removed all pkgng support, and moved it to the pkgng
executionmodule. For versions <= 0.17.0, the documentation here should not be considered accurate. If yourMin-
ion is running one of these versions, then the documentation for this module can be viewed using the sys.doc
function:

salt bsdminion sys.doc pkg

is module acts as the default package provider for FreeBSD 9 and older. If you need to use pkgng on a FreeBSD
9 system, you will need to override the pkg provider by seing the providers parameter in your Minion config
file, in order to use pkgng.

providers:
pkg: pkgng

More information on pkgng support can be found in the documentation for the pkgng module.

is module will respect the PACKAGEROOT and PACKAGESITE environment variables, if set, but these values can
also be overridden in several ways:

1. Salt configuration parameters. e configuration parameters freebsdpkg.PACKAGEROOT and freeb-
sdpkg.PACKAGESITE are recognized. ese config parameters are looked up using config.get and can
thus be specified in the Master config file, Grains, Pillar, or in the Minion config file. Example:

freebsdpkg.PACKAGEROOT: ftp://ftp.freebsd.org/
freebsdpkg.PACKAGESITE: ftp://ftp.freebsd.org/pub/FreeBSD/ports/ia64/packages-9-stable/Latest/

2. CLI arguments. Both the packageroot (used interchangeably with fromrepo for API compatibility) and
packagesite CLI arguments are recognized, and override their config counterparts from section 1 above.

22.16. Full list of builtin execution modules 587

Salt Documentation, Release 2014.7.6

salt -G 'os:FreeBSD' pkg.install zsh fromrepo=ftp://ftp2.freebsd.org/
salt -G 'os:FreeBSD' pkg.install zsh packageroot=ftp://ftp2.freebsd.org/
salt -G 'os:FreeBSD' pkg.install zsh packagesite=ftp://ftp2.freebsd.org/pub/FreeBSD/ports/ia64/packages-9-stable/Latest/

.. note::

These arguments can also be passed through in states:

.. code-block:: yaml

zsh:
pkg.installed:

- fromrepo: ftp://ftp2.freebsd.org/

salt.modules.freebsdpkg.file_dict(*packages)
List the files that belong to a package, grouped by package. Not specifying any packages will return a list of
every file on the system's package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

salt.modules.freebsdpkg.file_list(*packages)
List the files that belong to a package. Not specifying any packages will return a list of _every_ file on the
system's package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

salt.modules.freebsdpkg.install(name=None, refresh=False, fromrepo=None, pkgs=None,
sources=None, **kwargs)

Install package(s) using pkg_add(1)

name e name of the package to be installed.

refresh Whether or not to refresh the package database before installing.

fromrepo or paageroot Specify a package repository from which to install. Overrides the system default,
as well as the PACKAGEROOT environment variable.

paagesite Specify the exact directory from which to install the remote package. Overrides the PACKAGE-
SITE environment variable, if present.

Multiple Package Installation Options:

pkgs A list of packages to install from a soware repository. Must be passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo", "bar"]'

sources A list of packages to install. Must be passed as a list of dicts, with the keys being package names, and
the values being the source URI or local path to the package.

CLI Example:

588 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' pkg.install sources='[{"foo": "salt://foo.deb"}, {"bar": "salt://bar.deb"}]'

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install <package name>

salt.modules.freebsdpkg.latest_version(*names, **kwargs)
pkg_add(1) is not capable of querying for remote packages, so this function will always return results as if
there is no package available for install or upgrade.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

salt.modules.freebsdpkg.list_pkgs(versions_as_list=False, with_origin=False, **kwargs)
List the packages currently installed as a dict:

{'<package_name>': '<version>'}

with_origin [False] Return a nested dictionary containing both the origin name and version for each installed
package.

New in version 2014.1.0.

CLI Example:

salt '*' pkg.list_pkgs

salt.modules.freebsdpkg.refresh_db()
pkg_add(1) does not use a local database of available packages, so this function simply returns True. it
exists merely for API compatibility.

CLI Example:

salt '*' pkg.refresh_db

salt.modules.freebsdpkg.remove(name=None, pkgs=None, **kwargs)
Remove packages using pkg_delete(1)

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

22.16. Full list of builtin execution modules 589

Salt Documentation, Release 2014.7.6

salt.modules.freebsdpkg.upgrade()
Upgrades are not supported with pkg_add(1). is function is included for API compatibility only and
always returns an empty dict.

CLI Example:

salt '*' pkg.upgrade

salt.modules.freebsdpkg.version(*names, **kwargs)
Returns a string representing the package version or an empty string if not installed. If more than one package
name is specified, a dict of name/version pairs is returned.

with_origin [False] Return a nested dictionary containing both the origin name and version for each specified
package.

New in version 2014.1.0.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

22.16.60 salt.modules.freebsdports

Install soware from the FreeBSD ports(7) system

New in version 2014.1.0.

is module allows you to install ports using BATCH=yes to bypass configuration prompts. It is recommended to
use the the ports state to install ports, but it it also possible to use this module exclusively from the command
line.

salt minion-id ports.config security/nmap IPV6=off
salt minion-id ports.install security/nmap

salt.modules.freebsdports.config(name, reset=False, **kwargs)
Modify configuration options for a given port. Multiple options can be specified. To see the available options
for a port, use ports.showconfig.

name e port name, in category/name format

reset [False] If True, runs a make rmconfig for the port, clearing its configuration before seing the
desired options

CLI Examples:

salt '*' ports.config security/nmap IPV6=off

salt.modules.freebsdports.deinstall(name)
De-install a port.

CLI Example:

salt '*' ports.deinstall security/nmap

salt.modules.freebsdports.install(name, clean=True)
Install a port from the ports tree. Installs using BATCH=yes for non-interactive building. To set config options
for a given port, use ports.config.

clean [True] If True, cleans aer installation. Equivalent to runningmake install clean BATCH=yes.

590 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Note: It may be helpful to run this function using the -t option to set a higher timeout, since compiling a
port may cause the Salt command to exceed the default timeout.

CLI Example:

salt -t 1200 '*' ports.install security/nmap

salt.modules.freebsdports.list_all()
Lists all ports available.

CLI Example:

salt '*' ports.list_all

Warning: Takes a while to run, and returns a LOT of output

salt.modules.freebsdports.rmconfig(name)
Clear the cached options for the specified port; run a make rmconfig

name e name of the port to clear

CLI Example:

salt '*' ports.rmconfig security/nmap

salt.modules.freebsdports.search(name)
Search for matches in the ports tree. Globs are supported, and the category is optional

CLI Examples:

salt '*' ports.search 'security/*'
salt '*' ports.search 'security/n*'
salt '*' ports.search nmap

Warning: Takes a while to run

salt.modules.freebsdports.showconfig(name, default=False, dict_return=False)
Show the configuration options for a given port.

default [False] Show the default options for a port (not necessarily the same as the current configuration)

dict_return [False] Instead of returning the output of make showconfig, return the data in an dictionary

CLI Example:

salt '*' ports.showconfig security/nmap
salt '*' ports.showconfig security/nmap default=True

salt.modules.freebsdports.update(extract=False)
Update the ports tree

extract [False] If True, runs a portsnap extract aer fetching, should be used for first-time installation
of the ports tree.

CLI Example:

salt '*' ports.update

22.16. Full list of builtin execution modules 591

Salt Documentation, Release 2014.7.6

22.16.61 salt.modules.freebsdservice

e service module for FreeBSD

salt.modules.freebsdservice.available(name)
Check that the given service is available.

CLI Example:

salt '*' service.available sshd

salt.modules.freebsdservice.disable(name, **kwargs)
Disable the named service to start at boot

Arguments the same as for enable()

CLI Example:

salt '*' service.disable <service name>

salt.modules.freebsdservice.disabled(name)
Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.disabled <service name>

salt.modules.freebsdservice.enable(name, **kwargs)
Enable the named service to start at boot

name service name

config [/etc/rc.con] Config file for managing service. If config value is empty string, then
/etc/rc.conf.d/<service> used. See man rc.conf(5) for details.

Also service.config variable can be used to change default.

CLI Example:

salt '*' service.enable <service name>

salt.modules.freebsdservice.enabled(name)
Return True if the named service is enabled, false otherwise

name Service name

CLI Example:

salt '*' service.enabled <service name>

salt.modules.freebsdservice.get_all()
Return a list of all available services

CLI Example:

salt '*' service.get_all

salt.modules.freebsdservice.get_disabled()
Return what services are available but not enabled to start at boot

CLI Example:

salt '*' service.get_disabled

592 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.freebsdservice.get_enabled()
Return what services are set to run on boot

CLI Example:

salt '*' service.get_enabled

salt.modules.freebsdservice.missing(name)
e inverse of service.available. Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing sshd

salt.modules.freebsdservice.reload_(name)
Restart the named service

CLI Example:

salt '*' service.reload <service name>

salt.modules.freebsdservice.restart(name)
Restart the named service

CLI Example:

salt '*' service.restart <service name>

salt.modules.freebsdservice.start(name)
Start the specified service

CLI Example:

salt '*' service.start <service name>

salt.modules.freebsdservice.status(name, sig=None)
Return the status for a service (True or False).

name Name of service

CLI Example:

salt '*' service.status <service name>

salt.modules.freebsdservice.stop(name)
Stop the specified service

CLI Example:

salt '*' service.stop <service name>

22.16.62 salt.modules.gem

Manage ruby gems.

salt.modules.gem.install(gems, ruby=None, runas=None, version=None, rdoc=False, ri=False,
proxy=None)

Installs one or several gems.

gems e gems to install

22.16. Full list of builtin execution modules 593

Salt Documentation, Release 2014.7.6

ruby [None] If RVM or rbenv are installed, the ruby version and gemset to use.

runas [None] e user to run gem as.

version [None] Specify the version to install for the gem. Doesn't play nice with multiple gems at once

rdoc [False] Generate RDoc documentation for the gem(s).

ri [False] Generate RI documentation for the gem(s).

proxy [None] Use the specified HTTP proxy server for all outgoing traffic. Format: hp://hostname[:port]

CLI Example:

salt '*' gem.install vagrant

salt.modules.gem.list_(prefix='`, ruby=None, runas=None)
List locally installed gems.

prefix : Only list gems when the name matches this prefix.

ruby [None] If RVM or rbenv are installed, the ruby version and gemset to use.

runas [None] e user to run gem as.

CLI Example:

salt '*' gem.list

salt.modules.gem.sources_add(source_uri, ruby=None, runas=None)
Add a gem source.

source_uri e source URI to add.

ruby [None] If RVM or rbenv are installed, the ruby version and gemset to use.

runas [None] e user to run gem as.

CLI Example:

salt '*' gem.sources_add http://rubygems.org/

salt.modules.gem.sources_list(ruby=None, runas=None)
List the configured gem sources.

ruby [None] If RVM or rbenv are installed, the ruby version and gemset to use.

runas [None] e user to run gem as.

CLI Example:

salt '*' gem.sources_list

salt.modules.gem.sources_remove(source_uri, ruby=None, runas=None)
Remove a gem source.

source_uri e source URI to remove.

ruby [None] If RVM or rbenv are installed, the ruby version and gemset to use.

runas [None] e user to run gem as.

CLI Example:

salt '*' gem.sources_remove http://rubygems.org/

594 Chapter 22. Reference

http://hostname{[}:port

Salt Documentation, Release 2014.7.6

salt.modules.gem.uninstall(gems, ruby=None, runas=None)
Uninstall one or several gems.

gems e gems to uninstall.

ruby [None] If RVM or rbenv are installed, the ruby version and gemset to use.

runas [None] e user to run gem as.

CLI Example:

salt '*' gem.uninstall vagrant

salt.modules.gem.update(gems, ruby=None, runas=None)
Update one or several gems.

gems e gems to update.

ruby [None] If RVM or rbenv are installed, the ruby version and gemset to use.

runas [None] e user to run gem as.

CLI Example:

salt '*' gem.update vagrant

salt.modules.gem.update_system(version='`, ruby=None, runas=None)
Update rubygems.

version [(newest)] e version of rubygems to install.

ruby [None] If RVM or rbenv are installed, the ruby version and gemset to use.

runas [None] e user to run gem as.

CLI Example:

salt '*' gem.update_system

22.16.63 salt.modules.genesis

Module for managing container and VM images

New in version 2014.7.0.

salt.modules.genesis.avail_platforms()
Return which platforms are available

CLI Example:

salt myminion genesis.avail_platforms

salt.modules.genesis.bootstrap(platform, root, img_format='dir', fs_format='ext2', arch=None, fla-
vor=None, repo_url=None, static_qemu=None)

Create an image for a specific platform.

Please note that this function MUST be run as root, as images that are created make files belonging to root.

platform Which platform to use to create the image. Currently supported platforms are rpm, deb and pacman.

root Local path to create the root of the image filesystem.

img_format Which format to create the image in. By default, just copies files into a directory on the local
filesystem (dir). Future support will exist for sparse.

22.16. Full list of builtin execution modules 595

Salt Documentation, Release 2014.7.6

fs_format When using a non-dir img_format, which filesystem to format the image to. By default, ext2.

ar Architecture to install packages for, if supported by the underlying bootstrap tool. Currently only used
for deb.

flavor Which flavor of operating system to install. is correlates to a specific directory on the distribution
repositories. For instance, wheezy on Debian.

repo_url Mainly important for Debian-based repos. Base URL for the mirror to install from. (e.x.:
hp://p.debian.org/debian/)

static_qemu Local path to the static qemu binary required for this arch. (e.x.: /usr/bin/qemu-amd64-static)

pkg_confs e location of the conf files to copy into the image, to point the installer to the right repos and
configuration.

CLI Examples:

salt myminion genesis.bootstrap pacman /root/arch
salt myminion genesis.bootstrap rpm /root/redhat
salt myminion genesis.bootstrap deb /root/wheezy arch=amd64 flavor=wheezy static_qemu=/usr/bin/qemu-x86_64-static

salt.modules.genesis.pack(name, root, path=None, pack_format='tar', compress='bzip2')
Pack up a directory structure, into a specific format

CLI Examples:

salt myminion genesis.pack centos /root/centos
salt myminion genesis.pack centos /root/centos pack_format='tar'

salt.modules.genesis.unpack(name, dest=None, path=None, pack_format='tar', compress='bz2')
Unpack an image into a directory structure

CLI Example:

salt myminion genesis.unpack centos /root/centos

22.16.64 salt.modules.gentoo_service

Top level package command wrapper, used to translate the os detected by grains to the correct service manager

salt.modules.gentoo_service.available(name)
Returns True if the specified service is available, otherwise returns False.

CLI Example:

salt '*' service.available sshd

salt.modules.gentoo_service.disable(name, **kwargs)
Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

salt.modules.gentoo_service.disabled(name)
Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.disabled <service name>

596 Chapter 22. Reference

http://ftp.debian.org/debian/

Salt Documentation, Release 2014.7.6

salt.modules.gentoo_service.enable(name, **kwargs)
Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

salt.modules.gentoo_service.enabled(name)
Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.enabled <service name>

salt.modules.gentoo_service.get_all()
Return all available boot services

CLI Example:

salt '*' service.get_all

salt.modules.gentoo_service.get_disabled()
Return a set of services that are installed but disabled

CLI Example:

salt '*' service.get_disabled

salt.modules.gentoo_service.get_enabled()
Return a list of service that are enabled on boot

CLI Example:

salt '*' service.get_enabled

salt.modules.gentoo_service.missing(name)
e inverse of service.available. Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing sshd

salt.modules.gentoo_service.restart(name)
Restart the named service

CLI Example:

salt '*' service.restart <service name>

salt.modules.gentoo_service.start(name)
Start the specified service

CLI Example:

salt '*' service.start <service name>

salt.modules.gentoo_service.status(name, sig=None)
Return the status for a service, returns the PID or an empty string if the service is running or not, pass a
signature to use to find the service via ps

CLI Example:

22.16. Full list of builtin execution modules 597

Salt Documentation, Release 2014.7.6

salt '*' service.status <service name> [service signature]

salt.modules.gentoo_service.stop(name)
Stop the specified service

CLI Example:

salt '*' service.stop <service name>

22.16.65 salt.modules.gentoolkitmod

Support for Gentoolkit

salt.modules.gentoolkitmod.eclean_dist(destructive=False, package_names=False,
size_limit=0, time_limit=0, fetch_restricted=False,
exclude_file='/etc/eclean/distfiles.exclude')

Clean obsolete portage sources

destructive Only keep minimum for reinstallation

paage_names Protect all versions of installed packages. Only meaningful if used with destructive=True

size_limit <size> Don't delete distfiles bigger than <size>. <size> is a size specification: ``10M'' is ``ten
megabytes'', ``200K'' is ``two hundreds kilobytes'', etc. Units are: G, M, K and B.

time_limit <time> Don't delete distfiles files modified since <time> <time> is an amount of time: ``1y'' is
``one year'', ``2w'' is ``two weeks'', etc. Units are: y (years), m (months), w (weeks), d (days) and h
(hours).

fet_restricted Protect fetch-restricted files. Only meaningful if used with destructive=True

exclude_file Path to exclusion file. Default is /etc/eclean/distfiles.exclude is is the same default eclean-dist
uses. Use None if this file exists and you want to ignore.

Returns a dict containing the cleaned, saved, and deprecated dists:

{'cleaned': {<dist file>: <size>},
'deprecated': {<package>: <dist file>},
'saved': {<package>: <dist file>},
'total_cleaned': <size>}

CLI Example:

salt '*' gentoolkit.eclean_dist destructive=True

salt.modules.gentoolkitmod.eclean_pkg(destructive=False, package_names=False, time_limit=0,
exclude_file='/etc/eclean/packages.exclude')

Clean obsolete binary packages

destructive Only keep minimum for reinstallation

paage_names Protect all versions of installed packages. Only meaningful if used with destructive=True

time_limit <time> Don't delete distfiles files modified since <time> <time> is an amount of time: ``1y'' is
``one year'', ``2w'' is ``two weeks'', etc. Units are: y (years), m (months), w (weeks), d (days) and h
(hours).

exclude_file Path to exclusion file. Default is /etc/eclean/packages.excludeis is the same default eclean-pkg
uses. Use None if this file exists and you want to ignore.

Returns a dict containing the cleaned binary packages:

598 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

{'cleaned': {<dist file>: <size>},
'total_cleaned': <size>}

CLI Example:

salt '*' gentoolkit.eclean_pkg destructive=True

salt.modules.gentoolkitmod.glsa_check_list(glsa_list)
List the status of Gentoo Linux Security Advisories

glsa_list can contain an arbitrary number of GLSA ids, filenames containing GLSAs or the special identifiers
`all' and `affected'

Returns a dict containing glsa ids with a description, status, and CVEs:

{<glsa_id>: {'description': <glsa_description>,
'status': <glsa status>,
'CVEs': [<list of CVEs>]}}

CLI Example:

salt '*' gentoolkit.glsa_check_list 'affected'

salt.modules.gentoolkitmod.revdep_rebuild(lib=None)
Fix up broken reverse dependencies

lib Search for reverse dependencies for a particular library rather than every library on the system. It can be
a full path to a library or basic regular expression.

CLI Example:

salt '*' gentoolkit.revdep_rebuild

22.16.66 salt.modules.git

Support for the Git SCM

salt.modules.git.add(cwd, file_name, user=None, opts=None)
add a file to git

cwd e path to the Git repository

file_name Path to the file in the cwd

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.add /path/to/git/repo /path/to/file

salt.modules.git.archive(cwd, output, rev='HEAD', fmt=None, prefix=None, user=None)
Export a tarball from the repository

cwd e path to the Git repository

output e path to the archive tarball

rev: HEAD e revision to create an archive from

fmt: None Format of the resulting archive, zip and tar are commonly used

22.16. Full list of builtin execution modules 599

Salt Documentation, Release 2014.7.6

prefix [None] Prepend <prefix>/ to every filename in the archive

user [None] Run git as a user other than what the minion runs as

If prefix is not specified it defaults to the basename of the repo directory.

CLI Example:

salt '*' git.archive /path/to/repo /path/to/archive.tar.gz

salt.modules.git.branch(cwd, rev, opts=None, user=None)
Interacts with branches.

cwd e path to the Git repository

rev e branch/revision to be used in the command.

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.branch mybranch --set-upstream-to=origin/mybranch

salt.modules.git.checkout(cwd, rev, force=False, opts=None, user=None)
Checkout a given revision

cwd e path to the Git repository

rev e remote branch or revision to checkout

force [False] Force a checkout even if there might be overwrien changes

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

CLI Examples:

salt '*' git.checkout /path/to/repo somebranch user=jeff

salt '*' git.checkout /path/to/repo opts='testbranch -- conf/file1 file2'

salt '*' git.checkout /path/to/repo rev=origin/mybranch opts=--track

salt.modules.git.clone(cwd, repository, opts=None, user=None, identity=None)
Clone a new repository

cwd e path to the Git repository

repository e git URI of the repository

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

identity [None] A path to a private key to use over SSH

CLI Example:

salt '*' git.clone /path/to/repo git://github.com/saltstack/salt.git

salt '*' git.clone /path/to/repo.git\
git://github.com/saltstack/salt.git '--bare --origin github'

600 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.git.commit(cwd, message, user=None, opts=None)
create a commit

cwd e path to the Git repository

message e commit message

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.commit /path/to/git/repo 'The commit message'

salt.modules.git.config_get(cwd=None, seing_name=None, user=None)
Get a key or keys from the git configuration file (.git/config).

cwd [None] Optional path to a Git repository

Changed in version 2014.7.0: Made cwd optional

setting_name [None] e name of the configuration key to get. Required.

user [None] Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.config_get setting_name=user.email
salt '*' git.config_get /path/to/repo user.name arthur

salt.modules.git.config_set(cwd=None, seing_name=None, seing_value=None, user=None,
is_global=False)

Set a key in the git configuration file (.git/config) of the repository or globally.

cwd [None] Options path to the Git repository

Changed in version 2014.7.0: Made cwd optional

setting_name [None] e name of the configuration key to set. Required.

setting_value [None] e (new) value to set. Required.

user [None] Run git as a user other than what the minion runs as

is_global [False] Set to True to use the `--global' flag with `git config'

CLI Example:

salt '*' git.config_set /path/to/repo user.email me@example.com

salt.modules.git.current_branch(cwd, user=None)
Returns the current branch name, if on a branch.

CLI Example:

salt '*' git.current_branch /path/to/repo

salt.modules.git.describe(cwd, rev='HEAD', user=None)
Returns the git describe string (or the SHA hash if there are no tags) for the given revision

cwd e path to the Git repository

rev: HEAD e revision to describe

user [None] Run git as a user other than what the minion runs as

22.16. Full list of builtin execution modules 601

Salt Documentation, Release 2014.7.6

CLI Examples:

salt '*' git.describe /path/to/repo

salt '*' git.describe /path/to/repo develop

salt.modules.git.fetch(cwd, opts=None, user=None, identity=None)
Perform a fetch on the given repository

cwd e path to the Git repository

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

identity [None] A path to a private key to use over SSH

CLI Example:

salt '*' git.fetch /path/to/repo '--all'

salt '*' git.fetch cwd=/path/to/repo opts='--all' user=johnny

salt.modules.git.init(cwd, opts=None, user=None)
Initialize a new git repository

cwd e path to the Git repository

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.init /path/to/repo.git opts='--bare'

salt.modules.git.ls_remote(cwd, repository='origin', branch='master', user=None, identity=None)
Returns the upstream hash for any given URL and branch.

cwd e path to the Git repository

repository: origin e name of the repository to get the revision from. Can be the name of a remote, an URL,
etc.

bran: master e name of the branch to get the revision from.

user [none] run git as a user other than what the minion runs as

identity [none] a path to a private key to use over ssh

CLI Example:

salt '*' git.ls_remote /pat/to/repo origin master

salt.modules.git.merge(cwd, branch='@{upstream}', opts=None, user=None)
Merge a given branch

cwd e path to the Git repository

bran [@{upstream}] e remote branch or revision to merge into the current branch

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

CLI Example:

602 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' git.fetch /path/to/repo
salt '*' git.merge /path/to/repo @{upstream}

salt.modules.git.pull(cwd, opts=None, user=None, identity=None)
Perform a pull on the given repository

cwd e path to the Git repository

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

identity [None] A path to a private key to use over SSH

CLI Example:

salt '*' git.pull /path/to/repo opts='--rebase origin master'

salt.modules.git.push(cwd, remote_name, branch='master', user=None, opts=None, identity=None)
Push to remote

cwd e path to the Git repository

remote_name Name of the remote to push to

bran [master] Name of the branch to push

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

identity [None] A path to a private key to use over SSH

CLI Example:

salt '*' git.push /path/to/git/repo remote-name

salt.modules.git.rebase(cwd, rev='master', opts=None, user=None)
Rebase the current branch

cwd e path to the Git repository

rev [master] e revision to rebase onto the current branch

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.rebase /path/to/repo master
salt '*' git.rebase /path/to/repo 'origin master'

at is the same as:

git rebase master
git rebase origin master

salt.modules.git.remote_get(cwd, remote='origin', user=None)
get the fetch and push URL for a specified remote name

remote [origin] the remote name used to define the fetch and push URL

user [None] Run git as a user other than what the minion runs as

22.16. Full list of builtin execution modules 603

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' git.remote_get /path/to/repo
salt '*' git.remote_get /path/to/repo upstream

salt.modules.git.remote_set(cwd, name='origin', url=None, user=None)
sets a remote with name and URL like git remote add <remote_name> <remote_url>

remote_name [origin] defines the remote name

remote_url [None] defines the remote URL; should not be None!

user [None] Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.remote_set /path/to/repo remote_url=git@github.com:saltstack/salt.git
salt '*' git.remote_set /path/to/repo origin git@github.com:saltstack/salt.git

salt.modules.git.remotes(cwd, user=None)
Get remotes like git remote -v

cwd e path to the Git repository

user [None] Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.remotes /path/to/repo

salt.modules.git.reset(cwd, opts=None, user=None)
Reset the repository checkout

cwd e path to the Git repository

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.reset /path/to/repo master

salt.modules.git.revision(cwd, rev='HEAD', short=False, user=None)
Returns the long hash of a given identifier (hash, branch, tag, HEAD, etc)

cwd e path to the Git repository

rev: HEAD e revision

short: False Return an abbreviated SHA1 git hash

user [None] Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.revision /path/to/repo mybranch

salt.modules.git.rm(cwd, file_name, user=None, opts=None)
Remove a file from git

cwd e path to the Git repository

file_name Path to the file in the cwd

opts [None] Any additional options to add to the command line

604 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

user [None] Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.rm /path/to/git/repo /path/to/file

salt.modules.git.stash(cwd, opts=None, user=None)
Stash changes in the repository checkout

cwd e path to the Git repository

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.stash /path/to/repo master

salt.modules.git.status(cwd, user=None)
Return the status of the repository. e returned format uses the status codes of git's `porcelain' output mode

cwd e path to the Git repository

user [None] Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.status /path/to/git/repo

salt.modules.git.submodule(cwd, init=True, opts=None, user=None, identity=None)
Initialize git submodules

cwd e path to the Git repository

init [True] Ensure that new submodules are initialized

opts [None] Any additional options to add to the command line

user [None] Run git as a user other than what the minion runs as

identity [None] A path to a private key to use over SSH

CLI Example:

salt '*' git.submodule /path/to/repo.git/sub/repo

22.16.67 salt.modules.glance

Module for handling openstack glance calls.

optdepends

• glanceclient Python adapter

configuration is module is not usable until the following are specified either in a pillar or in the
minion's config file:

keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.tenant_id: f80919baedab48ec8931f200c65a50df
keystone.insecure: False #(optional)
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

22.16. Full list of builtin execution modules 605

Salt Documentation, Release 2014.7.6

If configuration for multiple openstack accounts is required, they can be set up as different config-
uration profiles: For example:

openstack1:
keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.tenant_id: f80919baedab48ec8931f200c65a50df
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

openstack2:
keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.tenant_id: f80919baedab48ec8931f200c65a50df
keystone.auth_url: 'http://127.0.0.2:5000/v2.0/'

With this configuration in place, any of the keystone functions can make use of a configuration
profile by declaring it explicitly. For example:

salt '*' glance.image_list profile=openstack1

salt.modules.glance.image_create(profile=None, **kwargs)
Create an image (glance image-create)

CLI Example:

salt '*' glance.image_create name=f16-jeos is_public=true \
disk_format=qcow2 container_format=ovf \
copy_from=http://berrange.fedorapeople.org/images/2012-02-29/f16-x86_64-openstack-sda.qcow2

For all possible values, run glance help image-create on the minion.

salt.modules.glance.image_delete(id=None, name=None, profile=None)
Delete an image (glance image-delete)

CLI Examples:

salt '*' glance.image_delete c2eb2eb0-53e1-4a80-b990-8ec887eae7df
salt '*' glance.image_delete id=c2eb2eb0-53e1-4a80-b990-8ec887eae7df
salt '*' glance.image_delete name=f16-jeos

salt.modules.glance.image_list(id=None, profile=None)
Return a list of available images (glance image-list)

CLI Example:

salt '*' glance.image_list

salt.modules.glance.image_show(id=None, name=None, profile=None)
Return details about a specific image (glance image-show)

CLI Example:

salt '*' glance.image_get

22.16.68 salt.modules.glusterfs

Manage a glusterfs pool

606 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.glusterfs.create(name, bricks, stripe=False, replica=False, device_vg=False, trans-
port='tcp', start=False)

Create a glusterfs volume.

name Name of the gluster volume

bris Bricks to create volume from, in <peer>:<brick path> format. For multiple bricks use list format:
`[''<peer1>:<brick1>'', ``<peer2>:<brick2>'']'

stripe Stripe count, the number of bricks should be a multiple of the stripe count for a distributed striped
volume

replica Replica count, the number of bricks should be amultiple of the replica count for a distributed replicated
volume

device_vg If true, specifies volume should use block backend instead of regular posix backend. Block device
backend volume does not support multiple bricks

transport Transport protocol to use, can be `tcp', `rdma' or `tcp,rdma'

start Start the volume aer creation

CLI Example:

salt host1 glusterfs.create newvolume host1:/brick

salt gluster1 glusterfs.create vol2 '["gluster1:/export/vol2/brick", "gluster2:/export/vol2/brick"]' replica=2 start=True

salt.modules.glusterfs.delete(target, stop=True)
Deletes a gluster volume

target Volume to delete

stop Stop volume before delete if it is started, True by default

salt.modules.glusterfs.list_peers()
Return a list of gluster peers

CLI Example:

salt '*' glusterfs.list_peers

salt.modules.glusterfs.list_volumes()
List configured volumes

CLI Example:

salt '*' glusterfs.list_volumes

salt.modules.glusterfs.peer(name)
Add another node into the peer list.

name e remote host to probe.

CLI Example:

salt 'one.gluster.*' glusterfs.peer two

salt.modules.glusterfs.start_volume(name)
Start a gluster volume.

name Volume name

CLI Example:

22.16. Full list of builtin execution modules 607

Salt Documentation, Release 2014.7.6

salt '*' glusterfs.start mycluster

salt.modules.glusterfs.status(name)
Check the status of a gluster volume.

name Volume name

CLI Example:

salt '*' glusterfs.status myvolume

salt.modules.glusterfs.stop_volume(name)
Stop a gluster volume.

name Volume name

CLI Example:

salt '*' glusterfs.stop_volume mycluster

22.16.69 salt.modules.gnomedesktop

GNOME implementations

salt.modules.gnomedesktop.get(schema=None, key=None, user=None, **kwargs)
Get key in a particular GNOME schema

CLI Example:

salt '*' gnome.get user=<username> schema=org.gnome.desktop.screensaver key=idle-activation-enabled

salt.modules.gnomedesktop.getClockFormat(**kwargs)
Return the current clock format, either 12h or 24h format.

CLI Example:

salt '*' gnome.getClockFormat user=<username>

salt.modules.gnomedesktop.getClockShowDate(**kwargs)
Return the current seing, if the date is shown in the clock

CLI Example:

salt '*' gnome.getClockShowDate user=<username>

salt.modules.gnomedesktop.getIdleActivation(**kwargs)
Get whether the idle activation is enabled

CLI Example:

salt '*' gnome.getIdleActivation user=<username>

salt.modules.gnomedesktop.getIdleDelay(**kwargs)
Return the current idle delay seing in seconds

CLI Example:

salt '*' gnome.getIdleDelay user=<username>

608 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.gnomedesktop.ping(**kwargs)
A test to ensure the GNOME module is loaded

CLI Example:

salt '*' gnome.ping user=<username>

salt.modules.gnomedesktop.setClockFormat(clockFormat, **kwargs)
Set the clock format, either 12h or 24h format.

CLI Example:

salt '*' gnome.setClockFormat <12h|24h> user=<username>

salt.modules.gnomedesktop.setClockShowDate(kvalue, **kwargs)
Set whether the date is visible in the clock

CLI Example:

salt '*' gnome.setClockShowDate <True|False> user=<username>

salt.modules.gnomedesktop.setIdleActivation(kvalue, **kwargs)
Set whether the idle activation is enabled

CLI Example:

salt '*' gnome.setIdleActivation <True|False> user=<username>

salt.modules.gnomedesktop.setIdleDelay(delaySeconds, **kwargs)
Set the current idle delay seing in seconds

CLI Example:

salt '*' gnome.setIdleDelay <seconds> user=<username>

salt.modules.gnomedesktop.set_(schema=None, key=None, user=None, value=None, **kwargs)
Set key in a particular GNOME schema

CLI Example:

salt '*' gnome.set user=<username> schema=org.gnome.desktop.screensaver key=idle-activation-enabled value=False

22.16.70 salt.modules.grains

Return/control aspects of the grains data

salt.modules.grains.append(key, val, convert=False, delimiter=':')
New in version 0.17.0.

Append a value to a list in the grains config file. If the grain doesn't exist, the grain key is added and the value
is appended to the new grain as a list item.

key e grain key to be appended to

val e value to append to the grain key

Parameters

• convert -- If convert is True, convert non-list contents into a list. If convert is False and
the grain contains non-list contents, an error is given. Defaults to False.

22.16. Full list of builtin execution modules 609

Salt Documentation, Release 2014.7.6

• delimiter --e key can be a nested dict key. Use this parameter to specify the delimiter
you use. You can now append values to a list in nested dictionnary grains. If the list doesn't
exist at this level, it will be created. .. versionadded:: 2014.7.6

CLI Example:

salt '*' grains.append key val

salt.modules.grains.delval(key, destructive=False)
New in version 0.17.0.

Delete a grain from the grains config file

Parameters destructive -- Delete the key, too. Defaults to False.

CLI Example:

salt '*' grains.delval key

salt.modules.grains.filter_by(lookup_dict, grain='os_family', merge=None, default='default')
New in version 0.17.0.

Look up the given grain in a given dictionary for the current OS and return the result

Although this may occasionally be useful at the CLI, the primary intent of this function is for use in Jinja to
make short work of creating lookup tables for OS-specific data. For example:

{% set apache = salt['grains.filter_by']({
'Debian': {'pkg': 'apache2', 'srv': 'apache2'},
'RedHat': {'pkg': 'httpd', 'srv': 'httpd'},

}), default='Debian' %}

myapache:
pkg.installed:

- name: {{ apache.pkg }}
service.running:

- name: {{ apache.srv }}

Values in the lookup table may be overridden by values in Pillar. An example Pillar to override values in the
example above could be as follows:

apache:
lookup:

pkg: apache_13
srv: apache

e call to filter_by() would be modified as follows to reference those Pillar values:

{% set apache = salt['grains.filter_by']({
...

}, merge=salt['pillar.get']('apache:lookup')) %}

Parameters

• lookup_dict -- A dictionary, keyed by a grain, containing a value or values relevant
to systems matching that grain. For example, a key could be the grain for an OS and the
value could the name of a package on that particular OS.

• grain -- e name of a grain to match with the current system's grains. For example, the
value of the ``os_family'' grain for the current system could be used to pull values from
the lookup_dict dictionary.

610 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

• merge -- A dictionary to merge with the lookup_dict before doing the lookup. is
allows Pillar to override the values in the lookup_dict. is could be useful, for exam-
ple, to override the values for non-standard package names such as when using a different
Python version from the default Python version provided by the OS (e.g., python26-
mysql instead of python-mysql).

• default -- default lookup_dict's key used if the grain does not exists or if the grain value
has no match on lookup_dict.

New in version 2014.1.0.

CLI Example:

salt '*' grains.filter_by '{Debian: Debheads rule, RedHat: I love my hat}'
this one will render {D: {E: I, G: H}, J: K}
salt '*' grains.filter_by '{A: B, C: {D: {E: F,G: H}}}' 'xxx' '{D: {E: I},J: K}' 'C'

salt.modules.grains.get(key, default='`, delimiter=':')
Aempt to retrieve the named value from grains, if the named value is not available return the passed default.
e default return is an empty string.

e value can also represent a value in a nested dict using a '':'' delimiter for the dict. is means that if a dict
in grains looks like this:

{'pkg': {'apache': 'httpd'}}

To retrieve the value associated with the apache key in the pkg dict this key can be passed:

pkg:apache

delimiter Specify an alternate delimiter to use when traversing a nested dict

New in version 2014.7.0.

CLI Example:

salt '*' grains.get pkg:apache

salt.modules.grains.get_or_set_hash(name, length=8, chars='abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-
_=+)')

Perform a one-time generation of a hash and write it to the local grains. If that grain has already been set
return the value instead.

is is useful for generating passwords or keys that are specific to a single minion that don't need to be stored
somewhere centrally.

State Example:

some_mysql_user:
mysql_user:

- present
- host: localhost
- password: {{ salt['grains.get_or_set_hash']('mysql:some_mysql_user') }}

CLI Example:

salt '*' grains.get_or_set_hash 'django:SECRET_KEY' 50

22.16. Full list of builtin execution modules 611

Salt Documentation, Release 2014.7.6

Warning: is function could return stringswhichmay contain characterswhich are reserved as directives
by the YAML parser, such as strings beginning with %. To avoid issues when using the output of this
function in an SLS file containing YAML+Jinja, surround the call with single quotes.

salt.modules.grains.has_value(key)
Determine whether a named value exists in the grains dictionary.

Given a grains dictionary that contains the following structure:

{'pkg': {'apache': 'httpd'}}

One would determine if the apache key in the pkg dict exists by:

pkg:apache

CLI Example:

salt '*' grains.has_value pkg:apache

salt.modules.grains.item(*args, **kwargs)
Return one or more grains

CLI Example:

salt '*' grains.item os
salt '*' grains.item os osrelease oscodename

Sanitized CLI Example:

salt '*' grains.item host sanitize=True

salt.modules.grains.items(sanitize=False)
Return all of the minion's grains

CLI Example:

salt '*' grains.items

Sanitized CLI Example:

salt '*' grains.items sanitize=True

salt.modules.grains.ls()
Return a list of all available grains

CLI Example:

salt '*' grains.ls

salt.modules.grains.remove(key, val)
New in version 0.17.0.

Remove a value from a list in the grains config file

CLI Example:

salt '*' grains.remove key val

salt.modules.grains.setval(key, val, destructive=False)
Set a grains value in the grains config file

612 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Parameters Destructive -- If an operation results in a key being removed, delete the key, too.
Defaults to False.

CLI Example:

salt '*' grains.setval key val
salt '*' grains.setval key "{'sub-key': 'val', 'sub-key2': 'val2'}"

salt.modules.grains.setvals(grains, destructive=False)
Set new grains values in the grains config file

Parameters Destructive -- If an operation results in a key being removed, delete the key, too.
Defaults to False.

CLI Example:

salt '*' grains.setvals "{'key1': 'val1', 'key2': 'val2'}"

22.16.71 salt.modules.groupadd

Manage groups on Linux and OpenBSD

salt.modules.groupadd.add(name, gid=None, system=False)
Add the specified group

CLI Example:

salt '*' group.add foo 3456

salt.modules.groupadd.adduser(name, username)
Add a user in the group.

CLI Example:

salt '*' group.adduser foo bar

Verifies if a valid username `bar' as a member of an existing group `foo', if not then adds it.

salt.modules.groupadd.chgid(name, gid)
Change the gid for a named group

CLI Example:

salt '*' group.chgid foo 4376

salt.modules.groupadd.delete(name)
Remove the named group

CLI Example:

salt '*' group.delete foo

salt.modules.groupadd.deluser(name, username)
Remove a user from the group.

CLI Example:

salt '*' group.deluser foo bar

Removes a member user `bar' from a group `foo'. If group is not present then returns True.

22.16. Full list of builtin execution modules 613

Salt Documentation, Release 2014.7.6

salt.modules.groupadd.getent(refresh=False)
Return info on all groups

CLI Example:

salt '*' group.getent

salt.modules.groupadd.info(name)
Return information about a group

CLI Example:

salt '*' group.info foo

salt.modules.groupadd.members(name, members_list)
Replaces members of the group with a provided list.

CLI Example:

salt `*' group.members foo `user1,user2,user3,…'

Replaces a membership list for a local group `foo'. foo:x:1234:user1,user2,user3,…

22.16.72 salt.modules.grub_legacy

Support for GRUB Legacy

salt.modules.grub_legacy.conf()
Parse GRUB conf file

CLI Example:

salt '*' grub.conf

salt.modules.grub_legacy.version()
Return server version from grub --version

CLI Example:

salt '*' grub.version

22.16.73 salt.modules.guestfs

Interact with virtual machine images via libguestfs

depends

• libguestfs

salt.modules.guestfs.mount(location, access='rw')
Mount an image

CLI Example:

salt '*' guest.mount /srv/images/fedora.qcow

614 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.16.74 salt.modules.hadoop

Support for hadoop

maintainer Yann Jouanin <yann.jouanin@intelunix.fr>

maturity new

depends

platform linux

salt.modules.hadoop.dfs(command=None, *args)
Execute a command on DFS

CLI Example:

salt '*' hadoop.dfs ls /

salt.modules.hadoop.dfs_absent(path)
Check if a file or directory is absent on the distributed FS.

CLI Example:

salt '*' hadoop.dfs_absent /some_random_file

Returns True if the file is absent

salt.modules.hadoop.dfs_present(path)
Check if a file or directory is present on the distributed FS.

CLI Example:

salt '*' hadoop.dfs_present /some_random_file

Returns True if the file is present

salt.modules.hadoop.namenode_format(force=None)
Format a name node

salt '*' hadoop.namenode_format force=True

salt.modules.hadoop.version()
Return version from hadoop version

CLI Example:

salt '*' hadoop.version

22.16.75 salt.modules.haproxyconn

Support for haproxy

New in version 2014.7.0.

salt.modules.haproxyconn.disable_server(name, backend, socket='/var/run/haproxy.sock')
Disable server in haproxy.

name Server to disable

baend haproxy backend

soet haproxy stats socket

22.16. Full list of builtin execution modules 615

mailto:yann.jouanin@intelunix.fr

Salt Documentation, Release 2014.7.6

salt '*' haproxy.disable_server db1.example.com mysql

salt.modules.haproxyconn.enable_server(name, backend, socket='/var/run/haproxy.sock')
Enable Server in haproxy

name Server to enable

baend haproxy backend

soet haproxy stats socket

salt '*' haproxy.enable_server web1.example.com www

salt.modules.haproxyconn.get_weight(name, backend, socket='/var/run/haproxy.sock')
Get server weight

name Server name

baend haproxy backend

soet haproxy stats socket

salt '*' haproxy.get_weight web1.example.com www

salt.modules.haproxyconn.list_servers(backend, socket='/var/run/haproxy.sock')
List servers in haproxy backend.

baend haproxy backend

soet haproxy stats socket

salt '*' haproxy.list_servers mysql

salt.modules.haproxyconn.set_weight(name, backend, weight=0,
socket='/var/run/haproxy.sock')

Set server weight

name Server name

baend haproxy backend

weight Server Weight

soet haproxy stats socket

salt '*' haproxy.set_weight web1.example.com www 13

salt.modules.haproxyconn.show_backends(socket='/var/run/haproxy.sock')
Show HaProxy Backends

soet haproxy stats socket

salt '*' haproxy.show_backends

salt.modules.haproxyconn.show_frontends(socket='/var/run/haproxy.sock')
Show HaProxy frontends

soet haproxy stats socket

salt '*' haproxy.show_frontends

616 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.16.76 salt.modules.hashutil

A collection of hashing and encoding functions

salt.modules.hashutil.base64_decodestring(instr)

Decode a base64-encoded string

New in version 2014.7.0.

CLI Example:

salt '*' hashutil.base64_decodestring 'Z2V0IHNhbHRlZA==

`

salt.modules.hashutil.base64_encodestring(instr)
Encode a string as base64

New in version 2014.7.0.

CLI Example:

salt '*' hashutil.base64_encodestring 'get salted'

salt.modules.hashutil.hmac_signature(string, shared_secret, challenge_hmac)
Verify a challenging hmac signature against a string / shared-secret

New in version 2014.7.0.

Returns a boolean if the verification succeeded or failed.

CLI Example:

salt '*' hashutil.hmac_signature 'get salted' 'shared secret' 'NS2BvKxFRk+rndAlFbCYIFNVkPtI/3KiIYQw4okNKU8='

salt.modules.hashutil.md5_digest(instr)
Generate an md5 hash of a given string

New in version 2014.7.0.

CLI Example:

salt '*' hashutil.md5_digest 'get salted'

salt.modules.hashutil.sha256_digest(instr)
Generate an sha256 hash of a given string

New in version 2014.7.0.

CLI Example:

salt '*' hashutil.sha256_digest 'get salted'

salt.modules.hashutil.sha512_digest(instr)
Generate an sha512 hash of a given string

New in version 2014.7.0.

CLI Example:

salt '*' hashutil.sha512_digest 'get salted'

22.16. Full list of builtin execution modules 617

Salt Documentation, Release 2014.7.6

22.16.77 salt.modules.hg

Support for the Mercurial SCM

salt.modules.hg.archive(cwd, output, rev='tip', fmt=None, prefix=None, user=None)
Export a tarball from the repository

cwd e path to the Mercurial repository

output e path to the archive tarball

rev: tip e revision to create an archive from

fmt: None Format of the resulting archive. Mercurial supports: tar, tbz2, tgz, zip, uzip, and files formats.

prefix [None] Prepend <prefix>/ to every filename in the archive

user [None] Run hg as a user other than what the minion runs as

If prefix is not specified it defaults to the basename of the repo directory.

CLI Example:

salt '*' hg.archive /path/to/repo output=/tmp/archive.tgz fmt=tgz

salt.modules.hg.clone(cwd, repository, opts=None, user=None)
Clone a new repository

cwd e path to the Mercurial repository

repository e hg URI of the repository

opts [None] Any additional options to add to the command line

user [None] Run hg as a user other than what the minion runs as

CLI Example:

salt '*' hg.clone /path/to/repo https://bitbucket.org/birkenfeld/sphinx

salt.modules.hg.describe(cwd, rev='tip', user=None)
Mimic git describe and return an identifier for the given revision

cwd e path to the Mercurial repository

rev: tip e path to the archive tarball

user [None] Run hg as a user other than what the minion runs as

CLI Example:

salt '*' hg.describe /path/to/repo

salt.modules.hg.pull(cwd, opts=None, user=None)
Perform a pull on the given repository

cwd e path to the Mercurial repository

opts [None] Any additional options to add to the command line

user [None] Run hg as a user other than what the minion runs as

CLI Example:

salt '*' hg.pull /path/to/repo opts=-u

618 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.hg.revision(cwd, rev='tip', short=False, user=None)
Returns the long hash of a given identifier (hash, branch, tag, HEAD, etc)

cwd e path to the Mercurial repository

rev: tip e revision

short: False Return an abbreviated commit hash

user [None] Run hg as a user other than what the minion runs as

CLI Example:

salt '*' hg.revision /path/to/repo mybranch

salt.modules.hg.update(cwd, rev, force=False, user=None)
Update to a given revision

cwd e path to the Mercurial repository

rev e revision to update to

force [False] Force an update

user [None] Run hg as a user other than what the minion runs as

CLI Example:

salt devserver1 hg.update /path/to/repo somebranch

22.16.78 salt.modules.hosts

Manage the information in the hosts file

salt.modules.hosts.add_host(ip, alias)
Add a host to an existing entry, if the entry is not in place then create it with the given host

CLI Example:

salt '*' hosts.add_host <ip> <alias>

salt.modules.hosts.get_alias(ip)
Return the list of aliases associated with an ip

CLI Example:

salt '*' hosts.get_alias <ip addr>

salt.modules.hosts.get_ip(host)
Return the ip associated with the named host

CLI Example:

salt '*' hosts.get_ip <hostname>

salt.modules.hosts.has_pair(ip, alias)
Return true if the alias is set

CLI Example:

salt '*' hosts.has_pair <ip> <alias>

22.16. Full list of builtin execution modules 619

Salt Documentation, Release 2014.7.6

salt.modules.hosts.list_hosts()
Return the hosts found in the hosts file in this format:

{'<ip addr>': ['alias1', 'alias2', ...]}

CLI Example:

salt '*' hosts.list_hosts

salt.modules.hosts.rm_host(ip, alias)
Remove a host entry from the hosts file

CLI Example:

salt '*' hosts.rm_host <ip> <alias>

salt.modules.hosts.set_host(ip, alias)
Set the host entry in the hosts file for the given ip, this will overwrite any previous entry for the given ip

CLI Example:

salt '*' hosts.set_host <ip> <alias>

22.16.79 salt.modules.htpasswd

Support for htpasswd command

New in version 2014.1.0.

e functions here will load inside the webutil module. is allows other functions that don't use htpasswd to use
the webutil module name.

salt.modules.htpasswd.useradd(pwfile, user, password, opts='`)
Add an HTTP user using the htpasswd command. If the htpasswd file does not exist, it will be created. Valid
options that can be passed are:

n Don't update file; display results on stdout. m Force MD5 encryption of the password (default). d
Force CRYPT encryption of the password. p Do not encrypt the password (plaintext). s Force SHA
encryption of the password.

CLI Examples:

salt '*' webutil.useradd /etc/httpd/htpasswd larry badpassword
salt '*' webutil.useradd /etc/httpd/htpasswd larry badpass opts=ns

salt.modules.htpasswd.useradd_all(pwfile, user, password, opts='`)
Add an HTTP user using the htpasswd command. If the htpasswd file does not exist, it will be created. Valid
options that can be passed are:

n Don't update file; display results on stdout. m Force MD5 encryption of the password (default). d
Force CRYPT encryption of the password. p Do not encrypt the password (plaintext). s Force SHA
encryption of the password.

CLI Examples:

salt '*' webutil.useradd /etc/httpd/htpasswd larry badpassword
salt '*' webutil.useradd /etc/httpd/htpasswd larry badpass opts=ns

salt.modules.htpasswd.userdel(pwfile, user)
Delete an HTTP user from the specified htpasswd file.

620 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Examples:

salt '*' webutil.userdel /etc/httpd/htpasswd larry

22.16.80 salt.modules.img

Virtual machine image management tools

salt.modules.img.bootstrap(location, size, fmt)
HIGHLY EXPERIMENTAL Bootstrap a virtual machine image

location: e location to create the image

size: e size of the image to create in megabytes

fmt: e image format, raw or qcow2

CLI Example:

salt '*' img.bootstrap /srv/salt-images/host.qcow 4096 qcow2

salt.modules.img.mount_image(location)
Mount the named image and return the mount point

CLI Example:

salt '*' img.mount_image /tmp/foo

salt.modules.img.umount_image(mnt)
Unmount an image mountpoint

CLI Example:

salt '*' img.umount_image /mnt/foo

22.16.81 salt.modules.incron

Work with incron

salt.modules.incron.list_tab(user)
Return the contents of the specified user's incrontab

CLI Example:

salt '*' incron.list_tab root

salt.modules.incron.ls(user)
Return the contents of the specified user's incrontab

CLI Example:

salt '*' incron.list_tab root

salt.modules.incron.raw_incron(user)
Return the contents of the user's incrontab

CLI Example:

salt '*' incron.raw_cron root

22.16. Full list of builtin execution modules 621

Salt Documentation, Release 2014.7.6

salt.modules.incron.raw_system_incron()
Return the contents of the system wide incrontab

CLI Example:

salt '*' incron.raw_system_cron

salt.modules.incron.rm(user, path, mask, cmd)
Remove a cron job for a specified user. If any of the day/time params are specified, the job will only be removed
if the specified params match.

CLI Example:

salt '*' incron.rm_job root /path

salt.modules.incron.rm_job(user, path, mask, cmd)
Remove a cron job for a specified user. If any of the day/time params are specified, the job will only be removed
if the specified params match.

CLI Example:

salt '*' incron.rm_job root /path

salt.modules.incron.set_job(user, path, mask, cmd)
Sets a cron job up for a specified user.

CLI Example:

salt '*' incron.set_job root '/root' 'IN_MODIFY' 'echo "$$ $@ $# $% $&"'

salt.modules.incron.write_cron_file_verbose(user, path)
Writes the contents of a file to a user's crontab and return error message on error

CLI Example:

salt '*' incron.write_incron_file_verbose root /tmp/new_cron

salt.modules.incron.write_incron_file(user, path)
Writes the contents of a file to a user's crontab

CLI Example:

salt '*' incron.write_cron_file root /tmp/new_cron

22.16.82 salt.modules.influx

InfluxDB - A distributed time series database

Module to provide InfluxDB compatibility to Salt (compatible with InfluxDB version 0.5+)

New in version 2014.7.0.

depends

• influxdb Python module

configuration is module accepts connection configuration details either as parameters or as config-
uration seings in /etc/salt/minion on the relevant minions:

622 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

influxdb.host: 'localhost'
influxdb.port: 8086
influxdb.user: 'root'
influxdb.password: 'root'

is data can also be passed into pillar. Options passed into opts will overwrite options passed into
pillar.

salt.modules.influx.db_create(name, user=None, password=None, host=None, port=None)
Create a database

name Database name to create

user e user to connect as

password e password of the user

host e host to connect to

port e port to connect to

CLI Example:

salt '*' influxdb.db_create <name>
salt '*' influxdb.db_create <name> <user> <password> <host> <port>

salt.modules.influx.db_exists(name, user=None, password=None, host=None, port=None)
Checks if a database exists in InfluxDB

name Database name to create

user e user to connect as

password e password of the user

host e host to connect to

port e port to connect to

CLI Example:

salt '*' influxdb.db_exists <name>
salt '*' influxdb.db_exists <name> <user> <password> <host> <port>

salt.modules.influx.db_list(user=None, password=None, host=None, port=None)
List all InfluxDB databases

user e user to connect as

password e password of the user

host e host to connect to

port e port to connect to

CLI Example:

salt '*' influxdb.db_list
salt '*' influxdb.db_list <user> <password> <host> <port>

salt.modules.influx.db_remove(name, user=None, password=None, host=None, port=None)
Remove a database

name Database name to remove

user e user to connect as

22.16. Full list of builtin execution modules 623

Salt Documentation, Release 2014.7.6

password e password of the user

host e host to connect to

port e port to connect to

CLI Example:

salt '*' influxdb.db_remove <name>
salt '*' influxdb.db_remove <name> <user> <password> <host> <port>

salt.modules.influx.query(database, query, time_precision='s', chunked=False, user=None, pass-
word=None, host=None, port=None)

erying data

database e database to query

query ery to be executed

time_precision Time precision to use (`s', `m', or `u')

unked Whether is chunked or not

user e user to connect as

password e password of the user

host e host to connect to

port e port to connect to

CLI Example:

salt '*' influxdb.query <database> <query>
salt '*' influxdb.query <database> <query> <time_precision> <chunked> <user> <password> <host> <port>

salt.modules.influx.user_chpass(name, passwd, database=None, user=None, password=None,
host=None, port=None)

Change password for a cluster admin or a database user.

If a database is specified: it will update database user password. If a database is not specified: it will update
cluster admin password.

name User name for whom to change the password

passwd New password

database e database on which to operate

user e user to connect as

password e password of the user

host e host to connect to

port e port to connect to

CLI Example:

salt '*' influxdb.user_chpass <name> <passwd>
salt '*' influxdb.user_chpass <name> <passwd> <database>
salt '*' influxdb.user_chpass <name> <passwd> <database> <user> <password> <host> <port>

salt.modules.influx.user_create(name, passwd, database=None, user=None, password=None,
host=None, port=None)

Create a cluster admin or a database user.

624 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

If a database is specified: it will create database user. If a database is not specified: it will create a cluster
admin.

name User name for the new user to create

passwd Password for the new user to create

database e database to create the user in

user e user to connect as

password e password of the user

host e host to connect to

port e port to connect to

CLI Example:

salt '*' influxdb.user_create <name> <passwd>
salt '*' influxdb.user_create <name> <passwd> <database>
salt '*' influxdb.user_create <name> <passwd> <database> <user> <password> <host> <port>

salt.modules.influx.user_exists(name, database=None, user=None, password=None, host=None,
port=None)

Checks if a cluster admin or database user exists.

If a database is specified: it will check for database user existence. If a database is not specified: it will check
for cluster admin existence.

name User name

database e database to check for the user to exist

user e user to connect as

password e password of the user

host e host to connect to

port e port to connect to

CLI Example:

salt '*' influxdb.user_exists <name>
salt '*' influxdb.user_exists <name> <database>
salt '*' influxdb.user_exists <name> <database> <user> <password> <host> <port>

salt.modules.influx.user_list(database=None, user=None, password=None, host=None,
port=None)

List cluster admins or database users.

If a database is specified: it will return database users list. If a database is not specified: it will return cluster
admins list.

database e database to list the users from

user e user to connect as

password e password of the user

host e host to connect to

port e port to connect to

CLI Example:

22.16. Full list of builtin execution modules 625

Salt Documentation, Release 2014.7.6

salt '*' influxdb.user_list
salt '*' influxdb.user_list <database>
salt '*' influxdb.user_list <database> <user> <password> <host> <port>

salt.modules.influx.user_remove(name, database=None, user=None, password=None, host=None,
port=None)

Remove a cluster admin or a database user.

If a database is specified: it will remove the database user. If a database is not specified: it will remove the
cluster admin.

name User name to remove

database e database to remove the user from

user User name for the new user to delete

user e user to connect as

password e password of the user

host e host to connect to

port e port to connect to

CLI Example:

salt '*' influxdb.user_remove <name>
salt '*' influxdb.user_remove <name> <database>
salt '*' influxdb.user_remove <name> <database> <user> <password> <host> <port>

22.16.83 salt.modules.ini_manage

Edit ini files

maintainer <akilesh1597@gmail.com>

maturity new

depends re

platform all

Use section as DEFAULT_IMPLICIT if your ini file does not have any section (for example /etc/sysctl.con)

salt.modules.ini_manage.get_option(file_name, section, option)
Get value of a key from a section in an ini file. Returns None if no matching key was found.

API Example:

import salt
sc = salt.client.get_local_client()
sc.cmd('target', 'ini.get_option',

[path_to_ini_file, section_name, option])

CLI Example:

salt '*' ini.get_option /path/to/ini section_name option_name

salt.modules.ini_manage.get_section(file_name, section)
Retrieve a section from an ini file. Returns the section as dictionary. If the section is not found, an empty
dictionary is returned.

626 Chapter 22. Reference

mailto:akilesh1597@gmail.com

Salt Documentation, Release 2014.7.6

API Example:

import salt
sc = salt.client.get_local_client()
sc.cmd('target', 'ini.get_section',

[path_to_ini_file, section_name])

CLI Example:

salt '*' ini.get_section /path/to/ini section_name

salt.modules.ini_manage.remove_option(file_name, section, option)
Remove a key/value pair from a section in an ini file. Returns the value of the removed key, or None if nothing
was removed.

API Example:

import salt
sc = salt.client.get_local_client()
sc.cmd('target', 'ini.remove_option',

[path_to_ini_file, section_name, option])

CLI Example:

salt '*' ini.remove_option /path/to/ini section_name option_name

salt.modules.ini_manage.remove_section(file_name, section)
Remove a section in an ini file. Returns the removed section as dictionary, or None if nothing was removed.

API Example:

import salt
sc = salt.client.get_local_client()
sc.cmd('target', 'ini.remove_section',

[path_to_ini_file, section_name])

CLI Example:

salt '*' ini.remove_section /path/to/ini section_name

salt.modules.ini_manage.set_option(file_name, sections=None, summary=True)
Edit an ini file, replacing one or more sections. Returns a dictionary containing the changes made.

file_name path of ini_file

sections [None] A dictionary representing the sections to be edited ini file

Set summary=False if return data need not have previous option value

API Example:

import salt
sc = salt.client.get_local_client()
sc.cmd('target', 'ini.set_option',

['path_to_ini_file', '{"section_to_change": {"key": "value"}}'])

CLI Example:

salt '*' ini.set_option /path/to/ini '{section_foo: {key: value}}'

22.16. Full list of builtin execution modules 627

Salt Documentation, Release 2014.7.6

22.16.84 salt.modules.introspect

Functions to perform introspection on a minion, and return data in a format usable by Salt States

salt.modules.introspect.enabled_service_owners()
Return which packages own each of the services that are currently enabled.

CLI Example:

salt myminion introspect.enabled_service_owners

salt.modules.introspect.running_service_owners(exclude=(`/dev', `/home', `/media',
`/proc', `/run', `/sys/', `/tmp', `/var'))

Determinewhich packages own the currently running services. By default, excludes files whose full path starts
with /dev, /home, /media, /proc, /run, /sys, /tmp and /var. is can be overridden by passing in a
new list to exclude.

CLI Example:

salt myminion introspect.running_service_owners

salt.modules.introspect.service_highstate(requires=True)
Return running and enabled services in a highstate structure. By default also returns package dependencies
for those services, which means that package definitions must be created outside this function. To drop the
package dependencies, set requires to False.

CLI Example:

salt myminion introspect.service_highstate salt myminion introspect.service_highstate re-
quires=False

22.16.85 salt.modules.ipset

Support for ipset

salt.modules.ipset.add(set=None, entry=None, family='ipv4', **kwargs)
Append an entry to the specified set.

CLI Example:

salt '*' ipset.add setname 192.168.1.26

salt '*' ipset.add setname 192.168.0.3,AA:BB:CC:DD:EE:FF

salt.modules.ipset.check(set=None, entry=None, family='ipv4')
Check that an entry exists in the specified set.

CLI Example:

salt '*' ipset.check setname '192.168.0.1 comment "Hello"'

salt.modules.ipset.check_set(set=None, family='ipv4')
New in version 2014.7.0.

Check that given ipset set exists.

CLI Example:

salt '*' ipset.check_set setname

628 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.ipset.delete(set=None, entry=None, family='ipv4', **kwargs)
Delete an entry from the specified set.

CLI Example:

salt '*' ipset.delete setname 192.168.0.3,AA:BB:CC:DD:EE:FF

salt.modules.ipset.delete_set(set=None, family='ipv4')
New in version 2014.7.0.

Delete ipset set.

CLI Example:

salt '*' ipset.delete_set custom_set

IPv6:
salt '*' ipset.delete_set custom_set family=ipv6

salt.modules.ipset.flush(set=None, family='ipv4')
Flush entries in the specified set, Flush all sets if set is not specified.

CLI Example:

salt '*' ipset.flush

salt '*' ipset.flush set

IPv6:
salt '*' ipset.flush

salt '*' ipset.flush set

salt.modules.ipset.list_sets(family='ipv4')
New in version 2014.7.0.

List all ipset sets.

CLI Example:

salt '*' ipset.list_sets

salt.modules.ipset.new_set(set=None, set_type=None, family='ipv4', comment=False, **kwargs)
New in version 2014.7.0.

Create new custom set

CLI Example:

salt '*' ipset.new_set custom_set list:set

salt '*' ipset.new_set custom_set list:set comment=True

IPv6:
salt '*' ipset.new_set custom_set list:set family=ipv6

salt.modules.ipset.rename_set(set=None, new_set=None, family='ipv4')
New in version 2014.7.0.

Delete ipset set.

CLI Example:

22.16. Full list of builtin execution modules 629

Salt Documentation, Release 2014.7.6

salt '*' ipset.rename_set custom_set new_set=new_set_name

IPv6:
salt '*' ipset.rename_set custom_set new_set=new_set_name family=ipv6

salt.modules.ipset.test(set=None, entry=None, family='ipv4', **kwargs)
Test if an entry is in the specified set.

CLI Example:

salt '*' ipset.test setname 192.168.0.2

IPv6:
salt '*' ipset.test setname fd81:fc56:9ac7::/48

salt.modules.ipset.version()
Return version from ipset --version

CLI Example:

salt '*' ipset.version

22.16.86 salt.modules.iptables

Support for iptables

salt.modules.iptables.append(table='filter', chain=None, rule=None, family='ipv4')
Append a rule to the specified table/chain.

is function accepts a rule in a standard iptables command format, starting with the chain. Trying to
force users to adapt to a new method of creating rules would be irritating at best, and we already have a
parser that can handle it.

CLI Example:

salt '*' iptables.append filter INPUT \
rule='-m state --state RELATED,ESTABLISHED -j ACCEPT'

IPv6:
salt '*' iptables.append filter INPUT \

rule='-m state --state RELATED,ESTABLISHED -j ACCEPT' \
family=ipv6

salt.modules.iptables.build_rule(table=None, chain=None, command=None, position='`,
full=None, family='ipv4', **kwargs)

Build a well-formaed iptables rule based on kwargs. Long options must be used (--jump instead of -j) because
they will have the -- added to them. A table and chain are not required, unless full is True.

If full is True, then table, chain and command are required. command may be specified as either a short option
(`I') or a long option (--insert). is will return the iptables command, exactly as it would be used from the
command line.

If a position is required (as with -I or -D), it may be specified as position. is will only be useful if full is True.

If connstate is passed in, it will automatically be changed to state.

CLI Examples:

630 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' iptables.build_rule match=state \
connstate=RELATED,ESTABLISHED jump=ACCEPT

salt '*' iptables.build_rule filter INPUT command=I position=3 \
full=True match=state state=RELATED,ESTABLISHED jump=ACCEPT

salt '*' iptables.build_rule filter INPUT command=A \
full=True match=state state=RELATED,ESTABLISHED \
source='127.0.0.1' jump=ACCEPT

.. Invert Rules
salt '*' iptables.build_rule filter INPUT command=A \

full=True match=state state=RELATED,ESTABLISHED \
source='! 127.0.0.1' jump=ACCEPT

salt '*' iptables.build_rule filter INPUT command=A \
full=True match=state state=RELATED,ESTABLISHED \
destination='not 127.0.0.1' jump=ACCEPT

IPv6:
salt '*' iptables.build_rule match=state \

connstate=RELATED,ESTABLISHED jump=ACCEPT \
family=ipv6

salt '*' iptables.build_rule filter INPUT command=I position=3 \
full=True match=state state=RELATED,ESTABLISHED jump=ACCEPT \
family=ipv6

salt.modules.iptables.check(table='filter', chain=None, rule=None, family='ipv4')
Check for the existence of a rule in the table and chain

is function accepts a rule in a standard iptables command format, starting with the chain. Trying to
force users to adapt to a new method of creating rules would be irritating at best, and we already have a
parser that can handle it.

CLI Example:

salt '*' iptables.check filter INPUT \
rule='-m state --state RELATED,ESTABLISHED -j ACCEPT'

IPv6:
salt '*' iptables.check filter INPUT \

rule='-m state --state RELATED,ESTABLISHED -j ACCEPT' \
family=ipv6

salt.modules.iptables.check_chain(table='filter', chain=None, family='ipv4')
New in version 2014.1.0.

Check for the existence of a chain in the table

CLI Example:

salt '*' iptables.check_chain filter INPUT

IPv6:
salt '*' iptables.check_chain filter INPUT family=ipv6

salt.modules.iptables.delete(table, chain=None, position=None, rule=None, family='ipv4')

Delete a rule from the specified table/ain, specifying either the rule in its entirety, or the rule's position
in the chain.

22.16. Full list of builtin execution modules 631

Salt Documentation, Release 2014.7.6

is function accepts a rule in a standard iptables command format, starting with the chain. Trying to
force users to adapt to a new method of creating rules would be irritating at best, and we already have a
parser that can handle it.

CLI Examples:

salt '*' iptables.delete filter INPUT position=3
salt '*' iptables.delete filter INPUT \

rule='-m state --state RELATED,ESTABLISHED -j ACCEPT'

IPv6:
salt '*' iptables.delete filter INPUT position=3 family=ipv6
salt '*' iptables.delete filter INPUT \

rule='-m state --state RELATED,ESTABLISHED -j ACCEPT' \
family=ipv6

salt.modules.iptables.delete_chain(table='filter', chain=None, family='ipv4')
New in version 2014.1.0.

Delete custom chain to the specified table.

CLI Example:

salt '*' iptables.delete_chain filter CUSTOM_CHAIN

IPv6:
salt '*' iptables.delete_chain filter CUSTOM_CHAIN family=ipv6

salt.modules.iptables.flush(table='filter', chain='`, family='ipv4')
Flush the chain in the specified table, flush all chains in the specified table if not specified chain.

CLI Example:

salt '*' iptables.flush filter INPUT

IPv6:
salt '*' iptables.flush filter INPUT family=ipv6

salt.modules.iptables.get_policy(table='filter', chain=None, family='ipv4')
Return the current policy for the specified table/chain

CLI Example:

salt '*' iptables.get_policy filter INPUT

IPv6:
salt '*' iptables.get_policy filter INPUT family=ipv6

salt.modules.iptables.get_rules(family='ipv4')
Return a data structure of the current, in-memory rules

CLI Example:

salt '*' iptables.get_rules

IPv6:
salt '*' iptables.get_rules family=ipv6

salt.modules.iptables.get_saved_policy(table='filter', chain=None, conf_file=None, fam-
ily='ipv4')

Return the current policy for the specified table/chain

632 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Examples:

salt '*' iptables.get_saved_policy filter INPUT
salt '*' iptables.get_saved_policy filter INPUT \

conf_file=/etc/iptables.saved

IPv6:
salt '*' iptables.get_saved_policy filter INPUT family=ipv6
salt '*' iptables.get_saved_policy filter INPUT \

conf_file=/etc/iptables.saved family=ipv6

salt.modules.iptables.get_saved_rules(conf_file=None, family='ipv4')
Return a data structure of the rules in the conf file

CLI Example:

salt '*' iptables.get_saved_rules

IPv6:
salt '*' iptables.get_saved_rules family=ipv6

salt.modules.iptables.insert(table='filter', chain=None, position=None, rule=None, family='ipv4')
Insert a rule into the specified table/chain, at the specified position.

is function accepts a rule in a standard iptables command format, starting with the chain. Trying to
force users to adapt to a new method of creating rules would be irritating at best, and we already have a
parser that can handle it.

If the position specified is a negative number, then the insert will be performed counting from the end of
the list. For instance, a position of -1 will insert the rule as the second to last rule. To insert a rule in the
last position, use the append function instead.

CLI Examples:

salt '*' iptables.insert filter INPUT position=3 \
rule='-m state --state RELATED,ESTABLISHED -j ACCEPT'

IPv6:
salt '*' iptables.insert filter INPUT position=3 \

rule='-m state --state RELATED,ESTABLISHED -j ACCEPT' \
family=ipv6

salt.modules.iptables.new_chain(table='filter', chain=None, family='ipv4')
New in version 2014.1.0.

Create new custom chain to the specified table.

CLI Example:

salt '*' iptables.new_chain filter CUSTOM_CHAIN

IPv6:
salt '*' iptables.new_chain filter CUSTOM_CHAIN family=ipv6

salt.modules.iptables.save(filename=None, family='ipv4')
Save the current in-memory rules to disk

CLI Example:

salt '*' iptables.save /etc/sysconfig/iptables

22.16. Full list of builtin execution modules 633

Salt Documentation, Release 2014.7.6

IPv6:
salt '*' iptables.save /etc/sysconfig/iptables family=ipv6

salt.modules.iptables.set_policy(table='filter', chain=None, policy=None, family='ipv4')
Set the current policy for the specified table/chain

CLI Example:

salt '*' iptables.set_policy filter INPUT ACCEPT

IPv6:
salt '*' iptables.set_policy filter INPUT ACCEPT family=ipv6

salt.modules.iptables.version(family='ipv4')
Return version from iptables --version

CLI Example:

salt '*' iptables.version

IPv6:
salt '*' iptables.version family=ipv6

22.16.87 salt.modules.junos

Module for interfacing to Junos devices

ALPHA QUALITY code.

salt.modules.junos.commit()

salt.modules.junos.diff()

salt.modules.junos.facts_refresh()
Reload the facts dictionary from the device. Usually only needed if the device configuration is changed by
some other actor.

salt.modules.junos.ping()

salt.modules.junos.rollback()

salt.modules.junos.set_hostname(hostname=None, commit_change=True)

22.16.88 salt.modules.key

Functions to view the minion's public key information

salt.modules.key.finger()
Return the minion's public key fingerprint

CLI Example:

salt '*' key.finger

salt.modules.key.finger_master()
Return the fingerprint of the master's public key on the minion.

CLI Example:

634 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' key.finger_master

22.16.89 salt.modules.keyboard

Module for managing keyboards on supported POSIX-like systems using systemd, or such as Redhat, Debian and
Gentoo.

salt.modules.keyboard.get_sys()
Get current system keyboard seing

CLI Example:

salt '*' keyboard.get_sys

salt.modules.keyboard.get_x()
Get current X keyboard seing

CLI Example:

salt '*' keyboard.get_x

salt.modules.keyboard.set_sys(layout)
Set current system keyboard seing

CLI Example:

salt '*' keyboard.set_sys dvorak

salt.modules.keyboard.set_x(layout)
Set current X keyboard seing

CLI Example:

salt '*' keyboard.set_x dvorak

22.16.90 salt.modules.keystone

Module for handling openstack keystone calls.

optdepends

• keystoneclient Python adapter

configuration is module is not usable until the following are specified either in a pillar or in the
minion's config file:

keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.tenant_id: f80919baedab48ec8931f200c65a50df
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

OR (for token based authentication)

keystone.token: 'ADMIN'
keystone.endpoint: 'http://127.0.0.1:35357/v2.0'

22.16. Full list of builtin execution modules 635

Salt Documentation, Release 2014.7.6

If configuration for multiple openstack accounts is required, they can be set up as different config-
uration profiles: For example:

openstack1:
keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.tenant_id: f80919baedab48ec8931f200c65a50df
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

openstack2:
keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.tenant_id: f80919baedab48ec8931f200c65a50df
keystone.auth_url: 'http://127.0.0.2:5000/v2.0/'

With this configuration in place, any of the keystone functions can make use of a configuration
profile by declaring it explicitly. For example:

salt '*' keystone.tenant_list profile=openstack1

salt.modules.keystone.auth(profile=None, **connection_args)
Set up keystone credentials

Only intended to be used within Keystone-enabled modules

salt.modules.keystone.ec2_credentials_create(user_id=None, name=None, ten-
ant_id=None, tenant=None, profile=None,
**connection_args)

Create EC2-compatible credentials for user per tenant

CLI Examples:

salt '*' keystone.ec2_credentials_create name=admin tenant=admin
salt '*' keystone.ec2_credentials_create user_id=c965f79c4f864eaaa9c3b41904e67082 tenant_id=722787eb540849158668370dc627ec5f

salt.modules.keystone.ec2_credentials_delete(user_id=None, name=None, ac-
cess_key=None, profile=None, **connec-
tion_args)

Delete EC2-compatible credentials

CLI Examples:

salt '*' keystone.ec2_credentials_delete 860f8c2c38ca4fab989f9bc56a061a64
access_key=5f66d2f24f604b8bb9cd28886106f442

salt '*' keystone.ec2_credentials_delete name=admin access_key=5f66d2f24f604b8bb9cd28886106f442

salt.modules.keystone.ec2_credentials_get(user_id=None, name=None, access=None, pro-
file=None, **connection_args)

Return ec2_credentials for a user (keystone ec2-credentials-get)

CLI Examples:

salt '*' keystone.ec2_credentials_get c965f79c4f864eaaa9c3b41904e67082 access=722787eb540849158668370dc627ec5f
salt '*' keystone.ec2_credentials_get user_id=c965f79c4f864eaaa9c3b41904e67082 access=722787eb540849158668370dc627ec5f
salt '*' keystone.ec2_credentials_get name=nova access=722787eb540849158668370dc627ec5f

salt.modules.keystone.ec2_credentials_list(user_id=None, name=None, profile=None,
**connection_args)

Return a list of ec2_credentials for a specific user (keystone ec2-credentials-list)

636 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Examples:

salt '*' keystone.ec2_credentials_list 298ce377245c4ec9b70e1c639c89e654
salt '*' keystone.ec2_credentials_list user_id=298ce377245c4ec9b70e1c639c89e654
salt '*' keystone.ec2_credentials_list name=jack

salt.modules.keystone.endpoint_create(service, publicurl=None, internalurl=None, admin-
url=None, region=None, profile=None, **connec-
tion_args)

Create an endpoint for an Openstack service

CLI Examples:

salt '*' keystone.endpoint_create nova 'http://public/url'
'http://internal/url' 'http://adminurl/url' region

salt.modules.keystone.endpoint_delete(service, profile=None, **connection_args)
Delete endpoints of an Openstack service

CLI Examples:

salt '*' keystone.endpoint_delete nova

salt.modules.keystone.endpoint_get(service, profile=None, **connection_args)
Return a specific endpoint (keystone endpoint-get)

CLI Example:

salt '*' keystone.endpoint_get nova

salt.modules.keystone.endpoint_list(profile=None, **connection_args)
Return a list of available endpoints (keystone endpoints-list)

CLI Example:

salt '*' keystone.endpoint_list

salt.modules.keystone.role_create(name, profile=None, **connection_args)
Create named role

salt '*' keystone.role_create admin

salt.modules.keystone.role_delete(role_id=None, name=None, profile=None, **connec-
tion_args)

Delete a role (keystone role-delete)

CLI Examples:

salt '*' keystone.role_delete c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.role_delete role_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.role_delete name=admin

salt.modules.keystone.role_get(role_id=None, name=None, profile=None, **connection_args)
Return a specific roles (keystone role-get)

CLI Examples:

salt '*' keystone.role_get c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.role_get role_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.role_get name=nova

22.16. Full list of builtin execution modules 637

Salt Documentation, Release 2014.7.6

salt.modules.keystone.role_list(profile=None, **connection_args)
Return a list of available roles (keystone role-list)

CLI Example:

salt '*' keystone.role_list

salt.modules.keystone.service_create(name, service_type, description=None, profile=None,
**connection_args)

Add service to Keystone service catalog

CLI Examples:

salt '*' keystone.service_create nova compute 'OpenStack Compute Service'

salt.modules.keystone.service_delete(service_id=None, name=None, profile=None, **connec-
tion_args)

Delete a service from Keystone service catalog

CLI Examples:

salt '*' keystone.service_delete c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.service_delete name=nova

salt.modules.keystone.service_get(service_id=None, name=None, profile=None, **connec-
tion_args)

Return a specific services (keystone service-get)

CLI Examples:

salt '*' keystone.service_get c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.service_get service_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.service_get name=nova

salt.modules.keystone.service_list(profile=None, **connection_args)
Return a list of available services (keystone services-list)

CLI Example:

salt '*' keystone.service_list

salt.modules.keystone.tenant_create(name, description=None, enabled=True, profile=None,
**connection_args)

Create a keystone tenant

CLI Examples:

salt '*' keystone.tenant_create nova description='nova tenant'
salt '*' keystone.tenant_create test enabled=False

salt.modules.keystone.tenant_delete(tenant_id=None, name=None, profile=None, **connec-
tion_args)

Delete a tenant (keystone tenant-delete)

CLI Examples:

salt '*' keystone.tenant_delete c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.tenant_delete tenant_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.tenant_delete name=demo

salt.modules.keystone.tenant_get(tenant_id=None, name=None, profile=None, **connec-
tion_args)

Return a specific tenants (keystone tenant-get)

638 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Examples:

salt '*' keystone.tenant_get c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.tenant_get tenant_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.tenant_get name=nova

salt.modules.keystone.tenant_list(profile=None, **connection_args)
Return a list of available tenants (keystone tenants-list)

CLI Example:

salt '*' keystone.tenant_list

salt.modules.keystone.tenant_update(tenant_id=None, name=None, description=None, en-
abled=None, profile=None, **connection_args)

Update a tenant's information (keystone tenant-update) e following fields may be updated: name, email,
enabled. Can only update name if targeting by ID

CLI Examples:

salt '*' keystone.tenant_update name=admin enabled=True
salt '*' keystone.tenant_update c965f79c4f864eaaa9c3b41904e67082 name=admin email=admin@domain.com

salt.modules.keystone.token_get(profile=None, **connection_args)
Return the configured tokens (keystone token-get)

CLI Example:

salt '*' keystone.token_get c965f79c4f864eaaa9c3b41904e67082

salt.modules.keystone.user_create(name, password, email, tenant_id=None, enabled=True, pro-
file=None, **connection_args)

Create a user (keystone user-create)

CLI Examples:

salt '*' keystone.user_create name=jack password=zero email=jack@halloweentown.org tenant_id=a28a7b5a999a455f84b1f5210264375e enabled=True

salt.modules.keystone.user_delete(user_id=None, name=None, profile=None, **connec-
tion_args)

Delete a user (keystone user-delete)

CLI Examples:

salt '*' keystone.user_delete c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.user_delete user_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.user_delete name=nova

salt.modules.keystone.user_get(user_id=None, name=None, profile=None, **connection_args)
Return a specific users (keystone user-get)

CLI Examples:

salt '*' keystone.user_get c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.user_get user_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.user_get name=nova

salt.modules.keystone.user_list(profile=None, **connection_args)
Return a list of available users (keystone user-list)

CLI Example:

22.16. Full list of builtin execution modules 639

Salt Documentation, Release 2014.7.6

salt '*' keystone.user_list

salt.modules.keystone.user_password_update(user_id=None, name=None, password=None,
profile=None, **connection_args)

Update a user's password (keystone user-password-update)

CLI Examples:

salt '*' keystone.user_password_update c965f79c4f864eaaa9c3b41904e67082 password=12345
salt '*' keystone.user_password_update user_id=c965f79c4f864eaaa9c3b41904e67082 password=12345
salt '*' keystone.user_password_update name=nova password=12345

salt.modules.keystone.user_role_add(user_id=None, user=None, tenant_id=None, tenant=None,
role_id=None, role=None, profile=None, **connec-
tion_args)

Add role for user in tenant (keystone user-role-add)

CLI Examples:

salt '*' keystone.user_role_add user_id=298ce377245c4ec9b70e1c639c89e654 tenant_id=7167a092ece84bae8cead4bf9d15bb3b role_id=ce377245c4ec9b70e1c639c89e8cead4
salt '*' keystone.user_role_add user=admin tenant=admin role=admin

salt.modules.keystone.user_role_list(user_id=None, tenant_id=None, user_name=None, ten-
ant_name=None, profile=None, **connection_args)

Return a list of available user_roles (keystone user-roles-list)

CLI Examples:

salt '*' keystone.user_role_list user_id=298ce377245c4ec9b70e1c639c89e654 tenant_id=7167a092ece84bae8cead4bf9d15bb3b
salt '*' keystone.user_role_list user_name=admin tenant_name=admin

salt.modules.keystone.user_role_remove(user_id=None, user=None, tenant_id=None, ten-
ant=None, role_id=None, role=None, profile=None,
**connection_args)

Remove role for user in tenant (keystone user-role-remove)

CLI Examples:

salt '*' keystone.user_role_remove user_id=298ce377245c4ec9b70e1c639c89e654 tenant_id=7167a092ece84bae8cead4bf9d15bb3b role_id=ce377245c4ec9b70e1c639c89e8cead4
salt '*' keystone.user_role_remove user=admin tenant=admin role=admin

salt.modules.keystone.user_update(user_id=None, name=None, email=None, enabled=None, ten-
ant=None, profile=None, **connection_args)

Update a user's information (keystone user-update)e following fields may be updated: name, email, enabled,
tenant. Because the name is one of the fields, a valid user id is required.

CLI Examples:

salt '*' keystone.user_update user_id=c965f79c4f864eaaa9c3b41904e67082 name=newname
salt '*' keystone.user_update c965f79c4f864eaaa9c3b41904e67082 name=newname email=newemail@domain.com

salt.modules.keystone.user_verify_password(user_id=None, name=None, password=None,
profile=None, **connection_args)

Verify a user's password

CLI Examples:

salt '*' keystone.user_verify_password name=test password=foobar
salt '*' keystone.user_verify_password user_id=c965f79c4f864eaaa9c3b41904e67082 password=foobar

640 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.16.91 salt.modules.kmod

Module to manage Linux kernel modules

salt.modules.kmod.available()
Return a list of all available kernel modules

CLI Example:

salt '*' kmod.available

salt.modules.kmod.check_available(mod)
Check to see if the specified kernel module is available

CLI Example:

salt '*' kmod.check_available kvm

salt.modules.kmod.is_loaded(mod)
Check to see if the specified kernel module is loaded

CLI Example:

salt '*' kmod.is_loaded kvm

salt.modules.kmod.load(mod, persist=False)
Load the specified kernel module

mod Name of module to add

persist Write module to /etc/modules to make it load on system reboot

CLI Example:

salt '*' kmod.load kvm

salt.modules.kmod.lsmod()
Return a dict containing information about currently loaded modules

CLI Example:

salt '*' kmod.lsmod

salt.modules.kmod.mod_list(only_persist=False)
Return a list of the loaded module names

CLI Example:

salt '*' kmod.mod_list

salt.modules.kmod.remove(mod, persist=False, comment=True)
Remove the specified kernel module

mod Name of module to remove

persist Also remove module from /etc/modules

comment If persist is set don't remove line from /etc/modules but only comment it

CLI Example:

salt '*' kmod.remove kvm

22.16. Full list of builtin execution modules 641

Salt Documentation, Release 2014.7.6

22.16.92 salt.modules.launchctl

Module for the management of MacOS systems that use launchd/launchctl

depends

• plistlib Python module

salt.modules.launchctl.available(job_label)
Check that the given service is available.

CLI Example:

salt '*' service.available com.openssh.sshd

salt.modules.launchctl.get_all()
Return all installed services

CLI Example:

salt '*' service.get_all

salt.modules.launchctl.missing(job_label)
e inverse of service.available Check that the given service is not available.

CLI Example:

salt '*' service.missing com.openssh.sshd

salt.modules.launchctl.restart(job_label, runas=None)
Restart the named service

CLI Example:

salt '*' service.restart <service label>

salt.modules.launchctl.start(job_label, runas=None)
Start the specified service

CLI Example:

salt '*' service.start <service label>
salt '*' service.start org.ntp.ntpd
salt '*' service.start /System/Library/LaunchDaemons/org.ntp.ntpd.plist

salt.modules.launchctl.status(job_label, runas=None)
Return the status for a service, returns a bool whether the service is running.

CLI Example:

salt '*' service.status <service label>

salt.modules.launchctl.stop(job_label, runas=None)
Stop the specified service

CLI Example:

salt '*' service.stop <service label>
salt '*' service.stop org.ntp.ntpd
salt '*' service.stop /System/Library/LaunchDaemons/org.ntp.ntpd.plist

642 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.16.93 salt.modules.layman

Support for Layman

salt.modules.layman.add(overlay)
Add the given overlay from the cached remote list to your locally installed overlays. Specify `ALL' to add all
overlays from the remote list.

Return a list of the new overlay(s) added:

CLI Example:

salt '*' layman.add <overlay name>

salt.modules.layman.delete(overlay)
Remove the given overlay from the your locally installed overlays. Specify `ALL' to remove all overlays.

Return a list of the overlays(s) that were removed:

CLI Example:

salt '*' layman.delete <overlay name>

salt.modules.layman.list_local()
List the locally installed overlays.

Return a list of installed overlays:

CLI Example:

salt '*' layman.list_local

salt.modules.layman.sync(overlay='ALL')
Update the specified overlay. Use `ALL' to synchronize all overlays. is is the default if no overlay is specified.

overlay Name of the overlay to sync. (Defaults to `ALL')

CLI Example:

salt '*' layman.sync

22.16.94 salt.modules.ldapmod

Salt interface to LDAP commands

depends

• ldap Python module

configuration In order to connect to LDAP, certain configuration is required in the minion config on
the LDAP server. e minimum configuration items that must be set are:

ldap.basedn: dc=acme,dc=com (example values, adjust to suit)

If your LDAP server requires authentication then you must also set:

ldap.anonymous: False
ldap.binddn: admin
ldap.bindpw: password

In addition, the following optional values may be set:

22.16. Full list of builtin execution modules 643

Salt Documentation, Release 2014.7.6

ldap.server: localhost (default=localhost, see warning below)
ldap.port: 389 (default=389, standard port)
ldap.tls: False (default=False, no TLS)
ldap.no_verify: False (default=False, verify TLS)
ldap.anonymous: True (default=True, bind anonymous)
ldap.scope: 2 (default=2, ldap.SCOPE_SUBTREE)
ldap.attrs: [saltAttr] (default=None, return all attributes)

Warning: At the moment this module only recommends connection to LDAP services listening on localhost.
is is deliberate to avoid the potentially dangerous situation of multiple minions sending identical update com-
mands to the same LDAP server. It's easy enough to override this behavior, but badness may ensue - you have
been warned.

salt.modules.ldapmod.search(filter, dn=None, scope=None, ars=None, **kwargs)
Run an arbitrary LDAP query and return the results.

CLI Example:

salt 'ldaphost' ldap.search "filter=cn=myhost"

Return data:

{'myhost': {'count': 1,
'results': [['cn=myhost,ou=hosts,o=acme,c=gb',

{'saltKeyValue': ['ntpserver=ntp.acme.local',
'foo=myfoo'],

'saltState': ['foo', 'bar']}]],
'time': {'human': '1.2ms', 'raw': '0.00123'}}}

Search and connection options can be overridden by specifying the relevant option as key=value pairs, for
example:

salt 'ldaphost' ldap.search filter=cn=myhost dn=ou=hosts,o=acme,c=gb
scope=1 attrs='' server='localhost' port='7393' tls=True bindpw='ssh'

22.16.95 salt.modules.linux_acl

Support for Linux File Access Control Lists

salt.modules.linux_acl.delfacl(acl_type, acl_name, *args)
Remove specific FACL from the specified file(s)

CLI Examples:

salt '*' acl.delfacl user myuser /tmp/house/kitchen
salt '*' acl.delfacl default:group mygroup /tmp/house/kitchen
salt '*' acl.delfacl d:u myuser /tmp/house/kitchen
salt '*' acl.delfacl g myuser /tmp/house/kitchen /tmp/house/livingroom

salt.modules.linux_acl.getfacl(*args)
Return (extremely verbose) map of FACLs on specified file(s)

CLI Examples:

salt '*' acl.getfacl /tmp/house/kitchen
salt '*' acl.getfacl /tmp/house/kitchen /tmp/house/livingroom

644 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.linux_acl.modfacl(acl_type, acl_name, perms, *args)
Add or modify a FACL for the specified file(s)

CLI Examples:

salt '*' acl.addfacl user myuser rwx /tmp/house/kitchen
salt '*' acl.addfacl default:group mygroup rx /tmp/house/kitchen
salt '*' acl.addfacl d:u myuser 7 /tmp/house/kitchen
salt '*' acl.addfacl g mygroup 0 /tmp/house/kitchen /tmp/house/livingroom

salt.modules.linux_acl.version()
Return facl version from getfacl --version

CLI Example:

salt '*' acl.version

salt.modules.linux_acl.wipefacls(*args)
Remove all FACLs from the specified file(s)

CLI Examples:

salt '*' acl.wipefacls /tmp/house/kitchen
salt '*' acl.wipefacls /tmp/house/kitchen /tmp/house/livingroom

22.16.96 salt.modules.linux_lvm

Support for Linux LVM2

salt.modules.linux_lvm.fullversion()
Return all version info from lvm version

CLI Example:

salt '*' lvm.fullversion

salt.modules.linux_lvm.lvcreate(lvname, vgname, size=None, extents=None, snapshot=None,
pv=None, **kwargs)

Create a new logical volume, with option for which physical volume to be used

CLI Examples:

salt '*' lvm.lvcreate new_volume_name vg_name size=10G
salt '*' lvm.lvcreate new_volume_name vg_name extents=100 pv=/dev/sdb
salt '*' lvm.lvcreate new_snapshot vg_name snapshot=volume_name size=3G

salt.modules.linux_lvm.lvdisplay(lvname='`)
Return information about the logical volume(s)

CLI Examples:

salt '*' lvm.lvdisplay
salt '*' lvm.lvdisplay /dev/vg_myserver/root

salt.modules.linux_lvm.lvremove(lvname, vgname)
Remove a given existing logical volume from a named existing volume group

CLI Example:

salt '*' lvm.lvremove lvname vgname force=True

22.16. Full list of builtin execution modules 645

Salt Documentation, Release 2014.7.6

salt.modules.linux_lvm.pvcreate(devices, **kwargs)
Set a physical device to be used as an LVM physical volume

CLI Examples:

salt mymachine lvm.pvcreate /dev/sdb1,/dev/sdb2
salt mymachine lvm.pvcreate /dev/sdb1 dataalignmentoffset=7s

salt.modules.linux_lvm.pvdisplay(pvname='`)
Return information about the physical volume(s)

CLI Examples:

salt '*' lvm.pvdisplay
salt '*' lvm.pvdisplay /dev/md0

salt.modules.linux_lvm.pvremove(devices)
Remove a physical device being used as an LVM physical volume

CLI Examples:

salt mymachine lvm.pvremove /dev/sdb1,/dev/sdb2

salt.modules.linux_lvm.version()
Return LVM version from lvm version

CLI Example:

salt '*' lvm.version

salt.modules.linux_lvm.vgcreate(vgname, devices, **kwargs)
Create an LVM volume group

CLI Examples:

salt mymachine lvm.vgcreate my_vg /dev/sdb1,/dev/sdb2
salt mymachine lvm.vgcreate my_vg /dev/sdb1 clustered=y

salt.modules.linux_lvm.vgdisplay(vgname='`)
Return information about the volume group(s)

CLI Examples:

salt '*' lvm.vgdisplay
salt '*' lvm.vgdisplay nova-volumes

salt.modules.linux_lvm.vgremove(vgname)
Remove an LVM volume group

CLI Examples:

salt mymachine lvm.vgremove vgname
salt mymachine lvm.vgremove vgname force=True

22.16.97 salt.modules.linux_sysctl

Module for viewing and modifying sysctl parameters

salt.modules.linux_sysctl.assign(name, value)
Assign a single sysctl parameter for this minion

646 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' sysctl.assign net.ipv4.ip_forward 1

salt.modules.linux_sysctl.default_config()
Linux hosts using systemd 207 or later ignore /etc/sysctl.conf and only load from
/etc/sysctl.d/*.conf. is function will do the proper checks and return a default config file which
will be valid for the Minion. Hosts running systemd >= 207 will use /etc/sysctl.d/99-salt.conf.

CLI Example:

salt -G 'kernel:Linux' sysctl.default_config

salt.modules.linux_sysctl.get(name)
Return a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.get net.ipv4.ip_forward

salt.modules.linux_sysctl.persist(name, value, config=None)
Assign and persist a simple sysctl parameter for this minion. If config is not specified, a sensible default
will be chosen using sysctl.default_config.

CLI Example:

salt '*' sysctl.persist net.ipv4.ip_forward 1

salt.modules.linux_sysctl.show(config_file=False)
Return a list of sysctl parameters for this minion

config: Pull the data from the system configuration file instead of the live data.

CLI Example:

salt '*' sysctl.show

22.16.98 salt.modules.localemod

Module for managing locales on POSIX-like systems.

salt.modules.localemod.avail(locale)
Check if a locale is available.

New in version 2014.7.0.

CLI Example:

salt '*' locale.avail 'en_US.UTF-8'

salt.modules.localemod.gen_locale(locale)
Generate a locale.

New in version 2014.7.0.

Parameters locale -- Any locale listed in /usr/share/i18n/locales or /usr/share/i18n/SUPPORTED
for debian and gentoo based distros

CLI Example:

22.16. Full list of builtin execution modules 647

Salt Documentation, Release 2014.7.6

salt '*' locale.gen_locale en_US.UTF-8
salt '*' locale.gen_locale 'en_IE@euro ISO-8859-15'

salt.modules.localemod.get_locale()
Get the current system locale

CLI Example:

salt '*' locale.get_locale

salt.modules.localemod.list_avail()
Lists available (compiled) locales

CLI Example:

salt '*' locale.list_avail

salt.modules.localemod.set_locale(locale)
Sets the current system locale

CLI Example:

salt '*' locale.set_locale 'en_US.UTF-8'

22.16.99 salt.modules.locate

Module for using the locate utilities

salt.modules.locate.locate(paern, database='`, limit=0, **kwargs)
Performs a file lookup. Valid options (and their defaults) are:

basename=False
count=False
existing=False
follow=True
ignore=False
nofollow=False
wholename=True
regex=False
database=<locate's default database>
limit=<integer, not set by default>

See the manpage for locate(1) for further explanation of these options.

CLI Example:

salt '*' locate.locate

salt.modules.locate.stats()
Returns statistics about the locate database

CLI Example:

salt '*' locate.stats

salt.modules.locate.updatedb()
Updates the locate database

CLI Example:

648 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' locate.updatedb

salt.modules.locate.version()
Returns the version of locate

CLI Example:

salt '*' locate.version

22.16.100 salt.modules.logadm

Module for managing Solaris logadm based log rotations.

salt.modules.logadm.remove(name, conf_file='/etc/logadm.conf')
Remove log paern from logadm

CLI Example:

salt '*' logadm.remove myapplog

salt.modules.logadm.rotate(name, paern=False, count=False, age=False, size=False, copy=True,
conf_file='/etc/logadm.conf')

Set up paern for logging.

CLI Example:

salt '*' logadm.rotate myapplog pattern='/var/log/myapp/*.log' count=7

salt.modules.logadm.show_conf(conf_file='/etc/logadm.conf')
Show parsed configuration

CLI Example:

salt '*' logadm.show_conf

22.16.101 salt.modules.logrotate

Module for managing logrotate.

salt.modules.logrotate.set_(key, value, seing=None, conf_file='/etc/logrotate.conf')
Set a new value for a specific configuration line

CLI Example:

salt '*' logrotate.set rotate 2

Can also be used to set a single value inside a multiline configuration block. For instance, to change rotate in
the following block:

/var/log/wtmp {
monthly
create 0664 root root
rotate 1

}

Use the following command:

22.16. Full list of builtin execution modules 649

Salt Documentation, Release 2014.7.6

salt '*' logrotate.set /var/log/wtmp rotate 2

is module also has the ability to scan files inside an include directory, and make changes in the appropriate
file.

salt.modules.logrotate.show_conf(conf_file='/etc/logrotate.conf')
Show parsed configuration

CLI Example:

salt '*' logrotate.show_conf

22.16.102 salt.modules.lvs

Support for LVS (Linux Virtual Server)

salt.modules.lvs.add_server(protocol=None, service_address=None, server_address=None,
packet_forward_method='dr', weight=1, **kwargs)

Add a real server to a virtual service.

protocol e service protocol(only support tcp, udp and fwmark service).

service_address e LVS service address.

server_address e real server address.

paet_forward_method e LVS packet forwarding method(dr for direct routing, tunnel for tunneling,
nat for network access translation).

weight e capacity of a server relative to the others in the pool.

CLI Example:

salt '*' lvs.add_server tcp 1.1.1.1:80 192.168.0.11:8080 nat 1

salt.modules.lvs.add_service(protocol=None, service_address=None, scheduler='wlc')
Add a virtual service.

protocol e service protocol(only support tcp, udp and fwmark service).

service_address e LVS service address.

seduler Algorithm for allocating TCP connections and UDP datagrams to real servers.

CLI Example:

salt '*' lvs.add_service tcp 1.1.1.1:80 rr

salt.modules.lvs.check_server(protocol=None, service_address=None, server_address=None,
**kwargs)

Check the real server exists in the specified service.

CLI Example:

salt '*' lvs.check_server tcp 1.1.1.1:80 192.168.0.11:8080

salt.modules.lvs.check_service(protocol=None, service_address=None, **kwargs)
Check the virtual service exists.

CLI Example:

650 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' lvs.check_service tcp 1.1.1.1:80

salt.modules.lvs.clear()
Clear the virtual server table

CLI Example:

salt '*' lvs.clear

salt.modules.lvs.delete_server(protocol=None, service_address=None, server_address=None)
Delete the realserver from the virtual service.

protocol e service protocol(only support tcp, udp and fwmark service).

service_address e LVS service address.

server_address e real server address.

CLI Example:

salt '*' lvs.delete_server tcp 1.1.1.1:80 192.168.0.11:8080

salt.modules.lvs.delete_service(protocol=None, service_address=None)
Delete the virtual service.

protocol e service protocol(only support tcp, udp and fwmark service).

service_address e LVS service address.

CLI Example:

salt '*' lvs.delete_service tcp 1.1.1.1:80

salt.modules.lvs.edit_server(protocol=None, service_address=None, server_address=None,
packet_forward_method=None, weight=None, **kwargs)

Edit a real server to a virtual service.

protocol e service protocol(only support tcp, udp and fwmark service).

service_address e LVS service address.

server_address e real server address.

paet_forward_method e LVS packet forwarding method(dr for direct routing, tunnel for tunneling,
nat for network access translation).

weight e capacity of a server relative to the others in the pool.

CLI Example:

salt '*' lvs.edit_server tcp 1.1.1.1:80 192.168.0.11:8080 nat 1

salt.modules.lvs.edit_service(protocol=None, service_address=None, scheduler=None)
Edit the virtual service.

protocol e service protocol(only support tcp, udp and fwmark service).

service_address e LVS service address.

seduler Algorithm for allocating TCP connections and UDP datagrams to real servers.

CLI Example:

salt '*' lvs.edit_service tcp 1.1.1.1:80 rr

22.16. Full list of builtin execution modules 651

Salt Documentation, Release 2014.7.6

salt.modules.lvs.get_rules()
Get the virtual server rules

CLI Example:

salt '*' lvs.get_rules

salt.modules.lvs.list_(protocol=None, service_address=None)
List the virtual server table if service_address is not specified. If a service_address is selected, list this service
only.

CLI Example:

salt '*' lvs.list

salt.modules.lvs.zero(protocol=None, service_address=None)
Zero the packet, byte and rate counters in a service or all services.

CLI Example:

salt '*' lvs.zero

22.16.103 salt.modules.lxc

Control Linux Containers via Salt

depends lxc package for distribution

lxc >= 1.0 (even beta alpha) is required

salt.modules.lxc.attachable(name)
Return True if the named container can be aached to via the lxc-aach command

CLI Example:

salt 'minion' lxc.attachable ubuntu

salt.modules.lxc.bootstrap(name, config=None, approve_key=True, install=True, pub_key=None,
priv_key=None, bootstrap_url=None, force_install=False, uncondi-
tional_install=False, bootstrap_args=None, bootstrap_shell=None)

Install and configure salt in a container.

salt 'minion' lxc.bootstrap name [config=config_data] \
[approve_key=(True|False)] [install=(True|False)]

config Minion configuration options. By default, the master option is set to the target host's master.

approve_key Request a pre-approval of the generated minion key. Requires that the salt-master be configured
to either auto-accept all keys or expect a signing request from the target host. Default: True

pub_key Explicit public key to pressed the minion with (optional). is can be either a filepath or a string
representing the key

priv_key Explicit private key to pressed the minion with (optional). is can be either a filepath or a string
representing the key

bootstrap_url url, content or filepath to the salt bootstrap script

bootstrap_args salt bootstrap script arguments

bootstrap_shell shell to execute the script into

652 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

install Whether to aempt a full installation of salt-minion if needed.

force_install Force installation even if salt-minion is detected, this is the way to run vendor bootstrap scripts
even if a salt minion is already present in the container

unconditional_install Run the script even if the container seems seeded

CLI Example:

salt '*' lxc.bootstrap ubuntu

salt.modules.lxc.clone(name, orig, snapshot=False, profile=None, **kwargs)
Create a new container.

CLI Example:

salt 'minion' lxc.clone name orig [snapshot=(True|False)] \
[size=filesystem_size] [vgname=volume_group] \
[profile=profile_name]

name Name of the container.

orig Name of the cloned original container

snapshot Do we use Copy On Write snapshots (LVM)

size Size of the container

vgname LVM volume group(lxc)

profile A LXC profile (defined in config or pillar).

CLI Example:

salt '*' lxc.clone myclone ubuntu "snapshot=True"

salt.modules.lxc.cloud_init(name, vm_=None, **kwargs)
in wrapper to lxc.init to be used from the saltcloud lxc driver

CLI Example:

salt '*' lxc.cloud_init foo

name Name of the container. May be None and then guessed from saltcloud mapping.

vm_ saltcloud mapping defaults for the vm

salt.modules.lxc.cloud_init_interface(name, vm_=None, **kwargs)
Interface between salt.cloud.lxc driver and lxc.init vm_ is a mapping of vm opts in the salt.cloud format as
documented for the lxc driver.

is can be used either:

•from the salt cloud driver

•because you find the argument to give easier here than using directly lxc.init

WARNING: BE REALLY CAREFUL CHANGING DEFAULTS ‼! IT'S A RETRO COMPATIBLE INTERFACE
WITH THE SALT CLOUD DRIVER (ask kiorky).

CLI Example:

22.16. Full list of builtin execution modules 653

Salt Documentation, Release 2014.7.6

salt '*' lxc.cloud_init_interface foo

name name of the lxc container to create

from_container which container we use as a template when running lxc.clone

image which template do we use when we are using lxc.create. is is the default mode unless you specify
something in from_container

baing which backing store to use. Values can be: overlayfs, dir(default), lvm, zfs, brtfs

fstype When using a blockdevice level backing store, which filesystem to use on

size When using a blockdevice level backing store, which size for the filesystem to use on

snapshot Use snapshot when cloning the container source

vgname if using LVM: vgname

lgname if using LVM: lvname

pub_key public key to preseed the minion with. Can be the keycontent or a filepath

priv_key private key to preseed the minion with. Can be the keycontent or a filepath

ip ip for the primary nic

mac mac for the primary nic

netmask netmask for the primary nic (24) = vm_.get('netmask', '24')

bridge bridge for the primary nic (lxcbr0)

gateway network gateway for the container

additional_ips additionnal ips which will be wired on the main bridge (br0) which is connected to internet.
Be aware that you may use manual virtual mac addresses providen by you provider (online, ovh, etc).
is is a list of mappings {ip: `', mac: `',netmask:'`} Set gateway to None and an interface with a gateway
to escape from another interface that eth0. eg:

- {'mac': '00:16:3e:01:29:40',
'gateway': None, (default)
'link': 'br0', (default)
'netmask': '', (default)
'ip': '22.1.4.25'}

unconditional_install given to lxc.bootstrap (see relative doc)

force_install given to lxc.bootstrap (see relative doc)

config any extra argument for the salt minion config

dnsservers dns servers to set inside the container

autostart autostart the container at boot time

password administrative password for the container

users administrative users for the container default: [root] and [root, ubuntu] on ubuntu

salt.modules.lxc.cp(name, src, dest)
Copy a file or directory from the host into a container

CLI Example:

654 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt 'minion' lxc.cp /tmp/foo /root/foo

salt.modules.lxc.create(name, config=None, profile=None, options=None, **kwargs)
Create a new container.

CLI Example:

salt 'minion' lxc.create name [config=config_file] \
[profile=profile] [template=template_name] \
[backing=backing_store] [vgname=volume_group] \
[size=filesystem_size] [options=template_options]

name Name of the container.

config e config file to use for the container. Defaults to system-wide config (usually in /etc/lxc/lxc.con).

profile A LXC profile (defined in config or pillar).

template e template to use. E.g., `ubuntu' or `fedora'.

baing e type of storage to use. Set to `lvm' to use an LVM group. Defaults to filesystem within
/var/lib/lxc/.

vgname Name of the LVM volume group in which to create the volume for this container. Only applicable if
backing=lvm. Defaults to `lxc'.

fstype fstype to use on LVM lv.

size Size of the volume to create. Only applicable if backing=lvm. Defaults to 1G.

options Template specific options to pass to the lxc-create command.

salt.modules.lxc.destroy(name, stop=True)
Destroy the named container. WARNING: Destroys all data associated with the container.

CLI Example:

salt '*' lxc.destroy name [stop=(True|False)]

salt.modules.lxc.edit_conf(conf_file, out_format='simple', **kwargs)
Edit an LXC configuration file. If a seing is already present inside the file, its value will be replaced. If it
does not exist, it will be appended to the end of the file. Comments and blank lines will be kept in-tact if they
already exist in the file.

Aer the file is edited, its contents will be returned. By default, it will be returned in simple format, meaning
an unordered dict (whichmay not represent the actual file order). Passing in an out_format of commented
will return a data structure which accurately represents the order and content of the file.

CLI Examples:

salt 'minion' lxc.edit_conf /etc/lxc/mycontainer.conf out_format=commented lxc.network.type=veth

salt.modules.lxc.exists(name)
Returns whether the named container exists.

CLI Example:

salt '*' lxc.exists name

salt.modules.lxc.freeze(name)
Freeze the named container.

CLI Example:

22.16. Full list of builtin execution modules 655

Salt Documentation, Release 2014.7.6

salt '*' lxc.freeze name

salt.modules.lxc.get_base(**kwargs)
If the needed base does not exist, then create it, if it does exist create nothing and return the name of the base
lxc container so it can be cloned.

CLI Example:

salt 'minion' lxc.init name [cpuset=cgroups_cpuset] \
[nic=nic_profile] [profile=lxc_profile] \
[nic_opts=nic_opts] [image=network image path]\
[seed=(True|False)] [install=(True|False)] \
[config=minion_config]

salt.modules.lxc.get_parameter(name, parameter)
Returns the value of a cgroup parameter for a container.

CLI Example:

salt '*' lxc.get_parameter name parameter

salt.modules.lxc.info(name)
Returns information about a container.

CLI Example:

salt '*' lxc.info name

salt.modules.lxc.init(name, cpuset=None, cpushare=None, memory=None, nic='default', pro-
file=None, nic_opts=None, cpu=None, autostart=True, password=None,
users=None, dnsservers=None, bridge=None, gateway=None, pub_key=None,
priv_key=None, force_install=False, unconditional_install=False, boot-
strap_args=None, bootstrap_shell=None, bootstrap_url=None, **kwargs)

Initialize a new container.

is is a partial idempotent function as if it is already provisioned, we will reset a bit the lxc configuration file
but much of the hard work will be escaped as markers will prevent re-execution of harmful tasks.

CLI Example:

salt 'minion' lxc.init name [cpuset=cgroups_cpuset] \
[cpushare=cgroups_cpushare] [memory=cgroups_memory] \
[nic=nic_profile] [profile=lxc_profile] \
[nic_opts=nic_opts] [start=(True|False)] \
[seed=(True|False)] [install=(True|False)] \
[config=minion_config] [approve_key=(True|False) \
[clone=original] [autostart=True] \
[priv_key=/path_or_content] [pub_key=/path_or_content] \
[bridge=lxcbr0] [gateway=10.0.3.1] \
[dnsservers[dns1,dns2]] \
[users=[foo]] password='secret'

name Name of the container.

cpus Select a random number of cpu cores and assign it to the cpuset, if the cpuset option is set then this
option will be ignored

cpuset Explicitly define the cpus this container will be bound to

cpushare cgroups cpu shares.

656 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

autostart autostart container on reboot

memory cgroups memory limit, in MB. (0 for nolimit, None for old default 1024MB)

gateway the ipv4 gateway to use the default does nothing more than lxcutils does

bridge the bridge to use the default does nothing more than lxcutils does

nic Network interfaces profile (defined in config or pillar).

users Sysadmins users to set the administrative password to e.g. [root, ubuntu, sysadmin], default [root] and
[root, ubuntu] on ubuntu

password Set the initial password for default sysadmin users, at least root but also can be used for sudoers,
e.g. [root, ubuntu, sysadmin]

profile A LXC profile (defined in config or pillar). is can be either a real profile mapping or a string to
retrieve it in configuration

nic_opts Extra options for network interfaces. E.g:

{"eth0": {"mac": "aa:bb:cc:dd:ee:ff", "ipv4": "10.1.1.1", "ipv6":
"2001:db8::ff00:42:8329"}}

or

{"eth0": {"mac": "aa:bb:cc:dd:ee:ff", "ipv4": "10.1.1.1/24", "ipv6":
"2001:db8::ff00:42:8329"}}

start Start the newly created container.

dnsservers list of dns servers to set in the container, default [] (no seing)

seed Seed the container with the minion config. Default: True

install If salt-minion is not already installed, install it. Default: True

config Optional config parameters. By default, the id is set to the name of the container.

pub_key Explicit public key to preseed the minion with (optional). is can be either a filepath or a string
representing the key

priv_key Explicit private key to preseed the minion with (optional). is can be either a filepath or a string
representing the key

approve_key If explicit preseeding is not used; Aempt to request key approval from the master. Default:
True

clone Original from which to use a clone operation to create the container. Default: None

bootstrap_url See lxc.bootstrap *

bootstrap_shell See lxc.bootstrap

bootstrap_args See lxc.bootstrap

force_install Force installation even if salt-minion is detected, this is the way to run vendor bootstrap scripts
even if a salt minion is already present in the container

unconditional_install Run the script even if the container seems seeded

salt.modules.lxc.list_(extra=False)
List defined containers classified by status. Status can be running, stopped, and frozen.

extra Also get per container specific info at once. Warning: it will not return a collection of list
but a collection of mappings by status and then per container name:

22.16. Full list of builtin execution modules 657

Salt Documentation, Release 2014.7.6

{'running': ['foo']} # normal mode
{'running': {'foo': {'info1': 'bar'}} # extra mode

CLI Example:

salt '*' lxc.list
salt '*' lxc.list extra=True

salt.modules.lxc.ls()
Return just a list of the containers available

CLI Example:

salt '*' lxc.ls

salt.modules.lxc.read_conf(conf_file, out_format='simple')
Read in an LXC configuration file. By default returns a simple, unsorted dict, but can also return a more
detailed structure including blank lines and comments.

CLI Examples:

salt 'minion' lxc.read_conf /etc/lxc/mycontainer.conf
salt 'minion' lxc.read_conf /etc/lxc/mycontainer.conf out_format=commented

salt.modules.lxc.run_cmd(name, cmd, no_start=False, preserve_state=True, stdout=True, stderr=False,
use_vt=False, keep_env='hp_proxy, hps_proxy, no_proxy')

Run a command inside the container.

CLI Example:

salt 'minion' name command [no_start=(True|False)] \
[preserve_state=(True|False)] [stdout=(True|False)] \
[stderr=(True|False)]

name Name of the container on which to operate.

cmd Command to run

no_start If the container is not running, don't start it. Default: False

preserve_state Aer running the command, return the container to its previous state. Default: True

stdout: Return stdout. Default: True

stderr: Return stderr. Default: False

use_vt use saltstack utils.vt to stream output to console

keep_env A list of env vars to preserve. May be passed as commma-delimited list. Defaults to
hp_proxy,hps_proxy.

Note: If stderr and stdout are both False, the return code is returned. If stderr and stdout are both True,
the pid and return code are also returned.

salt.modules.lxc.set_dns(name, dnsservers=None, searchdomains=None)
Update container DNS configuration and possibly also resolv.conf one.

CLI Example:

658 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt-call -lall lxc.set_dns ubuntu ['8.8.8.8', '4.4.4.4']

salt.modules.lxc.set_parameter(name, parameter, value)
Set the value of a cgroup parameter for a container.

CLI Example:

salt '*' lxc.set_parameter name parameter value

salt.modules.lxc.set_pass(name, users, password)
Set the password of one or more system users inside containers

CLI Example:

salt '*' lxc.set_pass container-name root foo

salt.modules.lxc.start(name, restart=False)
Start the named container.

CLI Example:

salt '*' lxc.start name

salt.modules.lxc.state(name)
Returns the state of a container.

CLI Example:

salt '*' lxc.state name

salt.modules.lxc.stop(name, kill=True)
Stop the named container.

CLI Example:

salt '*' lxc.stop name

salt.modules.lxc.templates(templates_dir='/usr/share/lxc/templates')
Returns a list of existing templates

CLI Example:

salt '*' lxc.templates

salt.modules.lxc.unfreeze(name)
Unfreeze the named container.

CLI Example:

salt '*' lxc.unfreeze name

salt.modules.lxc.update_lxc_conf(name, lxc_conf, lxc_conf_unset)
Edit LXC configuration options

CLI Example:

salt-call -lall lxc.update_lxc_conf ubuntu lxc_conf="[{'network.ipv4.ip':'10.0.3.5'}]" lxc_conf_unset="['lxc.utsname']"

salt.modules.lxc.write_conf(conf_file, conf)
Write out an LXC configuration file

is is normally only used internally. e format of the data structure must match that which is returned from
lxc.read_conf(), with out_format set to commented.

22.16. Full list of builtin execution modules 659

Salt Documentation, Release 2014.7.6

An example might look like:

[
{'lxc.utsname': '$CONTAINER_NAME'},
'# This is a commented line\n',
'\n',
{'lxc.mount': '$CONTAINER_FSTAB'},
{'lxc.rootfs': {'comment': 'This is another test',

'value': 'This is another test'}},
'\n',
{'lxc.network.type': 'veth'},
{'lxc.network.flags': 'up'},
{'lxc.network.link': 'br0'},
{'lxc.network.hwaddr': '$CONTAINER_MACADDR'},
{'lxc.network.ipv4': '$CONTAINER_IPADDR'},
{'lxc.network.name': '$CONTAINER_DEVICENAME'},

]

CLI Examples:

salt 'minion' lxc.write_conf /etc/lxc/mycontainer.conf \
out_format=commented

22.16.104 salt.modules.mac_group

Manage groups on Mac OS 10.7+

salt.modules.mac_group.add(name, gid=None, **kwargs)
Add the specified group

CLI Example:

salt '*' group.add foo 3456

salt.modules.mac_group.chgid(name, gid)
Change the gid for a named group

CLI Example:

salt '*' group.chgid foo 4376

salt.modules.mac_group.delete(name)
Remove the named group

CLI Example:

salt '*' group.delete foo

salt.modules.mac_group.getent(refresh=False)
Return info on all groups

CLI Example:

salt '*' group.getent

salt.modules.mac_group.info(name)
Return information about a group

CLI Example:

660 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' group.info foo

22.16.105 salt.modules.mac_user

Manage users on Mac OS 10.7+

salt.modules.mac_user.add(name, uid=None, gid=None, groups=None, home=None, shell=None, full-
name=None, createhome=True, **kwargs)

Add a user to the minion

CLI Example:

salt '*' user.add name <uid> <gid> <groups> <home> <shell>

salt.modules.mac_user.chfullname(name, fullname)
Change the user's Full Name

CLI Example:

salt '*' user.chfullname foo 'Foo Bar'

salt.modules.mac_user.chgid(name, gid)
Change the default group of the user

CLI Example:

salt '*' user.chgid foo 4376

salt.modules.mac_user.chgroups(name, groups, append=False)
Change the groups to which the user belongs. Note that the user's primary group does not have to be one of
the groups passed, membership in the user's primary group is automatically assumed.

groups Groups to which the user should belong, can be passed either as a python list or a comma-separated
string

append Instead of removing user from groups not included in the groups parameter, just add user to any
groups for which they are not members

CLI Example:

salt '*' user.chgroups foo wheel,root

salt.modules.mac_user.chhome(name, home)
Change the home directory of the user

CLI Example:

salt '*' user.chhome foo /Users/foo

salt.modules.mac_user.chshell(name, shell)
Change the default shell of the user

CLI Example:

salt '*' user.chshell foo /bin/zsh

salt.modules.mac_user.chuid(name, uid)
Change the uid for a named user

CLI Example:

22.16. Full list of builtin execution modules 661

Salt Documentation, Release 2014.7.6

salt '*' user.chuid foo 4376

salt.modules.mac_user.delete(name, *args)
Remove a user from the minion

CLI Example:

salt '*' user.delete foo

salt.modules.mac_user.getent(refresh=False)
Return the list of all info for all users

CLI Example:

salt '*' user.getent

salt.modules.mac_user.info(name)
Return user information

CLI Example:

salt '*' user.info root

salt.modules.mac_user.list_groups(name)
Return a list of groups the named user belongs to

CLI Example:

salt '*' user.list_groups foo

salt.modules.mac_user.list_users()
Return a list of all users

CLI Example:

salt '*' user.list_users

22.16.106 salt.modules.macports

Support for MacPorts under Mac OSX.

is module has some caveats.

1. Updating the database of available ports is quite resource-intensive. However, refresh=True is the default for all
operations that need an up-to-date copy of available ports. Consider refresh=False when you are sure no db update
is needed.

2. In some cases MacPorts doesn't always realize when another copy of itself is running and will gleefully tromp
all over the available ports database. is makes MacPorts behave in undefined ways until a fresh complete copy is
retrieved.

Because of 1 and 2 it is possible to get the salt-minion into a state where salt mac-machine pkg./something/ won't
want to return. Use

salt-run jobs.active

on the master to check for potentially long-running calls to port.

Finally, ports database updates are always handled with port selfupdate as opposed to port sync. is makes sense in
the MacPorts user commmunity but may confuse experienced Linux admins as Linux package managers don't up-
grade the packaging sowarewhen doing a package database update. In otherwords salt mac-machine pkg.refresh_db
is more like apt-get update; apt-get upgrade dpkg apt-get than simply apt-get update.

662 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.macports.available_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation

Options:

refresh Update ports with port selfupdate

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3>

salt.modules.macports.install(name=None, refresh=False, pkgs=None, **kwargs)
Install the passed package(s) with port install

name e name of the formula to be installed. Note that this parameter is ignored if ``pkgs'' is passed.

CLI Example:

salt '*' pkg.install <package name>

version Specify a version to pkg to install. Ignored if pkgs is specified.

CLI Example:

salt '*' pkg.install <package name>
salt '*' pkg.install git-core version='1.8.5.5'

variant Specify a variant to pkg to install. Ignored if pkgs is specified.

CLI Example:

salt '*' pkg.install <package name>
salt '*' pkg.install git-core version='1.8.5.5' variant='+credential_osxkeychain+doc+pcre'

Multiple Package Installation Options:

pkgs A list of formulas to install. Must be passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo","bar"]'
salt '*' pkg.install pkgs='["foo@1.2","bar"]'
salt '*' pkg.install pkgs='["foo@1.2+ssl","bar@2.3"]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install 'package package package'

salt.modules.macports.latest_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation

Options:

refresh Update ports with port selfupdate

CLI Example:

22.16. Full list of builtin execution modules 663

Salt Documentation, Release 2014.7.6

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3>

salt.modules.macports.list_pkgs(versions_as_list=False, **kwargs)
List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

salt.modules.macports.list_upgrades(refresh=True)
Check whether or not an upgrade is available for all packages

Options:

refresh Update ports with port selfupdate

CLI Example:

salt '*' pkg.list_upgrades

salt.modules.macports.refresh_db()
Update ports with port selfupdate

salt.modules.macports.remove(name=None, pkgs=None, **kwargs)
Removes packages with port uninstall.

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

salt.modules.macports.upgrade(refresh=True)
Run a full upgrade using MacPorts `port upgrade outdated'

Options:

refresh Update ports with port selfupdate

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

664 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.macports.upgrade_available(pkg, refresh=True)
Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

salt.modules.macports.version(*names, **kwargs)
Returns a string representing the package version or an empty string if not installed. If more than one package
name is specified, a dict of name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3>

22.16.107 salt.modules.makeconf

Support for modifying make.conf under Gentoo

salt.modules.makeconf.append_cflags(value)
Add to or create a new CFLAGS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_cflags '-pipe'

salt.modules.makeconf.append_cxxflags(value)
Add to or create a new CXXFLAGS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_cxxflags '-pipe'

salt.modules.makeconf.append_emerge_default_opts(value)
Add to or create a new EMERGE_DEFAULT_OPTS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_emerge_default_opts '--jobs'

salt.modules.makeconf.append_features(value)
Add to or create a new FEATURES in the make.conf

Return a dict containing the new value for variable:

22.16. Full list of builtin execution modules 665

Salt Documentation, Release 2014.7.6

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_features 'webrsync-gpg'

salt.modules.makeconf.append_gentoo_mirrors(value)
Add to or create a new GENTOO_MIRRORS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_gentoo_mirrors 'http://distfiles.gentoo.org'

salt.modules.makeconf.append_makeopts(value)
Add to or create a new MAKEOPTS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_makeopts '-j3'

salt.modules.makeconf.append_var(var, value)
Add to or create a new variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_var 'LINGUAS' 'en'

salt.modules.makeconf.cflags_contains(value)
Verify if CFLAGS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.cflags_contains '-pipe'

salt.modules.makeconf.chost_contains(value)
Verify if CHOST variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.chost_contains 'x86_64-pc-linux-gnu'

666 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.makeconf.cxxflags_contains(value)
Verify if CXXFLAGS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.cxxflags_contains '-pipe'

salt.modules.makeconf.emerge_default_opts_contains(value)
Verify if EMERGE_DEFAULT_OPTS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.emerge_default_opts_contains '--jobs'

salt.modules.makeconf.features_contains(value)
Verify if FEATURES variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.features_contains 'webrsync-gpg'

salt.modules.makeconf.gentoo_mirrors_contains(value)
Verify if GENTOO_MIRRORS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.gentoo_mirrors_contains 'http://distfiles.gentoo.org'

salt.modules.makeconf.get_cflags()
Get the value of CFLAGS variable in the make.conf

Return the value of the variable or None if the variable is not in the make.conf

CLI Example:

salt '*' makeconf.get_cflags

salt.modules.makeconf.get_chost()
Get the value of CHOST variable in the make.conf

Return the value of the variable or None if the variable is not in the make.conf

CLI Example:

salt '*' makeconf.get_chost

salt.modules.makeconf.get_cxxflags()
Get the value of CXXFLAGS variable in the make.conf

Return the value of the variable or None if the variable is not in the make.conf

CLI Example:

salt '*' makeconf.get_cxxflags

22.16. Full list of builtin execution modules 667

Salt Documentation, Release 2014.7.6

salt.modules.makeconf.get_emerge_default_opts()
Get the value of EMERGE_DEFAULT_OPTS variable in the make.conf

Return the value of the variable or None if the variable is not in the make.conf

CLI Example:

salt '*' makeconf.get_emerge_default_opts

salt.modules.makeconf.get_features()
Get the value of FEATURES variable in the make.conf

Return the value of the variable or None if the variable is not in the make.conf

CLI Example:

salt '*' makeconf.get_features

salt.modules.makeconf.get_gentoo_mirrors()
Get the value of GENTOO_MIRRORS variable in the make.conf

Return the value of the variable or None if the variable is not in the make.conf

CLI Example:

salt '*' makeconf.get_gentoo_mirrors

salt.modules.makeconf.get_makeopts()
Get the value of MAKEOPTS variable in the make.conf

Return the value of the variable or None if the variable is not in the make.conf

CLI Example:

salt '*' makeconf.get_makeopts

salt.modules.makeconf.get_sync()
Get the value of SYNC variable in the make.conf

Return the value of the variable or None if the variable is not in the make.conf

CLI Example:

salt '*' makeconf.get_sync

salt.modules.makeconf.get_var(var)
Get the value of a variable in make.conf

Return the value of the variable or None if the variable is not in make.conf

CLI Example:

salt '*' makeconf.get_var 'LINGUAS'

salt.modules.makeconf.makeopts_contains(value)
Verify if MAKEOPTS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.makeopts_contains '-j3'

668 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.makeconf.remove_var(var)
Remove a variable from the make.conf

Return a dict containing the new value for the variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.remove_var 'LINGUAS'

salt.modules.makeconf.set_cflags(value)
Set the CFLAGS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_cflags '-march=native -O2 -pipe'

salt.modules.makeconf.set_chost(value)
Set the CHOST variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_chost 'x86_64-pc-linux-gnu'

salt.modules.makeconf.set_cxxflags(value)
Set the CXXFLAGS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_cxxflags '-march=native -O2 -pipe'

salt.modules.makeconf.set_emerge_default_opts(value)
Set the EMERGE_DEFAULT_OPTS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_emerge_default_opts '--jobs'

salt.modules.makeconf.set_gentoo_mirrors(value)
Set the GENTOO_MIRRORS variable

22.16. Full list of builtin execution modules 669

Salt Documentation, Release 2014.7.6

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_gentoo_mirrors 'http://distfiles.gentoo.org'

salt.modules.makeconf.set_makeopts(value)
Set the MAKEOPTS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_makeopts '-j3'

salt.modules.makeconf.set_sync(value)
Set the SYNC variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_sync 'rsync://rsync.namerica.gentoo.org/gentoo-portage'

salt.modules.makeconf.set_var(var, value)
Set a variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_var 'LINGUAS' 'en'

salt.modules.makeconf.sync_contains(value)
Verify if SYNC variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.sync_contains 'rsync://rsync.namerica.gentoo.org/gentoo-portage'

salt.modules.makeconf.trim_cflags(value)
Remove a value from CFLAGS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

670 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' makeconf.trim_cflags '-pipe'

salt.modules.makeconf.trim_cxxflags(value)
Remove a value from CXXFLAGS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_cxxflags '-pipe'

salt.modules.makeconf.trim_emerge_default_opts(value)
Remove a value from EMERGE_DEFAULT_OPTS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_emerge_default_opts '--jobs'

salt.modules.makeconf.trim_features(value)
Remove a value from FEATURES variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_features 'webrsync-gpg'

salt.modules.makeconf.trim_gentoo_mirrors(value)
Remove a value from GENTOO_MIRRORS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_gentoo_mirrors 'http://distfiles.gentoo.org'

salt.modules.makeconf.trim_makeopts(value)
Remove a value from MAKEOPTS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

22.16. Full list of builtin execution modules 671

Salt Documentation, Release 2014.7.6

salt '*' makeconf.trim_makeopts '-j3'

salt.modules.makeconf.trim_var(var, value)
Remove a value from a variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_var 'LINGUAS' 'en'

salt.modules.makeconf.var_contains(var, value)
Verify if variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.var_contains 'LINGUAS' 'en'

22.16.108 salt.modules.match

e match module allows for match routines to be run and determine target specs

salt.modules.match.compound(tgt, minion_id=None)
Return True if the minion ID matches the given compound target

minion_id Specify the minion ID to match against the target expression

New in version 2014.7.0.

CLI Example:

salt '*' match.compound 'L@cheese,foo and *'

salt.modules.match.data(tgt)
Return True if the minion matches the given data target

CLI Example:

salt '*' match.data 'spam:eggs'

salt.modules.match.filter_by(lookup, expr_form='compound', minion_id=None)
Return the first match in a dictionary of target paerns

New in version 2014.7.0.

CLI Example:

salt '*' match.filter_by '{foo*: Foo!, bar*: Bar!}' minion_id=bar03

Pillar Example:

{% set roles = salt['match.filter_by']({
'web*': ['app', 'caching'],
'db*': ['db'],

}) %}

672 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.match.glob(tgt, minion_id=None)
Return True if the minion ID matches the given glob target

minion_id Specify the minion ID to match against the target expression

New in version 2014.7.0.

CLI Example:

salt '*' match.glob '*'

salt.modules.match.grain(tgt, delimiter=':', delim=None)
Return True if the minion matches the given grain target. e delimiter argument can be used to specify
a different delimiter.

CLI Example:

salt '*' match.grain 'os:Ubuntu'
salt '*' match.grain 'ipv6|2001:db8::ff00:42:8329' delimiter='|'

delimiter Specify an alternate delimiter to use when traversing a nested dict

New in version 2014.7.0.

delim Specify an alternate delimiter to use when traversing a nested dict

New in version 0.16.4.

Deprecated since version 2014.7.0.

salt.modules.match.grain_pcre(tgt, delimiter=':', delim=None)
Return True if the minion matches the given grain_pcre target. e delimiter argument can be used to
specify a different delimiter.

CLI Example:

salt '*' match.grain_pcre 'os:Fedo.*'
salt '*' match.grain_pcre 'ipv6|2001:.*' delimiter='|'

delimiter Specify an alternate delimiter to use when traversing a nested dict

New in version 2014.7.0.

delim Specify an alternate delimiter to use when traversing a nested dict

New in version 0.16.4.

Deprecated since version 2014.7.0.

salt.modules.match.ipcidr(tgt)
Return True if the minion matches the given ipcidr target

CLI Example:

salt '*' match.ipcidr '192.168.44.0/24'

salt.modules.match.list_(tgt, minion_id=None)
Return True if the minion ID matches the given list target

minion_id Specify the minion ID to match against the target expression

New in version 2014.7.0.

22.16. Full list of builtin execution modules 673

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' match.list 'server1,server2'

salt.modules.match.pcre(tgt, minion_id=None)
Return True if the minion ID matches the given pcre target

minion_id Specify the minion ID to match against the target expression

New in version 2014.7.0.

CLI Example:

salt '*' match.pcre '.*'

salt.modules.match.pillar(tgt, delimiter=':', delim=None)
Return True if the minion matches the given pillar target. e delimiter argument can be used to specify
a different delimiter.

CLI Example:

salt '*' match.pillar 'cheese:foo'
salt '*' match.pillar 'clone_url|https://github.com/saltstack/salt.git' delimiter='|'

delimiter Specify an alternate delimiter to use when traversing a nested dict

New in version 2014.7.0.

delim Specify an alternate delimiter to use when traversing a nested dict

New in version 0.16.4.

Deprecated since version 2014.7.0.

22.16.109 salt.modules.mdadm

Salt module to manage RAID arrays with mdadm

salt.modules.mdadm.assemble(name, devices, test_mode=False, **kwargs)
Assemble a RAID device.

CLI Examples:

salt '*' raid.assemble /dev/md0 ['/dev/xvdd', '/dev/xvde']

Note: Adding test_mode=True as an argument will print out the mdadm command that would have been
run.

name e name of the array to assemble.

devices e list of devices comprising the array to assemble.

kwargs Optional arguments to be passed to mdadm.

returns

test_mode=True: Prints out the full command.

test_mode=False (Default): Executes command on the host(s) and prints out the mdadm output.

For more info, read the mdadm manpage.

674 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.mdadm.create(name, level, devices, metadata='default', test_mode=False, **kwargs)
Create a RAID device.

Changed in version 2014.7.0.

Warning: Use with CAUTION, as this function can be very destructive if not used properly!

CLI Examples:

salt '*' raid.create /dev/md0 level=1 chunk=256 devices="['/dev/xvdd', '/dev/xvde']" test_mode=True

Note: Adding test_mode=True as an argument will print out the mdadm command that would have been
run.

name e name of the array to create.

level e RAID level to use when creating the raid.

devices A list of devices used to build the array.

kwargs Optional arguments to be passed to mdadm.

returns

test_mode=True: Prints out the full command.

test_mode=False (Default): Executes command on remote the host(s) and Prints out the mdadm output.

Note: It takes time to create a RAID array. You can check the progress in ``resync_status:'' field of the results
from the following command:

salt '*' raid.detail /dev/md0

For more info, read the mdadm(8) manpage

salt.modules.mdadm.destroy(device)
Destroy a RAID device.

WARNING is will zero the superblock of all members of the RAID array..

CLI Example:

salt '*' raid.destroy /dev/md0

salt.modules.mdadm.detail(device='/dev/md0')
Show detail for a specified RAID device

CLI Example:

salt '*' raid.detail '/dev/md0'

salt.modules.mdadm.list_()
List the RAID devices.

CLI Example:

salt '*' raid.list

22.16. Full list of builtin execution modules 675

Salt Documentation, Release 2014.7.6

salt.modules.mdadm.save_config()
Save RAID configuration to config file.

Same as: mdadm --detail --scan >> /etc/mdadm/mdadm.conf

Fixes this issue with Ubuntu REF: hp://askubuntu.com/questions/209702/why-is-my-raid-dev-md1-showing-
up-as-dev-md126-is-mdadm-conf-being-ignored

CLI Example:

salt '*' raid.save_config

22.16.110 salt.modules.memcached

Module for Management of Memcached Keys

New in version 2014.1.0.

salt.modules.memcached.add(key, value, host=`127.0.0.1', port=11211, time=0, min_compress_len=0)
Add a key to the memcached server, but only if it does not exist. Returns False if the key already exists.

CLI Example:

salt '*' memcached.add <key> <value>

salt.modules.memcached.decrement(key, delta=1, host=`127.0.0.1', port=11211)
Decrement the value of a key

CLI Example:

salt '*' memcached.decrement <key>
salt '*' memcached.decrement <key> 2

salt.modules.memcached.delete(key, host=`127.0.0.1', port=11211, time=0)
Delete a key from memcache server

CLI Example:

salt '*' memcached.delete <key>

salt.modules.memcached.get(key, host=`127.0.0.1', port=11211)
Retrieve value for a key

CLI Example:

salt '*' memcached.get <key>

salt.modules.memcached.increment(key, delta=1, host=`127.0.0.1', port=11211)
Increment the value of a key

CLI Example:

salt '*' memcached.increment <key>
salt '*' memcached.increment <key> 2

salt.modules.memcached.replace(key, value, host=`127.0.0.1', port=11211, time=0,
min_compress_len=0)

Replace a key on the memcached server. is only succeeds if the key already exists. is is the opposite of
memcached.add

CLI Example:

676 Chapter 22. Reference

http://askubuntu.com/questions/209702/why-is-my-raid-dev-md1-showing-up-as-dev-md126-is-mdadm-conf-being-ignored
http://askubuntu.com/questions/209702/why-is-my-raid-dev-md1-showing-up-as-dev-md126-is-mdadm-conf-being-ignored

Salt Documentation, Release 2014.7.6

salt '*' memcached.replace <key> <value>

salt.modules.memcached.set_(key, value, host=`127.0.0.1', port=11211, time=0,min_compress_len=0)
Set a key on the memcached server, overwriting the value if it exists.

CLI Example:

salt '*' memcached.set <key> <value>

salt.modules.memcached.status(host=`127.0.0.1', port=11211)
Get memcached status

CLI Example:

salt '*' memcached.status

22.16.111 salt.modules.mine

e function cache system allows for data to be stored on the master so it can be easily read by other minions

salt.modules.mine.delete(fun)
Remove specific function contents of minion. Returns True on success.

CLI Example:

salt '*' mine.delete 'network.interfaces'

salt.modules.mine.flush()
Remove all mine contents of minion. Returns True on success.

CLI Example:

salt '*' mine.flush

salt.modules.mine.get(tgt, fun, expr_form='glob')
Get data from the mine based on the target, function and expr_form

Targets can be matched based on any standard matching system that can be matched on the master via these
keywords:

glob
pcre
grain
grain_pcre
compound
pillar

Note that all pillar matches, whether using the compound matching system or the pillar matching system, will
be exact matches, with globbing disabled.

CLI Example:

salt '*' mine.get '*' network.interfaces
salt '*' mine.get 'os:Fedora' network.interfaces grain
salt '*' mine.get 'os:Fedora and S@192.168.5.0/24' network.ipaddrs compound

salt.modules.mine.get_docker(interfaces=None, cidrs=None)
Get all mine data for `docker.get_containers' and run an aggregation routine. e ``interfaces'' parameter
allows for specifying which network interfaces to select ip addresses from. e ``cidrs'' parameter allows for
specifying a list of cidrs which the ip address must match.

22.16. Full list of builtin execution modules 677

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' mine.get_docker
salt '*' mine.get_docker interfaces='eth0'
salt '*' mine.get_docker interfaces='["eth0", "eth1"]'
salt '*' mine.get_docker cidrs='107.170.147.0/24'
salt '*' mine.get_docker cidrs='["107.170.147.0/24", "172.17.42.0/24"]'
salt '*' mine.get_docker interfaces='["eth0", "eth1"]' cidrs='["107.170.147.0/24", "172.17.42.0/24"]'

salt.modules.mine.send(func, *args, **kwargs)
Send a specific function to the mine.

CLI Example:

salt '*' mine.send network.interfaces eth0

salt.modules.mine.update(clear=False)
Execute the configured functions and send the data back up to the master e functions to be executed are
merged from the master config, pillar and minion config under the option ``function_cache'':

mine_functions:
network.ip_addrs:

- eth0
disk.usage: []

e function cache will be populated with information from executing these functions

CLI Example:

salt '*' mine.update

22.16.112 salt.modules.mod_random

New in version 2014.7.0.

Provides access to randomness generators.

salt.modules.mod_random.get_str(length=20)
New in version 2014.7.0.

Returns a random string of the specified length.

length [20] Any valid number of bytes.

CLI Example:

salt '*' random.get_str 128

salt.modules.mod_random.hash(value, algorithm='sha512')
New in version 2014.7.0.

Encodes a value with the specified encoder.

value e value to be hashed.

algorithm [sha512] e algorithm to use. May be any valid algorithm supported by hashlib.

CLI Example:

salt '*' random.hash 'I am a string' md5

678 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.mod_random.shadow_hash(crypt_salt=None, password=None, algorithm='sha512')
Generates a salted hash suitable for /etc/shadow.

crypt_salt [None] Salt to be used in the generation of the hash. If one is not provided, a random salt will be
generated.

password [None] Value to be salted and hashed. If one is not provided, a random password will be generated.

algorithm [sha512] Hash algorithm to use.

CLI Example:

salt '*' random.shadow_hash 'My5alT' 'MyP@asswd' md5

salt.modules.mod_random.str_encode(value, encoder='base64')
New in version 2014.7.0.

value e value to be encoded.

encoder [base64] e encoder to use on the subsequent string.

CLI Example:

salt '*' random.str_encode 'I am a new string' base64

22.16.113 salt.modules.modjk

Control Modjk via the Apache Tomcat ``Status'' worker (hp://tomcat.apache.org/connectors-
doc/reference/status.html)

Below is an example of the configuration needed for this module. is configuration data can be placed either in
grains or pillar .

If using grains, this can be accomplished statically or via a grain module.

If using pillar, the yaml configuration can be placed directly into a pillar SLS file, making this both the easier and
more dynamic method of configuring this module.

modjk:
default:

url: http://localhost/jkstatus
user: modjk
pass: secret
realm: authentication realm for digest passwords
timeout: 5

otherVhost:
url: http://otherVhost/jkstatus
user: modjk
pass: secret2
realm: authentication realm2 for digest passwords
timeout: 600

salt.modules.modjk.bulk_activate(workers, lbn, profile='default')
Activate all the given workers in the specific load balancer

CLI Examples:

salt '*' modjk.bulk_activate node1,node2,node3 loadbalancer1
salt '*' modjk.bulk_activate node1,node2,node3 loadbalancer1 other-profile

22.16. Full list of builtin execution modules 679

http://tomcat.apache.org/connectors-doc/reference/status.html
http://tomcat.apache.org/connectors-doc/reference/status.html

Salt Documentation, Release 2014.7.6

salt '*' modjk.bulk_activate ["node1","node2","node3"] loadbalancer1
salt '*' modjk.bulk_activate ["node1","node2","node3"] loadbalancer1 other-profile

salt.modules.modjk.bulk_disable(workers, lbn, profile='default')
Disable all the given workers in the specific load balancer

CLI Examples:

salt '*' modjk.bulk_disable node1,node2,node3 loadbalancer1
salt '*' modjk.bulk_disable node1,node2,node3 loadbalancer1 other-profile

salt '*' modjk.bulk_disable ["node1","node2","node3"] loadbalancer1
salt '*' modjk.bulk_disable ["node1","node2","node3"] loadbalancer1 other-profile

salt.modules.modjk.bulk_recover(workers, lbn, profile='default')
Recover all the given workers in the specific load balancer

CLI Examples:

salt '*' modjk.bulk_recover node1,node2,node3 loadbalancer1
salt '*' modjk.bulk_recover node1,node2,node3 loadbalancer1 other-profile

salt '*' modjk.bulk_recover ["node1","node2","node3"] loadbalancer1
salt '*' modjk.bulk_recover ["node1","node2","node3"] loadbalancer1 other-profile

salt.modules.modjk.bulk_stop(workers, lbn, profile='default')
Stop all the given workers in the specific load balancer

CLI Examples:

salt '*' modjk.bulk_stop node1,node2,node3 loadbalancer1
salt '*' modjk.bulk_stop node1,node2,node3 loadbalancer1 other-profile

salt '*' modjk.bulk_stop ["node1","node2","node3"] loadbalancer1
salt '*' modjk.bulk_stop ["node1","node2","node3"] loadbalancer1 other-profile

salt.modules.modjk.dump_config(profile='default')
Dump the original configuration that was loaded from disk

CLI Examples:

salt '*' modjk.dump_config
salt '*' modjk.dump_config other-profile

salt.modules.modjk.get_running(profile='default')
Get the current running config (not from disk)

CLI Examples:

salt '*' modjk.get_running
salt '*' modjk.get_running other-profile

salt.modules.modjk.lb_edit(lbn, seings, profile='default')
Edit the loadbalancer seings

Note: hp://tomcat.apache.org/connectors-doc/reference/status.html Data Parameters for the standard Up-
date Action

CLI Examples:

680 Chapter 22. Reference

http://tomcat.apache.org/connectors-doc/reference/status.html

Salt Documentation, Release 2014.7.6

salt '*' modjk.lb_edit loadbalancer1 "{'vlr': 1, 'vlt': 60}"
salt '*' modjk.lb_edit loadbalancer1 "{'vlr': 1, 'vlt': 60}" other-profile

salt.modules.modjk.list_configured_members(lbn, profile='default')
Return a list of member workers from the configuration files

CLI Examples:

salt '*' modjk.list_configured_members loadbalancer1
salt '*' modjk.list_configured_members loadbalancer1 other-profile

salt.modules.modjk.recover_all(lbn, profile='default')
Set the all the workers in lbn to recover and activate them if they are not

CLI Examples:

salt '*' modjk.recover_all loadbalancer1
salt '*' modjk.recover_all loadbalancer1 other-profile

salt.modules.modjk.reset_stats(lbn, profile='default')
Reset all runtime statistics for the load balancer

CLI Examples:

salt '*' modjk.reset_stats loadbalancer1
salt '*' modjk.reset_stats loadbalancer1 other-profile

salt.modules.modjk.version(profile='default')
Return the modjk version

CLI Examples:

salt '*' modjk.version
salt '*' modjk.version other-profile

salt.modules.modjk.worker_activate(worker, lbn, profile='default')
Set the worker to activate state in the lbn load balancer

CLI Examples:

salt '*' modjk.worker_activate node1 loadbalancer1
salt '*' modjk.worker_activate node1 loadbalancer1 other-profile

salt.modules.modjk.worker_disable(worker, lbn, profile='default')
Set the worker to disable state in the lbn load balancer

CLI Examples:

salt '*' modjk.worker_disable node1 loadbalancer1
salt '*' modjk.worker_disable node1 loadbalancer1 other-profile

salt.modules.modjk.worker_edit(worker, lbn, seings, profile='default')
Edit the worker seings

Note: hp://tomcat.apache.org/connectors-doc/reference/status.html Data Parameters for the standard Up-
date Action

CLI Examples:

salt '*' modjk.worker_edit node1 loadbalancer1 "{'vwf': 500, 'vwd': 60}"
salt '*' modjk.worker_edit node1 loadbalancer1 "{'vwf': 500, 'vwd': 60}" other-profile

22.16. Full list of builtin execution modules 681

http://tomcat.apache.org/connectors-doc/reference/status.html

Salt Documentation, Release 2014.7.6

salt.modules.modjk.worker_recover(worker, lbn, profile='default')
Set the worker to recover this module will fail if it is in OK state

CLI Examples:

salt '*' modjk.worker_recover node1 loadbalancer1
salt '*' modjk.worker_recover node1 loadbalancer1 other-profile

salt.modules.modjk.worker_status(worker, profile='default')
Return the state of the worker

CLI Examples:

salt '*' modjk.worker_status node1
salt '*' modjk.worker_status node1 other-profile

salt.modules.modjk.worker_stop(worker, lbn, profile='default')
Set the worker to stopped state in the lbn load balancer

CLI Examples:

salt '*' modjk.worker_activate node1 loadbalancer1
salt '*' modjk.worker_activate node1 loadbalancer1 other-profile

salt.modules.modjk.workers(profile='default')
Return a list of member workers and their status

CLI Examples:

salt '*' modjk.workers
salt '*' modjk.workers other-profile

22.16.114 salt.modules.mongodb

Module to provide MongoDB functionality to Salt

configuration is module uses PyMongo, and accepts configuration details as parameters as well as
configuration seings:

mongodb.host: 'localhost'
mongodb.port: 27017
mongodb.user: ''
mongodb.password: ''

is data can also be passed into pillar. Options passed into opts will overwrite options passed into
pillar.

salt.modules.mongodb.db_exists(name, user=None, password=None, host=None, port=None)
Checks if a database exists in Mongodb

CLI Example:

salt '*' mongodb.db_exists <name> <user> <password> <host> <port>

salt.modules.mongodb.db_list(user=None, password=None, host=None, port=None)
List all Mongodb databases

CLI Example:

682 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' mongodb.db_list <user> <password> <host> <port>

salt.modules.mongodb.db_remove(name, user=None, password=None, host=None, port=None)
Remove a Mongodb database

CLI Example:

salt '*' mongodb.db_remove <name> <user> <password> <host> <port>

salt.modules.mongodb.user_create(name, passwd, user=None, password=None, host=None,
port=None, database='admin')

Create a Mongodb user

CLI Example:

salt '*' mongodb.user_create <name> <user> <password> <host> <port> <database>

salt.modules.mongodb.user_exists(name, user=None, password=None, host=None, port=None,
database='admin')

Checks if a user exists in Mongodb

CLI Example:

salt '*' mongodb.user_exists <name> <user> <password> <host> <port> <database>

salt.modules.mongodb.user_list(user=None, password=None, host=None, port=None,
database='admin')

List users of a Mongodb database

CLI Example:

salt '*' mongodb.user_list <user> <password> <host> <port> <database>

salt.modules.mongodb.user_remove(name, user=None, password=None, host=None, port=None,
database='admin')

Remove a Mongodb user

CLI Example:

salt '*' mongodb.user_remove <name> <user> <password> <host> <port> <database>

22.16.115 salt.modules.monit

Monit service module. is module will create a monit type service watcher.

salt.modules.monit.monitor(name)
monitor service via monit

CLI Example:

salt '*' monit.monitor <service name>

salt.modules.monit.restart(name)
Restart service via monit

CLI Example:

salt '*' monit.restart <service name>

salt.modules.monit.start(name)
CLI Example:

22.16. Full list of builtin execution modules 683

Salt Documentation, Release 2014.7.6

salt '*' monit.start <service name>

salt.modules.monit.stop(name)
Stops service via monit

CLI Example:

salt '*' monit.stop <service name>

salt.modules.monit.summary(svc_name='`)
Display a summary from monit

CLI Example:

salt '*' monit.summary
salt '*' monit.summary <service name>

salt.modules.monit.unmonitor(name)
Unmonitor service via monit

CLI Example:

salt '*' monit.unmonitor <service name>

22.16.116 salt.modules.moosefs

Module for gathering and managing information about MooseFS

salt.modules.moosefs.dirinfo(path, opts=None)
Return information on a directory located on the Moose

CLI Example:

salt '*' moosefs.dirinfo /path/to/dir/ [-[n][h|H]]

salt.modules.moosefs.fileinfo(path)
Return information on a file located on the Moose

CLI Example:

salt '*' moosefs.fileinfo /path/to/dir/

salt.modules.moosefs.getgoal(path, opts=None)
Return goal(s) for a file or directory

CLI Example:

salt '*' moosefs.getgoal /path/to/file [-[n][h|H]]
salt '*' moosefs.getgoal /path/to/dir/ [-[n][h|H][r]]

salt.modules.moosefs.mounts()
Return a list of current MooseFS mounts

CLI Example:

salt '*' moosefs.mounts

684 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.16.117 salt.modules.mount

Salt module to manage unix mounts and the fstab file

salt.modules.mount.active(extended=False)
List the active mounts.

CLI Example:

salt '*' mount.active

salt.modules.mount.fstab(config='/etc/fstab')
List the contents of the fstab

CLI Example:

salt '*' mount.fstab

salt.modules.mount.is_fuse_exec(cmd)
Returns true if the command passed is a fuse mountable application.

CLI Example:

salt '*' mount.is_fuse_exec sshfs

salt.modules.mount.is_mounted(name)
New in version 2014.7.0.

Provide information if the path is mounted

CLI Example:

salt '*' mount.is_mounted /mnt/share

salt.modules.mount.mount(name, device, mkmnt=False, fstype='`, opts='defaults')
Mount a device

CLI Example:

salt '*' mount.mount /mnt/foo /dev/sdz1 True

salt.modules.mount.remount(name, device, mkmnt=False, fstype='`, opts='defaults')
Aempt to remount a device, if the device is not already mounted, mount is called

CLI Example:

salt '*' mount.remount /mnt/foo /dev/sdz1 True

salt.modules.mount.rm_fstab(name, config='/etc/fstab')
Remove the mount point from the fstab

CLI Example:

salt '*' mount.rm_fstab /mnt/foo

salt.modules.mount.set_fstab(name, device, fstype, opts='defaults', dump=0, pass_num=0, con-
fig='/etc/fstab', test=False, **kwargs)

Verify that this mount is represented in the fstab, change the mount to match the data passed, or add the mount
if it is not present.

CLI Example:

22.16. Full list of builtin execution modules 685

Salt Documentation, Release 2014.7.6

salt '*' mount.set_fstab /mnt/foo /dev/sdz1 ext4

salt.modules.mount.swapoff(name)
Deactivate a named swap mount

CLI Example:

salt '*' mount.swapoff /root/swapfile

salt.modules.mount.swapon(name, priority=None)
Activate a swap disk

CLI Example:

salt '*' mount.swapon /root/swapfile

salt.modules.mount.swaps()
Return a dict containing information on active swap

CLI Example:

salt '*' mount.swaps

salt.modules.mount.umount(name)
Aempt to unmount a device by specifying the directory it is mounted on

CLI Example:

salt '*' mount.umount /mnt/foo

22.16.118 salt.modules.munin

Run munin plugins/checks from salt and format the output as data.

salt.modules.munin.list_plugins()
List all the munin plugins

CLI Example:

salt '*' munin.list_plugins

salt.modules.munin.run(plugins)
Run one or more named munin plugins

CLI Example:

salt '*' munin.run uptime
salt '*' munin.run uptime,cpu,load,memory

salt.modules.munin.run_all()
Run all the munin plugins

CLI Example:

salt '*' munin.run_all

686 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.16.119 salt.modules.mysql

Module to provide MySQL compatibility to salt.

depends

• MySQLdb Python module

Note: On CentOS 5 (and possibly RHEL 5) both MySQL-python and python26-mysqldb need to be installed.

configuration In order to connect to MySQL, certain configuration is required in /etc/salt/minion on
the relevant minions. Some sample configs might look like:

mysql.host: 'localhost'
mysql.port: 3306
mysql.user: 'root'
mysql.pass: ''
mysql.db: 'mysql'
mysql.unix_socket: '/tmp/mysql.sock'
mysql.charset: 'utf8'

You can also use a defaults file:

mysql.default_file: '/etc/mysql/debian.cnf'

Changed in version 2014.1.0: charset connection argument added. is is a MySQL charset, not a python one

Changed in version 0.16.2: Connection arguments from the minion config file can be overridden on the CLI by using
the arguments defined here. Additionally, it is now possible to setup a user with no password.

salt.modules.mysql.db_check(name, table=None, **connection_args)
Repairs the full database or just a given table

CLI Example:

salt '*' mysql.db_check dbname
salt '*' mysql.db_check dbname dbtable

salt.modules.mysql.db_create(name, character_set=None, collate=None, **connection_args)
Adds a databases to the MySQL server.

name e name of the database to manage

aracter_set e character set, if le empty the MySQL default will be used

collate e collation, if le empty the MySQL default will be used

CLI Example:

salt '*' mysql.db_create 'dbname'
salt '*' mysql.db_create 'dbname' 'utf8' 'utf8_general_ci'

salt.modules.mysql.db_exists(name, **connection_args)
Checks if a database exists on the MySQL server.

CLI Example:

salt '*' mysql.db_exists 'dbname'

salt.modules.mysql.db_list(**connection_args)
Return a list of databases of a MySQL server using the output from the SHOW DATABASES query.

22.16. Full list of builtin execution modules 687

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' mysql.db_list

salt.modules.mysql.db_optimize(name, table=None, **connection_args)
Optimizes the full database or just a given table

CLI Example:

salt '*' mysql.db_optimize dbname

salt.modules.mysql.db_remove(name, **connection_args)
Removes a databases from the MySQL server.

CLI Example:

salt '*' mysql.db_remove 'dbname'

salt.modules.mysql.db_repair(name, table=None, **connection_args)
Repairs the full database or just a given table

CLI Example:

salt '*' mysql.db_repair dbname

salt.modules.mysql.db_tables(name, **connection_args)
Shows the tables in the given MySQL database (if exists)

CLI Example:

salt '*' mysql.db_tables 'database'

salt.modules.mysql.free_slave(**connection_args)
Frees a slave from its master. is is a WIP, do not use.

CLI Example:

salt '*' mysql.free_slave

salt.modules.mysql.get_master_status(**connection_args)
Retrieves the master status from the minion.

Returns:

{`host.domain.com': {`Binlog_Do_DB': `', `Binlog_Ignore_DB': `', `File': `mysql-bin.000021', `Position':
107}}

CLI Example:

salt '*' mysql.get_master_status

salt.modules.mysql.get_slave_status(**connection_args)
Retrieves the slave status from the minion.

Returns:

{'host.domain.com': {'Connect_Retry': 60,
'Exec_Master_Log_Pos': 107,
'Last_Errno': 0,
'Last_Error': '',
'Last_IO_Errno': 0,
'Last_IO_Error': '',
'Last_SQL_Errno': 0,

688 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

'Last_SQL_Error': '',
'Master_Host': 'comet.scion-eng.com',
'Master_Log_File': 'mysql-bin.000021',
'Master_Port': 3306,
'Master_SSL_Allowed': 'No',
'Master_SSL_CA_File': '',
'Master_SSL_CA_Path': '',
'Master_SSL_Cert': '',
'Master_SSL_Cipher': '',
'Master_SSL_Key': '',
'Master_SSL_Verify_Server_Cert': 'No',
'Master_Server_Id': 1,
'Master_User': 'replu',
'Read_Master_Log_Pos': 107,
'Relay_Log_File': 'klo-relay-bin.000071',
'Relay_Log_Pos': 253,
'Relay_Log_Space': 553,
'Relay_Master_Log_File': 'mysql-bin.000021',
'Replicate_Do_DB': '',
'Replicate_Do_Table': '',
'Replicate_Ignore_DB': '',
'Replicate_Ignore_Server_Ids': '',
'Replicate_Ignore_Table': '',
'Replicate_Wild_Do_Table': '',
'Replicate_Wild_Ignore_Table': '',
'Seconds_Behind_Master': 0,
'Skip_Counter': 0,
'Slave_IO_Running': 'Yes',
'Slave_IO_State': 'Waiting for master to send event',
'Slave_SQL_Running': 'Yes',
'Until_Condition': 'None',
'Until_Log_File': '',
'Until_Log_Pos': 0}}

CLI Example:

salt '*' mysql.get_slave_status

salt.modules.mysql.grant_add(grant, database, user, host='localhost', grant_option=False, es-
cape=True, ssl_option=False, **connection_args)

Adds a grant to the MySQL server.

For database, make sure you specify database.table or database.*

CLI Example:

salt '*' mysql.grant_add 'SELECT,INSERT,UPDATE,...' 'database.*' 'frank' 'localhost'

salt.modules.mysql.grant_exists(grant, database, user, host='localhost', grant_option=False, es-
cape=True, **connection_args)

Checks to see if a grant exists in the database

CLI Example:

salt '*' mysql.grant_exists 'SELECT,INSERT,UPDATE,...' 'database.*' 'frank' 'localhost'

salt.modules.mysql.grant_revoke(grant, database, user, host='localhost', grant_option=False, es-
cape=True, **connection_args)

Removes a grant from the MySQL server.

22.16. Full list of builtin execution modules 689

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' mysql.grant_revoke 'SELECT,INSERT,UPDATE' 'database.*' 'frank' 'localhost'

salt.modules.mysql.processlist(**connection_args)
Retrieves the processlist from the MySQL server via ``SHOW FULL PROCESSLIST''.

Returns: a list of dicts, with ea dict representing a process:

{`Command': `ery', `Host': `localhost', `Id': 39, `Info': `SHOW FULL PROCESSLIST',
`Rows_examined': 0, `Rows_read': 1, `Rows_sent': 0, `State': None, `Time': 0, `User': `root',
`db': `mysql'}

CLI Example:

salt '*' mysql.processlist

salt.modules.mysql.query(database, query, **connection_args)
Run an arbitrary SQL query and return the results or the number of affected rows.

CLI Example:

salt '*' mysql.query mydb "UPDATE mytable set myfield=1 limit 1"

Return data:

{'query time': {'human': '39.0ms', 'raw': '0.03899'}, 'rows affected': 1L}

CLI Example:

salt '*' mysql.query mydb "SELECT id,name,cash from users limit 3"

Return data:

{'columns': ('id', 'name', 'cash'),
'query time': {'human': '1.0ms', 'raw': '0.001'},
'results': ((1L, 'User 1', Decimal('110.000000')),

(2L, 'User 2', Decimal('215.636756')),
(3L, 'User 3', Decimal('0.040000'))),

'rows returned': 3L}

CLI Example:

salt '*' mysql.query mydb 'INSERT into users values (null,"user 4", 5)'

Return data:

{'query time': {'human': '25.6ms', 'raw': '0.02563'}, 'rows affected': 1L}

CLI Example:

salt '*' mysql.query mydb 'DELETE from users where id = 4 limit 1'

Return data:

{'query time': {'human': '39.0ms', 'raw': '0.03899'}, 'rows affected': 1L}

Jinja Example: Run a query on mydb and use row 0, column 0's data.

{{ salt['mysql.query']('mydb', 'SELECT info from mytable limit 1')['results'][0][0] }}

690 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.mysql.quote_identifier(identifier, for_grants=False)
Return an identifier name (column, table, database, etc) escaped for MySQL

is means surrounded by ```'' character and escaping this character inside. It also means doubling the `%'
character for MySQLdb internal usage.

Parameters

• identifier -- the table, column or database identifier

• for_grants -- is False by default, when using database names on grant queries you
should set it to True to also escape ``_'' and ``%'' characters as requested by MySQL. Note
that theses characters should only be escaped when requesting grants on the database level
(my_%db.*) but not for table level grants (my_%db.`foo`)

CLI Example:

salt '*' mysql.quote_identifier 'foo`bar'

salt.modules.mysql.showglobal(**connection_args)
Retrieves the show global variables from the minion.

Returns:: show global variables full dict

CLI Example:

salt '*' mysql.showglobal

salt.modules.mysql.showvariables(**connection_args)
Retrieves the show variables from the minion.

Returns:: show variables full dict

CLI Example:

salt '*' mysql.showvariables

salt.modules.mysql.slave_lag(**connection_args)
Return the number of seconds that a slave SQL server is lagging behind the master, if the host is not a slave it
will return -1. If the server is configured to be a slave for replication but slave IO is not running then -2 will
be returned. If there was an error connecting to the database or checking the slave status, -3 will be returned.

CLI Example:

salt '*' mysql.slave_lag

salt.modules.mysql.status(**connection_args)
Return the status of a MySQL server using the output from the SHOW STATUS query.

CLI Example:

salt '*' mysql.status

salt.modules.mysql.tokenize_grant(grant)
External wrapper function :param grant: :return: dict

CLI Example:

salt '*' mysql.tokenize_grant "GRANT SELECT, INSERT ON testdb.* TO 'testuser'@'localhost'"

salt.modules.mysql.user_chpass(user, host='localhost', password=None, password_hash=None, al-
low_passwordless=False, unix_socket=None, **connection_args)

Change password for a MySQL user

22.16. Full list of builtin execution modules 691

Salt Documentation, Release 2014.7.6

host Host for which this user/password combo applies

password e password to set for the new user. Will take precedence over the password_hash option if
both are specified.

password_hash e password in hashed form. Be sure to quote the password because YAML doesn't like the
*. A password hash can be obtained from the mysql command-line client like so:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+
1 row in set (0.00 sec)

allow_passwordless If True, then password and password_hash can be omied (or set to None) to
permit a passwordless login.

New in version 0.16.2: e allow_passwordless option was added.

CLI Examples:

salt '*' mysql.user_chpass frank localhost newpassword
salt '*' mysql.user_chpass frank localhost password_hash='hash'
salt '*' mysql.user_chpass frank localhost allow_passwordless=True

salt.modules.mysql.user_create(user, host='localhost', password=None, password_hash=None, al-
low_passwordless=False, unix_socket=False, **connection_args)

Creates a MySQL user

host Host for which this user/password combo applies

password e password to use for the new user. Will take precedence over the password_hash option if
both are specified.

password_hash e password in hashed form. Be sure to quote the password because YAML doesn't like the
*. A password hash can be obtained from the mysql command-line client like so:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+
1 row in set (0.00 sec)

allow_passwordless If True, then password and password_hash can be omied (or set to None) to
permit a passwordless login.

unix_soet If True and allow_passwordless is True then will be used unix_socket auth plugin.

New in version 0.16.2: e allow_passwordless option was added.

CLI Examples:

salt '*' mysql.user_create 'username' 'hostname' 'password'
salt '*' mysql.user_create 'username' 'hostname' password_hash='hash'
salt '*' mysql.user_create 'username' 'hostname' allow_passwordless=True

salt.modules.mysql.user_exists(user, host='localhost', password=None, password_hash=None,
passwordless=False, unix_socket=False, **connection_args)

Checks if a user exists on the MySQL server. A login can be checked to see if passwordless login is permied

692 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

by omiing password and password_hash, and using passwordless=True.

New in version 0.16.2: e passwordless option was added.

CLI Example:

salt '*' mysql.user_exists 'username' 'hostname' 'password'
salt '*' mysql.user_exists 'username' 'hostname' password_hash='hash'
salt '*' mysql.user_exists 'username' passwordless=True

salt.modules.mysql.user_grants(user, host='localhost', **connection_args)
Shows the grants for the given MySQL user (if it exists)

CLI Example:

salt '*' mysql.user_grants 'frank' 'localhost'

salt.modules.mysql.user_info(user, host='localhost', **connection_args)
Get full info on a MySQL user

CLI Example:

salt '*' mysql.user_info root localhost

salt.modules.mysql.user_list(**connection_args)
Return a list of users on a MySQL server

CLI Example:

salt '*' mysql.user_list

salt.modules.mysql.user_remove(user, host='localhost', **connection_args)
Delete MySQL user

CLI Example:

salt '*' mysql.user_remove frank localhost

salt.modules.mysql.version(**connection_args)
Return the version of a MySQL server using the output from the SELECT VERSION() query.

CLI Example:

salt '*' mysql.version

22.16.120 salt.modules.nagios

Run nagios plugins/checks from salt and get the return as data.

salt.modules.nagios.list_plugins()
List all the nagios plugins

CLI Example:

salt '*' nagios.list_plugins

salt.modules.nagios.retcode(plugin, args='`, key_name=None)
Run one nagios plugin and return retcode of the execution

CLI Example:

22.16. Full list of builtin execution modules 693

Salt Documentation, Release 2014.7.6

salt '*' nagios.run check_apt
salt '*' nagios.run check_icmp '8.8.8.8'

salt.modules.nagios.retcode_pillar(pillar_name)
Run one or more nagios plugins from pillar data and get the result of cmd.retcode e pillar have to be in this
format:

webserver:

Ping_google:
- check_icmp:8.8.8.8
- check_icmp:google.com

Load:
- check_load:-w 0.8 -c 1

APT:
- check_apt

webserver is the role to check, the next keys are the group and the items the check with the arguments if
needed

You must to group different checks(one o more) and always it will return the highest value of all the checks

CLI Example:

salt '*' nagios.retcode webserver

salt.modules.nagios.run(plugin, args='`)
Run nagios plugin and return all the data execution with cmd.run

salt.modules.nagios.run_all(plugin, args='`)
Run nagios plugin and return all the data execution with cmd.run_all

salt.modules.nagios.run_all_pillar(pillar_name)
Run one or more nagios plugins from pillar data and get the result of cmd.run_all e pillar have to be in this
format:

webserver:

Ping_google:
- check_icmp:8.8.8.8
- check_icmp:google.com

Load:
- check_load:-w 0.8 -c 1

APT:
- check_apt

webserver is the role to check, the next keys are the group and the items the check with the arguments if
needed

You have to group different checks in a group

CLI Example:

salt '*' nagios.run webserver

salt.modules.nagios.run_pillar(pillar_name)
Run one or more nagios plugins from pillar data and get the result of cmd.run e pillar have to be in this
format:

694 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

webserver:

Ping_google:
- check_icmp:8.8.8.8
- check_icmp:google.com

Load:
- check_load:-w 0.8 -c 1

APT:
- check_apt

webserver is the role to check, the next keys are the group and the items the check with the arguments if
needed

You have to group different checks in a group

CLI Example:

salt '*' nagios.run webserver

22.16.121 salt.modules.netbsd_sysctl

Module for viewing and modifying sysctl parameters

salt.modules.netbsd_sysctl.assign(name, value)
Assign a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.assign net.inet.icmp.icmplim 50

salt.modules.netbsd_sysctl.get(name)
Return a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.get hw.physmem

salt.modules.netbsd_sysctl.persist(name, value, config='/etc/sysctl.conf')
Assign and persist a simple sysctl parameter for this minion

CLI Example:

salt '*' sysctl.persist net.inet.icmp.icmplim 50

salt.modules.netbsd_sysctl.show(config_file=False)
Return a list of sysctl parameters for this minion

CLI Example:

salt '*' sysctl.show

22.16.122 salt.modules.netbsdservice

e service module for NetBSD

salt.modules.netbsdservice.available(name)
Returns True if the specified service is available, otherwise returns False.

22.16. Full list of builtin execution modules 695

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' service.available sshd

salt.modules.netbsdservice.disable(name, **kwargs)
Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

salt.modules.netbsdservice.disabled(name)
Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.disabled <service name>

salt.modules.netbsdservice.enable(name, **kwargs)
Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

salt.modules.netbsdservice.enabled(name)
Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.enabled <service name>

salt.modules.netbsdservice.force_reload(name)
Force-reload the named service

CLI Example:

salt '*' service.force_reload <service name>

salt.modules.netbsdservice.get_all()
Return all available boot services

CLI Example:

salt '*' service.get_all

salt.modules.netbsdservice.get_disabled()
Return a set of services that are installed but disabled

CLI Example:

salt '*' service.get_disabled

salt.modules.netbsdservice.get_enabled()
Return a list of service that are enabled on boot

CLI Example:

salt '*' service.get_enabled

salt.modules.netbsdservice.missing(name)
e inverse of service.available. Returns True if the specified service is not available, otherwise returns
False.

696 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' service.missing sshd

salt.modules.netbsdservice.reload_(name)
Reload the named service

CLI Example:

salt '*' service.reload <service name>

salt.modules.netbsdservice.restart(name)
Restart the named service

CLI Example:

salt '*' service.restart <service name>

salt.modules.netbsdservice.start(name)
Start the specified service

CLI Example:

salt '*' service.start <service name>

salt.modules.netbsdservice.status(name, sig=None)
Return the status for a service, returns a bool whether the service is running.

CLI Example:

salt '*' service.status <service name>

salt.modules.netbsdservice.stop(name)
Stop the specified service

CLI Example:

salt '*' service.stop <service name>

22.16.123 salt.modules.network

Module for gathering and managing network information

salt.modules.network.active_tcp()
Return a dict containing information on all of the running TCP connections

CLI Example:

salt '*' network.active_tcp

salt.modules.network.arp()
Return the arp table from the minion

CLI Example:

salt '*' network.arp

salt.modules.network.connect(host, port=None, **kwargs)
Test connectivity to a host using a particular port from the minion.

New in version 2014.7.

22.16. Full list of builtin execution modules 697

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' network.connect archlinux.org 80

salt '*' network.connect archlinux.org 80 timeout=3

salt '*' network.connect archlinux.org 80 timeout=3 family=ipv4

salt '*' network.connect google-public-dns-a.google.com port=53 proto=udp timeout=3

salt.modules.network.dig(host)
Performs a DNS lookup with dig

CLI Example:

salt '*' network.dig archlinux.org

salt.modules.network.get_hostname()
Get hostname

CLI Example:

salt '*' network.get_hostname

salt.modules.network.hw_addr(iface)
Return the hardware address (a.k.a. MAC address) for a given interface

CLI Example:

salt '*' network.hw_addr eth0

salt.modules.network.hwaddr(iface)
Return the hardware address (a.k.a. MAC address) for a given interface

CLI Example:

salt '*' network.hw_addr eth0

salt.modules.network.in_subnet(cidr)
Returns True if host is within specified subnet, otherwise False.

CLI Example:

salt '*' network.in_subnet 10.0.0.0/16

salt.modules.network.interface(iface)
Return the inet address for a given interface

New in version 2014.7.

CLI Example:

salt '*' network.interface eth0

salt.modules.network.interface_ip(iface)
Return the inet address for a given interface

New in version 2014.7.

CLI Example:

salt '*' network.interface_ip eth0

698 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.network.interfaces()
Return a dictionary of information about all the interfaces on the minion

CLI Example:

salt '*' network.interfaces

salt.modules.network.ip_addrs(interface=None, include_loopback=False, cidr=None)
Returns a list of IPv4 addresses assigned to the host. 127.0.0.1 is ignored, unless `include_loopback=True' is
indicated. If `interface' is provided, then only IP addresses from that interface will be returned. Providing a
CIDR via `cidr=''10.0.0.0/8''' will return only the addresses which are within that subnet.

CLI Example:

salt '*' network.ip_addrs

salt.modules.network.ip_addrs6(interface=None, include_loopback=False)
Returns a list of IPv6 addresses assigned to the host. ::1 is ignored, unless `include_loopback=True' is indicated.
If `interface' is provided, then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs6

salt.modules.network.ipaddrs(interface=None, include_loopback=False, cidr=None)
Returns a list of IPv4 addresses assigned to the host. 127.0.0.1 is ignored, unless `include_loopback=True' is
indicated. If `interface' is provided, then only IP addresses from that interface will be returned. Providing a
CIDR via `cidr=''10.0.0.0/8''' will return only the addresses which are within that subnet.

CLI Example:

salt '*' network.ip_addrs

salt.modules.network.ipaddrs6(interface=None, include_loopback=False)
Returns a list of IPv6 addresses assigned to the host. ::1 is ignored, unless `include_loopback=True' is indicated.
If `interface' is provided, then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs6

salt.modules.network.is_loopback(ip_addr)
Check if the given IP address is a loopback address

New in version 2014.7.0.

CLI Example:

salt '*' network.is_loopback 127.0.0.1

salt.modules.network.is_private(ip_addr)
Check if the given IP address is a private address

New in version 2014.7.0.

CLI Example:

salt '*' network.is_private 10.0.0.3

salt.modules.network.mod_hostname(hostname)
Modify hostname

CLI Example:

22.16. Full list of builtin execution modules 699

Salt Documentation, Release 2014.7.6

salt '*' network.mod_hostname master.saltstack.com

salt.modules.network.netstat()
Return information on open ports and states

Note: On BSD minions, the output contains PID info (where available) for each netstat entry, fetched from
sockstat/fstat output.

Changed in version 2014.1.4: Added support for OpenBSD, FreeBSD, and NetBSD

CLI Example:

salt '*' network.netstat

salt.modules.network.ping(host)
Performs a ping to a host

CLI Example:

salt '*' network.ping archlinux.org

salt.modules.network.subnets()
Returns a list of subnets to which the host belongs

CLI Example:

salt '*' network.subnets

salt.modules.network.traceroute(host)
Performs a traceroute to a 3rd party host

CLI Example:

salt '*' network.traceroute archlinux.org

22.16.124 salt.modules.nfs3

Module for managing NFS version 3.

salt.modules.nfs3.del_export(exports='/etc/exports', path=None)
Remove an export

CLI Example:

salt '*' nfs.del_export /media/storage

salt.modules.nfs3.list_exports(exports='/etc/exports')
List configured exports

CLI Example:

salt '*' nfs.list_exports

22.16.125 salt.modules.nables

Support for nables

700 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.nftables.append(table='filter', chain=None, rule=None, family='ipv4')
Append a rule to the specified table & chain.

is function accepts a rule in a standard nables command format, starting with the chain. Trying to
force users to adapt to a new method of creating rules would be irritating at best, and we already have a
parser that can handle it.

CLI Example:

salt '*' nftables.append filter input \
rule='input tcp dport 22 log accept'

IPv6:
salt '*' nftables.append filter input \

rule='input tcp dport 22 log accept' \
family=ipv6

salt.modules.nftables.build_rule(table=None, chain=None, command=None, position='`,
full=None, family='ipv4', **kwargs)

Build a well-formaed nables rule based on kwargs. A table and chain are not required, unless full is True.

If full is True, then table, chain and command are required. command may be specified as either insert, append,
or delete. is will return the nables command, exactly as it would be used from the command line.

If a position is required (as with insert or delete), it may be specified as position. is will only be useful if full
is True.

If connstate is passed in, it will automatically be changed to state.

CLI Examples:

salt '*' nftables.build_rule match=state \
connstate=RELATED,ESTABLISHED jump=ACCEPT

salt '*' nftables.build_rule filter input command=insert position=3 \
full=True match=state state=related,established jump=accept

IPv6:
salt '*' nftables.build_rule match=state \

connstate=related,established jump=accept \
family=ipv6

salt '*' nftables.build_rule filter input command=insert position=3 \
full=True match=state state=related,established jump=accept \
family=ipv6

salt.modules.nftables.check(table='filter', chain=None, rule=None, family='ipv4')
Check for the existence of a rule in the table and chain

is function accepts a rule in a standard nables command format, starting with the chain. Trying to
force users to adapt to a new method of creating rules would be irritating at best, and we already have a
parser that can handle it.

CLI Example:

salt '*' nftables.check filter input \
rule='input tcp dport 22 log accept'

IPv6:
salt '*' nftables.check filter input \

rule='input tcp dport 22 log accept' \
family=ipv6

22.16. Full list of builtin execution modules 701

Salt Documentation, Release 2014.7.6

salt.modules.nftables.check_chain(table='filter', chain=None, family='ipv4')
New in version 2014.7.0.

Check for the existence of a chain in the table

CLI Example:

salt '*' nftables.check_chain filter input

IPv6:
salt '*' nftables.check_chain filter input family=ipv6

salt.modules.nftables.check_table(table=None, family='ipv4')
Check for the existence of a table

CLI Example:

salt '*' nftables.check_table nat

salt.modules.nftables.delete(table, chain=None, position=None, rule=None, family='ipv4')

Delete a rule from the specified table & ain, specifying either the rule in its entirety, or the rule's posi-
tion in the chain.

is function accepts a rule in a standard nables command format, starting with the chain. Trying to
force users to adapt to a new method of creating rules would be irritating at best, and we already have a
parser that can handle it.

CLI Examples:

salt '*' nftables.delete filter input position=3

salt '*' nftables.delete filter input \
rule='input tcp dport 22 log accept'

IPv6:
salt '*' nftables.delete filter input position=3 family=ipv6

salt '*' nftables.delete filter input \
rule='input tcp dport 22 log accept' \
family=ipv6

salt.modules.nftables.delete_chain(table='filter', chain=None, family='ipv4')
New in version 2014.7.0.

Delete the chain from the specified table.

CLI Example:

salt '*' nftables.delete_chain filter input

salt '*' nftables.delete_chain filter foo

IPv6:
salt '*' nftables.delete_chain filter input family=ipv6

salt '*' nftables.delete_chain filter foo family=ipv6

salt.modules.nftables.delete_table(table, family='ipv4')
New in version 2014.7.0.

Create new custom table.

702 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' nftables.delete_table filter

IPv6:
salt '*' nftables.delete_table filter family=ipv6

salt.modules.nftables.flush(table='filter', chain='`, family='ipv4')
Flush the chain in the specified table, flush all chains in the specified table if chain is not specified.

CLI Example:

salt '*' nftables.flush filter

salt '*' nftables.flush filter input

IPv6:
salt '*' nftables.flush filter input family=ipv6

salt.modules.nftables.get_rule_handle(table='filter', chain=None, rule=None, family='ipv4')
Get the handle for a particular rule

is function accepts a rule in a standard nables command format, starting with the chain. Trying to
force users to adapt to a new method of creating rules would be irritating at best, and we already have a
parser that can handle it.

CLI Example:

salt '*' nftables.get_rule_handle filter input \
rule='input tcp dport 22 log accept'

IPv6:
salt '*' nftables.get_rule_handle filter input \

rule='input tcp dport 22 log accept' \
family=ipv6

salt.modules.nftables.get_rules(family='ipv4')
Return a data structure of the current, in-memory rules

CLI Example:

salt '*' nftables.get_rules

salt '*' nftables.get_rules family=ipv6

salt.modules.nftables.get_saved_rules(conf_file=None, family='ipv4')
Return a data structure of the rules in the conf file

CLI Example:

salt '*' nftables.get_saved_rules

salt.modules.nftables.insert(table='filter', chain=None, position=None, rule=None, family='ipv4')
Insert a rule into the specified table & chain, at the specified position.

If position is not specified, rule will be inserted in first position.

is function accepts a rule in a standard nables command format, starting with the chain. Trying to
force users to adapt to a new method of creating rules would be irritating at best, and we already have a
parser that can handle it.

22.16. Full list of builtin execution modules 703

Salt Documentation, Release 2014.7.6

CLI Examples:

salt '*' nftables.insert filter input \
rule='input tcp dport 22 log accept'

salt '*' nftables.insert filter input position=3 \
rule='input tcp dport 22 log accept'

IPv6:
salt '*' nftables.insert filter input \

rule='input tcp dport 22 log accept' \
family=ipv6

salt '*' nftables.insert filter input position=3 \
rule='input tcp dport 22 log accept' \
family=ipv6

salt.modules.nftables.new_chain(table='filter', chain=None, table_type=None, hook=None, prior-
ity=None, family='ipv4')

New in version 2014.7.0.

Create new chain to the specified table.

CLI Example:

salt '*' nftables.new_chain filter input

salt '*' nftables.new_chain filter input \
table_type=filter hook=input priority=0

salt '*' nftables.new_chain filter foo

IPv6:
salt '*' nftables.new_chain filter input family=ipv6

salt '*' nftables.new_chain filter input \
table_type=filter hook=input priority=0 family=ipv6

salt '*' nftables.new_chain filter foo family=ipv6

salt.modules.nftables.new_table(table, family='ipv4')
New in version 2014.7.0.

Create new custom table.

CLI Example:

salt '*' nftables.new_table filter

IPv6:
salt '*' nftables.new_table filter family=ipv6

salt.modules.nftables.save(filename=None, family='ipv4')
Save the current in-memory rules to disk

CLI Example:

salt '*' nftables.save /etc/nftables

salt.modules.nftables.version()
Return version from nables --version

704 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' nftables.version

22.16.126 salt.modules.nginx

Support for nginx

salt.modules.nginx.configtest()
test configuration and exit

CLI Example:

salt '*' nginx.configtest

salt.modules.nginx.signal(signal=None)
Signals nginx to start, reload, reopen or stop.

CLI Example:

salt '*' nginx.signal reload

salt.modules.nginx.status(url='hp://127.0.0.1/status')
Return the data from an Nginx status page as a dictionary. hp://wiki.nginx.org/HpStubStatusModule

url e URL of the status page. Defaults to `hp://127.0.0.1/status`

CLI Example:

salt '*' nginx.status

salt.modules.nginx.version()
Return server version from nginx -v

CLI Example:

salt '*' nginx.version

22.16.127 salt.modules.nova

Module for handling OpenStack Nova calls

depends

• novaclient Python module

configuration is module is not usable until the user, password, tenant, and auth URL are specified
either in a pillar or in the minion's config file. For example:

keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'
Optional
keystone.region_name: 'regionOne'

If configuration for multiple OpenStack accounts is required, they can be set up as different con-
figuration profiles: For example:

22.16. Full list of builtin execution modules 705

http://wiki.nginx.org/HttpStubStatusModule
http://127.0.0.1/status

Salt Documentation, Release 2014.7.6

openstack1:
keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

openstack2:
keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.auth_url: 'http://127.0.0.2:5000/v2.0/'

With this configuration in place, any of the nova functions can make use of a configuration profile
by declaring it explicitly. For example:

salt '*' nova.flavor_list profile=openstack1

salt.modules.nova.boot(name, flavor_id=0, image_id=0, profile=None, timeout=300)
Boot (create) a new instance

name Name of the new instance (must be first)

flavor_id Unique integer ID for the flavor

image_id Unique integer ID for the image

timeout How long to wait, aer creating the instance, for the provider to return information about it (default
300 seconds).

New in version 2014.1.0.

CLI Example:

salt '*' nova.boot myinstance flavor_id=4596 image_id=2

e flavor_id and image_id are obtained from nova.flavor_list and nova.image_list

salt '*' nova.flavor_list
salt '*' nova.image_list

salt.modules.nova.delete(instance_id, profile=None)
Delete an instance

instance_id ID of the instance to be deleted

CLI Example:

salt '*' nova.delete 1138

salt.modules.nova.flavor_create(name, flavor_id=0, ram=0, disk=0, vcpus=1, profile=None)
Add a flavor to nova (nova flavor-create). e following parameters are required:

name Name of the new flavor (must be first)

flavor_id Unique integer ID for the new flavor

ram Memory size in MB

disk Disk size in GB

vcpus Number of vcpus

CLI Example:

706 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' nova.flavor_create myflavor flavor_id=6 ram=4096 disk=10 vcpus=1

salt.modules.nova.flavor_delete(flavor_id, profile=None)
Delete a flavor from nova by id (nova flavor-delete)

CLI Example:

salt '*' nova.flavor_delete 7

salt.modules.nova.flavor_list(profile=None)
Return a list of available flavors (nova flavor-list)

CLI Example:

salt '*' nova.flavor_list

salt.modules.nova.image_list(name=None, profile=None)
Return a list of available images (nova images-list + nova image-show) If a name is provided, only that image
will be displayed.

CLI Examples:

salt '*' nova.image_list
salt '*' nova.image_list myimage

salt.modules.nova.image_meta_delete(image_id=None, name=None, keys=None, profile=None)
Delete a key=value pair from the metadata for an image (nova image-meta set)

CLI Examples:

salt '*' nova.image_meta_delete 6f52b2ff-0b31-4d84-8fd1-af45b84824f6 keys=cheese
salt '*' nova.image_meta_delete name=myimage keys=salad,beans

salt.modules.nova.image_meta_set(image_id=None, name=None, profile=None, **kwargs)
Sets a key=value pair in the metadata for an image (nova image-meta set)

CLI Examples:

salt '*' nova.image_meta_set 6f52b2ff-0b31-4d84-8fd1-af45b84824f6 cheese=gruyere
salt '*' nova.image_meta_set name=myimage salad=pasta beans=baked

salt.modules.nova.keypair_add(name, pubfile=None, pubkey=None, profile=None)
Add a keypair to nova (nova keypair-add)

CLI Examples:

salt '*' nova.keypair_add mykey pubfile='/home/myuser/.ssh/id_rsa.pub'
salt '*' nova.keypair_add mykey pubkey='ssh-rsa <key> myuser@mybox'

salt.modules.nova.keypair_delete(name, profile=None)
Add a keypair to nova (nova keypair-delete)

CLI Example:

salt '*' nova.keypair_delete mykey'

salt.modules.nova.keypair_list(profile=None)
Return a list of available keypairs (nova keypair-list)

CLI Example:

22.16. Full list of builtin execution modules 707

Salt Documentation, Release 2014.7.6

salt '*' nova.keypair_list

salt.modules.nova.list_(profile=None)
To maintain the feel of the nova command line, this function simply calls the server_list function.

salt.modules.nova.lock(instance_id, profile=None)
Lock an instance

instance_id ID of the instance to be locked

CLI Example:

salt '*' nova.lock 1138

salt.modules.nova.resume(instance_id, profile=None)
Resume an instance

instance_id ID of the instance to be resumed

CLI Example:

salt '*' nova.resume 1138

salt.modules.nova.secgroup_create(name, description, profile=None)
Add a secgroup to nova (nova secgroup-create)

CLI Example:

salt '*' nova.secgroup_create mygroup 'This is my security group'

salt.modules.nova.secgroup_delete(name, profile=None)
Delete a secgroup to nova (nova secgroup-delete)

CLI Example:

salt '*' nova.secgroup_delete mygroup

salt.modules.nova.secgroup_list(profile=None)
Return a list of available security groups (nova items-list)

CLI Example:

salt '*' nova.secgroup_list

salt.modules.nova.server_by_name(name, profile=None)
Return information about a server

name Server Name

CLI Example:

salt '*' nova.server_by_name myserver profile=openstack

salt.modules.nova.server_list(profile=None)
Return list of active servers

CLI Example:

salt '*' nova.show

salt.modules.nova.server_list_detailed(profile=None)
Return detailed list of active servers

CLI Example:

708 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' nova.server_list_detailed

salt.modules.nova.server_show(server_id, profile=None)
Return detailed information for an active server

CLI Example:

salt '*' nova.server_show <server_id>

salt.modules.nova.show(server_id, profile=None)
To maintain the feel of the nova command line, this function simply calls the server_show function.

CLI Example:

salt '*' nova.show

salt.modules.nova.suspend(instance_id, profile=None)
Suspend an instance

instance_id ID of the instance to be suspended

CLI Example:

salt '*' nova.suspend 1138

salt.modules.nova.volume_attach(name, server_name, device='/dev/xvdb', profile=None, time-
out=300)

Aach a block storage volume

name Name of the new volume to aach

server_name Name of the server to aach to

device Name of the device on the server

profile Profile to build on

CLI Example:

salt '*' nova.volume_attach myblock slice.example.com profile=openstack
salt '*' nova.volume_attach myblock server.example.com device='/dev/xvdb' profile=openstack

salt.modules.nova.volume_create(name, size=100, snapshot=None, voltype=None, profile=None)
Create a block storage volume

name Name of the new volume (must be first)

size Volume size

snapshot Block storage snapshot id

voltype Type of storage

profile Profile to build on

CLI Example:

salt '*' nova.volume_create myblock size=300 profile=openstack

salt.modules.nova.volume_delete(name, profile=None)
Destroy the volume

name Name of the volume

profile Profile to build on

22.16. Full list of builtin execution modules 709

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' nova.volume_delete myblock profile=openstack

salt.modules.nova.volume_detach(name, profile=None, timeout=300)
Aach a block storage volume

name Name of the new volume to aach

server_name Name of the server to detach from

profile Profile to build on

CLI Example:

salt '*' nova.volume_detach myblock profile=openstack

salt.modules.nova.volume_list(search_opts=None, profile=None)
List storage volumes

sear_opts Dictionary of search options

profile Profile to use

CLI Example:

salt '*' nova.volume_list search_opts='{"display_name": "myblock"}' profile=openstack

salt.modules.nova.volume_show(name, profile=None)
Create a block storage volume

name Name of the volume

profile Profile to use

CLI Example:

salt '*' nova.volume_show myblock profile=openstack

22.16.128 salt.modules.npm

Manage and query NPM packages.

salt.modules.npm.install(pkg=None, pkgs=None, dir=None, runas=None, registry=None, env=None)
Install an NPM package.

If no directory is specified, the package will be installed globally. If no package is specified, the dependencies
(from package.json) of the package in the given directory will be installed.

pkg A package name in any format accepted by NPM, including a version identifier

pkgs A list of package names in the same format as the name parameter

New in version 2014.7.0.

dir e target directory in which to install the package, or None for global installation

runas e user to run NPM with

registry e NPM registry to install the package from.

New in version 2014.7.0.

710 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

env Environment variables to set when invoking npm. Uses the same env format as the cmd.run execution
function.

New in version 2014.7.0.

CLI Example:

salt '*' npm.install coffee-script

salt '*' npm.install coffee-script@1.0.1

salt.modules.npm.list_(pkg=None, dir=None, runas=None, env=None)
List installed NPM packages.

If no directory is specified, this will return the list of globally- installed packages.

pkg Limit package listing by name

dir e directory whose packages will be listed, or None for global installation

runas e user to run NPM with

New in version 2014.7.0.

env Environment variables to set when invoking npm. Uses the same env format as the cmd.run execution
function.

New in version 2014.7.0.

CLI Example:

salt '*' npm.list

salt.modules.npm.uninstall(pkg, dir=None, runas=None)
Uninstall an NPM package.

If no directory is specified, the package will be uninstalled globally.

pkg A package name in any format accepted by NPM

dir e target directory from which to uninstall the package, or None for global installation

runas e user to run NPM with

CLI Example:

salt '*' npm.uninstall coffee-script

22.16.129 salt.modules.omapi

is module interacts with an ISC DHCP Server via OMAPI. server_ip and server_port params may be set in the
minion config or pillar:

omapi.server_ip: 127.0.0.1
omapi.server_port: 7991

depends pypureomapi Python module

salt.modules.omapi.add_host(mac, name=None, ip=None, ddns=False, group=None, super-
sede_host=False)

Add a host object for the given mac.

CLI Example:

22.16. Full list of builtin execution modules 711

Salt Documentation, Release 2014.7.6

salt dhcp-server omapi.add_host ab:ab:ab:ab:ab:ab name=host1

Add ddns-hostname and a fixed-ip statements:

salt dhcp-server omapi.add_host ab:ab:ab:ab:ab:ab name=host1 ip=10.1.1.1 ddns=true

salt.modules.omapi.delete_host(mac=None, name=None)
Delete the host with the given mac or name.

CLI Examples:

salt dhcp-server omapi.delete_host name=host1
salt dhcp-server omapi.delete_host mac=ab:ab:ab:ab:ab:ab

22.16.130 salt.modules.openbsdpkg

Package support for OpenBSD

salt.modules.openbsdpkg.install(name=None, pkgs=None, sources=None, **kwargs)
Install the passed package

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example, Install one package:

salt '*' pkg.install <package name>

CLI Example, Install more than one package:

salt '*' pkg.install pkgs='["<package name>", "<package name>"]'

CLI Example, Install more than one package from a alternate source (e.g. salt file-server, HTTP, FTP, local
filesystem):

salt '*' pkg.install sources='[{"<pkg name>": "salt://pkgs/<pkg filename>"}]'

salt.modules.openbsdpkg.latest_version(*names, **kwargs)
e available version of the package in the repository

CLI Example:

salt '*' pkg.latest_version <package name>

salt.modules.openbsdpkg.list_pkgs(versions_as_list=False, **kwargs)
List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

salt.modules.openbsdpkg.purge(name=None, pkgs=None, **kwargs)
Package purges are not supported, this function is identical to remove().

name e name of the package to be deleted.

712 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

salt.modules.openbsdpkg.remove(name=None, pkgs=None, **kwargs)
Remove a single package with pkg_delete

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

salt.modules.openbsdpkg.version(*names, **kwargs)
Returns a string representing the package version or an empty string if not installed. If more than one package
name is specified, a dict of name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

22.16.131 salt.modules.openbsdservice

e service module for OpenBSD

salt.modules.openbsdservice.available(name)
New in version 2014.7.0.

Returns True if the specified service is available, otherwise returns False.

CLI Example:

salt '*' service.available sshd

salt.modules.openbsdservice.disabled(name)
New in version 2014.7.0.

Return True if the named service is disabled, false otherwise

CLI Example:

22.16. Full list of builtin execution modules 713

Salt Documentation, Release 2014.7.6

salt '*' service.disabled <service name>

salt.modules.openbsdservice.enabled(name)
New in version 2014.7.0.

Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.enabled <service name>

salt.modules.openbsdservice.get_all()
New in version 2014.7.0.

Return all available boot services

CLI Example:

salt '*' service.get_all

salt.modules.openbsdservice.get_disabled()
New in version 2014.7.0.

Return a set of services that are installed but disabled

CLI Example:

salt '*' service.get_disabled

salt.modules.openbsdservice.get_enabled()
New in version 2014.7.0.

Return a list of service that are enabled on boot

CLI Example:

salt '*' service.get_enabled

salt.modules.openbsdservice.missing(name)
New in version 2014.7.0.

e inverse of service.available. Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing sshd

salt.modules.openbsdservice.reload_(name)
New in version 2014.7.0.

Reload the named service

CLI Example:

salt '*' service.reload <service name>

salt.modules.openbsdservice.restart(name)
Restart the named service

CLI Example:

salt '*' service.restart <service name>

714 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.openbsdservice.start(name)
Start the specified service

CLI Example:

salt '*' service.start <service name>

salt.modules.openbsdservice.status(name, sig=None)
Return the status for a service, returns a bool whether the service is running.

CLI Example:

salt '*' service.status <service name>

salt.modules.openbsdservice.stop(name)
Stop the specified service

CLI Example:

salt '*' service.stop <service name>

22.16.132 salt.modules.openstack_config

Modify, retrieve, or delete values from OpenStack configuration files.

maintainer Jeffrey C. Ollie <jeff@ocjtech.us>

maturity new

depends

platform linux

salt.modules.openstack_config.delete(filename, section, parameter)
Delete a value from an OpenStack configuration file.

filename e full path to the configuration file

section e section from which to delete the parameter

parameter e parameter to delete

CLI Example:

salt-call openstack_config.delete /etc/keystone/keystone.conf sql connection

salt.modules.openstack_config.get(filename, section, parameter)
Get a value from an OpenStack configuration file.

filename e full path to the configuration file

section e section from which to search for the parameter

parameter e parameter to return

CLI Example:

salt-call openstack_config.get /etc/keystone/keystone.conf sql connection

salt.modules.openstack_config.set_(filename, section, parameter, value)
Set a value in an OpenStack configuration file.

filename e full path to the configuration file

22.16. Full list of builtin execution modules 715

mailto:jeff@ocjtech.us

Salt Documentation, Release 2014.7.6

section e section in which the parameter will be set

parameter e parameter to change

value e value to set

CLI Example:

salt-call openstack_config.set /etc/keystone/keystone.conf sql connection foo

22.16.133 salt.modules.oracle

Oracle DataBase connection module

mainteiner Vladimir Bormotov <bormotov@gmail.com>

maturity new

depends cx_Oracle

platform all

configuration module provide connections for multiple Oracle DB instances.

OS Environment

ORACLE_HOME: path to oracle product
PATH: path to Oracle Client libs need to be in PATH

pillar

oracle.dbs: list of known based
oracle.dbs.<db>.uri: connection credentials in format:

user/password@host[:port]/sid[as {sysdba|sysoper}]

salt.modules.oracle.client_version()
Oracle Client Version

CLI Example:

salt '*' oracle.client_version

salt.modules.oracle.run_query(db, query)
Run SQL query and return result

CLI example:

salt '*' oracle.run_query my_db "select * from my_table"

salt.modules.oracle.show_dbs(*dbs)
Show databases configuration from pillar. Filter by args

salt '*' oracle.show_dbs
salt '*' oracle.show_dbs my_db

salt.modules.oracle.show_env()
Show Environment used by Oracle Client

CLI Example:

salt '*' oracle.show_env

716 Chapter 22. Reference

mailto:bormotov@gmail.com

Salt Documentation, Release 2014.7.6

Note: at first _connect() NLS_LANG will forced to `.AL32UTF8'

salt.modules.oracle.show_pillar(item=None)
Show Pillar segment oracle.* and subitem with notation ``item:subitem''

CLI Example:

salt '*' oracle.show_pillar
salt '*' oracle.show_pillar dbs:my_db

salt.modules.oracle.version(*dbs)
Server Version (select banner from v$version)

CLI Example:

salt '*' oracle.version
salt '*' oracle.version my_db

22.16.134 salt.modules.osxdesktop

Mac OS X implementations of various commands in the ``desktop'' interface

salt.modules.osxdesktop.get_output_volume()
Get the output volume (range 0 to 100)

CLI Example:

salt '*' desktop.get_output_volume

salt.modules.osxdesktop.lock()
Lock the desktop session

CLI Example:

salt '*' desktop.lock

salt.modules.osxdesktop.say(*words)
Say some words.

CLI Example:

salt '*' desktop.say <word0> <word1> ... <wordN>

salt.modules.osxdesktop.screensaver()
Launch the screensaver

CLI Example:

salt '*' desktop.screensaver

salt.modules.osxdesktop.set_output_volume(volume)
Set the volume of sound (range 0 to 100)

CLI Example:

salt '*' desktop.set_output_volume <volume>

22.16. Full list of builtin execution modules 717

Salt Documentation, Release 2014.7.6

22.16.135 salt.modules.pacman

A module to wrap pacman calls, since Arch is the best (hps://wiki.archlinux.org/index.php/Arch_is_the_best)

salt.modules.pacman.file_dict(*packages)
List the files that belong to a package, grouped by package. Not specifying any packages will return a list of
every file on the system's package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

salt.modules.pacman.file_list(*packages)
List the files that belong to a package. Not specifying any packages will return a list of _every_ file on the
system's package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

salt.modules.pacman.install(name=None, refresh=False, sysupgrade=False, pkgs=None,
sources=None, **kwargs)

Install (pacman -S) the passed package, add refresh=True to install with -y, add sysupgrade=True to install
with -u.

name e name of the package to be installed. Note that this parameter is ignored if either ``pkgs'' or
``sources'' is passed. Additionally, please note that this option can only be used to install packages
from a soware repository. To install a package file manually, use the ``sources'' option.

CLI Example:

salt '*' pkg.install <package name>

refresh Whether or not to refresh the package database before installing.

sysupgrade Whether or not to upgrade the system packages before installing.

Multiple Package Installation Options:

pkgs A list of packages to install from a soware repository. Must be passed as a python list. A specific
version number can be specified by using a single-element dict representing the package and its version.
As with the version parameter above, comparison operators can be used to target a specific version
of a package.

CLI Examples:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-4"}]'
salt '*' pkg.install pkgs='["foo", {"bar": "<1.2.3-4"}]'

sources A list of packages to install. Must be passed as a list of dicts, with the keys being package names, and
the values being the source URI or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.pkg.tar.xz"}, {"bar": "salt://bar.pkg.tar.xz"}]'

Returns a dict containing the new package names and versions:

718 Chapter 22. Reference

https://wiki.archlinux.org/index.php/Arch_is_the_best

Salt Documentation, Release 2014.7.6

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

salt.modules.pacman.latest_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation. If more than one package
name is specified, a dict of name/version pairs is returned.

If the latest version of a given package is already installed, an empty string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

salt.modules.pacman.list_pkgs(versions_as_list=False, **kwargs)
List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

salt.modules.pacman.list_upgrades(refresh=False)
List all available package upgrades on this system

CLI Example:

salt '*' pkg.list_upgrades

salt.modules.pacman.owner(*paths)
New in version 2014.7.0.

Return the name of the package that owns the file. Multiple file paths can be passed. Like pkg.version
<salt.modules.yumpkg.version, if a single path is passed, a string will be returned, and if multiple
paths are passed, a dictionary of file/package name pairs will be returned.

If the file is not owned by a package, or is not present on the minion, then an empty string will be returned
for that path.

CLI Example:

salt `*' pkg.owner /usr/bin/apachectl salt `*' pkg.owner /usr/bin/apachectl /usr/bin/zsh

salt.modules.pacman.purge(name=None, pkgs=None, **kwargs)
Recursively remove a package and all dependencies whichwere installed with it, this will call apacman -Rsc

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

22.16. Full list of builtin execution modules 719

Salt Documentation, Release 2014.7.6

salt.modules.pacman.refresh_db()
Just run a pacman -Sy, return a dict:

{'<database name>': Bool}

CLI Example:

salt '*' pkg.refresh_db

salt.modules.pacman.remove(name=None, pkgs=None, **kwargs)
Remove packages with pacman -R.

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

salt.modules.pacman.upgrade(refresh=False)
Run a full system upgrade, a pacman -Syu

refresh Whether or not to refresh the package database before installing.

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

salt.modules.pacman.upgrade_available(name)
Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

salt.modules.pacman.version(*names, **kwargs)
Returns a string representing the package version or an empty string if not installed. If more than one package
name is specified, a dict of name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

720 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.16.136 salt.modules.pagerduty

Module for Firing Events via PagerDuty

New in version 2014.1.0.

configuration is module can be used by specifying the name of a configuration profile in the minion
config, minion pillar, or master config.

For example:

my-pagerduty-account:
pagerduty.api_key: F3Rbyjbve43rfFWf2214
pagerduty.subdomain: mysubdomain

salt.modules.pagerduty.create_event(service_key=None, description=None, details=None, inci-
dent_key=None, profile=None)

Create an event in PagerDuty. Designed for use in states.

CLI Example:

pagerduty.create_event <service_key> <description> <details> profile=my-pagerduty-
account

: e following parameters are required:

service_key is key can be found by using pagerduty.list_services.

description is is a short description of the event.

details is can be a more detailed description of the event.

profile is refers to the configuration profile to use to connect to the PagerDuty service.

salt.modules.pagerduty.list_incidents(profile=None, api_key=None)
List services belonging to this account

CLI Example:

pagerduty.list_incidents my-pagerduty-account

salt.modules.pagerduty.list_services(profile=None, api_key=None)
List services belonging to this account

CLI Example:

pagerduty.list_services my-pagerduty-account

22.16.137 salt.modules.pam

Support for pam

salt.modules.pam.read_file(file_name)
is is just a test function, to make sure parsing works

CLI Example:

salt '*' pam.read_file /etc/pam.d/login

22.16. Full list of builtin execution modules 721

Salt Documentation, Release 2014.7.6

22.16.138 salt.modules.parted

Module for managing partitions on POSIX-like systems.

depends

• parted, partprobe, lsblk (usually parted and util-linux packages)

Some functions may not be available, depending on your version of parted.

Check the manpage for parted(8) for more information, or the online docs at:

hp://www.gnu.org/soware/parted/manual/html_chapter/parted_2.html

In light of parted not directly supporting partition IDs, some of this module has been wrien to utilize sfdisk instead.
For further information, please reference the man page for sfdisk(8).

salt.modules.parted.align_check(device, part_type, partition)
partition.align_check device part_type partition

Check if partition satisfies the alignment constraint of part_type. Type must be ``minimal'' or ``optimal''.

CLI Example:

salt '*' partition.align_check /dev/sda minimal 1

salt.modules.parted.check(device, minor)
partition.check device minor

Checks if the file system on partition <minor> has any errors.

CLI Example:

salt '*' partition.check 1

salt.modules.parted.cp(device, from_minor, to_minor)
partition.check device from_minor to_minor

Copies the file system on the partition <from-minor> to partition <to-minor>, deleting the original con-
tents of the destination partition.

CLI Example:

salt '*' partition.cp /dev/sda 2 3

salt.modules.parted.exists(device='`)
partition.exists device

Check to see if the partition exists

CLI Example:

salt '*' partition.exists /dev/sdb1

salt.modules.parted.get_block_device()
Retrieve a list of disk devices

New in version 2014.7.0.

CLI Example:

salt '*' partition.get_block_device

salt.modules.parted.get_id(device, minor)
Prints the system ID for the partition. Some typical values are:

722 Chapter 22. Reference

http://www.gnu.org/software/parted/manual/html_chapter/parted_2.html

Salt Documentation, Release 2014.7.6

b: FAT32 (vfat)
7: HPFS/NTFS

82: Linux Swap
83: Linux
8e: Linux LVM
fd: Linux RAID Auto

CLI Example:

salt '*' partition.get_id /dev/sda 1

salt.modules.parted.list_(device, unit=None)
partition.list device unit

Prints partition information of given <device>

CLI Examples:

salt '*' partition.list /dev/sda
salt '*' partition.list /dev/sda unit=s
salt '*' partition.list /dev/sda unit=kB

salt.modules.parted.mkfs(device, fs_type)
partition.mkfs device fs_type

Makes a file system <fs_type> on partition <device>, destroying all data that resides on that partition.
<fs_type> must be one of ``ext2'', ``fat32'', ``fat16'', ``linux-swap'' or ``reiserfs'' (if libreiserfs is installed)

CLI Example:

salt '*' partition.mkfs /dev/sda2 fat32

salt.modules.parted.mklabel(device, label_type)
partition.mklabel device label_type

Create a new disklabel (partition table) of label_type. Type should be one of ``aix'', ``amiga'', ``bsd'', ``dvh'',
``gpt'', ``loop'', ``mac'', ``msdos'', ``pc98'', or ``sun''.

CLI Example:

salt '*' partition.mklabel /dev/sda msdos

salt.modules.parted.mkpart(device, part_type, fs_type=None, start=None, end=None)
partition.mkpart device part_type fs_type start end

Make a part_type partition for filesystem fs_type, beginning at start and ending at end (by default in
megabytes). part_type should be one of ``primary'', ``logical'', or ``extended''.

CLI Examples:

salt '*' partition.mkpart /dev/sda primary fs_type=fat32 start=0 end=639
salt '*' partition.mkpart /dev/sda primary start=0 end=639

salt.modules.parted.mkpartfs(device, part_type, fs_type, start, end)
partition.mkpartfs device part_type fs_type start end

Make a <part_type> partition with a new filesystem of <fs_type>, beginning at <start> and ending at
<end> (by default in megabytes). <part_type> should be one of ``primary'', ``logical'', or ``extended''.
<fs_type> must be one of ``ext2'', ``fat32'', ``fat16'', ``linux-swap'' or ``reiserfs'' (if libreiserfs is installed)

CLI Example:

22.16. Full list of builtin execution modules 723

Salt Documentation, Release 2014.7.6

salt '*' partition.mkpartfs /dev/sda logical ext2 440 670

salt.modules.parted.name(device, partition, name)
partition.name device partition name

Set the name of partition to name. is option works only on Mac, PC98, and GPT disklabels. e name
can be placed in quotes, if necessary.

CLI Example:

salt '*' partition.name /dev/sda 1 'My Documents'

salt.modules.parted.part_list(device, unit=None)
Deprecated. Calls partition.list.

CLI Examples:

salt '*' partition.part_list /dev/sda
salt '*' partition.part_list /dev/sda unit=s
salt '*' partition.part_list /dev/sda unit=kB

salt.modules.parted.probe(device='`)
Ask the kernel to update its local partition data

CLI Examples:

salt '*' partition.probe
salt '*' partition.probe /dev/sda

salt.modules.parted.rescue(device, start, end)
partition.rescue device start end

Rescue a lost partition that was located somewhere between start and end. If a partition is found, parted
will ask if you want to create an entry for it in the partition table.

CLI Example:

salt '*' partition.rescue /dev/sda 0 8056

salt.modules.parted.resize(device, minor, start, end)
partition.resize device minor, start, end

Resizes the partition with number <minor>. e partition will start <start> from the beginning of the disk,
and end <end> from the beginning of the disk. resize never changes the minor number. Extended parti-
tions can be resized, so long as the new extended partition completely contains all logical partitions.

CLI Example:

salt '*' partition.resize /dev/sda 3 200 850

salt.modules.parted.rm(device, minor)
partition.rm device minor

Removes the partition with number <minor>.

CLI Example:

salt '*' partition.rm /dev/sda 5

salt.modules.parted.set_(device, minor, flag, state)
partition.set device minor flag state

724 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Changes a flag on the partition with number <minor>. A flag can be either ``on'' or ``off''. Some or all of
these flags will be available, depending on what disk label you are using.

CLI Example:

salt '*' partition.set /dev/sda 1 boot on

salt.modules.parted.set_id(device, minor, system_id)
Sets the system ID for the partition. Some typical values are:

b: FAT32 (vfat)
7: HPFS/NTFS

82: Linux Swap
83: Linux
8e: Linux LVM
fd: Linux RAID Auto

CLI Example:

salt '*' partition.set_id /dev/sda 1 83

salt.modules.parted.system_types()
List the system types that are supported by the installed version of sfdisk

CLI Example:

salt '*' partition.system_types

salt.modules.parted.toggle(device, partition, flag)
partition.toggle device partition flag

Toggle the state of <flag> on <partition>

CLI Example:

salt '*' partition.name /dev/sda 1 boot

22.16.139 salt.modules.pecl

Manage PHP pecl extensions.

salt.modules.pecl.install(pecls, defaults=False, force=False, preferred_state='stable')
New in version 0.17.0.

Installs one or several pecl extensions.

pecls e pecl extensions to install.

defaults Use default answers for extensions such as pecl_hp which ask questions before installation. With-
out this option, the pecl.installed state will hang indefinitely when trying to install these extensions.

force Whether to force the installed version or not

CLI Example:

salt '*' pecl.install fuse

salt.modules.pecl.list_(channel=None)
List installed pecl extensions.

CLI Example:

22.16. Full list of builtin execution modules 725

Salt Documentation, Release 2014.7.6

salt '*' pecl.list

salt.modules.pecl.uninstall(pecls)
Uninstall one or several pecl extensions.

pecls e pecl extensions to uninstall.

CLI Example:

salt '*' pecl.uninstall fuse

salt.modules.pecl.update(pecls)
Update one or several pecl extensions.

pecls e pecl extensions to update.

CLI Example:

salt '*' pecl.update fuse

22.16.140 salt.modules.pillar

Extract the pillar data for this minion

salt.modules.pillar.ext(external)
Generate the pillar and apply an explicit external pillar

CLI Example:

salt '*' pillar.ext '{libvirt: _}'

salt.modules.pillar.get(key, default='`, merge=False, delimiter=':')
New in version 0.14.

Aempt to retrieve the named value from pillar, if the named value is not available return the passed default.
e default return is an empty string.

If the merge parameter is set to True, the default will be recursively merged into the returned pillar data.

e value can also represent a value in a nested dict using a '':'' delimiter for the dict. is means that if a dict
in pillar looks like this:

{'pkg': {'apache': 'httpd'}}

To retrieve the value associated with the apache key in the pkg dict this key can be passed:

pkg:apache

merge Specify whether or not the retrieved values should be recursively merged into the passed default.

New in version 2014.7.0.

delimiter Specify an alternate delimiter to use when traversing a nested dict

New in version 2014.7.0.

CLI Example:

salt '*' pillar.get pkg:apache

726 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.pillar.item(*args)
New in version 0.16.2.

Return one ore more pillar entries

CLI Examples:

salt '*' pillar.item foo
salt '*' pillar.item foo bar baz

salt.modules.pillar.items(*args)
Calls the master for a fresh pillar and generates the pillar data on the fly

Contrast with raw() which returns the pillar data that is currently loaded into the minion.

CLI Example:

salt '*' pillar.items

salt.modules.pillar.raw(key=None)
Return the raw pillar data that is currently loaded into the minion.

Contrast with items() which calls the master to fetch the most up-to-date Pillar.

CLI Example:

salt '*' pillar.raw

With the optional key argument, you can select a subtree of the pillar raw data.:

salt '*' pillar.raw key='roles'

22.16.141 salt.modules.pip

Install Python packages with pip to either the system or a virtualenv

Windows Support

New in version 2014.7.4.

Salt now uses a portable python. As a result the entire pip module is now functional on the salt installation itself.
You can pip install dependencies for your custom modules. You can even upgrade salt itself using pip. For this to
work properly, you must specify the Current Working Directory (cwd) and the Pip Binary (bin_env) salt should
use.

For example, the following command will list all soware installed using pip to your current salt environment:

salt <minion> pip.list cwd='C:\salt\bin\Scripts' bin_env='C:\salt\bin\Scripts\pip.exe'

Specifying the cwd and bin_env options ensures you're modifying the salt environment. If these are omied, it
will default to the local installation of python. If python is not installed locally it will fail saying it couldn't find pip.

State File Support

is functionality works in states as well. If you need to pip install colorama with a state, for example, the following
will work:

22.16. Full list of builtin execution modules 727

Salt Documentation, Release 2014.7.6

install_colorama:
pip.installed:

- name: colorama
- cwd: 'C:\salt\bin\scripts'
- bin_env: 'C:\salt\bin\scripts\pip.exe'
- upgrade: True

Upgrading Salt using Pip

You can now update salt using pip to any version from the 2014.7 branch forward. Previous version require recom-
piling some of the dependencies which is painful in windows.

To do this you just use pip with git to update to the version you want and then restart the service. Here is a sample
state file that upgrades salt to the head of the 2015.5 branch:

install_salt:
pip.installed:

- cwd: 'C:\salt\bin\scripts'
- bin_env: 'C:\salt\bin\scripts\pip.exe'
- editable: git+https://github.com/saltstack/salt@2015.5#egg=salt
- upgrade: True

restart_service:
service.running:

- name: salt-minion
- enable: True
- watch:

- pip: install_salt

Note: If you're having problems, you might try doubling the back slashes. For example, cwd: `C:\salt\bin\scripts'.
Sometimes python thinks the single back slash is an escape character.

salt.modules.pip.freeze(bin_env=None, user=None, runas=None, cwd=None)
Return a list of installed packages either globally or in the specified virtualenv

bin_env path to pip bin or path to virtualenv. If doing an uninstall from the system python and want to use a
specific pip bin (pip-2.7, pip-2.6, etc..) just specify the pip bin you want. If uninstalling from a virtualenv,
just use the path to the virtualenv (/home/code/path/to/virtualenv/)

user e user under which to run pip

Note: e runas argument is deprecated as of 0.16.2. user should be used instead.

cwd Current working directory to run pip from

CLI Example:

salt '*' pip.freeze /home/code/path/to/virtualenv/

728 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.pip.install(pkgs=None, requirements=None, env=None, bin_env=None,
use_wheel=False, no_use_wheel=False, log=None, proxy=None, time-
out=None, editable=None, find_links=None, index_url=None, ex-
tra_index_url=None, no_index=False, mirrors=None, build=None,
target=None, download=None, download_cache=None, source=None,
upgrade=False, force_reinstall=False, ignore_installed=False, ex-
ists_action=None, no_deps=False, no_install=False, no_download=False,
global_options=None, install_options=None, user=None, runas=None,
no_chown=False, cwd=None, activate=False, pre_releases=False, cert=None,
allow_all_external=False, allow_external=None, allow_unverified=None,
process_dependency_links=False, __env__=None, saltenv='base')

Install packages with pip

Install packages individually or from a pip requirements file. Install packages globally or to a virtualenv.

pkgs Comma separated list of packages to install

requirements Path to requirements

bin_env Path to pip bin or path to virtualenv. If doing a system install, and want to use a specific pip bin
(pip-2.7, pip-2.6, etc..) just specify the pip bin you want. If installing into a virtualenv, just use the path
to the virtualenv (/home/code/path/to/virtualenv/)

env Deprecated, use bin_env now

use_wheel Prefer wheel archives (requires pip>=1.4)

no_use_wheel Force to not use wheel archives (requires pip>=1.4)

log Log file where a complete (maximum verbosity) record will be kept

proxy Specify a proxy in the form user:passwd@proxy.server:port. Note that the user:password@ is optional
and required only if you are behind an authenticated proxy. If you provide user@proxy.server:port then
you will be prompted for a password.

timeout Set the socket timeout (default 15 seconds)

editable install something editable (i.e. git+hps://github.com/worldcompany/djangoembed.git#egg=djangoembed)

find_links URL to look for packages at

index_url Base URL of Python Package Index

extra_index_url Extra URLs of package indexes to use in addition to index_url

no_index Ignore package index

mirrors Specific mirror URL(s) to query (automatically adds --use-mirrors)

build Unpack packages into build dir

target Install packages into target dir

download Download packages into download instead of installing them

download_cae Cache downloaded packages in download_cache dir

source Check out editable packages into source dir

upgrade Upgrade all packages to the newest available version

force_reinstall When upgrading, reinstall all packages even if they are already up-to-date.

ignore_installed Ignore the installed packages (reinstalling instead)

exists_action Default action when a path already exists: (s)witch, (i)gnore, (w)ipe, (b)ackup

22.16. Full list of builtin execution modules 729

Salt Documentation, Release 2014.7.6

no_deps Ignore package dependencies

no_install Download and unpack all packages, but don't actually install them

no_download Don't download any packages, just install the ones already downloaded (completes an install
run with --no-install)

install_options Extra arguments to be supplied to the setup.py install command (use like --install-option=''--
install- scripts=/usr/local/bin''). Use multiple --install- option options to pass multiple options to setup.py
install. If you are using an option with a directory path, be sure to use absolute path.

global_options Extra global options to be supplied to the setup.py call before the install command.

user e user under which to run pip

Note: e runas argument is deprecated as of 0.16.2. user should be used instead.

no_own When user is given, do not aempt to copy and chown a requirements file

cwd Current working directory to run pip from

activate Activates the virtual environment, if given via bin_env, before running install.

Deprecated since version 2014.7.2: If bin_env is given, pip will already be sourced from that virualenv,
making activate effectively a noop.

pre_releases Include pre-releases in the available versions

cert Provide a path to an alternate CA bundle

allow_all_external Allow the installation of all externally hosted files

allow_external Allow the installation of externally hosted files (comma separated list)

allow_unverified Allow the installation of insecure and unverifiable files (comma separated list)

process_dependency_links Enable the processing of dependency links

CLI Example:

salt '*' pip.install <package name>,<package2 name>
salt '*' pip.install requirements=/path/to/requirements.txt
salt '*' pip.install <package name> bin_env=/path/to/virtualenv
salt '*' pip.install <package name> bin_env=/path/to/pip_bin

Complicated CLI example:

salt '*' pip.install markdown,django editable=git+https://github.com/worldcompany/djangoembed.git#egg=djangoembed upgrade=True no_deps=True

salt.modules.pip.list_(prefix=None, bin_env=None, user=None, runas=None, cwd=None)
Filter list of installed apps from freeze and check to see if prefix exists in the list of packages installed.

CLI Example:

salt '*' pip.list salt

salt.modules.pip.uninstall(pkgs=None, requirements=None, bin_env=None, log=None, proxy=None,
timeout=None, user=None, runas=None, no_chown=False, cwd=None,
__env__=None, saltenv='base')

Uninstall packages with pip

Uninstall packages individually or from a pip requirements file. Uninstall packages globally or from a vir-
tualenv.

730 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

pkgs comma separated list of packages to install

requirements path to requirements.

bin_env path to pip bin or path to virtualenv. If doing an uninstall from the system python and want to use a
specific pip bin (pip-2.7, pip-2.6, etc..) just specify the pip bin you want. If uninstalling from a virtualenv,
just use the path to the virtualenv (/home/code/path/to/virtualenv/)

log Log file where a complete (maximum verbosity) record will be kept

proxy Specify a proxy in the form user:passwd@proxy.server:port. Note that the user:password@ is optional
and required only if you are behind an authenticated proxy. If you provide user@proxy.server:port then
you will be prompted for a password.

timeout Set the socket timeout (default 15 seconds)

user e user under which to run pip

Note: e runas argument is deprecated as of 0.16.2. user should be used instead.

no_own When user is given, do not aempt to copy and chown a requirements file

cwd Current working directory to run pip from

CLI Example:

salt '*' pip.uninstall <package name>,<package2 name>
salt '*' pip.uninstall requirements=/path/to/requirements.txt
salt '*' pip.uninstall <package name> bin_env=/path/to/virtualenv
salt '*' pip.uninstall <package name> bin_env=/path/to/pip_bin

salt.modules.pip.version(bin_env=None)
New in version 0.17.0.

Returns the version of pip. Use bin_env to specify the path to a virtualenv and get the version of pip in that
virtualenv.

If unable to detect the pip version, returns None.

CLI Example:

salt '*' pip.version

22.16.142 salt.modules.pkg_resource

Resources needed by pkg providers

salt.modules.pkg_resource.add_pkg(pkgs, name, version)
Add a package to a dict of installed packages.

CLI Example:

salt '*' pkg_resource.add_pkg '{}' bind 9

salt.modules.pkg_resource.check_extra_requirements(pkgname, pkgver)
Check if the installed package already has the given requirements. is function will simply try to call
``pkg.check_extra_requirements''.

CLI Example:

22.16. Full list of builtin execution modules 731

Salt Documentation, Release 2014.7.6

salt '*' pkg_resource.check_extra_requirements <pkgname> <extra_requirements>

salt.modules.pkg_resource.pack_sources(sources)
Accepts list of dicts (or a string representing a list of dicts) and packs the key/value pairs into a single dict.

'[{"foo": "salt://foo.rpm"}, {"bar": "salt://bar.rpm"}]' would become {"foo":
"salt://foo.rpm", "bar": "salt://bar.rpm"}

CLI Example:

salt '*' pkg_resource.pack_sources '[{"foo": "salt://foo.rpm"}, {"bar": "salt://bar.rpm"}]'

salt.modules.pkg_resource.parse_targets(name=None, pkgs=None, sources=None,
saltenv='base', normalize=True, **kwargs)

Parses the input to pkg.install and returns back the package(s) to be installed. Returns a list of packages, as
well as a string noting whether the packages are to come from a repository or a binary package.

CLI Example:

salt '*' pkg_resource.parse_targets

salt.modules.pkg_resource.sort_pkglist(pkgs)
Accepts a dict obtained from pkg.list_pkgs() and sorts in place the list of versions for any packages that have
multiple versions installed, so that two package lists can be compared to one another.

CLI Example:

salt '*' pkg_resource.sort_pkglist '["3.45", "2.13"]'

salt.modules.pkg_resource.stringify(pkgs)
Takes a dict of package name/version information and joins each list of installed versions into a string.

CLI Example:

salt '*' pkg_resource.stringify 'vim: 7.127'

salt.modules.pkg_resource.version(*names, **kwargs)
Common interface for obtaining the version of installed packages.

CLI Example:

salt '*' pkg_resource.version vim
salt '*' pkg_resource.version foo bar baz
salt '*' pkg_resource.version 'python*'

salt.modules.pkg_resource.version_clean(version)
Clean the version string removing extra data. is function will simply try to call pkg.version_clean.

CLI Example:

salt '*' pkg_resource.version_clean <version_string>

22.16.143 salt.modules.pkgin

Package support for pkgin based systems, inspired from freebsdpkg module

salt.modules.pkgin.available_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation.

If the latest version of a given package is already installed, an empty string will be returned for that package.

732 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> ...

salt.modules.pkgin.file_dict(package)
List the files that belong to a package.

CLI Examples:

salt '*' pkg.file_list nginx

salt.modules.pkgin.file_list(package)
List the files that belong to a package.

CLI Examples:

salt '*' pkg.file_list nginx

salt.modules.pkgin.install(name=None, refresh=False, fromrepo=None, pkgs=None, sources=None,
**kwargs)

Install the passed package

name e name of the package to be installed.

refresh Whether or not to refresh the package database before installing.

fromrepo Specify a package repository to install from.

Multiple Package Installation Options:

pkgs A list of packages to install from a soware repository. Must be passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo","bar"]'

sources A list of packages to install. Must be passed as a list of dicts, with the keys being package names, and
the values being the source URI or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.deb"},{"bar": "salt://bar.deb"}]'

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install <package name>

salt.modules.pkgin.latest_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation.

If the latest version of a given package is already installed, an empty string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> ...

22.16. Full list of builtin execution modules 733

Salt Documentation, Release 2014.7.6

salt.modules.pkgin.list_pkgs(versions_as_list=False, **kwargs)
List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

salt.modules.pkgin.purge(name=None, pkgs=None, **kwargs)
Package purges are not supported, this function is identical to remove().

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

salt.modules.pkgin.refresh_db()
Use pkg update to get latest pkg_summary

CLI Example:

salt '*' pkg.refresh_db

salt.modules.pkgin.remove(name=None, pkgs=None, **kwargs)

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a list containing the removed packages.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

salt.modules.pkgin.search(pkg_name)
Searches for an exact match using pkgin ^package$

CLI Example:

salt '*' pkg.search 'mysql-server'

salt.modules.pkgin.upgrade()
Run pkg upgrade, if pkgin used. Otherwise do nothing

734 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

salt.modules.pkgin.version(*names, **kwargs)
Returns a string representing the package version or an empty string if not installed. If more than one package
name is specified, a dict of name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

22.16.144 salt.modules.pkgng

Support for pkgng, the new package manager for FreeBSD

Warning: is module has been completely rewrien. Up to and including version 0.17.x, it was available as the
pkgng module, (pkgng.install, pkgng.delete, etc.), but moving forward this module will no longer be
available as pkgng, as it will behave like a normal Salt pkg provider. e documentation below should not be
considered to apply to this module in versions <= 0.17.x. If your minion is running a 0.17.x release or older, then
the documentation for this module can be viewed using the sys.doc function:

salt bsdminion sys.doc pkgng

is module provides an interface to pkg(8). It acts as the default package provider for FreeBSD 10 and newer. For
FreeBSD hosts which have been upgraded to use pkgng, you will need to override the pkg provider by seing the
providers parameter in your Minion config file, in order to use this module to manage packages, like so:

providers:
pkg: pkgng

salt.modules.pkgng.audit(jail=None, chroot=None)
Audits installed packages against known vulnerabilities

CLI Example:

salt '*' pkg.audit

jail Audit packages within the specified jail

CLI Example:

salt '*' pkg.audit jail=<jail name or id>

root Audit packages within the specified chroot (ignored if jail is specified)

CLI Example:

salt '*' pkg.audit chroot=/path/to/chroot

22.16. Full list of builtin execution modules 735

Salt Documentation, Release 2014.7.6

salt.modules.pkgng.autoremove(jail=None, chroot=None, dryrun=False)
Delete packages which were automatically installed as dependencies and are not required anymore.

dryrun Dry-run mode. e list of changes to packages is always printed, but no changes are actually made.

CLI Example:

salt '*' pkg.autoremove
salt '*' pkg.autoremove jail=<jail name or id>
salt '*' pkg.autoremove dryrun=True
salt '*' pkg.autoremove jail=<jail name or id> dryrun=True

salt.modules.pkgng.backup(file_name, jail=None, chroot=None)
Export installed packages into yaml+mtree file

CLI Example:

salt '*' pkg.backup /tmp/pkg

jail Backup packages from the specified jail. Note that this will run the command within the jail, and so the
path to the backup file will be relative to the root of the jail

CLI Example:

salt '*' pkg.backup /tmp/pkg jail=<jail name or id>

root Backup packages from the specified chroot (ignored if jail is specified). Note that this will run the
command within the chroot, and so the path to the backup file will be relative to the root of the chroot.

CLI Example:

salt '*' pkg.backup /tmp/pkg chroot=/path/to/chroot

salt.modules.pkgng.check(jail=None, chroot=None, depends=False, recompute=False, check-
sum=False)

Sanity checks installed packages

jail Perform the sanity check in the specified jail

CLI Example:

salt '*' pkg.check jail=<jail name or id>

root Perform the sanity check in the specified chroot (ignored if jail is specified)

CLI Example:

salt '*' pkg.check chroot=/path/to/chroot

Of the below, at least one must be set to True.

depends Check for and install missing dependencies.

CLI Example:

salt '*' pkg.check recompute=True

recompute Recompute sizes and checksums of installed packages.

CLI Example:

736 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' pkg.check depends=True

esum Find invalid checksums for installed packages.

CLI Example:

salt '*' pkg.check checksum=True

salt.modules.pkgng.clean(jail=None, chroot=None)
Cleans the local cache of fetched remote packages

CLI Example:

salt '*' pkg.clean
salt '*' pkg.clean jail=<jail name or id>
salt '*' pkg.clean chroot=/path/to/chroot

salt.modules.pkgng.fetch(name, jail=None, chroot=None, fetch_all=False, quiet=False, from-
repo=None, glob=True, regex=False, pcre=False, local=False, de-
pends=False)

Fetches remote packages

CLI Example:

salt '*' pkg.fetch <package name>

jail Fetch package in the specified jail

CLI Example:

salt '*' pkg.fetch <package name> jail=<jail name or id>

root Fetch package in the specified chroot (ignored if jail is specified)

CLI Example:

salt '*' pkg.fetch <package name> chroot=/path/to/chroot

fet_all Fetch all packages.

CLI Example:

salt '*' pkg.fetch <package name> fetch_all=True

quiet iet mode. Show less output.

CLI Example:

salt '*' pkg.fetch <package name> quiet=True

fromrepo Fetches packages from the given repo if multiple repo support is enabled. See pkg.conf(5).

CLI Example:

salt '*' pkg.fetch <package name> fromrepo=repo

glob Treat pkg_name as a shell glob paern.

CLI Example:

salt '*' pkg.fetch <package name> glob=True

22.16. Full list of builtin execution modules 737

Salt Documentation, Release 2014.7.6

regex Treat pkg_name as a regular expression.

CLI Example:

salt '*' pkg.fetch <regular expression> regex=True

pcre Treat pkg_name is an extended regular expression.

CLI Example:

salt '*' pkg.fetch <extended regular expression> pcre=True

local Skip updating the repository catalogs with pkg-update(8). Use the local cache only.

CLI Example:

salt '*' pkg.fetch <package name> local=True

depends Fetch the package and its dependencies as well.

CLI Example:

salt '*' pkg.fetch <package name> depends=True

salt.modules.pkgng.install(name=None, fromrepo=None, pkgs=None, sources=None, jail=None,
chroot=None, orphan=False, force=False, glob=False, local=False,
dryrun=False, quiet=False, reinstall_requires=False, regex=False,
pcre=False, **kwargs)

Install package(s) from a repository

name e name of the package to install

CLI Example:

salt '*' pkg.install <package name>

jail Install the package into the specified jail

root Install the package into the specified chroot (ignored if jail is specified)

orphan Mark the installed package as orphan. Will be automatically removed if no other packages depend
on them. For more information please refer to pkg-autoremove(8).

CLI Example:

salt '*' pkg.install <package name> orphan=True

force Force the reinstallation of the package if already installed.

CLI Example:

salt '*' pkg.install <package name> force=True

glob Treat the package names as shell glob paerns.

CLI Example:

salt '*' pkg.install <package name> glob=True

local Do not update the repository catalogs with pkg-update(8). A value of True here is equivalent to
using the -U flag with pkg install.

CLI Example:

738 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' pkg.install <package name> local=True

dryrun Dru-run mode. e list of changes to packages is always printed, but no changes are actually made.

CLI Example:

salt '*' pkg.install <package name> dryrun=True

quiet Force quiet output, except when dryrun is used, where pkg install will always show packages to be
installed, upgraded or deleted.

CLI Example:

salt '*' pkg.install <package name> quiet=True

reinstall_requires When used with force, reinstalls any packages that require the given package.

CLI Example:

salt '*' pkg.install <package name> reinstall_requires=True force=True

Changed in version 2014.7.0: require kwarg renamed to reinstall_requires

fromrepo In multi-repo mode, override the pkg.conf ordering and only aempt to download packages from
the named repository.

CLI Example:

salt '*' pkg.install <package name> fromrepo=repo

regex Treat the package names as a regular expression

CLI Example:

salt '*' pkg.install <regular expression> regex=True

pcre Treat the package names as extended regular expressions.

CLI Example:

salt '*' pkg.install <extended regular expression> pcre=True

salt.modules.pkgng.latest_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation. If more than one package
name is specified, a dict of name/version pairs is returned.

If the latest version of a given package is already installed, an empty string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name> jail=<jail name or id>
salt '*' pkg.latest_version <package name> chroot=/path/to/chroot

salt.modules.pkgng.list_pkgs(versions_as_list=False, jail=None, chroot=None, with_origin=False,
**kwargs)

List the packages currently installed as a dict:

{'<package_name>': '<version>'}

jail List the packages in the specified jail

22.16. Full list of builtin execution modules 739

Salt Documentation, Release 2014.7.6

root List the packages in the specified chroot (ignored if jail is specified)

with_origin [False] Return a nested dictionary containing both the origin name and version for each installed
package.

New in version 2014.1.0.

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs jail=<jail name or id>
salt '*' pkg.list_pkgs chroot=/path/to/chroot

salt.modules.pkgng.parse_config(file_name='/usr/local/etc/pkg.conf')
Return dict of uncommented global variables.

CLI Example:

salt '*' pkg.parse_config

NOTE: not working properly right now

salt.modules.pkgng.refresh_db(jail=None, chroot=None, force=False)
Refresh PACKAGESITE contents

Note: is function can accessed using pkg.update in addition to pkg.refresh_db, to more closely
match the CLI usage of pkg(8).

CLI Example:

salt '*' pkg.refresh_db

jail Refresh the pkg database within the specified jail

root Refresh the pkg database within the specified chroot (ignored if jail is specified)

force Force a full download of the repository catalog without regard to the respective ages of the local and
remote copies of the catalog.

CLI Example:

salt '*' pkg.refresh_db force=True

salt.modules.pkgng.remove(name=None, pkgs=None, jail=None, chroot=None, all_installed=False,
force=False, glob=False, dryrun=False, recurse=False, regex=False,
pcre=False, **kwargs)

Remove a package from the database and system

Note: is function can accessed using pkg.delete in addition to pkg.remove, to more closely match
the CLI usage of pkg(8).

name e package to remove

CLI Example:

salt '*' pkg.remove <package name>

jail Delete the package from the specified jail

740 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

root Delete the package from the specified chroot (ignored if jail is specified)

all_installed Deletes all installed packages from the system and empties the database. USEWITH CAUTION!

CLI Example:

salt '*' pkg.remove all all_installed=True force=True

force Forces packages to be removed despite leaving unresolved dependencies.

CLI Example:

salt '*' pkg.remove <package name> force=True

glob Treat the package names as shell glob paerns.

CLI Example:

salt '*' pkg.remove <package name> glob=True

dryrun Dry run mode. e list of packages to delete is always printed, but no packages are actually deleted.

CLI Example:

salt '*' pkg.remove <package name> dryrun=True

recurse Delete all packages that require the listed package as well.

CLI Example:

salt '*' pkg.remove <package name> recurse=True

regex Treat the package names as regular expressions.

CLI Example:

salt '*' pkg.remove <regular expression> regex=True

pcre Treat the package names as extended regular expressions.

CLI Example:

salt '*' pkg.remove <extended regular expression> pcre=True

salt.modules.pkgng.restore(file_name, jail=None, chroot=None)
Reads archive created by pkg backup -d and recreates the database.

CLI Example:

salt '*' pkg.restore /tmp/pkg

jail Restore database to the specified jail. Note that this will run the command within the jail, and so the path
to the file from which the pkg database will be restored is relative to the root of the jail.

CLI Example:

salt '*' pkg.restore /tmp/pkg jail=<jail name or id>

root Restore database to the specified chroot (ignored if jail is specified). Note that this will run the
command within the chroot, and so the path to the file from which the pkg database will be restored is
relative to the root of the chroot.

CLI Example:

22.16. Full list of builtin execution modules 741

Salt Documentation, Release 2014.7.6

salt '*' pkg.restore /tmp/pkg chroot=/path/to/chroot

salt.modules.pkgng.search(name, jail=None, chroot=None, exact=False, glob=False, regex=False,
pcre=False, comment=False, desc=False, full=False, depends=False,
size=False, quiet=False, origin=False, prefix=False)

Searches in remote package repositories

CLI Example:

salt '*' pkg.search pattern

jail Perform the search using the pkg.conf(5) from the specified jail

CLI Example:

salt '*' pkg.search pattern jail=<jail name or id>

root Perform the search using the pkg.conf(5) from the specified chroot (ignored if jail is specified)

CLI Example:

salt '*' pkg.search pattern chroot=/path/to/chroot

exact Treat paern as exact paern.

CLI Example:

salt '*' pkg.search pattern exact=True

glob Treat paern as a shell glob paern.

CLI Example:

salt '*' pkg.search pattern glob=True

regex Treat paern as a regular expression.

CLI Example:

salt '*' pkg.search pattern regex=True

pcre Treat paern as an extended regular expression.

CLI Example:

salt '*' pkg.search pattern pcre=True

comment Search for paern in the package comment one-line description.

CLI Example:

salt '*' pkg.search pattern comment=True

desc Search for paern in the package description.

CLI Example:

salt '*' pkg.search pattern desc=True

full Displays full information about the matching packages.

CLI Example:

742 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' pkg.search pattern full=True

depends Displays the dependencies of paern.

CLI Example:

salt '*' pkg.search pattern depends=True

size Displays the size of the package

CLI Example:

salt '*' pkg.search pattern size=True

quiet Be quiet. Prints only the requested information without displaying many hints.

CLI Example:

salt '*' pkg.search pattern quiet=True

origin Displays paern origin.

CLI Example:

salt '*' pkg.search pattern origin=True

prefix Displays the installation prefix for each package matching paern.

CLI Example:

salt '*' pkg.search pattern prefix=True

salt.modules.pkgng.stats(local=False, remote=False, jail=None, chroot=None)
Return pkgng stats.

CLI Example:

salt '*' pkg.stats

local Display stats only for the local package database.

CLI Example:

salt '*' pkg.stats local=True

remote Display stats only for the remote package database(s).

CLI Example:

salt '*' pkg.stats remote=True

jail Retrieve stats from the specified jail.

CLI Example:

salt '*' pkg.stats jail=<jail name or id>
salt '*' pkg.stats jail=<jail name or id> local=True
salt '*' pkg.stats jail=<jail name or id> remote=True

root Retrieve stats from the specified chroot (ignored if jail is specified).

CLI Example:

22.16. Full list of builtin execution modules 743

Salt Documentation, Release 2014.7.6

salt '*' pkg.stats chroot=/path/to/chroot
salt '*' pkg.stats chroot=/path/to/chroot local=True
salt '*' pkg.stats chroot=/path/to/chroot remote=True

salt.modules.pkgng.update_package_site(new_url)
Updates remote package repo URL, PACKAGESITE var to be exact.

Must use http://, ftp://, or https:// protocol

CLI Example:

salt '*' pkg.update_package_site http://127.0.0.1/

salt.modules.pkgng.updating(name, jail=None, chroot=None, filedate=None, filename=None)
` Displays UPDATING entries of soware packages

CLI Example:

salt '*' pkg.updating foo

jail Perform the action in the specified jail

CLI Example:

salt '*' pkg.updating foo jail=<jail name or id>

root Perform the action in the specified chroot (ignored if jail is specified)

CLI Example:

salt '*' pkg.updating foo chroot=/path/to/chroot

filedate Only entries newer than date are shown. Use a YYYYMMDD date format.

CLI Example:

salt '*' pkg.updating foo filedate=20130101

filename Defines an alternative location of the UPDATING file.

CLI Example:

salt '*' pkg.updating foo filename=/tmp/UPDATING

salt.modules.pkgng.upgrade(jail=None, chroot=None, force=False, local=False, dryrun=False)
Upgrade all packages (run a pkg upgrade)

CLI Example:

salt '*' pkg.upgrade

jail Audit packages within the specified jail

CLI Example:

salt '*' pkg.upgrade jail=<jail name or id>

root Audit packages within the specified chroot (ignored if jail is specified)

CLI Example:

744 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' pkg.upgrade chroot=/path/to/chroot

Any of the below options can also be used with jail or chroot.

force Force reinstalling/upgrading the whole set of packages.

CLI Example:

salt '*' pkg.upgrade force=True

local Do not update the repository catalogs with pkg-update(8). A value of True here is equivalent to
using the -U flag with pkg upgrade.

CLI Example:

salt '*' pkg.upgrade local=True

dryrun Dry-run mode: showwhat packages have updates available, but do not perform any upgrades. Repos-
itory catalogs will be updated as usual unless the local option is also given.

CLI Example:

salt '*' pkg.upgrade dryrun=True

salt.modules.pkgng.version(*names, **kwargs)
Returns a string representing the package version or an empty string if not installed. If more than one package
name is specified, a dict of name/version pairs is returned.

Note: is function can accessed using pkg.info in addition to pkg.version, to more closely match the
CLI usage of pkg(8).

jail Get package version information for the specified jail

root Get package version information for the specified chroot (ignored if jail is specified)

with_origin [False] Return a nested dictionary containing both the origin name and version for each specified
package.

New in version 2014.1.0.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package name> jail=<jail name or id>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.pkgng.which(path, jail=None, chroot=None, origin=False, quiet=False)
Displays which package installed a specific file

CLI Example:

salt '*' pkg.which <file name>

jail Perform the check in the specified jail

CLI Example:

salt '*' pkg.which <file name> jail=<jail name or id>

22.16. Full list of builtin execution modules 745

Salt Documentation, Release 2014.7.6

root Perform the check in the specified chroot (ignored if jail is specified)

CLI Example:

salt '*' pkg.which <file name> chroot=/path/to/chroot

origin Shows the origin of the package instead of name-version.

CLI Example:

salt '*' pkg.which <file name> origin=True

quiet iet output.

CLI Example:

salt '*' pkg.which <file name> quiet=True

22.16.145 salt.modules.pkgutil

Pkgutil support for Solaris

salt.modules.pkgutil.install(name=None, refresh=False, version=None, pkgs=None, **kwargs)
Install packages using the pkgutil tool.

CLI Example:

salt '*' pkg.install <package_name>
salt '*' pkg.install SMClgcc346

Multiple Package Installation Options:

pkgs A list of packages to install from OpenCSW. Must be passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3"}]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

salt.modules.pkgutil.latest_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation. If more than one package
name is specified, a dict of name/version pairs is returned.

If the latest version of a given package is already installed, an empty string will be returned for that package.

CLI Example:

salt '*' pkgutil.latest_version CSWpython
salt '*' pkgutil.latest_version <package1> <package2> <package3> ...

salt.modules.pkgutil.list_pkgs(versions_as_list=False, **kwargs)
List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

746 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs versions_as_list=True

salt.modules.pkgutil.list_upgrades(refresh=True)
List all available package upgrades on this system

CLI Example:

salt '*' pkgutil.list_upgrades

salt.modules.pkgutil.purge(name=None, pkgs=None, **kwargs)
Package purges are not supported, this function is identical to remove().

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

salt.modules.pkgutil.refresh_db()
Updates the pkgutil repo database (pkgutil -U)

CLI Example:

salt '*' pkgutil.refresh_db

salt.modules.pkgutil.remove(name=None, pkgs=None, **kwargs)
Remove a package and all its dependencies which are not in use by other packages.

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

salt.modules.pkgutil.upgrade(refresh=True)
Upgrade all of the packages to the latest available version.

Returns a dict containing the changes:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

22.16. Full list of builtin execution modules 747

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' pkgutil.upgrade

salt.modules.pkgutil.upgrade_available(name)
Check if there is an upgrade available for a certain package

CLI Example:

salt '*' pkgutil.upgrade_available CSWpython

salt.modules.pkgutil.version(*names, **kwargs)
Returns a version if the package is installed, else returns an empty string

CLI Example:

salt '*' pkgutil.version CSWpython

22.16.146 salt.modules.portage_config

Configure portage(5)

salt.modules.portage_config.append_to_package_conf(conf, atom='`, flags=None,
string='`, overwrite=False)

Append a string or a list of flags for a given package or DEPEND atom to a given configuration file.

CLI Example:

salt '*' portage_config.append_to_package_conf use string="app-admin/salt ldap -libvirt"
salt '*' portage_config.append_to_package_conf use atom="> = app-admin/salt-0.14.1" flags="['ldap', '-libvirt']"

salt.modules.portage_config.append_use_flags(atom, uses=None, overwrite=False)
Append a list of use flags for a given package or DEPEND atom

CLI Example:

salt '*' portage_config.append_use_flags "app-admin/salt[ldap, -libvirt]"
salt '*' portage_config.append_use_flags ">=app-admin/salt-0.14.1" "['ldap', '-libvirt']"

salt.modules.portage_config.enforce_nice_config()
Enforce a nice tree structure for /etc/portage/package.* configuration files.

See also:

salt.modules.ebuild.ex_mod_init() for information on automatically running this when pkg is
used.

CLI Example:

salt '*' portage_config.enforce_nice_config

salt.modules.portage_config.get_flags_from_package_conf(conf, atom)
Get flags for a given package or DEPEND atom. Warning: is only works if the configuration files tree is in
the correct format (the one enforced by enforce_nice_config)

CLI Example:

salt '*' portage_config.get_flags_from_package_conf license salt

748 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.portage_config.get_missing_flags(conf, atom, flags)
Find out which of the given flags are currently not set. CLI Example:

salt '*' portage_config.get_missing_flags use salt "['ldap', '-libvirt', 'openssl']"

salt.modules.portage_config.has_flag(conf, atom, flag)
Verify if the given package or DEPEND atom has the given flag. Warning: is only works if the configuration
files tree is in the correct format (the one enforced by enforce_nice_config)

CLI Example:

salt '*' portage_config.has_flag license salt Apache-2.0

salt.modules.portage_config.has_use(atom, use)
Verify if the given package or DEPEND atom has the given use flag. Warning: is only works if the configu-
ration files tree is in the correct format (the one enforced by enforce_nice_config)

CLI Example:

salt '*' portage_config.has_use salt libvirt

salt.modules.portage_config.is_present(conf, atom)
Tell if a given package or DEPEND atom is present in the configuration files tree. Warning: is only works
if the configuration files tree is in the correct format (the one enforced by enforce_nice_config)

CLI Example:

salt '*' portage_config.is_present unmask salt

22.16.147 salt.modules.postfix

Support for Postfix

is module is currently lile more than a config file viewer and editor. It is able to read the master.cf file (which
is one style) and files in the style of main.cf (which is a different style, that is used in multiple postfix configuration
files).

e design of this module is such that when files are edited, a minimum of changes are made to them. Each file
should look as if it has been edited by hand; order, comments and whitespace are all preserved.

salt.modules.postfix.set_main(key, value, path='/etc/postfix/main.cf')
Set a single config value in the main.cf file. If the value does not already exist, it will be appended to the end.

CLI Example:

salt <minion> postfix.set_main mailq_path /usr/bin/mailq

salt.modules.postfix.set_master(service, conn_type, private='y', unpriv='y', chroot='y',
wakeup='n', maxproc=`100', command='`, write_conf=True,
path='/etc/postfix/master.cf')

Set a single config value in the master.cf file. If the value does not already exist, it will be appended to the end.

Because of shell parsing issues, `-` cannot be set as a value, as is normal in the master.cf file; either `y', `n' or
a number should be used when calling this function from the command line. If the value used matches the
default, it will internally be converted to a `-`. Calling this function from the Python API is not affected by
this limitation

e seings and their default values, in order, are: service (required), conn_type (required), private (y), unpriv
(y), chroot (y), wakeup (n), maxproc (100), command (required).

22.16. Full list of builtin execution modules 749

Salt Documentation, Release 2014.7.6

By default, this function will write out the changes to the master.cf file, and then returns the full contents of
the file. By seing the write_conf option to False, it will skip writing the file.

CLI Example:

salt <minion> postfix.set_master smtp inet n y n n 100 smtpd

salt.modules.postfix.show_main(path='/etc/postfix/main.cf')
Return a dict of active config values. is does not include comments, spacing or order. Bear in mind that order
is functionally important in the main.cf file, since keys can be referred to as variables. is means that the
data returned from this function should not be used for direct modification of the main.cf file; other functions
are available for that.

CLI Examples:

salt <minion> postfix.show_main salt <minion> postfix.show_main path=/path/to/main.cf

salt.modules.postfix.show_master(path='/etc/postfix/master.cf')
Return a dict of active config values. is does not include comments, spacing or order.

e data returned from this function should not be used for direct modification of the main.cf file; other
functions are available for that.

CLI Examples:

salt <minion> postfix.show_master salt <minion> postfix.show_master path=/path/to/master.cf

22.16.148 salt.modules.postgres

Module to provide Postgres compatibility to salt.

configuration In order to connect to Postgres, certain configuration is required in /etc/salt/minion on
the relevant minions. Some sample configs might look like:

postgres.host: 'localhost'
postgres.port: '5432'
postgres.user: 'postgres' -> db user
postgres.pass: ''
postgres.maintenance_db: 'postgres'

e default for the maintenance_db is `postgres' and in most cases it can be le at the default
seing. is data can also be passed into pillar. Options passed into opts will overwrite options
passed into pillar

note is module uses MD5 hashing which may not be compliant with certain security audits.

salt.modules.postgres.available_extensions(user=None, host=None, port=None,
maintenance_db=None, password=None,
runas=None)

List available postgresql extensions

CLI Example:

salt '*' postgres.available_extensions

salt.modules.postgres.create_extension(name, if_not_exists=None, schema=None,
ext_version=None, from_version=None, user=None,
host=None, port=None, maintenance_db=None,
password=None, runas=None)

Install a postgresql extension

CLI Example:

750 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' postgres.create_extension 'adminpack'

salt.modules.postgres.create_metadata(name, ext_version=None, schema=None, user=None,
host=None, port=None, maintenance_db=None, pass-
word=None, runas=None)

Get lifecycle informations about an extension

CLI Example:

salt '*' postgres.create_metadata adminpack

salt.modules.postgres.db_alter(name, user=None, host=None, port=None, maintenance_db=None,
password=None, tablespace=None, owner=None, runas=None)

Change tablespace or/and owner of database.

CLI Example:

salt '*' postgres.db_alter dbname owner=otheruser

salt.modules.postgres.db_create(name, user=None, host=None, port=None, mainte-
nance_db=None, password=None, tablespace=None, encod-
ing=None, lc_collate=None, lc_ctype=None, owner=None,
template=None, runas=None)

Adds a databases to the Postgres server.

CLI Example:

salt '*' postgres.db_create 'dbname'

salt '*' postgres.db_create 'dbname' template=template_postgis

salt.modules.postgres.db_exists(name, user=None, host=None, port=None, mainte-
nance_db=None, password=None, runas=None)

Checks if a database exists on the Postgres server.

CLI Example:

salt '*' postgres.db_exists 'dbname'

salt.modules.postgres.db_list(user=None, host=None, port=None, maintenance_db=None, pass-
word=None, runas=None)

Return dictionary with information about databases of a Postgres server.

CLI Example:

salt '*' postgres.db_list

salt.modules.postgres.db_remove(name, user=None, host=None, port=None, mainte-
nance_db=None, password=None, runas=None)

Removes a databases from the Postgres server.

CLI Example:

salt '*' postgres.db_remove 'dbname'

salt.modules.postgres.drop_extension(name, if_exists=None, restrict=None, cascade=None,
user=None, host=None, port=None, mainte-
nance_db=None, password=None, runas=None)

Drop an installed postgresql extension

CLI Example:

22.16. Full list of builtin execution modules 751

Salt Documentation, Release 2014.7.6

salt '*' postgres.drop_extension 'adminpack'

salt.modules.postgres.get_available_extension(name, user=None, host=None, port=None,
maintenance_db=None, password=None,
runas=None)

Get info about an available postgresql extension

CLI Example:

salt '*' postgres.get_available_extension plpgsql

salt.modules.postgres.get_installed_extension(name, user=None, host=None, port=None,
maintenance_db=None, password=None,
runas=None)

Get info about an installed postgresql extension

CLI Example:

salt '*' postgres.get_installed_extension plpgsql

salt.modules.postgres.group_create(groupname, user=None, host=None, port=None, main-
tenance_db=None, password=None, createdb=None,
createuser=None, createroles=None, encrypted=None,
login=None, inherit=None, superuser=None, repli-
cation=None, rolepassword=None, groups=None,
runas=None)

Creates a Postgres group. A group is postgres is similar to a user, but cannot login.

CLI Example:

salt '*' postgres.group_create 'groupname' user='user' \
host='hostname' port='port' password='password' \
rolepassword='rolepassword'

salt.modules.postgres.group_remove(groupname, user=None, host=None, port=None, mainte-
nance_db=None, password=None, runas=None)

Removes a group from the Postgres server.

CLI Example:

salt '*' postgres.group_remove 'groupname'

salt.modules.postgres.group_update(groupname, user=None, host=None, port=None, main-
tenance_db=None, password=None, createdb=None,
createroles=None, createuser=None, encrypted=None, in-
herit=None, login=None, superuser=None, replication=None,
rolepassword=None, groups=None, runas=None)

Updated a postgres group

CLI Examples:

salt '*' postgres.group_update 'username' user='user' \
host='hostname' port='port' password='password' \
rolepassword='rolepassword'

salt.modules.postgres.installed_extensions(user=None, host=None, port=None,
maintenance_db=None, password=None,
runas=None)

List installed postgresql extensions

CLI Example:

752 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' postgres.installed_extensions

salt.modules.postgres.is_available_extension(name, user=None, host=None, port=None,
maintenance_db=None, password=None,
runas=None)

Test if a specific extension is installed

CLI Example:

salt '*' postgres.is_installed_extension

salt.modules.postgres.is_installed_extension(name, user=None, host=None, port=None,
maintenance_db=None, password=None,
runas=None)

Test if a specific extension is installed

CLI Example:

salt '*' postgres.is_installed_extension

salt.modules.postgres.owner_to(dbname, ownername, user=None, host=None, port=None, pass-
word=None, runas=None)

Set the owner of all schemas, functions, tables, views and sequences to the given username.

CLI Example:

salt '*' postgres.owner_to 'dbname' 'username'

salt.modules.postgres.psql_query(query, user=None, host=None, port=None, mainte-
nance_db=None, password=None, runas=None)

Run an SQL-ery and return the results as a list. is command only supports SELECT statements. is
limitation can be worked around with a query like this:

WITH updated AS (UPDATE pg_authid SET rolconnlimit = 2000 WHERE rolname = `rolename' RETURNING
rolconnlimit) SELECT * FROM updated;

CLI Example:

salt '*' postgres.psql_query 'select * from pg_stat_activity'

salt.modules.postgres.role_get(name, user=None, host=None, port=None, maintenance_db=None,
password=None, runas=None, return_password=False)

Return a dict with information about users of a Postgres server.

Set return_password to True to get password hash in the result.

CLI Example:

salt '*' postgres.role_get postgres

salt.modules.postgres.user_create(username, user=None, host=None, port=None, mainte-
nance_db=None, password=None, createdb=None, crea-
teuser=None, createroles=None, inherit=None, login=None,
encrypted=None, superuser=None, replication=None,
rolepassword=None, groups=None, runas=None)

Creates a Postgres user.

CLI Examples:

salt '*' postgres.user_create 'username' user='user' \
host='hostname' port='port' password='password' \
rolepassword='rolepassword'

22.16. Full list of builtin execution modules 753

Salt Documentation, Release 2014.7.6

salt.modules.postgres.user_exists(name, user=None, host=None, port=None, mainte-
nance_db=None, password=None, runas=None)

Checks if a user exists on the Postgres server.

CLI Example:

salt '*' postgres.user_exists 'username'

salt.modules.postgres.user_list(user=None, host=None, port=None,maintenance_db=None, pass-
word=None, runas=None, return_password=False)

Return a dict with information about users of a Postgres server.

Set return_password to True to get password hash in the result.

CLI Example:

salt '*' postgres.user_list

salt.modules.postgres.user_remove(username, user=None, host=None, port=None, mainte-
nance_db=None, password=None, runas=None)

Removes a user from the Postgres server.

CLI Example:

salt '*' postgres.user_remove 'username'

salt.modules.postgres.user_update(username, user=None, host=None, port=None, mainte-
nance_db=None, password=None, createdb=None, crea-
teuser=None, createroles=None, encrypted=None, supe-
ruser=None, inherit=None, login=None, replication=None,
rolepassword=None, groups=None, runas=None)

Updates a Postgres user.

CLI Examples:

salt '*' postgres.user_update 'username' user='user' \
host='hostname' port='port' password='password' \
rolepassword='rolepassword'

salt.modules.postgres.version(user=None, host=None, port=None, maintenance_db=None, pass-
word=None, runas=None)

Return the version of a Postgres server.

CLI Example:

salt '*' postgres.version

22.16.149 salt.modules.poudriere

Support for poudriere

salt.modules.poudriere.bulk_build(jail, pkg_file, keep=False)
Run bulk build on poudriere server.

Return number of pkg builds, failures, and errors, on error dump to CLI

CLI Example:

salt -N buildbox_group poudriere.bulk_build 90amd64 /root/pkg_list

754 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.poudriere.create_jail(name, arch, version=`9.0-RELEASE')
Creates a new poudriere jail if one does not exist

NOTE creating a new jail will take some time the master is not hanging

CLI Example:

salt '*' poudriere.create_jail 90amd64 amd64

salt.modules.poudriere.create_ports_tree()
Not working need to run portfetch non interactive

salt.modules.poudriere.delete_jail(name)
Deletes poudriere jail with name

CLI Example:

salt '*' poudriere.delete_jail 90amd64

salt.modules.poudriere.is_jail(name)
Return True if jail exists False if not

CLI Example:

salt '*' poudriere.is_jail <jail name>

salt.modules.poudriere.list_jails()
Return a list of current jails managed by poudriere

CLI Example:

salt '*' poudriere.list_jails

salt.modules.poudriere.list_ports()
Return a list of current port trees managed by poudriere

CLI Example:

salt '*' poudriere.list_ports

salt.modules.poudriere.make_pkgng_aware(jname)
Make jail jname pkgng aware

CLI Example:

salt '*' poudriere.make_pkgng_aware <jail name>

salt.modules.poudriere.parse_config(config_file=None)
Returns a dict of poudriere main configuration definitions

CLI Example:

salt '*' poudriere.parse_config

salt.modules.poudriere.update_jail(name)
Run freebsd-update on name poudriere jail

CLI Example:

salt '*' poudriere.update_jail freebsd:10:x86:64

22.16. Full list of builtin execution modules 755

Salt Documentation, Release 2014.7.6

salt.modules.poudriere.update_ports_tree(ports_tree)
Updates the ports tree, either the default or the ports_tree specified

CLI Example:

salt '*' poudriere.update_ports_tree staging

salt.modules.poudriere.version()
Return poudriere version

CLI Example:

salt '*' poudriere.version

22.16.150 salt.modules.powerpath

powerpath support.

Assumes RedHat

salt.modules.powerpath.add_license(key)
Add a license

salt.modules.powerpath.has_powerpath()

salt.modules.powerpath.list_licenses()
returns a list of applied powerpath license keys

salt.modules.powerpath.remove_license(key)
Remove a license

22.16.151 salt.modules.ps

A salt interface to psutil, a system and process library. See hp://code.google.com/p/psutil.

depends

• psutil Python module, version 0.3.0 or later

• python-utmp package (optional)

salt.modules.ps.boot_time(time_format=None)
Return the boot time in number of seconds since the epoch began.

CLI Example:

time_format Optionally specify a strime format string. Usetime_format='%c' to get a nicely-formaed
locale specific date and time (i.e. Fri May 2 19:08:32 2014).

New in version 2014.1.4.

salt '*' ps.boot_time

salt.modules.ps.cpu_percent(interval=0.1, per_cpu=False)
Return the percent of time the CPU is busy.

interval the number of seconds to sample CPU usage over

per_cpu if True return an array of CPU percent busy for each CPU, otherwise aggregate all percents into one
number

756 Chapter 22. Reference

http://code.google.com/p/psutil
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' ps.cpu_percent

salt.modules.ps.cpu_times(per_cpu=False)
Return the percent of time the CPU spends in each state, e.g. user, system, idle, nice, iowait, irq, soirq.

per_cpu if True return an array of percents for each CPU, otherwise aggregate all percents into one number

CLI Example:

salt '*' ps.cpu_times

salt.modules.ps.disk_io_counters(device=None)
Return disk I/O statistics.

CLI Example:

salt '*' ps.disk_io_counters

salt '*' ps.disk_io_counters device=sda1

salt.modules.ps.disk_partition_usage(all=False)
Return a list of disk partitions plus the mount point, filesystem and usage statistics.

CLI Example:

salt '*' ps.disk_partition_usage

salt.modules.ps.disk_partitions(all=False)
Return a list of disk partitions and their device, mount point, and filesystem type.

all if set to False, only return local, physical partitions (hard disk, USB, CD/DVD partitions). If True, return
all filesystems.

CLI Example:

salt '*' ps.disk_partitions

salt.modules.ps.disk_usage(path)
Given a path, return a dict listing the total available space as well as the free space, and used space.

CLI Example:

salt '*' ps.disk_usage /home

salt.modules.ps.get_pid_list()
Return a list of process ids (PIDs) for all running processes.

CLI Example:

salt '*' ps.get_pid_list

salt.modules.ps.get_users()
Return logged-in users.

CLI Example:

salt '*' ps.get_users

salt.modules.ps.kill_pid(pid, signal=15)
Kill a process by PID.

22.16. Full list of builtin execution modules 757

Salt Documentation, Release 2014.7.6

salt 'minion' ps.kill_pid pid [signal=signal_number]

pid PID of process to kill.

signal Signal to send to the process. See manpage entry for kill for possible values. Default: 15 (SIGTERM).

Example:

Send SIGKILL to process with PID 2000:

salt 'minion' ps.kill_pid 2000 signal=9

salt.modules.ps.network_io_counters(interface=None)
Return network I/O statistics.

CLI Example:

salt '*' ps.network_io_counters

salt '*' ps.network_io_counters interface=eth0

salt.modules.ps.num_cpus()
Return the number of CPUs.

CLI Example:

salt '*' ps.num_cpus

salt.modules.ps.pgrep(paern, user=None, full=False)
Return the pids for processes matching a paern.

If full is true, the full command line is searched for a match, otherwise only the name of the command is
searched.

salt '*' ps.pgrep pattern [user=username] [full=(true|false)]

pattern Paern to search for in the process list.

user Limit matches to the given username. Default: All users.

full A boolean value indicating whether only the name of the command or the full command line should be
matched against the paern.

Examples:

Find all hpd processes on all `www' minions:

salt 'www.*' ps.pgrep httpd

Find all bash processes owned by user `tom':

salt '*' ps.pgrep bash user=tom

salt.modules.ps.pkill(paern, user=None, signal=15, full=False)
Kill processes matching a paern.

salt '*' ps.pkill pattern [user=username] [signal=signal_number] \
[full=(true|false)]

pattern Paern to search for in the process list.

758 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

user Limit matches to the given username. Default: All users.

signal Signal to send to the process(es). Seemanpage entry for kill for possible values. Default: 15 (SIGTERM).

full A boolean value indicating whether only the name of the command or the full command line should be
matched against the paern.

Examples:

Send SIGHUP to all hpd processes on all `www' minions:

salt 'www.*' ps.pkill httpd signal=1

Send SIGKILL to all bash processes owned by user `tom':

salt '*' ps.pkill bash signal=9 user=tom

salt.modules.ps.swap_memory()
New in version 2014.7.0.

Return a dict that describes swap memory statistics.

Note: is function is only available in psutil version 0.6.0 and above.

CLI Example:

salt '*' ps.swap_memory

salt.modules.ps.top(num_processes=5, interval=3)
Return a list of top CPU consuming processes during the interval. num_processes = return the top N CPU
consuming processes interval = the number of seconds to sample CPU usage over

CLI Examples:

salt '*' ps.top

salt '*' ps.top 5 10

salt.modules.ps.total_physical_memory()
Return the total number of bytes of physical memory.

CLI Example:

salt '*' ps.total_physical_memory

salt.modules.ps.virtual_memory()
New in version 2014.7.0.

Return a dict that describes statistics about system memory usage.

Note: is function is only available in psutil version 0.6.0 and above.

CLI Example:

salt '*' ps.virtual_memory

22.16.152 salt.modules.publish

Publish a command from a minion to a target

22.16. Full list of builtin execution modules 759

Salt Documentation, Release 2014.7.6

salt.modules.publish.full_data(tgt, fun, arg=None, expr_form='glob', returner='`, timeout=5)
Return the full data about the publication, this is invoked in the same way as the publish function

CLI Example:

salt system.example.com publish.full_data '*' cmd.run 'ls -la /tmp'

Attention

If you need to pass a value to a function argument and that value contains an equal sign, you must include the
argument name. For example:

salt '*' publish.full_data test.kwarg arg='cheese=spam'

salt.modules.publish.publish(tgt, fun, arg=None, expr_form='glob', returner='`, timeout=5)
Publish a command from the minion out to other minions.

Publications need to be enabled on the Salt master and the minion needs to have permission to publish the
command. e Salt master will also prevent a recursive publication loop, this means that a minion cannot
command another minion to command another minion as that would create an infinite command loop.

e expr_form argument is used to pass a target other than a glob into the execution, the available options
are:

•glob

•pcre

•grain

•grain_pcre

•pillar

•ipcidr

•range

•compound

Note that for pillar matches must be exact, both in the pillar matcher and the compound matcher. No globbing
is supported.

e arguments sent to the minion publish function are separated with commas. is means that for a minion
executing a command with multiple args it will look like this:

salt system.example.com publish.publish '*' user.add 'foo,1020,1020'
salt system.example.com publish.publish 'os:Fedora' network.interfaces '' grain

CLI Example:

salt system.example.com publish.publish '*' cmd.run 'ls -la /tmp'

Attention

If you need to pass a value to a function argument and that value contains an equal sign, you must include the
argument name. For example:

salt '*' publish.publish test.kwarg arg='cheese=spam'

760 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.publish.runner(fun, arg=None, timeout=5)
Execute a runner on the master and return the data from the runner function

CLI Example:

salt publish.runner manage.down

22.16.153 salt.modules.puppet

Execute puppet routines

salt.modules.puppet.disable()
New in version 2014.7.0.

Disable the puppet agent

CLI Example:

salt '*' puppet.disable

salt.modules.puppet.enable()
New in version 2014.7.0.

Enable the puppet agent

CLI Example:

salt '*' puppet.disable

salt.modules.puppet.fact(name, puppet=False)
Run facter for a specific fact

CLI Example:

salt '*' puppet.fact kernel

salt.modules.puppet.facts(puppet=False)
Run facter and return the results

CLI Example:

salt '*' puppet.facts

salt.modules.puppet.noop(*args, **kwargs)
Execute a puppet noop run and return a dict with the stderr, stdout, return code, etc. Usage is the same as for
puppet.run.

CLI Example:

salt '*' puppet.noop
salt '*' puppet.noop tags=basefiles::edit,apache::server
salt '*' puppet.noop debug
salt '*' puppet.noop apply /a/b/manifest.pp modulepath=/a/b/modules tags=basefiles::edit,apache::server

salt.modules.puppet.run(*args, **kwargs)
Execute a puppet run and return a dict with the stderr, stdout, return code, etc. e first positional argument
given is checked as a subcommand. Following positional arguments should be ordered with arguments re-
quired by the subcommand first, followed by non-keyword arguments. Tags are specified by a tag keyword
and comma separated list of values. -- hp://docs.puppetlabs.com/puppet/latest/reference/lang_tags.html

CLI Examples:

22.16. Full list of builtin execution modules 761

http://docs.puppetlabs.com/puppet/latest/reference/lang_tags.html

Salt Documentation, Release 2014.7.6

salt '*' puppet.run
salt '*' puppet.run tags=basefiles::edit,apache::server
salt '*' puppet.run agent onetime no-daemonize no-usecacheonfailure no-splay ignorecache
salt '*' puppet.run debug
salt '*' puppet.run apply /a/b/manifest.pp modulepath=/a/b/modules tags=basefiles::edit,apache::server

salt.modules.puppet.status()
New in version 2014.7.0.

Display puppet agent status

CLI Example:

salt '*' puppet.status

salt.modules.puppet.summary()
New in version 2014.7.0.

Show a summary of the last puppet agent run

CLI Example:

salt '*' puppet.summary

22.16.154 salt.modules.pw_group

Manage groups on FreeBSD

salt.modules.pw_group.add(name, gid=None, **kwargs)
Add the specified group

CLI Example:

salt '*' group.add foo 3456

salt.modules.pw_group.chgid(name, gid)
Change the gid for a named group

CLI Example:

salt '*' group.chgid foo 4376

salt.modules.pw_group.delete(name)
Remove the named group

CLI Example:

salt '*' group.delete foo

salt.modules.pw_group.getent(refresh=False)
Return info on all groups

CLI Example:

salt '*' group.getent

salt.modules.pw_group.info(name)
Return information about a group

CLI Example:

762 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' group.info foo

22.16.155 salt.modules.pw_user

Manage users with the useradd command

salt.modules.pw_user.add(name, uid=None, gid=None, groups=None, home=None, shell=None,
unique=True, fullname='`, roomnumber='`, workphone='`, homephone='`,
createhome=True, **kwargs)

Add a user to the minion

CLI Example:

salt '*' user.add name <uid> <gid> <groups> <home> <shell>

salt.modules.pw_user.chfullname(name, fullname)
Change the user's Full Name

CLI Example:

salt '*' user.chfullname foo "Foo Bar"

salt.modules.pw_user.chgid(name, gid)
Change the default group of the user

CLI Example:

salt '*' user.chgid foo 4376

salt.modules.pw_user.chgroups(name, groups, append=False)
Change the groups this user belongs to, add append to append the specified groups

CLI Example:

salt '*' user.chgroups foo wheel,root True

salt.modules.pw_user.chhome(name, home, persist=False)
Change the home directory of the user, pass true for persist to copy files to the new home dir

CLI Example:

salt '*' user.chhome foo /home/users/foo True

salt.modules.pw_user.chhomephone(name, homephone)
Change the user's Home Phone

CLI Example:

salt '*' user.chhomephone foo "7735551234"

salt.modules.pw_user.chroomnumber(name, roomnumber)
Change the user's Room Number

CLI Example:

salt '*' user.chroomnumber foo 123

salt.modules.pw_user.chshell(name, shell)
Change the default shell of the user

CLI Example:

22.16. Full list of builtin execution modules 763

Salt Documentation, Release 2014.7.6

salt '*' user.chshell foo /bin/zsh

salt.modules.pw_user.chuid(name, uid)
Change the uid for a named user

CLI Example:

salt '*' user.chuid foo 4376

salt.modules.pw_user.chworkphone(name, workphone)
Change the user's Work Phone

CLI Example:

salt '*' user.chworkphone foo "7735550123"

salt.modules.pw_user.delete(name, remove=False, force=False)
Remove a user from the minion

CLI Example:

salt '*' user.delete name remove=True force=True

salt.modules.pw_user.getent(refresh=False)
Return the list of all info for all users

CLI Example:

salt '*' user.getent

salt.modules.pw_user.info(name)
Return user information

CLI Example:

salt '*' user.info root

salt.modules.pw_user.list_groups(name)
Return a list of groups the named user belongs to

CLI Example:

salt '*' user.list_groups foo

salt.modules.pw_user.list_users()
Return a list of all users

CLI Example:

salt '*' user.list_users

22.16.156 salt.modules.pyenv

Manage python installations with pyenv.

New in version v2014.04.

salt.modules.pyenv.default(python=None, runas=None)
Returns or sets the currently defined default python.

764 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

python=None e version to set as the default. Should match one of the versions listed by
pyenv.versions. Leave blank to return the current default.

CLI Example:

salt '*' pyenv.default
salt '*' pyenv.default 2.0.0-p0

salt.modules.pyenv.do(cmdline=None, runas=None)
Execute a python command with pyenv's shims from the user or the system.

CLI Example:

salt '*' pyenv.do 'gem list bundler'
salt '*' pyenv.do 'gem list bundler' deploy

salt.modules.pyenv.do_with_python(python, cmdline, runas=None)
Execute a python command with pyenv's shims using a specific python version.

CLI Example:

salt '*' pyenv.do_with_python 2.0.0-p0 'gem list bundler'
salt '*' pyenv.do_with_python 2.0.0-p0 'gem list bundler' deploy

salt.modules.pyenv.install(runas=None, path=None)
Install pyenv systemwide

CLI Example:

salt '*' pyenv.install

salt.modules.pyenv.install_python(python, runas=None)
Install a python implementation.

python e version of python to install, should match one of the versions listed by pyenv.list

CLI Example:

salt '*' pyenv.install_python 2.0.0-p0

salt.modules.pyenv.is_installed(runas=None)
Check if pyenv is installed.

CLI Example:

salt '*' pyenv.is_installed

salt.modules.pyenv.list_(runas=None)
List the installable versions of python.

CLI Example:

salt '*' pyenv.list

salt.modules.pyenv.rehash(runas=None)
Run pyenv rehash to update the installed shims.

CLI Example:

salt '*' pyenv.rehash

salt.modules.pyenv.uninstall_python(python, runas=None)
Uninstall a python implementation.

22.16. Full list of builtin execution modules 765

Salt Documentation, Release 2014.7.6

python e version of python to uninstall. Should match one of the versions listed by pyenv.versions

CLI Example:

salt '*' pyenv.uninstall_python 2.0.0-p0

salt.modules.pyenv.update(runas=None, path=None)
Updates the current versions of pyenv and python-Build

CLI Example:

salt '*' pyenv.update

salt.modules.pyenv.versions(runas=None)
List the installed versions of python.

CLI Example:

salt '*' pyenv.versions

22.16.157 salt.modules.qemu_img

Qemu-img Command Wrapper

e qemu img command is wrapped for specific functions

depends qemu-img

salt.modules.qemu_img.make_image(location, size, fmt)
Create a blank virtual machine image file of the specified size in megabytes. e image can be created in any
format supported by qemu

CLI Example:

salt '*' qemu_img.make_image /tmp/image.qcow 2048 qcow2
salt '*' qemu_img.make_image /tmp/image.raw 10240 raw

22.16.158 salt.modules.qemu_nbd

Qemu Command Wrapper

e qemu system comes with powerful tools, such as qemu-img and qemu-nbd which are used here to build up kvm
images.

salt.modules.qemu_nbd.clear(mnt)
Pass in the mnt dict returned from nbd_mount to unmount and disconnect the image from nbd. If all of the
partitions are unmounted return an empty dict, otherwise return a dict containing the still mounted partitions

CLI Example:

salt '*' qemu_nbd.clear '{"/mnt/foo": "/dev/nbd0p1"}'

salt.modules.qemu_nbd.connect(image)
Activate nbd for an image file.

CLI Example:

766 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' qemu_nbd.connect /tmp/image.raw

salt.modules.qemu_nbd.init(image)
Mount the named image via qemu-nbd and return the mounted roots

CLI Example:

salt '*' qemu_nbd.init /srv/image.qcow2

salt.modules.qemu_nbd.mount(nbd)
Pass in the nbd connection device location, mount all partitions and return a dict of mount points

CLI Example:

salt '*' qemu_nbd.mount /dev/nbd0

22.16.159 salt.modules.quota

Module for managing quotas on POSIX-like systems.

salt.modules.quota.get_mode(device)
Report whether the quota system for this device is on or off

CLI Example:

salt '*' quota.get_mode

salt.modules.quota.off(device)
Turns off the quota system

CLI Example:

salt '*' quota.off

salt.modules.quota.on(device)
Turns on the quota system

CLI Example:

salt '*' quota.on

salt.modules.quota.report(mount)
Report on quotas for a specific volume

CLI Example:

salt '*' quota.report /media/data

salt.modules.quota.set_(device, **kwargs)
Calls out to setquota, for a specific user or group

CLI Example:

salt '*' quota.set /media/data user=larry block-soft-limit=1048576
salt '*' quota.set /media/data group=painters file-hard-limit=1000

salt.modules.quota.stats()
Runs the quotastats command, and returns the parsed output

CLI Example:

22.16. Full list of builtin execution modules 767

Salt Documentation, Release 2014.7.6

salt '*' quota.stats

salt.modules.quota.warn()
Runs the warnquota command, to send warning emails to users who are over their quota limit.

CLI Example:

salt '*' quota.warn

22.16.160 salt.modules.rabbitmq

Module to provide RabbitMQ compatibility to Salt. Todo: A lot, need to add cluster support, logging, and minion
configuration data.

salt.modules.rabbitmq.add_user(name, password=None, runas=None)
Add a rabbitMQ user via rabbitmqctl user_add <user> <password>

CLI Example:

salt '*' rabbitmq.add_user rabbit_user password

salt.modules.rabbitmq.add_vhost(vhost, runas=None)
Adds a vhost via rabbitmqctl add_vhost.

CLI Example:

salt '*' rabbitmq add_vhost '<vhost_name>'

salt.modules.rabbitmq.change_password(name, password, runas=None)
Changes a user's password.

CLI Example:

salt '*' rabbitmq.change_password rabbit_user password

salt.modules.rabbitmq.clear_password(name, runas=None)
Removes a user's password.

CLI Example:

salt '*' rabbitmq.clear_password rabbit_user

salt.modules.rabbitmq.cluster_status(runas=None)
return rabbitmq cluster_status

CLI Example:

salt '*' rabbitmq.cluster_status

salt.modules.rabbitmq.delete_policy(vhost, name, runas=None)
Delete a policy based on rabbitmqctl clear_policy.

Reference: hp://www.rabbitmq.com/ha.html

CLI Example:

salt '*' rabbitmq.delete_policy / HA'

salt.modules.rabbitmq.delete_user(name, runas=None)
Deletes a user via rabbitmqctl delete_user.

768 Chapter 22. Reference

http://www.rabbitmq.com/ha.html

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' rabbitmq.delete_user rabbit_user

salt.modules.rabbitmq.delete_vhost(vhost, runas=None)
Deletes a vhost rabbitmqctl delete_vhost.

CLI Example:

salt '*' rabbitmq.delete_vhost '<vhost_name>'

salt.modules.rabbitmq.disable_plugin(name, runas=None)
Disable a RabbitMQ plugin via the rabbitmq-plugins command.

CLI Example:

salt '*' rabbitmq.disable_plugin foo

salt.modules.rabbitmq.enable_plugin(name, runas=None)
Enable a RabbitMQ plugin via the rabbitmq-plugins command.

CLI Example:

salt '*' rabbitmq.enable_plugin foo

salt.modules.rabbitmq.force_reset(runas=None)
Forcefully Return a RabbitMQ node to its virgin state

CLI Example:

salt '*' rabbitmq.force_reset

salt.modules.rabbitmq.join_cluster(host, user='rabbit', runas=None)
Join a rabbit cluster

CLI Example:

salt '*' rabbitmq.join_cluster 'rabbit' 'rabbit.example.com'

salt.modules.rabbitmq.list_permissions(vhost, runas=None)
Lists permissions for vhost via rabbitmqctl list_permissions

CLI Example:

salt '*' rabbitmq.list_permissions '/myvhost'

salt.modules.rabbitmq.list_policies(runas=None)
Return a dictionary of policies nested by vhost and name based on the data returned from rabbitmqctl
list_policies.

Reference: hp://www.rabbitmq.com/ha.html

CLI Example:

salt '*' rabbitmq.list_policies'

salt.modules.rabbitmq.list_queues(runas=None, *kwargs)
Returns queue details of the / virtual host

CLI Example:

salt '*' rabbitmq.list_queues messages consumers

22.16. Full list of builtin execution modules 769

http://www.rabbitmq.com/ha.html

Salt Documentation, Release 2014.7.6

salt.modules.rabbitmq.list_queues_vhost(vhost, runas=None, *kwargs)
Returns queue details of specified virtual host. is command will consider first parameter as the vhost name
and rest will be treated as queueinfoitem. For geing details on vhost /, use list_queues instead).

CLI Example:

salt '*' rabbitmq.list_queues messages consumers

salt.modules.rabbitmq.list_user_permissions(name, runas=None)
List permissions for a user via rabbitmqctl list_user_permissions

CLI Example:

salt '*' rabbitmq.list_user_permissions 'user'.

salt.modules.rabbitmq.list_users(runas=None)
Return a list of users based off of rabbitmqctl user_list.

CLI Example:

salt '*' rabbitmq.list_users

salt.modules.rabbitmq.list_vhosts(runas=None)
Return a list of vhost based on rabbitmqctl list_vhosts.

CLI Example:

salt '*' rabbitmq.list_vhosts

salt.modules.rabbitmq.plugin_is_enabled(name, runas=None)
Return whether the plugin is enabled.

CLI Example:

salt '*' rabbitmq.plugin_is_enabled foo

salt.modules.rabbitmq.policy_exists(vhost, name, runas=None)
Return whether the policy exists based on rabbitmqctl list_policies.

Reference: hp://www.rabbitmq.com/ha.html

CLI Example:

salt '*' rabbitmq.policy_exists / HA

salt.modules.rabbitmq.reset(runas=None)
Return a RabbitMQ node to its virgin state

CLI Example:

salt '*' rabbitmq.reset

salt.modules.rabbitmq.set_permissions(vhost, user, conf='.*', write='.*', read='.*', runas=None)
Sets permissions for vhost via rabbitmqctl set_permissions

CLI Example:

salt '*' rabbitmq.set_permissions 'myvhost' 'myuser'

salt.modules.rabbitmq.set_policy(vhost, name, paern, definition, priority=None, runas=None)
Set a policy based on rabbitmqctl set_policy.

Reference: hp://www.rabbitmq.com/ha.html

770 Chapter 22. Reference

http://www.rabbitmq.com/ha.html
http://www.rabbitmq.com/ha.html

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' rabbitmq.set_policy / HA '.*' '{"ha-mode": "all"}'

salt.modules.rabbitmq.set_user_tags(name, tags, runas=None)
Add user tags via rabbitmqctl set_user_tags

CLI Example:

salt '*' rabbitmq.set_user_tags 'myadmin' 'administrator'

salt.modules.rabbitmq.start_app(runas=None)
Start the RabbitMQ application.

CLI Example:

salt '*' rabbitmq.start_app

salt.modules.rabbitmq.status(runas=None)
return rabbitmq status

CLI Example:

salt '*' rabbitmq.status

salt.modules.rabbitmq.stop_app(runas=None)
Stops the RabbitMQ application, leaving the Erlang node running.

CLI Example:

salt '*' rabbitmq.stop_app

salt.modules.rabbitmq.user_exists(name, runas=None)
Return whether the user exists based on rabbitmqctl list_users.

CLI Example:

salt '*' rabbitmq.user_exists rabbit_user

salt.modules.rabbitmq.vhost_exists(name, runas=None)
Return whether the vhost exists based on rabbitmqctl list_vhosts.

CLI Example:

salt '*' rabbitmq.vhost_exists rabbit_host

22.16.161 salt.modules.raet_publish

Publish a command from a minion to a target

salt.modules.raet_publish.full_data(tgt, fun, arg=None, expr_form='glob', returner='`, time-
out=5)

Return the full data about the publication, this is invoked in the same way as the publish function

CLI Example:

salt system.example.com publish.full_data '*' cmd.run 'ls -la /tmp'

Attention

22.16. Full list of builtin execution modules 771

Salt Documentation, Release 2014.7.6

If you need to pass a value to a function argument and that value contains an equal sign, you must include the
argument name. For example:

salt '*' publish.full_data test.kwarg arg='cheese=spam'

salt.modules.raet_publish.publish(tgt, fun, arg=None, expr_form='glob', returner='`, timeout=5)
Publish a command from the minion out to other minions.

Publications need to be enabled on the Salt master and the minion needs to have permission to publish the
command. e Salt master will also prevent a recursive publication loop, this means that a minion cannot
command another minion to command another minion as that would create an infinite command loop.

e expr_form argument is used to pass a target other than a glob into the execution, the available options
are:

•glob

•pcre

•grain

•grain_pcre

•pillar

•ipcidr

•range

•compound

e arguments sent to the minion publish function are separated with commas. is means that for a minion
executing a command with multiple args it will look like this:

salt system.example.com publish.publish '*' user.add 'foo,1020,1020'
salt system.example.com publish.publish 'os:Fedora' network.interfaces '' grain

CLI Example:

salt system.example.com publish.publish '*' cmd.run 'ls -la /tmp'

Attention

If you need to pass a value to a function argument and that value contains an equal sign, you must include the
argument name. For example:

salt '*' publish.publish test.kwarg arg='cheese=spam'

salt.modules.raet_publish.runner(fun, arg=None, timeout=5)
Execute a runner on the master and return the data from the runner function

CLI Example:

salt publish.runner manage.down

22.16.162 salt.modules.rbenv

Manage ruby installations with rbenv.

New in version 0.16.0.

772 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.rbenv.default(ruby=None, runas=None)
Returns or sets the currently defined default ruby.

ruby=None e version to set as the default. Should match one of the versions listed by rbenv.versions.
Leave blank to return the current default.

CLI Example:

salt '*' rbenv.default
salt '*' rbenv.default 2.0.0-p0

salt.modules.rbenv.do(cmdline=None, runas=None)
Execute a ruby command with rbenv's shims from the user or the system.

CLI Example:

salt '*' rbenv.do 'gem list bundler'
salt '*' rbenv.do 'gem list bundler' deploy

salt.modules.rbenv.do_with_ruby(ruby, cmdline, runas=None)
Execute a ruby command with rbenv's shims using a specific ruby version.

CLI Example:

salt '*' rbenv.do_with_ruby 2.0.0-p0 'gem list bundler'
salt '*' rbenv.do_with_ruby 2.0.0-p0 'gem list bundler' deploy

salt.modules.rbenv.install(runas=None, path=None)
Install Rbenv systemwide

CLI Example:

salt '*' rbenv.install

salt.modules.rbenv.install_ruby(ruby, runas=None)
Install a ruby implementation.

ruby e version of Ruby to install, should match one of the versions listed by rbenv.list

Additional environment variables can be configured in pillar / grains / master:

rbenv:
build_env: 'CONFIGURE_OPTS="--no-tcmalloc" CFLAGS="-fno-tree-dce"'

CLI Example:

salt '*' rbenv.install_ruby 2.0.0-p0

salt.modules.rbenv.is_installed(runas=None)
Check if Rbenv is installed.

CLI Example:

salt '*' rbenv.is_installed

salt.modules.rbenv.list_(runas=None)
List the installable versions of ruby.

CLI Example:

salt '*' rbenv.list

22.16. Full list of builtin execution modules 773

Salt Documentation, Release 2014.7.6

salt.modules.rbenv.rehash(runas=None)
Run rbenv rehash to update the installed shims.

CLI Example:

salt '*' rbenv.rehash

salt.modules.rbenv.uninstall_ruby(ruby, runas=None)
Uninstall a ruby implementation.

ruby e version of ruby to uninstall. Should match one of the versions listed by rbenv.versions

CLI Example:

salt '*' rbenv.uninstall_ruby 2.0.0-p0

salt.modules.rbenv.update(runas=None, path=None)
Updates the current versions of Rbenv and Ruby-Build

CLI Example:

salt '*' rbenv.update

salt.modules.rbenv.versions(runas=None)
List the installed versions of ruby.

CLI Example:

salt '*' rbenv.versions

22.16.163 salt.modules.rdp

Manage RDP Service on Windows servers

salt.modules.rdp.disable()
Disable RDP the service on the server

CLI Example:

salt '*' rdp.disable

salt.modules.rdp.enable()
Enable RDP the service on the server

CLI Example:

salt '*' rdp.enable

salt.modules.rdp.status()
Show if rdp is enabled on the server

CLI Example:

salt '*' rdp.status

22.16.164 salt.modules.redis

Module to provide redis functionality to Salt

New in version 2014.7.0.

774 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

configuration ismodule requires the redis pythonmodule and uses the following defaults whichmay
be overridden in the minion configuration:

redis.host: 'localhost'
redis.port: 6379
redis.db: 0
redis.password: None

salt.modules.redismod.bgrewriteaof(host=None, port=None, db=None, password=None)
Asynchronously rewrite the append-only file

CLI Example:

salt '*' redis.bgrewriteaof

salt.modules.redismod.bgsave(host=None, port=None, db=None, password=None)
Asynchronously save the dataset to disk

CLI Example:

salt '*' redis.bgsave

salt.modules.redismod.config_get(paern='*', host=None, port=None, db=None, password=None)
Get redis server configuration values

CLI Example:

salt '*' redis.config_get
salt '*' redis.config_get port

salt.modules.redismod.config_set(name, value, host=None, port=None, db=None, pass-
word=None)

Set redis server configuration values

CLI Example:

salt '*' redis.config_set masterauth luv_kittens

salt.modules.redismod.dbsize(host=None, port=None, db=None, password=None)
Return the number of keys in the selected database

CLI Example:

salt '*' redis.dbsize

salt.modules.redismod.delete(*keys, **connection_args)
Deletes the keys from redis, returns number of keys deleted

CLI Example:

salt '*' redis.delete foo

salt.modules.redismod.exists(key, host=None, port=None, db=None, password=None)
Return true if the key exists in redis

CLI Example:

salt '*' redis.exists foo

salt.modules.redismod.expire(key, seconds, host=None, port=None, db=None, password=None)
Set a keys time to live in seconds

CLI Example:

22.16. Full list of builtin execution modules 775

Salt Documentation, Release 2014.7.6

salt '*' redis.expire foo 300

salt.modules.redismod.expireat(key, timestamp, host=None, port=None, db=None, pass-
word=None)

Set a keys expire at given UNIX time

CLI Example:

salt '*' redis.expireat foo 1400000000

salt.modules.redismod.flushall(host=None, port=None, db=None, password=None)
Remove all keys from all databases

CLI Example:

salt '*' redis.flushall

salt.modules.redismod.flushdb(host=None, port=None, db=None, password=None)
Remove all keys from the selected database

CLI Example:

salt '*' redis.flushdb

salt.modules.redismod.get_key(key, host=None, port=None, db=None, password=None)
Get redis key value

CLI Example:

salt '*' redis.get_key foo

salt.modules.redismod.hget(key, field, host=None, port=None, db=None, password=None)
Get specific field value from a redis hash, returns dict

CLI Example:

salt '*' redis.hget foo_hash bar_field

salt.modules.redismod.hgetall(key, host=None, port=None, db=None, password=None)
Get all fields and values from a redis hash, returns dict

CLI Example:

salt '*' redis.hgetall foo_hash

salt.modules.redismod.info(host=None, port=None, db=None, password=None)
Get information and statistics about the server

CLI Example:

salt '*' redis.info

salt.modules.redismod.key_type(key, host=None, port=None, db=None, password=None)
Get redis key type

CLI Example:

salt '*' redis.type foo

salt.modules.redismod.keys(paern='*', host=None, port=None, db=None, password=None)
Get redis keys, supports glob style paerns

CLI Example:

776 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' redis.keys
salt '*' redis.keys test*

salt.modules.redismod.lastsave(host=None, port=None, db=None, password=None)
Get the UNIX time in seconds of the last successful save to disk

CLI Example:

salt '*' redis.lastsave

salt.modules.redismod.llen(key, host=None, port=None, db=None, password=None)
Get the length of a list in Redis

CLI Example:

salt '*' redis.llen foo_list

salt.modules.redismod.lrange(key, start, stop, host=None, port=None, db=None, password=None)
Get a range of values from a list in Redis

CLI Example:

salt '*' redis.lrange foo_list 0 10

salt.modules.redismod.ping(host=None, port=None, db=None, password=None)
Ping the server, returns False on connection errors

CLI Example:

salt '*' redis.ping

salt.modules.redismod.save(host=None, port=None, db=None, password=None)
Synchronously save the dataset to disk

CLI Example:

salt '*' redis.save

salt.modules.redismod.set_key(key, value, host=None, port=None, db=None, password=None)
Set redis key value

CLI Example:

salt '*' redis.set_key foo bar

salt.modules.redismod.shutdown(host=None, port=None, db=None, password=None)
Synchronously save the dataset to disk and then shut down the server

CLI Example:

salt '*' redis.shutdown

salt.modules.redismod.slaveof(master_host=None, master_port=None, host=None, port=None,
db=None, password=None)

Make the server a slave of another instance, or promote it as master

CLI Example:

Become slave of redis-n01.example.com:6379
salt '*' redis.slaveof redis-n01.example.com 6379
salt '*' redis.slaveof redis-n01.example.com
Become master
salt '*' redis.slaveof

22.16. Full list of builtin execution modules 777

Salt Documentation, Release 2014.7.6

salt.modules.redismod.smembers(key, host=None, port=None, db=None, password=None)
Get members in a Redis set

CLI Example:

salt '*' redis.smembers foo_set

salt.modules.redismod.time(host=None, port=None, db=None, password=None)
Return the current server UNIX time in seconds

CLI Example:

salt '*' redis.time

salt.modules.redismod.zcard(key, host=None, port=None, db=None, password=None)
Get the length of a sorted set in Redis

CLI Example:

salt '*' redis.zcard foo_sorted

salt.modules.redismod.zrange(key, start, stop, host=None, port=None, db=None, password=None)
Get a range of values from a sorted set in Redis by index

CLI Example:

salt '*' redis.zrange foo_sorted 0 10

22.16.165 salt.modules.reg

Manage the registry on Windows

depends

• winreg Python module

class salt.modules.reg.Registry
Delay `_winreg' usage until this module is used

salt.modules.reg.create_key(hkey, path, key, value=None, reflection=True)
Create a registry key

CLI Example:

salt '*' reg.create_key HKEY_CURRENT_USER 'SOFTWARE\Salt' 'version' '0.97'

salt.modules.reg.delete_key(hkey, path, key, reflection=True)
Delete a registry key

Note: is cannot delete a key with subkeys

CLI Example:

salt '*' reg.delete_key HKEY_CURRENT_USER 'SOFTWARE\Salt' 'version'

salt.modules.reg.read_key(hkey, path, key, reflection=True)
Read registry key value

CLI Example:

salt '*' reg.read_key HKEY_LOCAL_MACHINE 'SOFTWARE\Salt' 'version'

778 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.reg.set_key(hkey, path, key, value, vtype='REG_DWORD', reflection=True)
Set a registry key vtype: hp://docs.python.org/2/library/_winreg.html#value-types

CLI Example:

salt '*' reg.set_key HKEY_CURRENT_USER 'SOFTWARE\Salt' 'version' '0.97' REG_DWORD

22.16.166 salt.modules.rest_package

Service support for the REST example

salt.modules.rest_package.install(name=None, refresh=False, fromrepo=None, pkgs=None,
sources=None, **kwargs)

salt.modules.rest_package.installed(name, version=None, refresh=False, fromrepo=None,
skip_verify=False, pkgs=None, sources=None, **kwargs)

salt.modules.rest_package.list_pkgs(versions_as_list=False, **kwargs)

salt.modules.rest_package.remove(name=None, pkgs=None, **kwargs)

salt.modules.rest_package.version(*names, **kwargs)
Returns a string representing the package version or an empty string if not installed. If more than one package
name is specified, a dict of name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

22.16.167 salt.modules.rest_sample

Module for interfacing to the REST example

pre-pre-ALPHA QUALITY code.

salt.modules.rest_sample.grains_refresh()
Refresh the cache.

salt.modules.rest_sample.ping()

22.16.168 salt.modules.rest_service

Service support for the REST example

salt.modules.rest_service.list_()
List services.

CLI Example:

salt '*' rest_service.list <service name>

salt.modules.rest_service.restart(name)
Restart the named service

CLI Example:

salt '*' rest_service.restart <service name>

22.16. Full list of builtin execution modules 779

http://docs.python.org/2/library/_winreg.html#value-types

Salt Documentation, Release 2014.7.6

salt.modules.rest_service.start(name)
Start the specified service

CLI Example:

salt '*' rest_service.start <service name>

salt.modules.rest_service.status(name)
Return the status for a service, returns a bool whether the service is running.

CLI Example:

salt '*' rest_service.status <service name>

salt.modules.rest_service.stop(name)
Stop the specified service

CLI Example:

salt '*' rest_service.stop <service name>

22.16.169 salt.modules.ret

Module to integrate with the returner system and retrieve data sent to a salt returner

salt.modules.ret.get_fun(returner, fun)
Return info about last time fun was called on each minion

CLI Example:

salt '*' ret.get_fun mysql network.interfaces

salt.modules.ret.get_jid(returner, jid)
Return the information for a specified job id

CLI Example:

salt '*' ret.get_jid redis 20421104181954700505

salt.modules.ret.get_jids(returner)
Return a list of all job ids

CLI Example:

salt '*' ret.get_jids mysql

salt.modules.ret.get_minions(returner)
Return a list of all minions

CLI Example:

salt '*' ret.get_minions mysql

22.16.170 salt.modules.rh_ip

e networking module for RHEL/Fedora based distros

780 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.rh_ip.apply_network_settings(**seings)
Apply global network configuration.

CLI Example:

salt '*' ip.apply_network_settings

salt.modules.rh_ip.build_bond(iface, **seings)
Create a bond script in /etc/modprobe.d with the passed seings and load the bonding kernel module.

CLI Example:

salt '*' ip.build_bond bond0 mode=balance-alb

salt.modules.rh_ip.build_interface(iface, iface_type, enabled, **seings)
Build an interface script for a network interface.

CLI Example:

salt '*' ip.build_interface eth0 eth <settings>

salt.modules.rh_ip.build_network_settings(**seings)
Build the global network script.

CLI Example:

salt '*' ip.build_network_settings <settings>

salt.modules.rh_ip.build_routes(iface, **seings)
Build a route script for a network interface.

CLI Example:

salt '*' ip.build_routes eth0 <settings>

salt.modules.rh_ip.down(iface, iface_type)
Shutdown a network interface

CLI Example:

salt '*' ip.down eth0

salt.modules.rh_ip.get_bond(iface)
Return the content of a bond script

CLI Example:

salt '*' ip.get_bond bond0

salt.modules.rh_ip.get_interface(iface)
Return the contents of an interface script

CLI Example:

salt '*' ip.get_interface eth0

salt.modules.rh_ip.get_network_settings()
Return the contents of the global network script.

CLI Example:

22.16. Full list of builtin execution modules 781

Salt Documentation, Release 2014.7.6

salt '*' ip.get_network_settings

salt.modules.rh_ip.get_routes(iface)
Return the contents of the interface routes script.

CLI Example:

salt '*' ip.get_routes eth0

salt.modules.rh_ip.up(iface, iface_type)
Start up a network interface

CLI Example:

salt '*' ip.up eth0

22.16.171 salt.modules.rh_service

Service support for RHEL-based systems, including support for both upstart and sysvinit

salt.modules.rh_service.available(name, limit='`)
Return True if the named service is available. Use the limit param to restrict results to services of that type.

CLI Examples:

salt '*' service.available sshd
salt '*' service.available sshd limit=upstart
salt '*' service.available sshd limit=sysvinit

salt.modules.rh_service.disable(name, **kwargs)
Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

salt.modules.rh_service.disabled(name)
Check to see if the named service is disabled to start on boot

CLI Example:

salt '*' service.disabled <service name>

salt.modules.rh_service.enable(name, **kwargs)
Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

salt.modules.rh_service.enabled(name)
Check to see if the named service is enabled to start on boot

CLI Example:

salt '*' service.enabled <service name>

salt.modules.rh_service.get_all(limit='`)
Return all installed services. Use the limit param to restrict results to services of that type.

CLI Example:

782 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' service.get_all
salt '*' service.get_all limit=upstart
salt '*' service.get_all limit=sysvinit

salt.modules.rh_service.get_disabled(limit='`)
Return the disabled services. Use the limit param to restrict results to services of that type.

CLI Example:

salt '*' service.get_disabled
salt '*' service.get_disabled limit=upstart
salt '*' service.get_disabled limit=sysvinit

salt.modules.rh_service.get_enabled(limit='`)
Return the enabled services. Use the limit param to restrict results to services of that type.

CLI Examples:

salt '*' service.get_enabled
salt '*' service.get_enabled limit=upstart
salt '*' service.get_enabled limit=sysvinit

salt.modules.rh_service.missing(name, limit='`)
e inverse of service.available. Return True if the named service is not available. Use the limit param to
restrict results to services of that type.

CLI Examples:

salt '*' service.missing sshd
salt '*' service.missing sshd limit=upstart
salt '*' service.missing sshd limit=sysvinit

salt.modules.rh_service.reload_(name)
Reload the named service

CLI Example:

salt '*' service.reload <service name>

salt.modules.rh_service.restart(name)
Restart the named service

CLI Example:

salt '*' service.restart <service name>

salt.modules.rh_service.start(name)
Start the specified service

CLI Example:

salt '*' service.start <service name>

salt.modules.rh_service.status(name, sig=None)
Return the status for a service, returns a bool whether the service is running.

CLI Example:

salt '*' service.status <service name>

salt.modules.rh_service.stop(name)
Stop the specified service

22.16. Full list of builtin execution modules 783

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' service.stop <service name>

22.16.172 salt.modules.riak

Riak Salt Module

Author: David Boucha <boucha@gmail.com>

salt.modules.riak.cluster_commit()
Commit Cluster Changes

CLI Example:

salt '*' riak.cluster_commit

salt.modules.riak.cluster_join(riak_user=None, riak_host=None)
Join a Riak cluster

CLI Example:

salt '*' riak.cluster_join <user> <host>

salt.modules.riak.cluster_plan()
Review Cluster Plan

CLI Example:

salt '*' riak.cluster_plan

salt.modules.riak.member_status()
Get cluster member status

CLI Example:

salt '*' riak.member_status

salt.modules.riak.start()
Start Riak

CLI Example:

salt '*' riak.start

salt.modules.riak.stop()
Stop Riak

CLI Example:

salt '*' riak.stop

22.16.173 salt.modules.rpm

Support for rpm

salt.modules.rpm.file_dict(*packages)
List the files that belong to a package, sorted by group. Not specifying any packages will return a list of _every_
file on the system's rpm database (not generally recommended).

784 Chapter 22. Reference

mailto:boucha@gmail.com

Salt Documentation, Release 2014.7.6

CLI Examples:

salt '*' lowpkg.file_dict httpd
salt '*' lowpkg.file_dict httpd postfix
salt '*' lowpkg.file_dict

salt.modules.rpm.file_list(*packages)
List the files that belong to a package. Not specifying any packages will return a list of _every_ file on the
system's rpm database (not generally recommended).

CLI Examples:

salt '*' lowpkg.file_list httpd
salt '*' lowpkg.file_list httpd postfix
salt '*' lowpkg.file_list

salt.modules.rpm.list_pkgs(*packages)
List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' lowpkg.list_pkgs

salt.modules.rpm.verify(*package, **kwargs)
Runs an rpm -Va on a system, and returns the results in a dict

Files with an aribute of config, doc, ghost, license or readme in the package header can be ignored using the
ignore_types keyword argument

CLI Example:

salt '*' lowpkg.verify
salt '*' lowpkg.verify httpd
salt '*' lowpkg.verify 'httpd postfix'
salt '*' lowpkg.verify 'httpd postfix' ignore_types=['config','doc']

22.16.174 salt.modules.rsync

Wrapper for rsync

New in version 2014.1.0.

is data can also be passed into pillar . Options passed into opts will overwrite options passed into pillar.

salt.modules.rsync.config(confile='/etc/rsyncd.conf')
Return rsync config

CLI Example:

salt '*' rsync.config

salt.modules.rsync.rsync(src, dst, delete=False, force=False, update=False, passwordfile=None, ex-
clude=None, excludefrom=None)

Rsync files from src to dst

CLI Example:

22.16. Full list of builtin execution modules 785

Salt Documentation, Release 2014.7.6

salt '*' rsync.rsync {src} {dst} {delete=True} {update=True} {passwordfile=/etc/pass.crt} {exclude=xx}
salt '*' rsync.rsync {src} {dst} {delete=True} {excludefrom=/xx.ini}

salt.modules.rsync.version()
Return rsync version

CLI Example:

salt '*' rsync.version

22.16.175 salt.modules.rvm

Manage ruby installations and gemsets with RVM, the Ruby Version Manager.

salt.modules.rvm.do(ruby, command, runas=None, cwd=None)
Execute a command in an RVM controlled environment.

ruby: e ruby to use.

command: e command to execute.

runas [None] e user to run rvm as.

cwd [None] e current working directory.

CLI Example:

salt '*' rvm.do 2.0.0 <command>

salt.modules.rvm.gemset_copy(source, destination, runas=None)
Copy all gems from one gemset to another.

source e name of the gemset to copy, complete with ruby version.

destination e destination gemset.

runas [None] e user to run rvm as.

CLI Example:

salt '*' rvm.gemset_copy foobar bazquo

salt.modules.rvm.gemset_create(ruby, gemset, runas=None)
Creates a gemset.

ruby e ruby version to create the gemset for.

gemset e name of the gemset to create.

runas [None] e user to run rvm as.

CLI Example:

salt '*' rvm.gemset_create 2.0.0 foobar

salt.modules.rvm.gemset_delete(ruby, gemset, runas=None)
Deletes a gemset.

ruby e ruby version the gemset belongs to.

gemset e gemset to delete.

runas [None] e user to run rvm as.

786 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' rvm.gemset_delete 2.0.0 foobar

salt.modules.rvm.gemset_empty(ruby, gemset, runas=None)
Remove all gems from a gemset.

ruby e ruby version the gemset belongs to.

gemset e gemset to empty.

runas [None] e user to run rvm as.

CLI Example:

salt '*' rvm.gemset_empty 2.0.0 foobar

salt.modules.rvm.gemset_list(ruby='default', runas=None)
List all gemsets for the given ruby.

ruby [default] e ruby version to list the gemsets for

runas [None] e user to run rvm as.

CLI Example:

salt '*' rvm.gemset_list

salt.modules.rvm.gemset_list_all(runas=None)
List all gemsets for all installed rubies.

Note that you must have set a default ruby before this can work.

runas [None] e user to run rvm as.

CLI Example:

salt '*' rvm.gemset_list_all

salt.modules.rvm.get(version='stable', runas=None)
Update RVM.

version [stable] Which version of RVM to install, e.g. stable or head.

ruby e version of ruby to reinstall.

CLI Example:

salt '*' rvm.get

salt.modules.rvm.install(runas=None)
Install RVM system wide.

CLI Example:

salt '*' rvm.install

salt.modules.rvm.install_ruby(ruby, runas=None)
Install a ruby implementation.

ruby e version of ruby to install.

runas [None] e user to run rvm as.

CLI Example:

22.16. Full list of builtin execution modules 787

Salt Documentation, Release 2014.7.6

salt '*' rvm.install_ruby 1.9.3-p385

salt.modules.rvm.is_installed(runas=None)
Check if RVM is installed.

CLI Example:

salt '*' rvm.is_installed

salt.modules.rvm.list_(runas=None)
List all rvm installed rubies.

runas [None] e user to run rvm as.

CLI Example:

salt '*' rvm.list

salt.modules.rvm.reinstall_ruby(ruby, runas=None)
Reinstall a ruby implementation.

ruby e version of ruby to reinstall.

runas [None] e user to run rvm as.

CLI Example:

salt '*' rvm.reinstall_ruby 1.9.3-p385

salt.modules.rvm.rubygems(ruby, version, runas=None)
Installs a specific rubygems version in the given ruby.

ruby e ruby to install rubygems for.

version e version of rubygems to install or `remove' to use the version that ships with 1.9

runas [None] e user to run rvm as.

CLI Example:

salt '*' rvm.rubygems 2.0.0 1.8.24

salt.modules.rvm.set_default(ruby, runas=None)
Set the default ruby.

ruby e version of ruby to make the default.

runas [None] e user to run rvm as.

CLI Example:

salt '*' rvm.set_default 2.0.0

salt.modules.rvm.wrapper(ruby_string, wrapper_prefix, runas=None, *binaries)
Install RVM wrapper scripts.

ruby_string Ruby/gemset to install wrappers for.

wrapper_prefix What to prepend to the name of the generated wrapper binaries.

runas [None] e user to run rvm as.

binaries [None] e names of the binaries to create wrappers for. When nothing is given, wrappers for ruby,
gem, rake, irb, rdoc, ri and testrb are generated.

788 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' rvm.wrapper <ruby_string> <wrapper_prefix>

22.16.176 salt.modules.s3

Connection module for Amazon S3

configuration is module accepts explicit s3 credentials but can also utilize IAM roles assigned to the
instance trough Instance Profiles. Dynamic credentials are then automatically obtained from AWS
API and no further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or in the minion's config file:

s3.keyid: GKTADJGHEIQSXMKKRBJ08H
s3.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A service_url may also be specified in the configuration:

s3.service_url: s3.amazonaws.com

If a service_url is not specified, the default is s3.amazonaws.com. is may appear in various
documentation as an ``endpoint''. A comprehensive list for Amazon S3 may be found at:

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

e service_url will form the basis for the final endpoint that is used to query the service.

SSL verification may also be turned off in the configuration:

s3.verify_ssl: False

is is required if using S3 bucket names that contain a period, as these will not match Amazon's
S3 wildcard certificates. Certificate verification is enabled by default.

is module should be usable to query other S3-like services, such as Eucalyptus.

depends requests

salt.modules.s3.delete(bucket, path=None, action=None, key=None, keyid=None, service_url=None,
verify_ssl=None)

Delete a bucket, or delete an object from a bucket.

CLI Example to delete a bucket:

salt myminion s3.delete mybucket

CLI Example to delete an object from a bucket:

salt myminion s3.delete mybucket remoteobject

salt.modules.s3.get(bucket=None, path=None, return_bin=False, action=None, local_file=None,
key=None, keyid=None, service_url=None, verify_ssl=None)

List the contents of a bucket, or return an object from a bucket. Set return_bin to True in order to retrieve an
object wholesale. Otherwise, Salt will aempt to parse an XML response.

CLI Example to list buckets:

22.16. Full list of builtin execution modules 789

Salt Documentation, Release 2014.7.6

salt myminion s3.get

CLI Example to list the contents of a bucket:

salt myminion s3.get mybucket

CLI Example to return the binary contents of an object:

salt myminion s3.get mybucket myfile.png return_bin=True

CLI Example to save the binary contents of an object to a local file:

salt myminion s3.get mybucket myfile.png local_file=/tmp/myfile.png

It is also possible to perform an action on a bucket. Currently, S3 supports the following actions:

acl
cors
lifecycle
policy
location
logging
notification
tagging
versions
requestPayment
versioning
website

To perform an action on a bucket:

salt myminion s3.get mybucket myfile.png action=acl

salt.modules.s3.head(bucket, path=None, key=None, keyid=None, service_url=None, verify_ssl=None)
Return the metadata for a bucket, or an object in a bucket.

CLI Examples:

salt myminion s3.head mybucket
salt myminion s3.head mybucket myfile.png

salt.modules.s3.put(bucket, path=None, return_bin=False, action=None, local_file=None, key=None,
keyid=None, service_url=None, verify_ssl=None)

Create a new bucket, or upload an object to a bucket.

CLI Example to create a bucket:

salt myminion s3.put mybucket

CLI Example to upload an object to a bucket:

salt myminion s3.put mybucket remotepath local_file=/path/to/file

22.16.177 salt.modules.saltcloudmod

Control a salt cloud system

salt.modules.saltcloudmod.create(name, profile)
Create the named vm

790 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt <minion-id> saltcloud.create webserver rackspace_centos_512

22.16.178 salt.modules.saltutil

e Saltutil module is used to manage the state of the salt minion itself. It is used to manage minion modules as well
as automate updates to the salt minion.

depends

• esky Python module for update functionality

salt.modules.saltutil.clear_cache()
Forcibly removes all caches on a minion.

New in version 2014.7.0.

WARNING: e safest way to clear a minion cache is by first stopping the minion and then deleting the cache
files before restarting it.

CLI Example:

salt '*' saltutil.clear_cache

salt.modules.saltutil.cmd(tgt, fun, arg=(), timeout=None, expr_form='glob', ret='`, kwarg=None,
ssh=False, **kwargs)

Assuming this minion is a master, execute a salt command

CLI Example:

salt '*' saltutil.cmd

salt.modules.saltutil.cmd_iter(tgt, fun, arg=(), timeout=None, expr_form='glob', ret='`,
kwarg=None, ssh=False, **kwargs)

Assuming this minion is a master, execute a salt command

CLI Example:

salt '*' saltutil.cmd

salt.modules.saltutil.find_cached_job(jid)
Return the data for a specific cached job id

CLI Example:

salt '*' saltutil.find_cached_job <job id>

salt.modules.saltutil.find_job(jid)
Return the data for a specific job id

CLI Example:

salt '*' saltutil.find_job <job id>

salt.modules.saltutil.is_running(fun)
If the named function is running return the data associated with it/them. e argument can be a glob

CLI Example:

salt '*' saltutil.is_running state.highstate

22.16. Full list of builtin execution modules 791

Salt Documentation, Release 2014.7.6

salt.modules.saltutil.kill_job(jid)
Sends a kill signal (SIGKILL 9) to the named salt job's process

CLI Example:

salt '*' saltutil.kill_job <job id>

salt.modules.saltutil.mmodule(saltenv, fun, *args, **kwargs)
Loads minion modules from an environment so that they can be used in pillars for that environment

CLI Example:

salt '*' saltutil.mmodule base test.ping

salt.modules.saltutil.refresh_modules()
Signal the minion to refresh the module and grain data

CLI Example:

salt '*' saltutil.refresh_modules

salt.modules.saltutil.refresh_pillar()
Signal the minion to refresh the pillar data.

CLI Example:

salt '*' saltutil.refresh_pillar

salt.modules.saltutil.regen_keys()
Used to regenerate the minion keys.

CLI Example:

salt '*' saltutil.regen_keys

salt.modules.saltutil.revoke_auth()
e minion sends a request to the master to revoke its own key. Note that the minion session will be revoked
and the minion may not be able to return the result of this command back to the master.

CLI Example:

salt '*' saltutil.revoke_auth

salt.modules.saltutil.runner(fun, **kwargs)
Execute a runner module (this function must be run on the master)

New in version 2014.7.

name e name of the function to run

kwargs Any keyword arguments to pass to the runner function

CLI Example:

salt '*' saltutil.runner jobs.list_jobs

salt.modules.saltutil.running()
Return the data on all running salt processes on the minion

CLI Example:

salt '*' saltutil.running

792 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.saltutil.signal_job(jid, sig)
Sends a signal to the named salt job's process

CLI Example:

salt '*' saltutil.signal_job <job id> 15

salt.modules.saltutil.sync_all(saltenv=None, refresh=True)
Sync down all of the dynamic modules from the file server for a specific environment

refresh [True] Also refresh the execution modules available to the minion.

CLI Example:

salt '*' saltutil.sync_all

salt.modules.saltutil.sync_grains(saltenv=None, refresh=True)
Sync the grains from the _grains directory on the salt master file server. is function is environment aware,
pass the desired environment to grab the contents of the _grains directory, base is the default environment.

CLI Example:

salt '*' saltutil.sync_grains

salt.modules.saltutil.sync_modules(saltenv=None, refresh=True)
Sync the modules from the _modules directory on the salt master file server. is function is environment
aware, pass the desired environment to grab the contents of the _modules directory, base is the default envi-
ronment.

CLI Example:

salt '*' saltutil.sync_modules

salt.modules.saltutil.sync_outputters(saltenv=None, refresh=True)
Sync the outpuers from the _outpuers directory on the salt master file server. is function is environment
aware, pass the desired environment to grab the contents of the _outpuers directory, base is the default
environment.

CLI Example:

salt '*' saltutil.sync_outputters

salt.modules.saltutil.sync_renderers(saltenv=None, refresh=True)
Sync the renderers from the _renderers directory on the salt master file server. is function is environment
aware, pass the desired environment to grab the contents of the _renderers directory, base is the default envi-
ronment.

CLI Example:

salt '*' saltutil.sync_renderers

salt.modules.saltutil.sync_returners(saltenv=None, refresh=True)
Sync the returners from the _returners directory on the salt master file server. is function is environment
aware, pass the desired environment to grab the contents of the _returners directory, base is the default envi-
ronment.

CLI Example:

salt '*' saltutil.sync_returners

22.16. Full list of builtin execution modules 793

Salt Documentation, Release 2014.7.6

salt.modules.saltutil.sync_states(saltenv=None, refresh=True)
Sync the states from the _states directory on the salt master file server. is function is environment aware,
pass the desired environment to grab the contents of the _states directory, base is the default environment.

CLI Example:

salt '*' saltutil.sync_states

salt.modules.saltutil.sync_utils(saltenv=None, refresh=True)
Sync utility source files from the _utils directory on the salt master file server. is function is environment
aware, pass the desired environment to grab the contents of the _utils directory, base is the default environ-
ment.

CLI Example:

salt '*' saltutil.sync_utils

salt.modules.saltutil.term_job(jid)
Sends a termination signal (SIGTERM 15) to the named salt job's process

CLI Example:

salt '*' saltutil.term_job <job id>

salt.modules.saltutil.update(version=None)
Update the salt minion from the URL defined in opts['update_url'] SaltStack, Inc provides the latest builds here:
update_url: hp://docs.saltstack.com/downloads/

Be aware that as of 2014-8-11 there's a bug in esky such that only the latest version available in the update_url
can be downloaded and installed.

is feature requires the minion to be running a bdist_esky build.

e version number is optional and will default to the most recent version available at opts['update_url'].

Returns details about the transaction upon completion.

CLI Example:

salt '*' saltutil.update
salt '*' saltutil.update 0.10.3

salt.modules.saltutil.wheel(fun, **kwargs)
Execute a wheel module (this function must be run on the master)

New in version 2014.7.

name e name of the function to run

kwargs Any keyword arguments to pass to the wheel function

CLI Example:

salt '*' saltutil.wheel key.accept match=jerry

22.16.179 salt.modules.schedule

Module for manging the Salt schedule on a minion

New in version 2014.7.0.

794 Chapter 22. Reference

http://docs.saltstack.com/downloads/

Salt Documentation, Release 2014.7.6

salt.modules.schedule.add(name, **kwargs)
Add a job to the schedule

CLI Example:

salt '*' schedule.add job1 function='test.ping' seconds=3600

salt.modules.schedule.build_schedule_item(name, **kwargs)
Build a schedule job

CLI Example:

salt '*' schedule.build_schedule_item job1 function='test.ping' seconds=3600

salt.modules.schedule.delete(name, **kwargs)
Delete a job from the minion's schedule

CLI Example:

salt '*' schedule.delete job1

salt.modules.schedule.disable(**kwargs)
Disable all scheduled jobs on the minion

CLI Example:

salt '*' schedule.disable

salt.modules.schedule.disable_job(name, **kwargs)
Disable a job in the minion's schedule

CLI Example:

salt '*' schedule.disable_job job1

salt.modules.schedule.enable(**kwargs)
Enable all scheduled jobs on the minion

CLI Example:

salt '*' schedule.enable

salt.modules.schedule.enable_job(name, **kwargs)
Enable a job in the minion's schedule

CLI Example:

salt '*' schedule.enable_job job1

salt.modules.schedule.list_(show_all=False, return_yaml=True)
List the jobs currently scheduled on the minion

CLI Example:

salt '*' schedule.list

salt '*' schedule.list show_all=True

salt.modules.schedule.modify(name, **kwargs)
Modify an existing job in the schedule

CLI Example:

22.16. Full list of builtin execution modules 795

Salt Documentation, Release 2014.7.6

salt '*' schedule.modify job1 function='test.ping' seconds=3600

salt.modules.schedule.purge(**kwargs)
Purge all the jobs currently scheduled on the minion

CLI Example:

salt '*' schedule.purge

salt.modules.schedule.reload_()
Reload saved scheduled jobs on the minion

CLI Example:

salt '*' schedule.reload

salt.modules.schedule.run_job(name, force=False)
Run a scheduled job on the minion immediately

CLI Example:

salt '*' schedule.run_job job1

salt '*' schedule.run_job job1 force=True
Force the job to run even if it is disabled.

salt.modules.schedule.save()
Save all scheduled jobs on the minion

CLI Example:

salt '*' schedule.save

22.16.180 salt.modules.seed

Virtual machine image management tools

salt.modules.seed.apply_(path, id_=None, config=None, approve_key=True, install=True,
prep_install=False)

Seed a location (disk image, directory, or block device) with the minion config, approve the minion's key,
and/or install salt-minion.

CLI Example:

salt 'minion' seed.apply path id [config=config_data] \
[gen_key=(true|false)] [approve_key=(true|false)] \
[install=(true|false)]

path Full path to the directory, device, or disk image on the target minion's file system.

id Minion id with which to seed the path.

config Minion configuration options. By default, the `master' option is set to the target host's `master'.

approve_key Request a pre-approval of the generated minion key. Requires that the salt-master be configured
to either auto-accept all keys or expect a signing request from the target host. Default: true.

install Install salt-minion, if absent. Default: true.

prep_install Prepare the bootstrap script, but don't run it. Default: false

796 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.seed.mkconfig(config=None, tmp=None, id_=None, approve_key=True, pub_key=None,
priv_key=None)

Generate keys and config and put them in a tmp directory.

pub_key absolute path or file content of an optional preseeded salt key

priv_key absolute path or file content of an optional preseeded salt key

CLI Example:

salt 'minion' seed.mkconfig [config=config_data] [tmp=tmp_dir] \
[id_=minion_id] [approve_key=(true|false)]

22.16.181 salt.modules.selinux

Execute calls on selinux

Note: is module requires the semanage and setsebool commands to be available on the minion. On RHEL-
based distros, this means that the policycoreutils and policycoreutils-python packages must be in-
stalled. If not on a RHEL-based distribution, consult the selinux documentation for your distro to ensure that the
proper packages are installed.

salt.modules.selinux.getenforce()
Return the mode selinux is running in

CLI Example:

salt '*' selinux.getenforce

salt.modules.selinux.getsebool(boolean)
Return the information on a specific selinux boolean

CLI Example:

salt '*' selinux.getsebool virt_use_usb

salt.modules.selinux.list_sebool()
Return a structure listing all of the selinux booleans on the system and what state they are in

CLI Example:

salt '*' selinux.list_sebool

salt.modules.selinux.selinux_fs_path(*args)
Return the location of the SELinux VFS directory

CLI Example:

salt '*' selinux.selinux_fs_path

salt.modules.selinux.setenforce(mode)
Set the SELinux enforcing mode

CLI Example:

salt '*' selinux.setenforce enforcing

salt.modules.selinux.setsebool(boolean, value, persist=False)
Set the value for a boolean

22.16. Full list of builtin execution modules 797

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' selinux.setsebool virt_use_usb off

salt.modules.selinux.setsebools(pairs, persist=False)
Set the value of multiple booleans

CLI Example:

salt '*' selinux.setsebools '{virt_use_usb: on, squid_use_tproxy: off}'

22.16.182 salt.modules.sensors

Read lm-sensors

New in version 2014.1.3.

salt.modules.sensors.sense(chip, fahrenheit=False)
Gather lm-sensors data from a given chip

To determine the chip to query, use the `sensors' command and see the leading line in the block.

Example:

/usr/bin/sensors

coretemp-isa-0000 Adapter: ISA adapter Physical id 0: +56.0℃ (high = +87.0℃, crit = +105.0℃) Core 0: +52.0℃
(high = +87.0℃, crit = +105.0℃) Core 1: +50.0℃ (high = +87.0℃, crit = +105.0℃) Core 2: +56.0℃ (high = +87.0℃,
crit = +105.0℃) Core 3: +53.0℃ (high = +87.0℃, crit = +105.0℃)

Given the above, the chip is `coretemp-isa-0000'.

22.16.183 salt.modules.serverdensity_device

Wrapper around Server Density API

New in version 2014.7.0.

salt.modules.serverdensity_device.create(name, **params)
Function to create device in Server Density. For more info, see the API docs.

CLI Example:

salt '*' serverdensity_device.create lama
salt '*' serverdensity_device.create rich_lama group=lama_band installedRAM=32768

salt.modules.serverdensity_device.delete(device_id)
Delete a device from Server Density. For more information, see the API docs.

CLI Example:

salt '*' serverdensity_device.delete 51f7eafcdba4bb235e000ae4

salt.modules.serverdensity_device.get_sd_auth(val, sd_auth_pillar_name='serverdensity')
Returns requested Server Density authentication value from pillar.

CLI Example:

salt '*' serverdensity_device.get_sd_auth <val>

798 Chapter 22. Reference

https://apidocs.serverdensity.com/Inventory/Devices/Creating
https://apidocs.serverdensity.com/Inventory/Devices/Deleting

Salt Documentation, Release 2014.7.6

salt.modules.serverdensity_device.install_agent(agent_key)
Function downloads Server Density installation agent, and installs sd-agent with agent_key.

CLI Example:

salt '*' serverdensity_device.install_agent c2bbdd6689ff46282bdaa07555641498

salt.modules.serverdensity_device.ls(**params)
List devices in Server Density

Results will be filtered by any params passed to this function. For more information, see the API docs on listing
and searching.

CLI Example:

salt '*' serverdensity_device.ls
salt '*' serverdensity_device.ls name=lama
salt '*' serverdensity_device.ls name=lama group=lama_band installedRAM=32768

salt.modules.serverdensity_device.update(device_id, **params)
Updates device information in Server Density. For more information see the API docs.

CLI Example:

salt '*' serverdensity_device.update 51f7eafcdba4bb235e000ae4 name=lama group=lama_band
salt '*' serverdensity_device.update 51f7eafcdba4bb235e000ae4 name=better_lama group=rock_lamas swapSpace=512

22.16.184 salt.modules.service

e default service module, if not otherwise specified salt will fall back to this basic module

salt.modules.service.available(name)
Returns True if the specified service is available, otherwise returns False.

CLI Example:

salt '*' service.available sshd

salt.modules.service.get_all()
Return a list of all available services

CLI Example:

salt '*' service.get_all

salt.modules.service.missing(name)
e inverse of service.available. Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing sshd

salt.modules.service.reload_(name)
Refreshes config files by calling service reload. Does not perform a full restart.

CLI Example:

salt '*' service.reload <service name>

22.16. Full list of builtin execution modules 799

https://apidocs.serverdensity.com/Inventory/Devices/Listing
https://apidocs.serverdensity.com/Inventory/Devices/Searching
https://apidocs.serverdensity.com/Inventory/Devices/Updating

Salt Documentation, Release 2014.7.6

salt.modules.service.restart(name)
Restart the specified service

CLI Example:

salt '*' service.restart <service name>

salt.modules.service.start(name)
Start the specified service

CLI Example:

salt '*' service.start <service name>

salt.modules.service.status(name, sig=None)
Return the status for a service, returns the PID or an empty string if the service is running or not, pass a
signature to use to find the service via ps

CLI Example:

salt '*' service.status <service name> [service signature]

salt.modules.service.stop(name)
Stop the specified service

CLI Example:

salt '*' service.stop <service name>

22.16.185 salt.modules.shadow

Manage the shadow file

salt.modules.shadow.default_hash()
Returns the default hash used for unset passwords

CLI Example:

salt '*' shadow.default_hash

salt.modules.shadow.del_password(name)
Delete the password from name user

CLI Example:

salt '*' shadow.del_password username

salt.modules.shadow.gen_password(password, crypt_salt=None, algorithm='sha512')
Generate hashed password

password Plaintext password to be hashed.

crypt_salt Crpytographic salt. If not given, a random 8-character salt will be generated.

algorithm e following hash algorithms are supported:

• md5

• blowfish (not in mainline glibc, only available in distros that add it)

• sha256

• sha512 (default)

800 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' shadow.gen_password 'I_am_password'
salt '*' shadow.gen_password 'I_am_password' crypt_salt'I_am_salt' algorithm=sha256

salt.modules.shadow.info(name)
Return information for the specified user

CLI Example:

salt '*' shadow.info root

salt.modules.shadow.set_date(name, date)
Sets the value for the date the password was last changed to days since the epoch (January 1, 1970). See man
chage.

CLI Example:

salt '*' shadow.set_date username 0

salt.modules.shadow.set_expire(name, expire)
Changed in version 2014.7.0.

Sets the value for the date the account expires as days since the epoch (January 1, 1970). Using a value of -1
will clear expiration. See man chage.

CLI Example:

salt '*' shadow.set_expire username -1

salt.modules.shadow.set_inactdays(name, inactdays)
Set the number of days of inactivity aer a password has expired before the account is locked. See man chage.

CLI Example:

salt '*' shadow.set_inactdays username 7

salt.modules.shadow.set_maxdays(name, maxdays)
Set the maximum number of days during which a password is valid. See man chage.

CLI Example:

salt '*' shadow.set_maxdays username 90

salt.modules.shadow.set_mindays(name, mindays)
Set the minimum number of days between password changes. See man chage.

CLI Example:

salt '*' shadow.set_mindays username 7

salt.modules.shadow.set_password(name, password, use_usermod=False)
Set the password for a named user. e password must be a properly defined hash. e password hash can be
generated with this command:

python -c "import crypt; print crypt.crypt('password', '\$6\$SALTsalt')"

SALTsalt is the 8-character crpytographic salt. Valid characters in the salt are ., /, and any alphanumeric
character.

Keep in mind that the $6 represents a sha512 hash, if your OS is using a different hashing algorithm this needs
to be changed accordingly

22.16. Full list of builtin execution modules 801

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' shadow.set_password root '1UYCIxa628.9qXjpQCjM4a..'

salt.modules.shadow.set_warndays(name, warndays)
Set the number of days of warning before a password change is required. See man chage.

CLI Example:

salt '*' shadow.set_warndays username 7

22.16.186 salt.modules.smartos_imgadm

Module for running imgadm command on SmartOS

salt.modules.smartos_imgadm.avail(search=None)
Return a list of available images

CLI Example:

salt '*' imgadm.avail [percona]

salt.modules.smartos_imgadm.delete(uuid=None)
Remove an installed image

CLI Example:

salt '*' imgadm.delete e42f8c84-bbea-11e2-b920-078fab2aab1f

salt.modules.smartos_imgadm.get(uuid=None)
Return info on an installed image

CLI Example:

salt '*' imgadm.get e42f8c84-bbea-11e2-b920-078fab2aab1f

salt.modules.smartos_imgadm.import_image(uuid=None)
Import an image from the repository

CLI Example:

salt '*' imgadm.import_image e42f8c84-bbea-11e2-b920-078fab2aab1f

salt.modules.smartos_imgadm.list_installed()
Return a list of installed images

CLI Example:

salt '*' imgadm.list_installed

salt.modules.smartos_imgadm.show(uuid=None)
Show manifest of a given image

CLI Example:

salt '*' imgadm.show e42f8c84-bbea-11e2-b920-078fab2aab1f

salt.modules.smartos_imgadm.update_installed()
Gather info on unknown images (locally installed)

CLI Example:

802 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' imgadm.update_installed()

salt.modules.smartos_imgadm.version()
Return imgadm version

CLI Example:

salt '*' imgadm.version

22.16.187 salt.modules.smartos_vmadm

Module for managing VMs on SmartOS

salt.modules.smartos_vmadm.destroy(uuid=None)
Hard power down the virtual machine, this is equivalent to pulling the power

CLI Example:

salt '*' virt.destroy <uuid>

salt.modules.smartos_vmadm.get_macs(uuid=None)
Return a list off MAC addresses from the named VM

CLI Example:

salt '*' virt.get_macs <uuid>

salt.modules.smartos_vmadm.init(**kwargs)
Initialize a new VM

CLI Example:

salt '*' virt.init image_uuid='...' alias='...' [...]

salt.modules.smartos_vmadm.list_active_vms()
Return a list of uuids for active virtual machine on the minion

CLI Example:

salt '*' virt.list_active_vms

salt.modules.smartos_vmadm.list_inactive_vms()
Return a list of uuids for inactive virtual machine on the minion

CLI Example:

salt '*' virt.list_inactive_vms

salt.modules.smartos_vmadm.list_vms()
Return a list of virtual machine names on the minion

CLI Example:

salt '*' virt.list_vms

salt.modules.smartos_vmadm.reboot(uuid=None)
Reboot a domain via ACPI request

CLI Example:

22.16. Full list of builtin execution modules 803

Salt Documentation, Release 2014.7.6

salt '*' virt.reboot <uuid>

salt.modules.smartos_vmadm.setmem(uuid, memory)
Change the amount of memory allocated to VM. <memory> is to be specified in MB.

Note for KVM : this would require a restart of the VM.

CLI Example:

salt '*' virt.setmem <uuid> 512

salt.modules.smartos_vmadm.shutdown(uuid=None)
Send a so shutdown signal to the named vm

CLI Example:

salt '*' virt.shutdown <uuid>

salt.modules.smartos_vmadm.start(uuid=None)
Start a defined domain

CLI Example:

salt '*' virt.start <uuid>

salt.modules.smartos_vmadm.vm_info(uuid=None)
Return a dict with information about the specified VM on this CN

CLI Example:

salt '*' virt.vm_info <uuid>

salt.modules.smartos_vmadm.vm_virt_type(uuid=None)
Return VM virtualization type : OS or KVM

CLI Example:

salt '*' virt.vm_virt_type <uuid>

22.16.188 salt.modules.smf

Service support for Solaris 10 and 11, should work with other systems that use SMF also. (e.g. SmartOS)

salt.modules.smf.available(name)
Returns True if the specified service is available, otherwise returns False.

e Solaris and SmartOS ``if'' statement uses svcs to return the service name from the package name.

CLI Example:

salt '*' service.available net-snmp

salt.modules.smf.disable(name, **kwargs)
Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

salt.modules.smf.disabled(name)
Check to see if the named service is disabled to start on boot

804 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' service.disabled <service name>

salt.modules.smf.enable(name, **kwargs)
Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

salt.modules.smf.enabled(name)
Check to see if the named service is enabled to start on boot

CLI Example:

salt '*' service.enabled <service name>

salt.modules.smf.get_all()
Return all installed services

CLI Example:

salt '*' service.get_all

salt.modules.smf.get_disabled()
Return the disabled services

CLI Example:

salt '*' service.get_disabled

salt.modules.smf.get_enabled()
Return the enabled services

CLI Example:

salt '*' service.get_enabled

salt.modules.smf.get_running()
Return the running services

CLI Example:

salt '*' service.get_running

salt.modules.smf.get_stopped()
Return the stopped services

CLI Example:

salt '*' service.get_stopped

salt.modules.smf.missing(name)
e inverse of service.available. Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing net-snmp

22.16. Full list of builtin execution modules 805

Salt Documentation, Release 2014.7.6

salt.modules.smf.reload_(name)
Reload the named service

CLI Example:

salt '*' service.reload <service name>

salt.modules.smf.restart(name)
Restart the named service

CLI Example:

salt '*' service.restart <service name>

salt.modules.smf.start(name)
Start the specified service

CLI Example:

salt '*' service.start <service name>

salt.modules.smf.status(name, sig=None)
Return the status for a service, returns a bool whether the service is running.

CLI Example:

salt '*' service.status <service name>

salt.modules.smf.stop(name)
Stop the specified service

CLI Example:

salt '*' service.stop <service name>

22.16.189 salt.modules.smtp

Module for Sending Messages via SMTP

New in version 2014.7.0.

depends

• smtplib python module

configuration is module can be used by either passing a jid and password directly to send_message,
or by specifying the name of a configuration profile in the minion config, minion pillar, or master
config.

For example:

my-smtp-login:
smtp.server: smtp.domain.com
smtp.sender: admin@domain.com
smtp.username: myuser
smtp.password: verybadpass

e resourcename refers to the resource that is using this account. It is user-definable, and optional.
e following configurations are both valid:

806 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

my-smtp-login:
smtp.server: smtp.domain.com
smtp.sender: admin@domain.com
smtp.username: myuser
smtp.password: verybadpass

another-smtp-login:
smtp.server: smtp.domain.com
smtp.sender: admin@domain.com
smtp.username: myuser
smtp.password: verybadpass

salt.modules.smtp.send_msg(recipient, message, subject='Message from Salt', sender=None,
server=None, use_ssl='True', username=None, password=None, pro-
file=None)

Send a message to an SMTP recipient. Designed for use in states.

CLI Examples:

smtp.send_msg 'admin@example.com' 'This is a salt module test' profile='my-smtp-account'
smtp.send_msg 'admin@example.com' 'This is a salt module test' username='myuser' password='verybadpass' sender="admin@example.com' server='smtp.domain.com'

22.16.190 salt.modules.sowareupdate

Support for the sowareupdate command on MacOS.

salt.modules.softwareupdate.download(*updates)
Download a named update so that it can be installed later with the install or upgrade function. It returns a list
of all updates that are now downloaded.

CLI Example:

salt '*' softwareupdate.download <update name>
salt '*' softwareupdate.download "<update with whitespace>"
salt '*' softwareupdate.download <update1> <update2> <update3>

salt.modules.softwareupdate.download_all(rec=False, restart=True)
Download all available updates so that they can be installed later with the install or upgrade function. It
returns a list of updates that are now downloaded.

CLI Example:

salt '*' softwareupdate.download_all

salt.modules.softwareupdate.ignore(*updates)
Ignore a specific program update. When an update is ignored the `-` and version number at the end will be
omied, so ``SecUpd2014-001-1.0'' becomes ``SecUpd2014-001''. It will be removed automatically if present.
An update is successfully ignored when it no longer shows up aer list_upgrades.

CLI Example:

salt '*' softwareupdate.ignore <update-name>
salt '*' softwareupdate.ignore "<update with whitespace>"
salt '*' softwareupdate.ignore <update1> <update2> <update3>

salt.modules.softwareupdate.install(*updates)
Install a named upgrade. Returns a dictionary containing the name of the update and the status of its instal-
lation.

22.16. Full list of builtin execution modules 807

Salt Documentation, Release 2014.7.6

Return values: - True: e update was installed. - False: e update was not installed. - None: ere is
no update available with that name.

CLI Example:

salt '*' softwareupdate.install <update-name>
salt '*' softwareupdate.install "<update with whitespace>"
salt '*' softwareupdate.install <update1> <update2> <update3>

salt.modules.softwareupdate.list_downloads()
Return a list of all updates that have been downloaded locally.

CLI Example:

salt '*' softwareupdate.list_downloads

salt.modules.softwareupdate.list_ignored()
List all upgrades that has been ignored. Ignored updates are shown without the `-` and version number at the
end, this is how the sowareupdate command works.

CLI Example:

salt '*' softwareupdate.list_ignored

salt.modules.softwareupdate.list_upgrades(rec=False, restart=False)
List all available updates.

rec Return only the recommended updates.

restart Return only the updates that require a restart.

CLI Example:

salt '*' softwareupdate.list_upgrades

salt.modules.softwareupdate.reset_ignored()
Make sure the ignored updates are not ignored anymore, returns a list of the updates that are no longer ignored.

CLI Example:

salt '*' softwareupdate.reset_ignored

salt.modules.softwareupdate.schedule(*status)
Decide if automatic checking for upgrades should be on or off. If no arguments are given it will return the
current status. Append on or off to change the status.

Return values: - True: Automatic checking is now on, - False: Automatic checking is now off, - None:
Invalid argument.

CLI Example:

salt '*' softwareupdate.schedule
salt '*' softwareupdate.schedule on|off

salt.modules.softwareupdate.upgrade(rec=False, restart=True)
Install all available upgrades. Returns a dictionary containing the name of the update and the status of its
installation.

Return values: - True: e update was installed. - False: e update was not installed.

rec If set to True, only install all the recommended updates.

restart Set this to False if you do not want to install updates that require a restart.

808 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' softwareupdate.upgrade

salt.modules.softwareupdate.upgrade_available(update)
Check whether or not an upgrade is available with a given name.

CLI Example:

salt '*' softwareupdate.upgrade_available <update-name>
salt '*' softwareupdate.upgrade_available "<update with whitespace>"

22.16.191 salt.modules.solaris_group

Manage groups on Solaris

salt.modules.solaris_group.add(name, gid=None, **kwargs)
Add the specified group

CLI Example:

salt '*' group.add foo 3456

salt.modules.solaris_group.chgid(name, gid)
Change the gid for a named group

CLI Example:

salt '*' group.chgid foo 4376

salt.modules.solaris_group.delete(name)
Remove the named group

CLI Example:

salt '*' group.delete foo

salt.modules.solaris_group.getent(refresh=False)
Return info on all groups

CLI Example:

salt '*' group.getent

salt.modules.solaris_group.info(name)
Return information about a group

CLI Example:

salt '*' group.info foo

22.16.192 salt.modules.solaris_shadow

Manage the password database on Solaris systems

salt.modules.solaris_shadow.default_hash()
Returns the default hash used for unset passwords

CLI Example:

22.16. Full list of builtin execution modules 809

Salt Documentation, Release 2014.7.6

salt '*' shadow.default_hash

salt.modules.solaris_shadow.info(name)
Return information for the specified user

CLI Example:

salt '*' shadow.info root

salt.modules.solaris_shadow.set_maxdays(name, maxdays)
Set the maximum number of days during which a password is valid. See man passwd.

CLI Example:

salt '*' shadow.set_maxdays username 90

salt.modules.solaris_shadow.set_mindays(name, mindays)
Set the minimum number of days between password changes. See man passwd.

CLI Example:

salt '*' shadow.set_mindays username 7

salt.modules.solaris_shadow.set_password(name, password)
Set the password for a named user. e password must be a properly defined hash, the password hash can be
generated with this command: openssl passwd -1 <plaintext password>

CLI Example:

salt '*' shadow.set_password root 1UYCIxa628.9qXjpQCjM4a..

salt.modules.solaris_shadow.set_warndays(name, warndays)
Set the number of days of warning before a password change is required. See man passwd.

CLI Example:

salt '*' shadow.set_warndays username 7

22.16.193 salt.modules.solaris_user

Manage users with the useradd command

salt.modules.solaris_user.add(name, uid=None, gid=None, groups=None, home=None, shell=None,
unique=True, fullname='`, roomnumber='`, workphone='`, home-
phone='`, createhome=True, **kwargs)

Add a user to the minion

CLI Example:

salt '*' user.add name <uid> <gid> <groups> <home> <shell>

salt.modules.solaris_user.chfullname(name, fullname)
Change the user's Full Name

CLI Example:

salt '*' user.chfullname foo "Foo Bar"

salt.modules.solaris_user.chgid(name, gid)
Change the default group of the user

810 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' user.chgid foo 4376

salt.modules.solaris_user.chgroups(name, groups, append=False)
Change the groups this user belongs to, add append to append the specified groups

CLI Example:

salt '*' user.chgroups foo wheel,root True

salt.modules.solaris_user.chhome(name, home, persist=False)
Change the home directory of the user, pass true for persist to copy files to the new home dir

CLI Example:

salt '*' user.chhome foo /home/users/foo True

salt.modules.solaris_user.chhomephone(name, homephone)
Change the user's Home Phone

CLI Example:

salt '*' user.chhomephone foo "7735551234"

salt.modules.solaris_user.chroomnumber(name, roomnumber)
Change the user's Room Number

CLI Example:

salt '*' user.chroomnumber foo 123

salt.modules.solaris_user.chshell(name, shell)
Change the default shell of the user

CLI Example:

salt '*' user.chshell foo /bin/zsh

salt.modules.solaris_user.chuid(name, uid)
Change the uid for a named user

CLI Example:

salt '*' user.chuid foo 4376

salt.modules.solaris_user.chworkphone(name, workphone)
Change the user's Work Phone

CLI Example:

salt '*' user.chworkphone foo "7735550123"

salt.modules.solaris_user.delete(name, remove=False, force=False)
Remove a user from the minion

CLI Example:

salt '*' user.delete name remove=True force=True

salt.modules.solaris_user.getent(refresh=False)
Return the list of all info for all users

22.16. Full list of builtin execution modules 811

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' user.getent

salt.modules.solaris_user.info(name)
Return user information

CLI Example:

salt '*' user.info root

salt.modules.solaris_user.list_groups(name)
Return a list of groups the named user belongs to

CLI Example:

salt '*' user.list_groups foo

22.16.194 salt.modules.solarispkg

Package support for Solaris

salt.modules.solarispkg.install(name=None, sources=None, saltenv='base', **kwargs)
Install the passed package. Can install packages from the following sources:

* Locally (package already exists on the minion
* HTTP/HTTPS server
* FTP server
* Salt master

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example, installing a data stream pkg that already exists on the minion:

salt '*' pkg.install sources='[{"<pkg name>": "/dir/on/minion/<pkg filename>"}]'
salt '*' pkg.install sources='[{"SMClgcc346": "/var/spool/pkg/gcc-3.4.6-sol10-sparc-local.pkg"}]'

CLI Example, installing a data stream pkg that exists on the salt master:

salt '*' pkg.install sources='[{"<pkg name>": "salt://pkgs/<pkg filename>"}]'
salt '*' pkg.install sources='[{"SMClgcc346": "salt://pkgs/gcc-3.4.6-sol10-sparc-local.pkg"}]'

CLI Example, installing a data stream pkg that exists on a HTTP server:

salt '*' pkg.install sources='[{"<pkg name>": "http://packages.server.com/<pkg filename>"}]'
salt '*' pkg.install sources='[{"SMClgcc346": "http://packages.server.com/gcc-3.4.6-sol10-sparc-local.pkg"}]'

If working with solaris zones and you want to install a package only in the global zone you can pass `cur-
rent_zone_only=True' to salt to have the package only installed in the global zone. (Behind the scenes this is
passing `-G' to the pkgadd command.) Solaris default when installing a package in the global zone is to install
it in all zones. is overrides that and installs the package only in the global.

CLI Example, installing a data stream package only in the global zone:

salt 'global_zone' pkg.install sources='[{"SMClgcc346": "/var/spool/pkg/gcc-3.4.6-sol10-sparc-local.pkg"}]' current_zone_only=True

By default salt automatically provides an adminfile, to automate package installation, with these options set:

812 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

email=
instance=quit
partial=nocheck
runlevel=nocheck
idepend=nocheck
rdepend=nocheck
space=nocheck
setuid=nocheck
conflict=nocheck
action=nocheck
basedir=default

You can override any of these options in two ways. First you can optionally pass any of the options as a
kwarg to the module/state to override the default value or you can optionally pass the `admin_source' option
providing your own adminfile to the minions.

Note: You can find all of the possible options to provide to the adminfile by reading the admin man page:

man -s 4 admin

CLI Example - Overriding the `instance' adminfile option when calling the module directly:

salt '*' pkg.install sources='[{"<pkg name>": "salt://pkgs/<pkg filename>"}]' instance="overwrite"

CLI Example - Overriding the `instance' adminfile option when used in a state:

SMClgcc346:
pkg.installed:

- sources:
- SMClgcc346: salt://srv/salt/pkgs/gcc-3.4.6-sol10-sparc-local.pkg

- instance: overwrite

Note: the ID declaration is ignored, as the package name is read from the ``sources'' parameter.

CLI Example - Providing your own adminfile when calling the module directly:

salt '*' pkg.install sources='[{"<pkg name>": "salt://pkgs/<pkg filename>"}]' admin_source='salt://pkgs/<adminfile filename>'

CLI Example - Providing your own adminfile when using states:

<pkg name>:
pkg.installed:

- sources:
- <pkg name>: salt://pkgs/<pkg filename>

- admin_source: salt://pkgs/<adminfile filename>

Note: the ID declaration is ignored, as the package name is read from the ``sources'' parameter.

salt.modules.solarispkg.latest_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation. If more than one package
name is specified, a dict of name/version pairs is returned.

If the latest version of a given package is already installed, an empty string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

NOTE: As package repositories are not presently supported for Solaris pkgadd, this function will always return
an empty string for a given package.

22.16. Full list of builtin execution modules 813

Salt Documentation, Release 2014.7.6

salt.modules.solarispkg.list_pkgs(versions_as_list=False, **kwargs)
List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

salt.modules.solarispkg.purge(name=None, pkgs=None, **kwargs)
Package purges are not supported, this function is identical to remove().

name e name of the package to be deleted

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

salt.modules.solarispkg.remove(name=None, pkgs=None, saltenv='base', **kwargs)
Remove packages with pkgrm

name e name of the package to be deleted

By default salt automatically provides an adminfile, to automate package removal, with these options set:

email=
instance=quit
partial=nocheck
runlevel=nocheck
idepend=nocheck
rdepend=nocheck
space=nocheck
setuid=nocheck
conflict=nocheck
action=nocheck
basedir=default

You can override any of these options in two ways. First you can optionally pass any of the options as a
kwarg to the module/state to override the default value or you can optionally pass the `admin_source' option
providing your own adminfile to the minions.

Note: You can find all of the possible options to provide to the adminfile by reading the admin man page:

man -s 4 admin

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

814 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove SUNWgit
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

salt.modules.solarispkg.upgrade_available(name)
Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

salt.modules.solarispkg.version(*names, **kwargs)
Returns a string representing the package version or an empty string if not installed. If more than one package
name is specified, a dict of name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

22.16.195 salt.modules.solr

Apache Solr Salt Module

Author: Jed Glazner Version: 0.2.1 Modified: 12/09/2011

is module uses HTTP requests to talk to the apache solr request handlers to gather information and report errors.
Because of this the minion doesn't necessarily need to reside on the actual slave. However if you want to use the
signal function the minion must reside on the physical solr host.

is module supports multi-core and standard setups. Certain methods are master/slave specific. Make sure you set
the solr.type. If you have questions or want a feature request please ask.

Coming Features in 0.3

1. Add command for checking for replication failures on slaves

2. Improve match_index_versions since it's pointless on busy solr masters

3. Add additional local fs checks for backups to make sure they succeeded

Override these in the minion config

solr.cores A list of core names e.g. ['core1','core2']. An empty list indicates non-multicore setup.

solr.baseurl e root level URL to access solr via HTTP

solr.request_timeout e number of seconds before timing out an HTTP/HTTPS/FTP request. If nothing is speci-
fied then the python global timeout seing is used.

solr.type Possible values are `master' or `slave'

solr.baup_path e path to store your backups. If you are using cores and you can specify to append the core
name to the path in the backup method.

22.16. Full list of builtin execution modules 815

Salt Documentation, Release 2014.7.6

solr.num_baups For versions of solr >= 3.5. Indicates the number of backups to keep. is option is ignored if
your version is less.

solr.init_script e full path to your init script with start/stop options

solr.dih.options A list of options to pass to the DIH.

Required Options for DIH

clean [False] Clear the index before importing

commit [True] Commit the documents to the index upon completion

optimize [True] Optimize the index aer commit is complete

verbose [True] Get verbose output

salt.modules.solr.abort_import(handler, host=None, core_name=None, verbose=False)
MASTER ONLY Aborts an existing import command to the specified handler. is command can only be run
if the minion is configured with solr.type=master

handler [str] e name of the data import handler.

host [str (None)] e solr host to query. __opts__['host'] is default.

core [str (None)] e core the handler belongs to.

verbose [boolean (False)] Run the command with verbose output.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.abort_import dataimport None music {'clean':True}

salt.modules.solr.backup(host=None, core_name=None, append_core_to_path=False)
Tell solr make a backup. is method can be mis-leading since it uses the backup API. If an error happens
during the backup you are not notified. e status: `OK' in the response simply means that solr received the
request successfully.

host [str (None)] e solr host to query. __opts__['host'] is default.

core_name [str (None)] e name of the solr core if using cores. Leave this blank if you are not using cores
or if you want to check all cores.

append_core_to_path [boolean (False)] If True add the name of the core to the backup path. Assumes that
minion backup path is not None.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.backup music

salt.modules.solr.core_status(host=None, core_name=None)
MULTI-CORE HOSTS ONLY Get the status for a given core or all cores if no core is specified

host [str (None)] e solr host to query. __opts__['host'] is default.

core_name [str] e name of the core to reload

816 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.core_status None music

salt.modules.solr.delta_import(handler, host=None, core_name=None, options=None, ex-
tra=None)

Submits an import command to the specified handler using specified options. is command can only be run
if the minion is configured with solr.type=master

handler [str] e name of the data import handler.

host [str (None)] e solr host to query. __opts__['host'] is default.

core [str (None)] e core the handler belongs to.

options [dict (__opts__)] A list of options such as clean, optimize commit, verbose, and pause_replication.
leave blank to use __opts__ defaults. options will be merged with __opts__

extra [dict ([])] Extra name value pairs to pass to the handler. e.g. [''name=value'']

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.delta_import dataimport None music {'clean':True}

salt.modules.solr.full_import(handler, host=None, core_name=None, options=None, extra=None)
MASTER ONLY Submits an import command to the specified handler using specified options. is command
can only be run if the minion is configured with solr.type=master

handler [str] e name of the data import handler.

host [str (None)] e solr host to query. __opts__['host'] is default.

core [str (None)] e core the handler belongs to.

options [dict (__opts__)] A list of options such as clean, optimize commit, verbose, and pause_replication.
leave blank to use __opts__ defaults. options will be merged with __opts__

extra [dict ([])] Extra name value pairs to pass to the handler. e.g. [''name=value'']

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.full_import dataimport None music {'clean':True}

salt.modules.solr.import_status(handler, host=None, core_name=None, verbose=False)
Submits an import command to the specified handler using specified options. is command can only be run
if the minion is configured with solr.type: `master'

handler [str] e name of the data import handler.

host [str (None)] e solr host to query. __opts__['host'] is default.

core [str (None)] e core the handler belongs to.

22.16. Full list of builtin execution modules 817

Salt Documentation, Release 2014.7.6

verbose [boolean (False)] Specifies verbose output

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.import_status dataimport None music False

salt.modules.solr.is_replication_enabled(host=None, core_name=None)
SLAVE CALL Check for errors, and determine if a slave is replicating or not.

host [str (None)] e solr host to query. __opts__['host'] is default.

core_name [str (None)] e name of the solr core if using cores. Leave this blank if you are not using cores
or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.is_replication_enabled music

salt.modules.solr.lucene_version(core_name=None)
Gets the lucene version that solr is using. If you are running a multi-core setup you should specify a core name
since all the cores run under the same servlet container, they will all have the same version.

core_name [str (None)] e name of the solr core if using cores. Leave this blank if you are not using cores
or if you want to check all cores.

Return: dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.lucene_version

salt.modules.solr.match_index_versions(host=None, core_name=None)
SLAVE CALL Verifies that the master and the slave versions are in sync by comparing the index version. If
you are constantly pushing updates the index the master and slave versions will seldom match. A solution to
this is pause indexing every so oen to allow the slave to replicate and then call this method before allowing
indexing to resume.

host [str (None)] e solr host to query. __opts__['host'] is default.

core_name [str (None)] e name of the solr core if using cores. Leave this blank if you are not using cores
or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.match_index_versions music

salt.modules.solr.optimize(host=None, core_name=None)
Search queries fast, but it is a very expensive operation. e ideal process is to run this with a master/slave
configuration. en you can optimize the master, and push the optimized index to the slaves. If you are

818 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

running a single solr instance, or if you are going to run this on a slave be aware than search performance will
be horrible while this command is being run. Additionally it can take a LONG time to run and your HTTP
request may timeout. If that happens adjust your timeout seings.

host [str (None)] e solr host to query. __opts__['host'] is default.

core_name [str (None)] e name of the solr core if using cores. Leave this blank if you are not using cores
or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.optimize music

salt.modules.solr.ping(host=None, core_name=None)
Does a health check on solr, makes sure solr can talk to the indexes.

host [str (None)] e solr host to query. __opts__['host'] is default.

core_name [str (None)] e name of the solr core if using cores. Leave this blank if you are not using cores
or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.ping music

salt.modules.solr.reload_core(host=None, core_name=None)
MULTI-CORE HOSTS ONLY Load a new core from the same configuration as an existing registered core.
While the ``new'' core is initializing, the ``old'' one will continue to accept requests. Once it has finished, all
new request will go to the ``new'' core, and the ``old'' core will be unloaded.

host [str (None)] e solr host to query. __opts__['host'] is default.

core_name [str] e name of the core to reload

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.reload_core None music

Return data is in the following format:

{'success':bool, 'data':dict, 'errors':list, 'warnings':list}

salt.modules.solr.reload_import_config(handler, host=None, core_name=None, ver-
bose=False)

MASTER ONLY re-loads the handler config XML file. is command can only be run if the minion is a `master'
type

handler [str] e name of the data import handler.

host [str (None)] e solr host to query. __opts__['host'] is default.

core [str (None)] e core the handler belongs to.

22.16. Full list of builtin execution modules 819

Salt Documentation, Release 2014.7.6

verbose [boolean (False)] Run the command with verbose output.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.reload_import_config dataimport None music {'clean':True}

salt.modules.solr.replication_details(host=None, core_name=None)
Get the full replication details.

host [str (None)] e solr host to query. __opts__['host'] is default.

core_name [str (None)] e name of the solr core if using cores. Leave this blank if you are not using cores
or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.replication_details music

salt.modules.solr.set_is_polling(polling, host=None, core_name=None)
SLAVE CALL Prevent the slaves from polling the master for updates.

polling [boolean] True will enable polling. False will disable it.

host [str (None)] e solr host to query. __opts__['host'] is default.

core_name [str (None)] e name of the solr core if using cores. Leave this blank if you are not using cores
or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.set_is_polling False

salt.modules.solr.set_replication_enabled(status, host=None, core_name=None)
MASTER ONLY Sets the master to ignore poll requests from the slaves. Useful when you don't want the slaves
replicating during indexing or when clearing the index.

status [boolean] Sets the replication status to the specified state.

host [str (None)] e solr host to query. __opts__['host'] is default.

core_name [str (None)] e name of the solr core if using cores. Leave this blank if you are not using cores
or if you want to set the status on all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.set_replication_enabled false, None, music

820 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.solr.signal(signal=None)
Signals Apache Solr to start, stop, or restart. Obviously this is only going to work if the minion resides on the
solr host. Additionally Solr doesn't ship with an init script so one must be created.

signal [str (None)] e command to pass to the apache solr init valid values are `start', `stop', and `restart'

CLI Example:

salt '*' solr.signal restart

salt.modules.solr.version(core_name=None)
Gets the solr version for the core specified. You should specify a core here as all the cores will run under the
same servlet container and so will all have the same version.

core_name [str (None)] e name of the solr core if using cores. Leave this blank if you are not using cores
or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.version

22.16.196 salt.modules.sqlite3

Support for SQLite3

salt.modules.sqlite3.fetch(db=None, sql=None)
Retrieve data from an sqlite3 db (returns all rows, be careful!)

CLI Example:

salt '*' sqlite3.fetch /root/test.db 'SELECT * FROM test;'

salt.modules.sqlite3.indexes(db=None)
Show all indices in the database, for people with poor spelling skills

CLI Example:

salt '*' sqlite3.indexes /root/test.db

salt.modules.sqlite3.indices(db=None)
Show all indices in the database

CLI Example:

salt '*' sqlite3.indices /root/test.db

salt.modules.sqlite3.modify(db=None, sql=None)
Issue an SQL query to sqlite3 (with no return data), usually used to modify the database in some way (insert,
delete, create, etc)

CLI Example:

salt '*' sqlite3.modify /root/test.db 'CREATE TABLE test(id INT, testdata TEXT);'

salt.modules.sqlite3.sqlite_version()
Return version of sqlite

22.16. Full list of builtin execution modules 821

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' sqlite3.sqlite_version

salt.modules.sqlite3.tables(db=None)
Show all tables in the database

CLI Example:

salt '*' sqlite3.tables /root/test.db

salt.modules.sqlite3.version()
Return version of pysqlite

CLI Example:

salt '*' sqlite3.version

22.16.197 salt.modules.ssh

Manage client ssh components

Note: is module requires the use of MD5 hashing. Certain security audits may not permit the use of MD5. For
those cases, this module should be disabled or removed.

salt.modules.ssh.auth_keys(user, config='.ssh/authorized_keys')
Return the authorized keys for the specified user

CLI Example:

salt '*' ssh.auth_keys root

salt.modules.ssh.check_key(user, key, enc, comment, options, config='.ssh/authorized_keys',
cache_keys=None)

Check to see if a key needs updating, returns ``update'', ``add'' or ``exists''

CLI Example:

salt '*' ssh.check_key <user> <key> <enc> <comment> <options>

salt.modules.ssh.check_key_file(user, source, config='.ssh/authorized_keys', saltenv='base',
env=None)

Check a keyfile from a source destination against the local keys and return the keys to change

CLI Example:

salt '*' root salt://ssh/keyfile

salt.modules.ssh.check_known_host(user=None, hostname=None, key=None, fingerprint=None,
config=None)

Check the record in known_hosts file, either by its value or by fingerprint (it's enough to set up either key or
fingerprint, you don't need to set up both).

If provided key or fingerprint doesn't match with stored value, return ``update'', if no value is found for a given
host, return ``add'', otherwise return ``exists''.

If neither key, nor fingerprint is defined, then additional validation is not performed.

CLI Example:

822 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' ssh.check_known_host <user> <hostname> key='AAAA...FAaQ=='

salt.modules.ssh.get_known_host(user, hostname, config=None)
Return information about known host from the configfile, if any. If there is no such key, return None.

CLI Example:

salt '*' ssh.get_known_host <user> <hostname>

salt.modules.ssh.hash_known_hosts(user=None, config=None)
Hash all the hostnames in the known hosts file.

New in version 2014.7.0.

CLI Example:

salt '*' ssh.hash_known_hosts

salt.modules.ssh.host_keys(keydir=None)
Return the minion's host keys

CLI Example:

salt '*' ssh.host_keys

salt.modules.ssh.recv_known_host(hostname, enc=None, port=None, hash_hostname=False)
Retrieve information about host public key from remote server

CLI Example:

salt '*' ssh.recv_known_host <hostname> enc=<enc> port=<port>

salt.modules.ssh.rm_auth_key(user, key, config='.ssh/authorized_keys')
Remove an authorized key from the specified user's authorized key file

CLI Example:

salt '*' ssh.rm_auth_key <user> <key>

salt.modules.ssh.rm_known_host(user=None, hostname=None, config=None)
Remove all keys belonging to hostname from a known_hosts file.

CLI Example:

salt '*' ssh.rm_known_host <user> <hostname>

salt.modules.ssh.set_auth_key(user, key, enc='ssh-rsa', comment='`, options=None, con-
fig='.ssh/authorized_keys', cache_keys=None)

Add a key to the authorized_keys file. e ``key'' parameter must only be the string of text that is the encoded
key. If the key begins with ``ssh-rsa'' or ends with user@host, remove those from the key before passing it to
this function.

CLI Example:

salt '*' ssh.set_auth_key <user> '<key>' enc='dsa'

salt.modules.ssh.set_auth_key_from_file(user, source, config='.ssh/authorized_keys',
saltenv='base', env=None)

Add a key to the authorized_keys file, using a file as the source.

CLI Example:

22.16. Full list of builtin execution modules 823

mailto:user@host

Salt Documentation, Release 2014.7.6

salt '*' ssh.set_auth_key_from_file <user> salt://ssh_keys/<user>.id_rsa.pub

salt.modules.ssh.set_known_host(user=None, hostname=None, fingerprint=None, key=None,
port=None, enc=None, hash_hostname=True, config=None)

Download SSH public key from remote host ``hostname'', optionally validate its fingerprint against ``finger-
print'' variable and save the record in the known_hosts file.

If such a record does already exists in there, do nothing.

CLI Example:

salt '*' ssh.set_known_host <user> fingerprint='xx:xx:..:xx' enc='ssh-rsa' config='.ssh/known_hosts'

salt.modules.ssh.user_keys(user=None, pubfile=None, prvfile=None)
Return the user's ssh keys on the minion

New in version 2014.7.0.

CLI Example:

salt '*' ssh.user_keys
salt '*' ssh.user_keys user=user1
salt '*' ssh.user_keys user=user1 pubfile=/home/user1/.ssh/id_rsa.pub prvfile=/home/user1/.ssh/id_rsa
salt '*' ssh.user_keys user="['user1','user2'] pubfile=id_rsa.pub prvfile=id_rsa

22.16.198 salt.modules.state

Control the state system on the minion

salt.modules.state.clear_cache()
Clear out cached state files, forcing even cache runs to refresh the cache on the next state execution.

Remember that the state cache is completely disabled by default, this execution only applies if cache=True is
used in states

CLI Example:

salt '*' state.clear_cache

salt.modules.state.high(data, queue=False, **kwargs)
Execute the compound calls stored in a single set of high data is function is mostly intended for testing the
state system

CLI Example:

salt '*' state.high '{"vim": {"pkg": ["installed"]}}'

salt.modules.state.highstate(test=None, queue=False, **kwargs)
Retrieve the state data from the salt master for this minion and execute it

test Notify states to execute in test-only (dry-run) mode.

Sets the test variable in the minion opts for the duration of the state run.

pillar Custom Pillar data can be passed with the pillar kwarg. Values passed here will override hard-coded
Pillar values.

queue [False] Instead of failing immediately when another state run is in progress, queue the new state run
to begin running once the other has finished.

is option starts a new thread for each queued state run so use this option sparingly.

824 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

localconfig: Instead of using running minion opts, load localconfig and merge that with the running
minion opts. is functionality is intended for using ``roots'' of salt directories (with their own minion
config, pillars, file_roots) to run highstate out of.

CLI Example:

salt '*' state.highstate

salt '*' state.highstate whitelist=sls1_to_run,sls2_to_run
salt '*' state.highstate exclude=sls_to_exclude
salt '*' state.highstate exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]"

salt '*' state.highstate pillar="{foo: 'Foo!', bar: 'Bar!'}"

salt.modules.state.low(data, queue=False, **kwargs)
Execute a single low data call is function is mostly intended for testing the state system

CLI Example:

salt '*' state.low '{"state": "pkg", "fun": "installed", "name": "vi"}'

salt.modules.state.pkg(pkg_path, pkg_sum, hash_type, test=False, **kwargs)
Execute a packaged state run, the packaged state run will exist in a tarball available locally. is packaged
state can be generated using salt-ssh.

CLI Example:

salt '*' state.pkg /tmp/state_pkg.tgz

salt.modules.state.running(concurrent=False)
Return a dict of state return data if a state function is already running. is function is used to prevent multiple
state calls from being run at the same time.

CLI Example:

salt '*' state.running

salt.modules.state.show_highstate(queue=False, **kwargs)
Retrieve the highstate data from the salt master and display it

Custom Pillar data can be passed with the pillar kwarg.

CLI Example:

salt '*' state.show_highstate

salt.modules.state.show_low_sls(mods, saltenv='base', test=None, queue=False, env=None,
**kwargs)

Display the low data from a specific sls. e default environment is base, use saltenv (env in Salt 0.17.x
and older) to specify a different environment.

CLI Example:

salt '*' state.show_low_sls foo

salt.modules.state.show_lowstate(queue=False, **kwargs)
List out the low data that will be applied to this minion

CLI Example:

salt '*' state.show_lowstate

22.16. Full list of builtin execution modules 825

Salt Documentation, Release 2014.7.6

salt.modules.state.show_sls(mods, saltenv='base', test=None, queue=False, env=None, **kwargs)
Display the state data from a specific sls or list of sls files on the master. e default environment is base, use
saltenv (env in Salt 0.17.x and older) to specify a different environment.

is function does not support topfiles. For top.sls please use show_top instead.

Custom Pillar data can be passed with the pillar kwarg.

CLI Example:

salt '*' state.show_sls core,edit.vim dev

salt.modules.state.show_top(queue=False, **kwargs)
Return the top data that the minion will use for a highstate

CLI Example:

salt '*' state.show_top

salt.modules.state.single(fun, name, test=None, queue=False, **kwargs)
Execute a single state function with the named kwargs, returns False if insufficient data is sent to the command

By default, the values of the kwargs will be parsed as YAML. So, you can specify lists values, or lists of single
entry key-value maps, as you would in a YAML salt file. Alternatively, JSON format of keyword values is also
supported.

CLI Example:

salt '*' state.single pkg.installed name=vim

salt.modules.state.sls(mods, saltenv='base', test=None, exclude=None, queue=False, env=None,
**kwargs)

Execute a set list of state files from an environment.

test Notify states to execute in test-only (dry-run) mode.

Sets the test variable in the minion opts for the duration of the state run.

pillar Custom Pillar data can be passed with the pillar kwarg. Values passed here will override hard-coded
Pillar values.

queue [False] Instead of failing immediately when another state run is in progress, queue the new state run
to begin running once the other has finished.

is option starts a new thread for each queued state run so use this option sparingly.

saltenv [base] Specify a file_roots environment.

Changed in version 0.17.0: Argument name changed from env to saltenv.

concurrent: WARNING:is flag is potentially dangerous. It is designed for use when multiple state runs can
safely be run at the same Do not use this flag for performance optimization.

localconfig: Instead of using running minion opts, load localconfig and merge that with the running
minion opts. is functionality is intended for using ``roots'' of salt directories (with their own minion
config, pillars, file_roots) to run highstate out of.

CLI Example:

salt '*' state.sls core,edit.vim dev
salt '*' state.sls core exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]"

salt '*' state.sls myslsfile pillar="{foo: 'Foo!', bar: 'Bar!'}"

826 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.state.sls_id(id_, mods, saltenv='base', test=None, queue=False, **kwargs)
Call a single ID from the named module(s) and handle all requisites

New in version 2014.7.0.

CLI Example:

salt '*' state.sls_id apache http

salt.modules.state.template(tem, queue=False, **kwargs)
Execute the information stored in a template file on the minion.

is function does not ask a master for a SLS file to render but instead directly processes the file at the provided
path on the minion.

CLI Example:

salt '*' state.template '<Path to template on the minion>'

salt.modules.state.template_str(tem, queue=False, **kwargs)
Execute the information stored in a string from an sls template

CLI Example:

salt '*' state.template_str '<Template String>'

salt.modules.state.top(topfn, test=None, queue=False, **kwargs)
Execute a specific top file instead of the default

CLI Example:

salt '*' state.top reverse_top.sls
salt '*' state.top reverse_top.sls exclude=sls_to_exclude
salt '*' state.top reverse_top.sls exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]"

22.16.199 salt.modules.status

Module for returning various status data about a minion. ese data can be useful for compiling into stats later.

salt.modules.status.all_status()
Return a composite of all status data and info for this minion. Warning: ere is a LOT here!

CLI Example:

salt '*' status.all_status

salt.modules.status.cpuinfo()
Return the CPU info for this minion

CLI Example:

salt '*' status.cpuinfo

salt.modules.status.cpustats()
Return the CPU stats for this minion

CLI Example:

salt '*' status.cpustats

22.16. Full list of builtin execution modules 827

Salt Documentation, Release 2014.7.6

salt.modules.status.custom()
Return a custom composite of status data and info for this minion, based on the minion config file. An example
config like might be:

status.cpustats.custom: ['cpu', 'ctxt', 'btime', 'processes']

Where status refers to status.py, cpustats is the function where we get our data, and custom is this function It
is followed by a list of keys that we want returned.

is function is meant to replace all_status(), which returns anything and everything, which we probably don't
want.

By default, nothing is returned. Warning: Depending on what you include, there can be a LOT here!

CLI Example:

salt '*' status.custom

salt.modules.status.diskstats()
Return the disk stats for this minion

CLI Example:

salt '*' status.diskstats

salt.modules.status.diskusage(*args)
Return the disk usage for this minion

Usage:

salt '*' status.diskusage [paths and/or filesystem types]

CLI Example:

salt '*' status.diskusage # usage for all filesystems
salt '*' status.diskusage / /tmp # usage for / and /tmp
salt '*' status.diskusage ext? # usage for ext[234] filesystems
salt '*' status.diskusage / ext? # usage for / and all ext filesystems

salt.modules.status.loadavg()
Return the load averages for this minion

CLI Example:

salt '*' status.loadavg

salt.modules.status.master(master=None, connected=True)
New in version 2014.7.0.

Fire an event if the minion gets disconnected from its master. is function is meant to be run via a scheduled
job from the minion. If master_ip is an FQDN/Hostname, is must be resolvable to a valid IPv4 address.

CLI Example:

salt '*' status.master

salt.modules.status.meminfo()
Return the memory info for this minion

CLI Example:

salt '*' status.meminfo

828 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.status.netdev()
Return the network device stats for this minion

CLI Example:

salt '*' status.netdev

salt.modules.status.netstats()
Return the network stats for this minion

CLI Example:

salt '*' status.netstats

salt.modules.status.nproc()
Return the number of processing units available on this system

CLI Example:

salt '*' status.nproc

salt.modules.status.pid(sig)
Return the PID or an empty string if the process is running or not. Pass a signature to use to find the process
via ps. Note you can pass a Python-compatible regular expression to return all pids of processes matching the
regexp.

CLI Example:

salt '*' status.pid <sig>

salt.modules.status.procs()
Return the process data

CLI Example:

salt '*' status.procs

salt.modules.status.uptime()
Return the uptime for this minion

CLI Example:

salt '*' status.uptime

salt.modules.status.version()
Return the system version for this minion

CLI Example:

salt '*' status.version

salt.modules.status.vmstats()
Return the virtual memory stats for this minion

CLI Example:

salt '*' status.vmstats

salt.modules.status.w()
Return a list of logged in users for this minion, using the w command

CLI Example:

22.16. Full list of builtin execution modules 829

Salt Documentation, Release 2014.7.6

salt '*' status.w

22.16.200 salt.modules.supervisord

Provide the service module for system supervisord or supervisord in a virtualenv

salt.modules.supervisord.add(name, user=None, conf_file=None, bin_env=None)
Activates any updates in config for process/group.

user user to run supervisorctl as

conf_file path to supervisord config file

bin_env path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.add <name>

salt.modules.supervisord.custom(command, user=None, conf_file=None, bin_env=None)
Run any custom supervisord command

user user to run supervisorctl as

conf_file path to supervisord config file

bin_env path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.custom "mstop '*gunicorn*'"

salt.modules.supervisord.options(name, conf_file=None)
New in version 2014.1.0.

Read the config file and return the config options for a given process

name Name of the configured process

conf_file path to supervisord config file

CLI Example:

salt '*' supervisord.options foo

salt.modules.supervisord.remove(name, user=None, conf_file=None, bin_env=None)
Removes process/group from active config

user user to run supervisorctl as

conf_file path to supervisord config file

bin_env path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.remove <name>

salt.modules.supervisord.reread(user=None, conf_file=None, bin_env=None)
Reload the daemon's configuration files

user user to run supervisorctl as

conf_file path to supervisord config file

830 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

bin_env path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.reread

salt.modules.supervisord.restart(name='all', user=None, conf_file=None, bin_env=None)
Restart the named service. Process group names should not include a trailing asterisk.

user user to run supervisorctl as

conf_file path to supervisord config file

bin_env path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.restart <service>
salt '*' supervisord.restart <group>:

salt.modules.supervisord.start(name='all', user=None, conf_file=None, bin_env=None)
Start the named service. Process group names should not include a trailing asterisk.

user user to run supervisorctl as

conf_file path to supervisord config file

bin_env path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.start <service>
salt '*' supervisord.start <group>:

salt.modules.supervisord.status(name=None, user=None, conf_file=None, bin_env=None)
List programs and its state

user user to run supervisorctl as

conf_file path to supervisord config file

bin_env path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.status

salt.modules.supervisord.status_raw(name=None, user=None, conf_file=None, bin_env=None)
Display the raw output of status

user user to run supervisorctl as

conf_file path to supervisord config file

bin_env path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.status_raw

salt.modules.supervisord.stop(name='all', user=None, conf_file=None, bin_env=None)
Stop the named service. Process group names should not include a trailing asterisk.

user user to run supervisorctl as

conf_file path to supervisord config file

22.16. Full list of builtin execution modules 831

Salt Documentation, Release 2014.7.6

bin_env path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.stop <service>
salt '*' supervisord.stop <group>:

salt.modules.supervisord.update(user=None, conf_file=None, bin_env=None)
Reload config and add/remove as necessary

user user to run supervisorctl as

conf_file path to supervisord config file

bin_env path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.update

22.16.201 salt.modules.svn

Subversion SCM

salt.modules.svn.add(cwd, targets, user=None, username=None, password=None, *opts)
Add files to be tracked by the Subversion working-copy checkout

cwd e path to the Subversion repository

targets [None] files and directories to pass to the command as arguments

user [None] Run svn as a user other than what the minion runs as

username [None] Connect to the Subversion server as another user

password [None] Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.add /path/to/repo /path/to/new/file

salt.modules.svn.checkout(cwd, remote, target=None, user=None, username=None, password=None,
*opts)

Download a working copy of the remote Subversion repository directory or file

cwd e path to the Subversion repository

remote [None] URL to checkout

target [None] e name to give the file or directory working copy Default: svn uses the remote basename

user [None] Run svn as a user other than what the minion runs as

username [None] Connect to the Subversion server as another user

password [None] Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.checkout /path/to/repo svn://remote/repo

832 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.svn.commit(cwd, targets=None,msg=None, user=None, username=None, password=None,
*opts)

Commit the current directory, files, or directories to the remote Subversion repository

cwd e path to the Subversion repository

targets [None] files and directories to pass to the command as arguments Default: svn uses `.'

msg [None] Message to aach to the commit log

user [None] Run svn as a user other than what the minion runs as

username [None] Connect to the Subversion server as another user

password [None] Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.commit /path/to/repo

salt.modules.svn.diff(cwd, targets=None, user=None, username=None, password=None, *opts)
Return the diff of the current directory, files, or directories from the remote Subversion repository

cwd e path to the Subversion repository

targets [None] files and directories to pass to the command as arguments Default: svn uses `.'

user [None] Run svn as a user other than what the minion runs as

username [None] Connect to the Subversion server as another user

password [None] Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.diff /path/to/repo

salt.modules.svn.export(cwd, remote, target=None, user=None, username=None, password=None, re-
vision='HEAD', *opts)

Create an unversioned copy of a tree.

cwd e path to the Subversion repository

remote [None] URL and path to file or directory checkout

target [None] e name to give the file or directory working copy Default: svn uses the remote basename

user [None] Run svn as a user other than what the minion runs as

username [None] Connect to the Subversion server as another user

password [None] Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.export /path/to/repo svn://remote/repo

salt.modules.svn.info(cwd, targets=None, user=None, username=None, password=None, fmt='str')
Display the Subversion information from the checkout.

cwd e path to the Subversion repository

22.16. Full list of builtin execution modules 833

Salt Documentation, Release 2014.7.6

targets [None] files, directories, and URLs to pass to the command as arguments svn uses `.' by default

user [None] Run svn as a user other than what the minion runs as

username [None] Connect to the Subversion server as another user

password [None] Connect to the Subversion server with this password

New in version 0.17.0.

fmt [str] How to fmt the output from info. (str, xml, list, dict)

CLI Example:

salt '*' svn.info /path/to/svn/repo

salt.modules.svn.remove(cwd, targets, msg=None, user=None, username=None, password=None,
*opts)

Remove files and directories from the Subversion repository

cwd e path to the Subversion repository

targets [None] files, directories, and URLs to pass to the command as arguments

msg [None] Message to aach to the commit log

user [None] Run svn as a user other than what the minion runs as

username [None] Connect to the Subversion server as another user

password [None] Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.remove /path/to/repo /path/to/repo/remove

salt.modules.svn.status(cwd, targets=None, user=None, username=None, password=None, *opts)
Display the status of the current directory, files, or directories in the Subversion repository

cwd e path to the Subversion repository

targets [None] files, directories, and URLs to pass to the command as arguments Default: svn uses `.'

user [None] Run svn as a user other than what the minion runs as

username [None] Connect to the Subversion server as another user

password [None] Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.status /path/to/repo

salt.modules.svn.switch(cwd, remote, target=None, user=None, username=None, password=None,
*opts)

New in version 2014.1.0.

Switch a working copy of a remote Subversion repository directory

cwd e path to the Subversion repository

remote [None] URL to switch

target [None] e name to give the file or directory working copy Default: svn uses the remote basename

834 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

user [None] Run svn as a user other than what the minion runs as

username [None] Connect to the Subversion server as another user

password [None] Connect to the Subversion server with this password

CLI Example:

salt '*' svn.switch /path/to/repo svn://remote/repo

salt.modules.svn.update(cwd, targets=None, user=None, username=None, password=None, *opts)
Update the current directory, files, or directories from the remote Subversion repository

cwd e path to the Subversion repository

targets [None] files and directories to pass to the command as arguments Default: svn uses `.'

user [None] Run svn as a user other than what the minion runs as

password [None] Connect to the Subversion server with this password

New in version 0.17.0.

username [None] Connect to the Subversion server as another user

CLI Example:

salt '*' svn.update /path/to/repo

22.16.202 salt.modules.swi

Module for handling OpenStack Swi calls Author: Anthony Stanton <anthony.stanton@gmail.com>

Inspired by the S3 and Nova modules

depends

• swiclient Python module

configuration is module is not usable until the user, password, tenant, and auth URL are specified
either in a pillar or in the minion's config file. For example:

keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

If configuration for multiple OpenStack accounts is required, they can be set up as different con-
figuration profiles: For example:

openstack1:
keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

openstack2:
keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.auth_url: 'http://127.0.0.2:5000/v2.0/'

22.16. Full list of builtin execution modules 835

mailto:anthony.stanton@gmail.com

Salt Documentation, Release 2014.7.6

With this configuration in place, any of the swi functions can make use of a configuration profile
by declaring it explicitly. For example:

salt '*' swift.get mycontainer myfile /tmp/file profile=openstack1

salt.modules.swift.delete(cont, path=None, profile=None)
Delete a container, or delete an object from a container.

CLI Example to delete a container:

salt myminion swift.delete mycontainer

CLI Example to delete an object from a container:

salt myminion swift.delete mycontainer remoteobject

salt.modules.swift.get(cont=None, path=None, local_file=None, return_bin=False, profile=None)
List the contents of a container, or return an object from a container. Set return_bin to True in order to retrieve
an object wholesale. Otherwise, Salt will aempt to parse an XML response.

CLI Example to list containers:

salt myminion swift.get

CLI Example to list the contents of a container:

salt myminion swift.get mycontainer

CLI Example to return the binary contents of an object:

salt myminion swift.get mycontainer myfile.png return_bin=True

CLI Example to save the binary contents of an object to a local file:

salt myminion swift.get mycontainer myfile.png local_file=/tmp/myfile.png

salt.modules.swift.head()

salt.modules.swift.put(cont, path=None, local_file=None, profile=None)
Create a new container, or upload an object to a container.

CLI Example to create a container:

salt myminion swift.put mycontainer

CLI Example to upload an object to a container:

salt myminion swift.put mycontainer remotepath local_file=/path/to/file

22.16.203 salt.modules.sysbench

e `sysbench' module is used to analyze the performance of the minions, right from the master! It measures various
system parameters such as CPU, Memory, File I/O, reads and Mutex.

salt.modules.sysbench.cpu()
Tests for the CPU performance of minions.

CLI Examples:

836 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' sysbench.cpu

salt.modules.sysbench.fileio()
is tests for the file read and write operations Various modes of operations are

•sequential write

•sequential rewrite

•sequential read

•random read

•random write

•random read and write

e test works with 32 files with each file being 1Gb in size e test consumes a lot of time. Be patient!

CLI Examples:

salt '*' sysbench.fileio

salt.modules.sysbench.memory()
is tests the memory for read and write operations.

CLI Examples:

salt '*' sysbench.memory

salt.modules.sysbench.mutex()
Tests the implementation of mutex

CLI Examples:

salt '*' sysbench.mutex

salt.modules.sysbench.ping()

salt.modules.sysbench.threads()
is tests the performance of the processor's scheduler

CLI Example:

salt '*' sysbench.threads

22.16.204 salt.modules.sysmod

e sys module provides information about the available functions on the minion

salt.modules.sysmod.argspec(module='`)
Return the argument specification of functions in Salt execution modules.

CLI Example:

salt '*' sys.argspec pkg.install
salt '*' sys.argspec sys
salt '*' sys.argspec

salt.modules.sysmod.doc(*args)
Return the docstrings for all modules. Optionally, specify a module or a function to narrow the selection.

e strings are aggregated into a single document on the master for easy reading.

22.16. Full list of builtin execution modules 837

Salt Documentation, Release 2014.7.6

Multiple modules/functions can be specified.

CLI Example:

salt '*' sys.doc
salt '*' sys.doc sys
salt '*' sys.doc sys.doc
salt '*' sys.doc network.traceroute user.info

salt.modules.sysmod.list_functions(*args, **kwargs)
List the functions for all modules. Optionally, specify a module or modules from which to list.

CLI Example:

salt '*' sys.list_functions
salt '*' sys.list_functions sys
salt '*' sys.list_functions sys user

salt.modules.sysmod.list_modules()
List the modules loaded on the minion

CLI Example:

salt '*' sys.list_modules

salt.modules.sysmod.list_returner_functions(*args, **kwargs)
New in version 2014.7.0.

List the functions for all returner modules. Optionally, specify a returner module or modules from which to
list.

CLI Example:

salt '*' sys.list_returner_functions
salt '*' sys.list_returner_functions mysql
salt '*' sys.list_returner_functions mysql etcd

salt.modules.sysmod.list_returners()
New in version 2014.7.0.

List the runners loaded on the minion

CLI Example:

salt '*' sys.list_returners

salt.modules.sysmod.list_runner_functions(*args, **kwargs)
New in version 2014.7.0.

List the functions for all runner modules. Optionally, specify a runner module or modules from which to list.

CLI Example:

salt '*' sys.list_runner_functions
salt '*' sys.list_runner_functions state
salt '*' sys.list_runner_functions state virt

salt.modules.sysmod.list_runners()
New in version 2014.7.0.

List the runners loaded on the minion

CLI Example:

838 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' sys.list_runners

salt.modules.sysmod.list_state_functions(*args, **kwargs)
New in version 2014.7.0.

List the functions for all state modules. Optionally, specify a state module or modules from which to list.

CLI Example:

salt '*' sys.list_state_functions
salt '*' sys.list_state_functions file
salt '*' sys.list_state_functions pkg user

salt.modules.sysmod.list_state_modules()
New in version 2014.7.0.

List the modules loaded on the minion

CLI Example:

salt '*' sys.list_state_modules

salt.modules.sysmod.reload_modules()
Tell the minion to reload the execution modules

CLI Example:

salt '*' sys.reload_modules

salt.modules.sysmod.returner_doc(*args)
New in version 2014.7.0.

Return the docstrings for all returners. Optionally, specify a returner or a function to narrow the selection.

e strings are aggregated into a single document on the master for easy reading.

Multiple returners/functions can be specified.

CLI Example:

salt '*' sys.returner_doc
salt '*' sys.returner_doc sqlite3
salt '*' sys.returner_doc sqlite3.get_fun
salt '*' sys.returner_doc sqlite3.get_fun etcd.get_fun

salt.modules.sysmod.runner_doc(*args)
New in version 2014.7.0.

Return the docstrings for all runners. Optionally, specify a runner or a function to narrow the selection.

e strings are aggregated into a single document on the master for easy reading.

Multiple runners/functions can be specified.

CLI Example:

salt '*' sys.runner_doc
salt '*' sys.runner_doc cache
salt '*' sys.runner_doc cache.grains
salt '*' sys.runner_doc cache.grains mine.get

salt.modules.sysmod.state_doc(*args)
New in version 2014.7.0.

22.16. Full list of builtin execution modules 839

Salt Documentation, Release 2014.7.6

Return the docstrings for all states. Optionally, specify a state or a function to narrow the selection.

e strings are aggregated into a single document on the master for easy reading.

Multiple states/functions can be specified.

CLI Example:

salt '*' sys.state_doc
salt '*' sys.state_doc service
salt '*' sys.state_doc service.running
salt '*' sys.state_doc service.running ipables.append

22.16.205 salt.modules.system

Support for reboot, shutdown, etc

salt.modules.system.halt()
Halt a running system

CLI Example:

salt '*' system.halt

salt.modules.system.init(runlevel)
Change the system runlevel on sysV compatible systems

CLI Example:

salt '*' system.init 3

salt.modules.system.poweroff()
Poweroff a running system

CLI Example:

salt '*' system.poweroff

salt.modules.system.reboot()
Reboot the system using the `reboot' command

CLI Example:

salt '*' system.reboot

salt.modules.system.shutdown(at_time=None)
Shutdown a running system

CLI Example:

salt '*' system.shutdown

22.16.206 salt.modules.systemd

Provide the service module for systemd

salt.modules.systemd.available(name)
Check that the given service is available taking into account template units.

CLI Example:

840 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' service.available sshd

salt.modules.systemd.disable(name, **kwargs)
Disable the named service to not start when the system boots

CLI Example:

salt '*' service.disable <service name>

salt.modules.systemd.disabled(name)
Return if the named service is disabled to start on boot

CLI Example:

salt '*' service.disabled <service name>

salt.modules.systemd.enable(name, **kwargs)
Enable the named service to start when the system boots

CLI Example:

salt '*' service.enable <service name>

salt.modules.systemd.enabled(name)
Return if the named service is enabled to start on boot

CLI Example:

salt '*' service.enabled <service name>

salt.modules.systemd.execs()
Return a list of all files specified as ExecStart for all services.

CLI Example:

salt `*' service.execs

salt.modules.systemd.force_reload(name)
Force-reload the specified service with systemd

CLI Example:

salt '*' service.force_reload <service name>

salt.modules.systemd.get_all()
Return a list of all available services

CLI Example:

salt '*' service.get_all

salt.modules.systemd.get_disabled()
Return a list of all disabled services

CLI Example:

salt '*' service.get_disabled

salt.modules.systemd.get_enabled()
Return a list of all enabled services

CLI Example:

22.16. Full list of builtin execution modules 841

Salt Documentation, Release 2014.7.6

salt '*' service.get_enabled

salt.modules.systemd.missing(name)
e inverse of service.available. Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing sshd

salt.modules.systemd.reload_(name)
Reload the specified service with systemd

CLI Example:

salt '*' service.reload <service name>

salt.modules.systemd.restart(name)
Restart the specified service with systemd

CLI Example:

salt '*' service.restart <service name>

salt.modules.systemd.show(name)
Show properties of one or more units/jobs or the manager

CLI Example:

salt `*' service.show <service name>

salt.modules.systemd.start(name)
Start the specified service with systemd

CLI Example:

salt '*' service.start <service name>

salt.modules.systemd.status(name, sig=None)
Return the status for a service via systemd, returns a bool whether the service is running.

CLI Example:

salt '*' service.status <service name>

salt.modules.systemd.stop(name)
Stop the specified service with systemd

CLI Example:

salt '*' service.stop <service name>

salt.modules.systemd.systemctl_reload()
Reloads systemctl, an action needed whenever unit files are updated.

CLI Example:

salt '*' service.systemctl_reload

842 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.16.207 salt.modules.test

Module for running arbitrary tests

salt.modules.test.arg(*args, **kwargs)
Print out the data passed into the function *args and `kwargs, this is used to both test the publication data
and cli argument passing, but also to display the information available within the publication data. Returns
{``args'': args, ``kwargs'': kwargs}.

CLI Example:

salt '*' test.arg 1 "two" 3.1 txt="hello" wow='{a: 1, b: "hello"}'

salt.modules.test.arg_repr(*args, **kwargs)
Print out the data passed into the function *args and `kwargs, this is used to both test the publication data
and cli argument passing, but also to display the information available within the publication data. Returns
{``args'': repr(args), ``kwargs'': repr(kwargs)}.

CLI Example:

salt '*' test.arg_repr 1 "two" 3.1 txt="hello" wow='{a: 1, b: "hello"}'

salt.modules.test.arg_type(*args, **kwargs)
Print out the types of the args and kwargs. is is used to test the types of the args and kwargs passed down
to the minion

CLI Example:

salt '*' test.arg_type 1 'int'

salt.modules.test.collatz(start)
Execute the collatz conjecture from the passed starting number, returns the sequence and the time it took to
compute. Used for performance tests.

CLI Example:

salt '*' test.collatz 3

salt.modules.test.conf_test()
Return the value for test.foo in the minion configuration file, or return the default value

CLI Example:

salt '*' test.conf_test

salt.modules.test.cross_test(func, args=None)
Execute a minion function via the __salt__ object in the test module, used to verify that the minion functions
can be called via the __salt__ module.

CLI Example:

salt '*' test.cross_test file.gid_to_group 0

salt.modules.test.echo(text)
Return a string - used for testing the connection

CLI Example:

salt '*' test.echo 'foo bar baz quo qux'

22.16. Full list of builtin execution modules 843

Salt Documentation, Release 2014.7.6

salt.modules.test.exception(message='Test Exception')
Raise an exception

Optionally provide an error message or output the full stack.

CLI Example:

salt '*' test.exception 'Oh noes!'

salt.modules.test.fib(num)
Return a Fibonacci sequence up to the passed number, and the timeit took to compute in seconds. Used for
performance tests

CLI Example:

salt '*' test.fib 3

salt.modules.test.get_opts()
Return the configuration options passed to this minion

CLI Example:

salt '*' test.get_opts

salt.modules.test.kwarg(**kwargs)
Print out the data passed into the function **kwargs, this is used to both test the publication data and cli
kwarg passing, but also to display the information available within the publication data.

CLI Example:

salt '*' test.kwarg num=1 txt="two" env='{a: 1, b: "hello"}'

salt.modules.test.not_loaded()
List the modules that were not loaded by the salt loader system

CLI Example:

salt '*' test.not_loaded

salt.modules.test.opts_pkg()
Return an opts package with the grains and opts for this minion. is is primarily used to create the options
used for master side state compiling routines

CLI Example:

salt '*' test.opts_pkg

salt.modules.test.outputter(data)
Test the outpuer, pass in data to return

CLI Example:

salt '*' test.outputter foobar

salt.modules.test.ping()
Used to make sure the minion is up and responding. Not an ICMP ping.

Returns True.

CLI Example:

salt '*' test.ping

844 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.test.provider(module)
Pass in a function name to discover what provider is being used

CLI Example:

salt '*' test.provider service

salt.modules.test.providers()
Return a dict of the provider names and the files that provided them

CLI Example:

salt '*' test.providers

salt.modules.test.rand_sleep(max=60)
Sleep for a random number of seconds, used to test long-running commands andminions returning at differing
intervals

CLI Example:

salt '*' test.rand_sleep 60

salt.modules.test.rand_str(size=9999999999)
Return a random string

CLI Example:

salt '*' test.rand_str

salt.modules.test.retcode(code=42)
Test that the returncode system is functioning correctly

CLI Example:

salt '*' test.retcode 42

salt.modules.test.sleep(length)
Instruct the minion to initiate a process that will sleep for a given period of time.

CLI Example:

salt '*' test.sleep 20

salt.modules.test.stack()
Return the current stack trace

CLI Example:

salt '*' test.stack

salt.modules.test.tty(*args, **kwargs)
Deprecated! Moved to cmdmod.

CLI Example:

salt '*' test.tty tty0 'This is a test'
salt '*' test.tty pts3 'This is a test'

salt.modules.test.version()
Return the version of salt on the minion

CLI Example:

22.16. Full list of builtin execution modules 845

Salt Documentation, Release 2014.7.6

salt '*' test.version

salt.modules.test.versions_information()
Returns versions of components used by salt as a dict

CLI Example:

salt '*' test.versions_information

salt.modules.test.versions_report()
Returns versions of components used by salt

CLI Example:

salt '*' test.versions_report

22.16.208 salt.modules.timezone

Module for managing timezone on POSIX-like systems.

salt.modules.timezone.get_hwclock()
Get current hardware clock seing (UTC or localtime)

CLI Example:

salt '*' timezone.get_hwclock

salt.modules.timezone.get_offset()
Get current numeric timezone offset from UCT (i.e. -0700)

CLI Example:

salt '*' timezone.get_offset

salt.modules.timezone.get_zone()
Get current timezone (i.e. America/Denver)

CLI Example:

salt '*' timezone.get_zone

salt.modules.timezone.get_zonecode()
Get current timezone (i.e. PST, MDT, etc)

CLI Example:

salt '*' timezone.get_zonecode

salt.modules.timezone.set_hwclock(clock)
Sets the hardware clock to be either UTC or localtime

CLI Example:

salt '*' timezone.set_hwclock UTC

salt.modules.timezone.set_zone(timezone)
Unlinks, then symlinks /etc/localtime to the set timezone.

e timezone is crucial to several systemprocesses, each ofwhich SHOULDbe restarted (for instance, whatever
you system uses as its cron and syslog daemons). is will not be magically done for you!

846 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' timezone.set_zone 'America/Denver'

salt.modules.timezone.zone_compare(timezone)
Checks the hash sum between the given timezone, and the one set in /etc/localtime. Returns True if they
match, and False if not. Mostly useful for running state checks.

CLI Example:

salt '*' timezone.zone_compare 'America/Denver'

22.16.209 salt.modules.tls

A salt module for SSL/TLS. Can create a Certificate Authority (CA) or use Self-Signed certificates.

depends

• PyOpenSSL Python module

configuration Add the following values in /etc/salt/minion for the CAmodule to function prop-
erly:

ca.cert_base_path: '/etc/pki'

salt.modules.tls.ca_exists(ca_name, cacert_path=None)
Verify whether a Certificate Authority (CA) already exists

ca_name name of the CA

cacert_path absolute path to ca certificates root directory

CLI Example:

salt '*' tls.ca_exists test_ca /etc/certs

salt.modules.tls.cert_base_path(cacert_path=None)
Return the base path for certs from CLI or from options

CLI Example:

salt '*' tls.cert_base_path

salt.modules.tls.create_ca(ca_name, bits=2048, days=365, CN='localhost', C='US', ST='Utah', L='Salt
Lake City', O='SaltStack', OU=None, emailAddress='xyz@pdq.net', fix-
mode=False, cacert_path=None, digest='sha256')

Create a Certificate Authority (CA)

ca_name name of the CA

bits number of RSA key bits, Default is 2048

days number of days the CA will be valid, Default is 365

CN common name in the request, Default is localhost

C country, Default is US

ST state, Default is Utah

L locality, Default is Salt Lake City

O organization, Default is SaltStack

22.16. Full list of builtin execution modules 847

Salt Documentation, Release 2014.7.6

OU organizational unit, Default is None

emailAddress email address for the CA owner, Default is xyz@pdq.net

cacert_path absolute path to ca certificates root directory

digest e message digest algorithm. Must be a string describing a digest algorithm supported by OpenSSL
(by EVP_get_digestbyname, specifically). For example, ``md5'' or ``sha1''. Default: `sha256'

Writes out a CA certificate based upon defined config values. If the file already exists, the function just returns
assuming the CA certificate already exists.

If the following values were set:

ca.cert_base_path='/etc/pki'
ca_name='koji'

the resulting CA, and corresponding key, would be wrien in the following location:

/etc/pki/koji/koji_ca_cert.crt
/etc/pki/koji/koji_ca_cert.key

CLI Example:

salt '*' tls.create_ca test_ca

salt.modules.tls.create_ca_signed_cert(ca_name, CN, days=365, cacert_path=None, di-
gest='sha256', **extensions)

Create a Certificate (CERT) signed by a named Certificate Authority (CA)

If the certificate file already exists, the function just returns assuming the CERT already exists.

e CN must match an existing CSR generated by create_csr. If it does not, this method does nothing.

ca_name name of the CA

CN common name matching the certificate signing request

days number of days certificate is valid, Default is 365 (1 year)

cacert_path absolute path to ca certificates root directory

digest e message digest algorithm. Must be a string describing a digest algorithm supported by OpenSSL
(by EVP_get_digestbyname, specifically). For example, ``md5'' or ``sha1''. Default: `sha256'

**extensions X509 V3 certificate extension

Writes out a Certificate (CERT). If the file already exists, the function just returns assuming the CERT already
exists.

e CN must match an existing CSR generated by create_csr. If it does not, this method does nothing.

If the following values were set:

ca.cert_base_path='/etc/pki'
ca_name='koji'
CN='test.egavas.org'

the resulting signed certificate would be wrien in the following location:

/etc/pki/koji/certs/test.egavas.org.crt

CLI Example:

848 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' tls.create_ca_signed_cert test localhost

salt.modules.tls.create_csr(ca_name, bits=2048, CN='localhost', C='US', ST='Utah', L='Salt Lake
City', O='SaltStack', OU=None, emailAddress='xyz@pdq.net', subjec-
tAltName=None, cacert_path=None, digest='sha256')

Create a Certificate Signing Request (CSR) for a particular Certificate Authority (CA)

ca_name name of the CA

bits number of RSA key bits, Default is 2048

CN common name in the request, Default is localhost

C country, Default is US

ST state, Default is Utah

L locality, Default is Salt Lake City

O organization. Must the same as CA certificate or an error will be raised, Default is SaltStack

OU organizational unit, Default is None

emailAddress email address for the request, Default is xyz@pdq.net

subjectAltName valid subjectAltNames in full form, e.g. to add DNS entry you would call this function with
this value: ['DNS:myapp.foo.comm']

cacert_path absolute path to ca certificates root directory

digest e message digest algorithm. Must be a string describing a digest algorithm supported by OpenSSL
(by EVP_get_digestbyname, specifically). For example, ``md5'' or ``sha1''. Default: `sha256'

Writes out a Certificate Signing Request (CSR) If the file already exists, the function just returns assuming the
CSR already exists.

If the following values were set:

ca.cert_base_path='/etc/pki'
ca_name='koji'
CN='test.egavas.org'

the resulting CSR, and corresponding key, would be wrien in the following location:

/etc/pki/koji/certs/test.egavas.org.csr
/etc/pki/koji/certs/test.egavas.org.key

CLI Example:

salt '*' tls.create_csr test

salt.modules.tls.create_pkcs12(ca_name, CN, passphrase='`, cacert_path=None)
Create a PKCS#12 browser certificate for a particular Certificate (CN)

ca_name name of the CA

CN common name matching the certificate signing request

passphrase used to unlock the PKCS#12 certificate when loaded into the browser

cacert_path absolute path to ca certificates root directory

If the following values were set:

22.16. Full list of builtin execution modules 849

Salt Documentation, Release 2014.7.6

ca.cert_base_path='/etc/pki'
ca_name='koji'
CN='test.egavas.org'

the resulting signed certificate would be wrien in the following location:

/etc/pki/koji/certs/test.egavas.org.p12

CLI Example:

salt '*' tls.create_pkcs12 test localhost

salt.modules.tls.create_self_signed_cert(tls_dir='tls', bits=2048, days=365, CN='localhost',
C='US', ST='Utah', L='Salt Lake City',
O='SaltStack', OU=None, emailAd-
dress='xyz@pdq.net', cacert_path=None, di-
gest='sha256')

Create a Self-Signed Certificate (CERT)

tls_dir location appended to the ca.cert_base_path, Default is tls

bits number of RSA key bits, Default is 2048

days validity of certificate, Default is 365

CN common name in the request, Default is localhost

C country, Default is US

ST state, Default is Utah

L locality, Default is Salt Lake City

O organization. Must the same as CA certificate or an error will be raised, Default is SaltStack

OU organizational unit, Default is None

emailAddress email address for the request, Default is xyz@pdq.net

cacert_path absolute path to ca certificates root directory

digest e message digest algorithm. Must be a string describing a digest algorithm supported by OpenSSL
(by EVP_get_digestbyname, specifically). For example, ``md5'' or ``sha1''. Default: `sha256'

Writes out a Self-Signed Certificate (CERT). If the file already exists, the function just returns.

If the following values were set:

ca.cert_base_path='/etc/pki'
tls_dir='koji'
CN='test.egavas.org'

the resulting CERT, and corresponding key, would be wrien in the following location:

/etc/pki/koji/certs/test.egavas.org.crt
/etc/pki/koji/certs/test.egavas.org.key

CLI Examples:

salt '*' tls.create_self_signed_cert
salt 'minion' tls.create_self_signed_cert CN='test.mysite.org'

salt.modules.tls.get_ca(ca_name, as_text=False, cacert_path=None)
Get the certificate path or content

850 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

ca_name name of the CA

as_text if true, return the certificate content instead of the path

cacert_path absolute path to ca certificates root directory

CLI Example:

salt '*' tls.get_ca test_ca as_text=False cacert_path=/etc/certs

salt.modules.tls.maybe_fix_ssl_version(ca_name, cacert_path=None)
Check that the X509 version is correct (was incorrectly set in previous salt versions). is will fix the version
if needed.

ca_name ca authority name

cacert_path absolute path to ca certificates root directory

CLI Example:

salt '*' tls.maybe_fix_ssl_version test_ca /etc/certs

salt.modules.tls.set_ca_path(cacert_path)
If wanted, store the aforementioned cacert_path in context to be used as the basepath for further operations

CLI Example:

salt '*' tls.set_ca_path /etc/certs

22.16.210 salt.modules.tomcat

Support for Tomcat

is module uses the manager webapp to manage Apache tomcat webapps. If the manager webapp is not configured
some of the functions won't work.

Note: e config format was changed in 2014.7.0, but backwards compatibility for the old-style config will be in the
2014.7.1 release.

e following grains/pillar should be set:

tomcat-manager:
user: <username>
passwd: <password>

or the old format:

tomcat-manager.user: <username>
tomcat-manager.passwd: <password>

Also configure a user in the conf/tomcat-users.xml file:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>

<role rolename="manager-script"/>
<user username="tomcat" password="tomcat" roles="manager-script"/>

</tomcat-users>

Note:

22.16. Full list of builtin execution modules 851

Salt Documentation, Release 2014.7.6

• More information about tomcat manager: hp://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html

• if you use only this module for deployments you've might want to strict access to the man-
ager only from localhost for more info: hp://tomcat.apache.org/tomcat-7.0-doc/manager-
howto.html#Configuring_Manager_Application_Access

• Tested on:

JVM Vendor: Sun Microsystems Inc.

JVM Version: 1.6.0_43-b01

OS Aritecture: amd64

OS Name: Linux

OS Version: 2.6.32-358.el6.x86_64

Tomcat Version: Apache Tomcat/7.0.37

salt.modules.tomcat.deploy_war(war, context, force='no', url='hp://localhost:8080/manager',
saltenv='base', timeout=180, env=None,
temp_war_location=None)

Deploy a WAR file

war absolute path to WAR file (should be accessible by the user running tomcat) or a path supported by the
salt.modules.cp.get_file function

context the context path to deploy

force [False] set True to deploy the webapp even one is deployed in the context

url [hp://localhost:8080/manager] the URL of the server manager webapp

saltenv [base] the environment for WAR file in used by salt.modules.cp.get_url function

timeout [180] timeout for HTTP request

temp_war_location [None] use another location to temporarily copy to war file by default the system's temp
directory is used

CLI Examples:

cp module

salt '*' tomcat.deploy_war salt://application.war /api
salt '*' tomcat.deploy_war salt://application.war /api no
salt '*' tomcat.deploy_war salt://application.war /api yes http://localhost:8080/manager

minion local file system

salt '*' tomcat.deploy_war /tmp/application.war /api
salt '*' tomcat.deploy_war /tmp/application.war /api no
salt '*' tomcat.deploy_war /tmp/application.war /api yes http://localhost:8080/manager

salt.modules.tomcat.fullversion()
Return all server information from catalina.sh version

CLI Example:

salt '*' tomcat.fullversion

salt.modules.tomcat.leaks(url='hp://localhost:8080/manager', timeout=180)
Find memory leaks in tomcat

852 Chapter 22. Reference

http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html#Configuring_Manager_Application_Access
http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html#Configuring_Manager_Application_Access
http://localhost:8080/manager

Salt Documentation, Release 2014.7.6

url [hp://localhost:8080/manager] the URL of the server manager webapp

timeout [180] timeout for HTTP request

CLI Examples:

salt '*' tomcat.leaks

salt.modules.tomcat.ls(url='hp://localhost:8080/manager', timeout=180)
list all the deployed webapps

url [hp://localhost:8080/manager] the URL of the server manager webapp

timeout [180] timeout for HTTP request

CLI Examples:

salt '*' tomcat.ls
salt '*' tomcat.ls http://localhost:8080/manager

salt.modules.tomcat.passwd(passwd, user='`, alg='md5', realm=None)
is function replaces the $CATALINA_HOME/bin/digest.sh script convert a clear-text password to the
$CATALINA_BASE/conf/tomcat-users.xml format

CLI Examples:

salt '*' tomcat.passwd secret
salt '*' tomcat.passwd secret tomcat sha1
salt '*' tomcat.passwd secret tomcat sha1 'Protected Realm'

salt.modules.tomcat.reload_(app, url='hp://localhost:8080/manager', timeout=180)
Reload the webapp

app the webapp context path

url [hp://localhost:8080/manager] the URL of the server manager webapp

timeout [180] timeout for HTTP request

CLI Examples:

salt '*' tomcat.reload /jenkins
salt '*' tomcat.reload /jenkins http://localhost:8080/manager

salt.modules.tomcat.serverinfo(url='hp://localhost:8080/manager', timeout=180)
return details about the server

url [hp://localhost:8080/manager] the URL of the server manager webapp

timeout [180] timeout for HTTP request

CLI Examples:

salt '*' tomcat.serverinfo
salt '*' tomcat.serverinfo http://localhost:8080/manager

salt.modules.tomcat.sessions(app, url='hp://localhost:8080/manager', timeout=180)
return the status of the webapp sessions

app the webapp context path

url [hp://localhost:8080/manager] the URL of the server manager webapp

timeout [180] timeout for HTTP request

22.16. Full list of builtin execution modules 853

http://localhost:8080/manager
http://localhost:8080/manager
http://localhost:8080/manager
http://localhost:8080/manager
http://localhost:8080/manager

Salt Documentation, Release 2014.7.6

CLI Examples:

salt '*' tomcat.sessions /jenkins
salt '*' tomcat.sessions /jenkins http://localhost:8080/manager

salt.modules.tomcat.signal(signal=None)
Signals catalina to start, stop, securestart, forcestop.

CLI Example:

salt '*' tomcat.signal start

salt.modules.tomcat.start(app, url='hp://localhost:8080/manager', timeout=180)
Start the webapp

app the webapp context path

url [hp://localhost:8080/manager] the URL of the server manager webapp

timeout timeout for HTTP request

CLI Examples:

salt '*' tomcat.start /jenkins
salt '*' tomcat.start /jenkins http://localhost:8080/manager

salt.modules.tomcat.status(url='hp://localhost:8080/manager', timeout=180)
Used to test if the tomcat manager is up

url [hp://localhost:8080/manager] the URL of the server manager webapp

timeout [180] timeout for HTTP request

CLI Examples:

salt '*' tomcat.status
salt '*' tomcat.status http://localhost:8080/manager

salt.modules.tomcat.status_webapp(app, url='hp://localhost:8080/manager', timeout=180)
return the status of the webapp (stopped | running | missing)

app the webapp context path

url [hp://localhost:8080/manager] the URL of the server manager webapp

timeout [180] timeout for HTTP request

CLI Examples:

salt '*' tomcat.status_webapp /jenkins
salt '*' tomcat.status_webapp /jenkins http://localhost:8080/manager

salt.modules.tomcat.stop(app, url='hp://localhost:8080/manager', timeout=180)
Stop the webapp

app the webapp context path

url [hp://localhost:8080/manager] the URL of the server manager webapp

timeout [180] timeout for HTTP request

CLI Examples:

salt '*' tomcat.stop /jenkins
salt '*' tomcat.stop /jenkins http://localhost:8080/manager

854 Chapter 22. Reference

http://localhost:8080/manager
http://localhost:8080/manager
http://localhost:8080/manager
http://localhost:8080/manager

Salt Documentation, Release 2014.7.6

salt.modules.tomcat.undeploy(app, url='hp://localhost:8080/manager', timeout=180)
Undeploy a webapp

app the webapp context path

url [hp://localhost:8080/manager] the URL of the server manager webapp

timeout [180] timeout for HTTP request

CLI Examples:

salt '*' tomcat.undeploy /jenkins
salt '*' tomcat.undeploy /jenkins http://localhost:8080/manager

salt.modules.tomcat.version()
Return server version from catalina.sh version

CLI Example:

salt '*' tomcat.version

22.16.211 salt.modules.twilio_notify

Module for notifications via Twilio

New in version 2014.7.0.

depends

• twilio python module

configuration Configure this module by specifying the name of a configuration profile in the minion
config, minion pillar, or master config.

For example:

my-twilio-account:
twilio.account_sid: AC32a3c83990934481addd5ce1659f04d2
twilio.auth_token: mytoken

salt.modules.twilio_notify.send_sms(profile, body, to, from_)
Send an sms

CLI Example:

twilio.send_sms twilio-account `Test sms' `+18019999999' `+18011111111'

22.16.212 salt.modules.upstart

Module for the management of upstart systems. e Upstart system only supports service starting, stopping and
restarting.

Currently (as of Ubuntu 12.04) there is no tool available to disable Upstart services (like update-rc.d). is[1] is the
recommended way to disable an Upstart service. So we assume that all Upstart services that have not been disabled
in this manner are enabled.

But this is broken because we do not check to see that the dependent services are enabled. Otherwise we would have
to do something like parse the output of ``initctl show-config'' to determine if all service dependencies are enabled
to start on boot. For example, see the ``start on'' condition for the lightdm service below[2]. And this would be too
hard. So we wait until the upstart developers have solved this problem. :) is is to say that an Upstart service that
is enabled may not really be enabled.

22.16. Full list of builtin execution modules 855

http://localhost:8080/manager

Salt Documentation, Release 2014.7.6

Also, when an Upstart service is enabled, should the dependent services be enabled too? Probably not. But there
should be a notice about this, at least.

[1] hp://upstart.ubuntu.com/cookbook/#disabling-a-job-from-automatically-starting

[2] example upstart configuration file:

lightdm
emits login-session-start
emits desktop-session-start
emits desktop-shutdown
start on ((((filesystem and runlevel [!06]) and started dbus) and (drm-device-added card0 PRIMARY_DEVICE_FOR_DISPLAY=1 or stopped udev-fallback-graphics)) or runlevel PREVLEVEL=S)
stop on runlevel [016]

Warning: is module should not be used on Red Hat systems. For these, the rh_service module should be
used, as it supports the hybrid upstart/sysvinit system used in RHEL/CentOS 6.

salt.modules.upstart.available(name)
Returns True if the specified service is available, otherwise returns False.

CLI Example:

salt '*' service.available sshd

salt.modules.upstart.disable(name, **kwargs)
Disable the named service from starting on boot

CLI Example:

salt '*' service.disable <service name>

salt.modules.upstart.disabled(name)
Check to see if the named service is disabled to start on boot

CLI Example:

salt '*' service.disabled <service name>

salt.modules.upstart.enable(name, **kwargs)
Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

salt.modules.upstart.enabled(name)
Check to see if the named service is enabled to start on boot

CLI Example:

salt '*' service.enabled <service name>

salt.modules.upstart.force_reload(name)
Force-reload the named service

CLI Example:

salt '*' service.force_reload <service name>

salt.modules.upstart.full_restart(name)
Do a full restart (stop/start) of the named service

CLI Example:

856 Chapter 22. Reference

http://upstart.ubuntu.com/cookbook/#disabling-a-job-from-automatically-starting

Salt Documentation, Release 2014.7.6

salt '*' service.full_restart <service name>

salt.modules.upstart.get_all()
Return all installed services

CLI Example:

salt '*' service.get_all

salt.modules.upstart.get_disabled()
Return the disabled services

CLI Example:

salt '*' service.get_disabled

salt.modules.upstart.get_enabled()
Return the enabled services

CLI Example:

salt '*' service.get_enabled

salt.modules.upstart.missing(name)
e inverse of service.available. Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing sshd

salt.modules.upstart.reload_(name)
Reload the named service

CLI Example:

salt '*' service.reload <service name>

salt.modules.upstart.restart(name)
Restart the named service

CLI Example:

salt '*' service.restart <service name>

salt.modules.upstart.start(name)
Start the specified service

CLI Example:

salt '*' service.start <service name>

salt.modules.upstart.status(name, sig=None)
Return the status for a service, returns a bool whether the service is running.

CLI Example:

salt '*' service.status <service name>

salt.modules.upstart.stop(name)
Stop the specified service

CLI Example:

22.16. Full list of builtin execution modules 857

Salt Documentation, Release 2014.7.6

salt '*' service.stop <service name>

22.16.213 salt.modules.useradd

Manage users with the useradd command

salt.modules.useradd.add(name, uid=None, gid=None, groups=None, home=None, shell=None,
unique=True, system=False, fullname='`, roomnumber='`, workphone='`,
homephone='`, createhome=True)

Add a user to the minion

CLI Example:

salt '*' user.add name <uid> <gid> <groups> <home> <shell>

salt.modules.useradd.chfullname(name, fullname)
Change the user's Full Name

CLI Example:

salt '*' user.chfullname foo "Foo Bar"

salt.modules.useradd.chgid(name, gid)
Change the default group of the user

CLI Example:

salt '*' user.chgid foo 4376

salt.modules.useradd.chgroups(name, groups, append=False)
Change the groups this user belongs to, add append to append the specified groups

CLI Example:

salt '*' user.chgroups foo wheel,root True

salt.modules.useradd.chhome(name, home, persist=False)
Change the home directory of the user, pass True for persist to move files to the new home directory if the old
home directory exist.

CLI Example:

salt '*' user.chhome foo /home/users/foo True

salt.modules.useradd.chhomephone(name, homephone)
Change the user's Home Phone

CLI Example:

salt '*' user.chhomephone foo "7735551234"

salt.modules.useradd.chroomnumber(name, roomnumber)
Change the user's Room Number

CLI Example:

salt '*' user.chroomnumber foo 123

salt.modules.useradd.chshell(name, shell)
Change the default shell of the user

858 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' user.chshell foo /bin/zsh

salt.modules.useradd.chuid(name, uid)
Change the uid for a named user

CLI Example:

salt '*' user.chuid foo 4376

salt.modules.useradd.chworkphone(name, workphone)
Change the user's Work Phone

CLI Example:

salt '*' user.chworkphone foo "7735550123"

salt.modules.useradd.delete(name, remove=False, force=False)
Remove a user from the minion

CLI Example:

salt '*' user.delete name remove=True force=True

salt.modules.useradd.getent(refresh=False)
Return the list of all info for all users

CLI Example:

salt '*' user.getent

salt.modules.useradd.info(name)
Return user information

CLI Example:

salt '*' user.info root

salt.modules.useradd.list_groups(name)
Return a list of groups the named user belongs to

CLI Example:

salt '*' user.list_groups foo

salt.modules.useradd.list_users()
Return a list of all users

CLI Example:

salt '*' user.list_users

22.16.214 salt.modules.uwsgi

uWSGI stats server hp://uwsgi-docs.readthedocs.org/en/latest/StatsServer.html

maintainer Peter Baumgartner <pete@lincolnloop.com>

maturity new

platform all

22.16. Full list of builtin execution modules 859

http://uwsgi-docs.readthedocs.org/en/latest/StatsServer.html
mailto:pete@lincolnloop.com

Salt Documentation, Release 2014.7.6

salt.modules.uwsgi.stats(socket)
Return the data from uwsgi --connect-and-read as a dictionary.

soet e socket the uWSGI stats server is listening on

CLI Example:

salt '*' uwsgi.stats /var/run/mystatsserver.sock

salt '*' uwsgi.stats 127.0.0.1:5050

22.16.215 salt.modules.varnish

Support for Varnish

New in version 2014.7.0.

Note: ese functions are designed to work with all implementations of Varnish from 3.x onwards

salt.modules.varnish.ban(ban_expression)
Add ban to the varnish cache

CLI Example:

salt '*' varnish.ban ban_expression

salt.modules.varnish.ban_list()
List varnish cache current bans

CLI Example:

salt '*' varnish.ban_list

salt.modules.varnish.param_set(param, value)
Set a param in varnish cache

CLI Example:

salt '*' varnish.param_set param value

salt.modules.varnish.param_show(param=None)
Show params of varnish cache

CLI Example:

salt '*' varnish.param_show param

salt.modules.varnish.purge()
Purge the varnish cache

CLI Example:

salt '*' varnish.purge

salt.modules.varnish.version()
Return server version from varnishd -V

CLI Example:

860 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' varnish.version

22.16.216 salt.modules.virt

Work with virtual machines managed by libvirt

depends libvirt Python module

salt.modules.virt.create(vm_)
Start a defined domain

CLI Example:

salt '*' virt.create <vm name>

salt.modules.virt.create_xml_path(path)
Start a domain based on the XML-file path passed to the function

CLI Example:

salt '*' virt.create_xml_path <path to XML file on the node>

salt.modules.virt.create_xml_str(xml)
Start a domain based on the XML passed to the function

CLI Example:

salt '*' virt.create_xml_str <XML in string format>

salt.modules.virt.ctrl_alt_del(vm_)
Sends CTRL+ALT+DEL to a VM

CLI Example:

salt '*' virt.ctrl_alt_del <vm name>

salt.modules.virt.define_vol_xml_path(path)
Define a volume based on the XML-file path passed to the function

CLI Example:

salt '*' virt.define_vol_xml_path <path to XML file on the node>

salt.modules.virt.define_vol_xml_str(xml)
Define a volume based on the XML passed to the function

CLI Example:

salt '*' virt.define_vol_xml_str <XML in string format>

salt.modules.virt.define_xml_path(path)
Define a domain based on the XML-file path passed to the function

CLI Example:

salt '*' virt.define_xml_path <path to XML file on the node>

salt.modules.virt.define_xml_str(xml)
Define a domain based on the XML passed to the function

CLI Example:

22.16. Full list of builtin execution modules 861

Salt Documentation, Release 2014.7.6

salt '*' virt.define_xml_str <XML in string format>

salt.modules.virt.destroy(vm_)
Hard power down the virtual machine, this is equivalent to pulling the power

CLI Example:

salt '*' virt.destroy <vm name>

salt.modules.virt.freecpu()
Return an int representing the number of unallocated cpus on this hypervisor

CLI Example:

salt '*' virt.freecpu

salt.modules.virt.freemem()
Return an int representing the amount of memory that has not been given to virtual machines on this node

CLI Example:

salt '*' virt.freemem

salt.modules.virt.full_info()
Return the node_info, vm_info and freemem

CLI Example:

salt '*' virt.full_info

salt.modules.virt.get_disks(vm_)
Return the disks of a named vm

CLI Example:

salt '*' virt.get_disks <vm name>

salt.modules.virt.get_graphics(vm_)
Returns the information on vnc for a given vm

CLI Example:

salt '*' virt.get_graphics <vm name>

salt.modules.virt.get_macs(vm_)
Return a list off MAC addresses from the named vm

CLI Example:

salt '*' virt.get_macs <vm name>

salt.modules.virt.get_nics(vm_)
Return info about the network interfaces of a named vm

CLI Example:

salt '*' virt.get_nics <vm name>

salt.modules.virt.get_profiles(hypervisor=None)
Return the virt profiles for hypervisor.

Currently there are profiles for:

862 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

•nic

•disk

CLI Example:

salt '*' virt.get_profiles
salt '*' virt.get_profiles hypervisor=esxi

salt.modules.virt.get_xml(vm_)
Returns the XML for a given vm

CLI Example:

salt '*' virt.get_xml <vm name>

salt.modules.virt.init(name, cpu, mem, image=None, nic='default', hypervisor='kvm', start=True,
disk='default', saltenv='base', **kwargs)

Initialize a new vm

CLI Example:

salt 'hypervisor' virt.init vm_name 4 512 salt://path/to/image.raw
salt 'hypervisor' virt.init vm_name 4 512 nic=profile disk=profile

salt.modules.virt.is_hyper()
Returns a bool whether or not this node is a hypervisor of any kind

CLI Example:

salt '*' virt.is_hyper

salt.modules.virt.is_kvm_hyper()
Returns a bool whether or not this node is a KVM hypervisor

CLI Example:

salt '*' virt.is_kvm_hyper

salt.modules.virt.is_xen_hyper()
Returns a bool whether or not this node is a XEN hypervisor

CLI Example:

salt '*' virt.is_xen_hyper

salt.modules.virt.list_active_vms()
Return a list of names for active virtual machine on the minion

CLI Example:

salt '*' virt.list_active_vms

salt.modules.virt.list_inactive_vms()
Return a list of names for inactive virtual machine on the minion

CLI Example:

salt '*' virt.list_inactive_vms

salt.modules.virt.list_vms()
Return a list of virtual machine names on the minion

22.16. Full list of builtin execution modules 863

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' virt.list_vms

salt.modules.virt.migrate(vm_, target, ssh=False)
Shared storage migration

CLI Example:

salt '*' virt.migrate <vm name> <target hypervisor>

salt.modules.virt.migrate_non_shared(vm_, target, ssh=False)
Aempt to execute non-shared storage ``all'' migration

CLI Example:

salt '*' virt.migrate_non_shared <vm name> <target hypervisor>

salt.modules.virt.migrate_non_shared_inc(vm_, target, ssh=False)
Aempt to execute non-shared storage ``all'' migration

CLI Example:

salt '*' virt.migrate_non_shared_inc <vm name> <target hypervisor>

salt.modules.virt.node_info()
Return a dict with information about this node

CLI Example:

salt '*' virt.node_info

salt.modules.virt.pause(vm_)
Pause the named vm

CLI Example:

salt '*' virt.pause <vm name>

salt.modules.virt.purge(vm_, dirs=False)
Recursively destroy and delete a virtual machine, pass True for dir's to also delete the directories containing
the virtual machine disk images - USE WITH EXTREME CAUTION!

CLI Example:

salt '*' virt.purge <vm name>

salt.modules.virt.reboot(vm_)
Reboot a domain via ACPI request

CLI Example:

salt '*' virt.reboot <vm name>

salt.modules.virt.reset(vm_)
Reset a VM by emulating the reset buon on a physical machine

CLI Example:

salt '*' virt.reset <vm name>

864 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.virt.resume(vm_)
Resume the named vm

CLI Example:

salt '*' virt.resume <vm name>

salt.modules.virt.seed_non_shared_migrate(disks, force=False)
Non shared migration requires that the disks be present on the migration destination, pass the disks informa-
tion via this function, to the migration destination before executing the migration.

CLI Example:

salt '*' virt.seed_non_shared_migrate <disks>

salt.modules.virt.set_autostart(vm_, state='on')
Set the autostart flag on a VM so that the VM will start with the host system on reboot.

CLI Example:

salt "*" virt.set_autostart <vm name> <on | off>

salt.modules.virt.setmem(vm_, memory, config=False)
Changes the amount of memory allocated to VM. e VM must be shutdown for this to work.

memory is to be specified in MB If config is True then we ask libvirt to modify the config as well

CLI Example:

salt '*' virt.setmem myvm 768

salt.modules.virt.setvcpus(vm_, vcpus, config=False)
Changes the amount of vcpus allocated to VM. e VM must be shutdown for this to work.

vcpus is an int representing the number to be assigned If config is True then we ask libvirt to modify the config
as well

CLI Example:

salt '*' virt.setvcpus myvm 2

salt.modules.virt.shutdown(vm_)
Send a so shutdown signal to the named vm

CLI Example:

salt '*' virt.shutdown <vm name>

salt.modules.virt.start(vm_)
Alias for the obscurely named `create' function

CLI Example:

salt '*' virt.start <vm name>

salt.modules.virt.stop(vm_)
Alias for the obscurely named `destroy' function

CLI Example:

salt '*' virt.stop <vm name>

22.16. Full list of builtin execution modules 865

Salt Documentation, Release 2014.7.6

salt.modules.virt.undefine(vm_)
Remove a defined vm, this does not purge the virtual machine image, and this only works if the vm is powered
down

CLI Example:

salt '*' virt.undefine <vm name>

salt.modules.virt.virt_type()
Returns the virtual machine type as a string

CLI Example:

salt '*' virt.virt_type

salt.modules.virt.vm_cputime(vm_=None)
Return cputime used by the vms on this hyper in a list of dicts:

[
'your-vm': {

'cputime' <int>
'cputime_percent' <int>
},

...
]

If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will
return all VMs.

CLI Example:

salt '*' virt.vm_cputime

salt.modules.virt.vm_diskstats(vm_=None)
Return disk usage counters used by the vms on this hyper in a list of dicts:

[
'your-vm': {

'rd_req' : 0,
'rd_bytes' : 0,
'wr_req' : 0,
'wr_bytes' : 0,
'errs' : 0
},

...
]

If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will
return all VMs.

CLI Example:

salt '*' virt.vm_blockstats

salt.modules.virt.vm_info(vm_=None)
Return detailed information about the vms on this hyper in a list of dicts:

[
'your-vm': {

'cpu': <int>,
'maxMem': <int>,

866 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

'mem': <int>,
'state': '<state>',
'cputime' <int>
},

...
]

If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will
return all VMs.

CLI Example:

salt '*' virt.vm_info

salt.modules.virt.vm_netstats(vm_=None)
Return combined network counters used by the vms on this hyper in a list of dicts:

[
'your-vm': {

'rx_bytes' : 0,
'rx_packets' : 0,
'rx_errs' : 0,
'rx_drop' : 0,
'tx_bytes' : 0,
'tx_packets' : 0,
'tx_errs' : 0,
'tx_drop' : 0
},

...
]

If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will
return all VMs.

CLI Example:

salt '*' virt.vm_netstats

salt.modules.virt.vm_state(vm_=None)
Return list of all the vms and their state.

If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will
return all VMs.

CLI Example:

salt '*' virt.vm_state <vm name>

22.16.217 salt.modules.virtualenv

Create virtualenv environments

salt.modules.virtualenv_mod.create(path, venv_bin=None, system_site_packages=False,
distribute=False, clear=False, python=None, ex-
tra_search_dir=None, never_download=None,
prompt=None, pip=False, symlinks=None, upgrade=None,
user=None, runas=None, saltenv='base')

Create a virtualenv

22.16. Full list of builtin execution modules 867

Salt Documentation, Release 2014.7.6

path e path to create the virtualenv

venv_bin [None (default `virtualenv')] e name (and optionally path) of the virtualenv command. is can
also be set globally in the minion config file as virtualenv.venv_bin.

system_site_paages [False] Passthrough argument given to virtualenv or pyvenv

distribute [False] Passthrough argument given to virtualenv

pip [False] Install pip aer creating a virtual environment, implies distribute=True

clear [False] Passthrough argument given to virtualenv or pyvenv

python [None (default)] Passthrough argument given to virtualenv

extra_sear_dir [None (default)] Passthrough argument given to virtualenv

never_download [None (default)] Passthrough argument given to virtualenv if True

prompt [None (default)] Passthrough argument given to virtualenv if not None

symlinks [None] Passthrough argument given to pyvenv if True

upgrade [None] Passthrough argument given to pyvenv if True

user [None] Set ownership for the virtualenv

runas [None] Set ownership for the virtualenv

Note: e runas argument is deprecated as of 2014.1.0. user should be used instead.

CLI Example:

salt '*' virtualenv.create /path/to/new/virtualenv

salt.modules.virtualenv_mod.get_site_packages(venv)
Returns the path to the site-packages directory inside a virtualenv

CLI Example:

salt '*' virtualenv.get_site_packages /path/to/my/venv

22.16.218 salt.modules.win_autoruns

Module for listing programs that automatically run on startup (very alpha…not tested on anything but myWin 7x64)

salt.modules.win_autoruns.list_()
Get a list of automatically running programs

CLI Example:

salt '*' autoruns.list

22.16.219 salt.modules.win_disk

Module for gathering disk information on Windows

depends

• win32api Python module

868 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.win_disk.usage()
Return usage information for volumes mounted on this minion

CLI Example:

salt '*' disk.usage

22.16.220 salt.modules.win_dns_client

Module for configuring DNS Client on Windows systems

salt.modules.win_dns_client.add_dns(ip, interface='Local Area Connection', index=1)
Add the DNS server to the network interface (index starts from 1)

Note: if the interface DNS is configured by DHCP, all the DNS servers will be removed from the interface and
the requested DNS will be the only one

CLI Example:

salt '*' win_dns_client.add_dns <ip> <interface> <index>

salt.modules.win_dns_client.dns_dhcp(interface='Local Area Connection')
Configure the interface to get its DNS servers from the DHCP server

CLI Example:

salt '*' win_dns_client.dns_dhcp <interface>

salt.modules.win_dns_client.get_dns_config(interface='Local Area Connection')
Get the type of DNS configuration (dhcp / static)

CLI Example:

salt '*' win_dns_client.get_dns_config 'Local Area Connection'

salt.modules.win_dns_client.get_dns_servers(interface='Local Area Connection')
Return a list of the configured DNS servers of the specified interface

CLI Example:

salt '*' win_dns_client.get_dns_servers 'Local Area Connection'

salt.modules.win_dns_client.rm_dns(ip, interface='Local Area Connection')
Remove the DNS server from the network interface

CLI Example:

salt '*' win_dns_client.rm_dns <ip> <interface>

22.16.221 salt.modules.win_file

Manage information about files on the minion, set/read user, group data

depends

• win32api

• win32file

• win32security

22.16. Full list of builtin execution modules 869

Salt Documentation, Release 2014.7.6

salt.modules.win_file.chgrp(path, group)
Change the group of a file

Under Windows, this will do nothing.

While a file in Windows does have a `primary group', this rarely used aribute generally has no bearing
on permissions unless intentionally configured and is only used to support Unix compatibility features (e.g.
Services For Unix, NFS services).

Salt, therefore, remaps this function to do nothing while still being compatible with Unix behavior. When
managing Windows systems, this function is superfluous and will generate an info level log entry if used
directly.

If you do actually want to set the `primary group' of a file, use file .chpgrp.

CLI Example:

salt '*' file.chpgrp c:\temp\test.txt administrators

salt.modules.win_file.chown(path, user, group=None, pgroup=None, follow_symlinks=True)
Chown a file, pass the file the desired user and group

Under Windows, the group parameter will be ignored.

is is because while files in Windows do have a `primary group' property, this is rarely used. It generally
has no bearing on permissions unless intentionally configured and is most commonly used to provide Unix
compatibility (e.g. Services For Unix, NFS services).

If you do want to change the `primary group' property and understand the implications, pass the Windows
only parameter, pgroup, instead.

To set the primary group to `None', it must be specified in quotes. Otherwise Salt will interpret it as the Python
value of None and no primary group changes will occur. See the example below.

CLI Example:

salt '*' file.chown c:\temp\test.txt myusername
salt '*' file.chown c:\temp\test.txt myusername pgroup=Administrators
salt '*' file.chown c:\temp\test.txt myusername "pgroup='None'"

salt.modules.win_file.chpgrp(path, group)
Change the group of a file

Under Windows, this will set the rarely used primary group of a file. is generally has no bearing on permis-
sions unless intentionally configured and is most commonly used to provide Unix compatibility (e.g. Services
For Unix, NFS services).

Ensure you know what you are doing before using this function.

To set the primary group to `None', it must be specified in quotes. Otherwise Salt will interpret it as the Python
value of None and no primary group changes will occur. See the example below.

CLI Example:

salt '*' file.chpgrp c:\temp\test.txt Administrators
salt '*' file.chpgrp c:\temp\test.txt "'None'"

salt.modules.win_file.get_attributes(path)
Return a dictionary object with the Windows file aributes for a file.

CLI Example:

870 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' file.get_attributes c:\temp\a.txt

salt.modules.win_file.get_gid(path, follow_symlinks=True)
Return the id of the group that owns a given file

Under Windows, this will return the uid of the file.

While a file in Windows does have a `primary group', this rarely used aribute generally has no bearing
on permissions unless intentionally configured and is only used to support Unix compatibility features (e.g.
Services For Unix, NFS services).

Salt, therefore, remaps this function to provide functionality that somewhat resembles Unix behavior for API
compatibility reasons. When managing Windows systems, this function is superfluous and will generate an
info level log entry if used directly.

If you do actually want to access the `primary group' of a file, use file.get_pgid.

CLI Example:

salt '*' file.get_gid c:\temp\test.txt

salt.modules.win_file.get_group(path, follow_symlinks=True)
Return the group that owns a given file

Under Windows, this will return the user (owner) of the file.

While a file in Windows does have a `primary group', this rarely used aribute generally has no bearing
on permissions unless intentionally configured and is only used to support Unix compatibility features (e.g.
Services For Unix, NFS services).

Salt, therefore, remaps this function to provide functionality that somewhat resembles Unix behavior for API
compatibility reasons. When managing Windows systems, this function is superfluous and will generate an
info level log entry if used directly.

If you do actually want to access the `primary group' of a file, use file.get_pgroup.

CLI Example:

salt '*' file.get_group c:\temp\test.txt

salt.modules.win_file.get_mode(path)
Return the mode of a file

Right now we're just returning None because Windows' doesn't have a mode like Linux

CLI Example:

salt '*' file.get_mode /etc/passwd

salt.modules.win_file.get_pgid(path, follow_symlinks=True)
Return the id of the primary group that owns a given file (Windows only)

is function will return the rarely used primary group of a file. is generally has no bearing on permissions
unless intentionally configured and is most commonly used to provide Unix compatibility (e.g. Services For
Unix, NFS services).

Ensure you know what you are doing before using this function.

CLI Example:

salt '*' file.get_pgid c:\temp\test.txt

22.16. Full list of builtin execution modules 871

Salt Documentation, Release 2014.7.6

salt.modules.win_file.get_pgroup(path, follow_symlinks=True)
Return the name of the primary group that owns a given file (Windows only)

is function will return the rarely used primary group of a file. is generally has no bearing on permissions
unless intentionally configured and is most commonly used to provide Unix compatibility (e.g. Services For
Unix, NFS services).

Ensure you know what you are doing before using this function.

e return value may be `None', e.g. if the user is not on a domain. is is a valid group - do not confuse
this with the Salt/Python value of None which means no value was returned. To be certain, use the get_pgid
function which will return the SID, including for the system `None' group.

CLI Example:

salt '*' file.get_pgroup c:\temp\test.txt

salt.modules.win_file.get_uid(path, follow_symlinks=True)
Return the id of the user that owns a given file

Symlinks are followed by default to mimic Unix behavior. Specify follow_symlinks=False to turn off this be-
havior.

CLI Example:

salt '*' file.get_uid c:\temp\test.txt
salt '*' file.get_uid c:\temp\test.txt follow_symlinks=False

salt.modules.win_file.get_user(path, follow_symlinks=True)
Return the user that owns a given file

Symlinks are followed by default to mimic Unix behavior. Specify follow_symlinks=False to turn off this be-
havior.

CLI Example:

salt '*' file.get_user c:\temp\test.txt
salt '*' file.get_user c:\temp\test.txt follow_symlinks=False

salt.modules.win_file.gid_to_group(gid)
Convert the group id to the group name on this system

Under Windows, because groups are just another ACL entity, this function behaves the same as uid_to_user.

For maintaining Windows systems, this function is superfluous and only exists for API compatibility with
Unix. Use the uid_to_user function instead; an info level log entry will be generated if this function is used
directly.

CLI Example:

salt '*' file.gid_to_group S-1-5-21-626487655-2533044672-482107328-1010

salt.modules.win_file.group_to_gid(group)
Convert the group to the gid on this system

Under Windows, because groups are just another ACL entity, this function behaves the same as user_to_uid,
except if None is given, `' is returned.

For maintaining Windows systems, this function is superfluous and only exists for API compatibility with
Unix. Use the user_to_uid function instead; an info level log entry will be generated if this function is used
directly.

CLI Example:

872 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' file.group_to_gid administrators

salt.modules.win_file.is_link(path)
Return the path that a symlink points to

is is only supported on Windows Vista or later.

Inline with Unix behavior, this function will raise an error if the path is not a symlink, however, the error
raised will be a SaltInvocationError, not an OSError.

CLI Example:

salt '*' file.is_link /path/to/link

salt.modules.win_file.lchown(path, user, group=None, pgroup=None)
Chown a file, pass the file the desired user and group without following any symlinks.

Under Windows, the group parameter will be ignored.

is is because while files in Windows do have a `primary group' property, this is rarely used. It generally
has no bearing on permissions unless intentionally configured and is most commonly used to provide Unix
compatibility (e.g. Services For Unix, NFS services).

If you do want to change the `primary group' property and understand the implications, pass the Windows
only parameter, pgroup, instead.

To set the primary group to `None', it must be specified in quotes. Otherwise Salt will interpret it as the Python
value of None and no primary group changes will occur. See the example below.

CLI Example:

salt '*' file.lchown c:\temp\test.txt myusername
salt '*' file.lchown c:\temp\test.txt myusername pgroup=Administrators
salt '*' file.lchown c:\temp\test.txt myusername "pgroup='None'"

salt.modules.win_file.readlink(path)
Return the path that a symlink points to

is is only supported on Windows Vista or later.

Inline with Unix behavior, this function will raise an error if the path is not a symlink, however, the error
raised will be a SaltInvocationError, not an OSError.

CLI Example:

salt '*' file.readlink /path/to/link

salt.modules.win_file.set_attributes(path, archive=None, hidden=None, normal=None, notIn-
dexed=None, readonly=None, system=None, tempo-
rary=None)

Set file aributes for a file. Note that the normal aribute means that all others are false. So seing it will
clear all others.

CLI Example:

salt '*' file.set_attributes c:\temp\a.txt normal=True
salt '*' file.set_attributes c:\temp\a.txt readonly=True hidden=True

salt.modules.win_file.set_mode(path, mode)
Set the mode of a file

is just calls get_mode, which returns None because we don't use mode on Windows

22.16. Full list of builtin execution modules 873

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' file.set_mode /etc/passwd 0644

salt.modules.win_file.stats(path, hash_type='md5', follow_symlinks=True)
Return a dict containing the stats for a given file

Under Windows, gid will equal uid and group will equal user.

While a file in Windows does have a `primary group', this rarely used aribute generally has no bearing
on permissions unless intentionally configured and is only used to support Unix compatibility features (e.g.
Services For Unix, NFS services).

Salt, therefore, remaps these properties to keep some kind of compatibility with Unix behavior. If the `primary
group' is required, it can be accessed in the pgroup and pgid properties.

CLI Example:

salt '*' file.stats /etc/passwd

salt.modules.win_file.symlink(src, link)
Create a symbolic link to a file

is is only supported with Windows Vista or later and must be executed by a user with the SeCreateSymbol-
icLink privilege.

e behavior of this function matches the Unix equivalent, with one exception - invalid symlinks cannot be
created. e source path must exist. If it doesn't, an error will be raised.

CLI Example:

salt '*' file.symlink /path/to/file /path/to/link

salt.modules.win_file.uid_to_user(uid)
Convert a uid to a user name

CLI Example:

salt '*' file.uid_to_user S-1-5-21-626487655-2533044672-482107328-1010

salt.modules.win_file.user_to_uid(user)
Convert user name to a uid

CLI Example:

salt '*' file.user_to_uid myusername

22.16.222 salt.modules.win_firewall

Module for configuring Windows Firewall

salt.modules.win_firewall.add_rule(name, localport, protocol='tcp', action='allow', dir='in')
Add a new firewall rule

CLI Example:

salt '*' firewall.add_rule "test" "tcp" "8080"

salt.modules.win_firewall.disable()
Disable all the firewall profiles

CLI Example:

874 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' firewall.disable

salt.modules.win_firewall.get_config()
Get the status of all the firewall profiles

CLI Example:

salt '*' firewall.get_config

salt.modules.win_firewall.get_rule(name='all')
Get firewall rule(s) info

CLI Example:

salt '*' firewall.get_rule "MyAppPort"

22.16.223 salt.modules.win_groupadd

Manage groups on Windows

salt.modules.win_groupadd.add(name, gid=None, system=False)
Add the specified group

CLI Example:

salt '*' group.add foo

salt.modules.win_groupadd.delete(name)
Remove the named group

CLI Example:

salt '*' group.delete foo

salt.modules.win_groupadd.getent(refresh=False)
Return info on all groups

CLI Example:

salt '*' group.getent

salt.modules.win_groupadd.info(name)
Return information about a group

CLI Example:

salt '*' group.info foo

22.16.224 salt.modules.win_ip

e networking module for Windows based systems

salt.modules.win_ip.disable(iface)
Disable an interface

CLI Example:

salt -G 'os_family:Windows' ip.disable 'Local Area Connection #2'

22.16. Full list of builtin execution modules 875

Salt Documentation, Release 2014.7.6

salt.modules.win_ip.enable(iface)
Enable an interface

CLI Example:

salt -G 'os_family:Windows' ip.enable 'Local Area Connection #2'

salt.modules.win_ip.get_all_interfaces()
Return configs for all interfaces

CLI Example:

salt -G 'os_family:Windows' ip.get_all_interfaces

salt.modules.win_ip.get_default_gateway()
Set DNS source to DHCP on Windows

CLI Example:

salt -G 'os_family:Windows' ip.get_default_gateway

salt.modules.win_ip.get_interface(iface)
Return the configuration of a network interface

CLI Example:

salt -G 'os_family:Windows' ip.get_interface 'Local Area Connection'

salt.modules.win_ip.get_subnet_length(mask)
Convenience function to convert the netmask to the CIDR subnet length

CLI Example:

salt -G 'os_family:Windows' ip.get_subnet_length 255.255.255.0

salt.modules.win_ip.is_disabled(iface)
Returns True if interface is disabled, otherwise False

CLI Example:

salt -G 'os_family:Windows' ip.is_disabled 'Local Area Connection #2'

salt.modules.win_ip.is_enabled(iface)
Returns True if interface is enabled, otherwise False

CLI Example:

salt -G 'os_family:Windows' ip.is_enabled 'Local Area Connection #2'

salt.modules.win_ip.raw_interface_configs()
Return raw configs for all interfaces

CLI Example:

salt -G 'os_family:Windows' ip.raw_interface_configs

salt.modules.win_ip.set_dhcp_all(iface)
Set both IP Address and DNS to DHCP

CLI Example:

876 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt -G 'os_family:Windows' ip.set_dhcp_all 'Local Area Connection'

salt.modules.win_ip.set_dhcp_dns(iface)
Set DNS source to DHCP on Windows

CLI Example:

salt -G 'os_family:Windows' ip.set_dhcp_dns 'Local Area Connection'

salt.modules.win_ip.set_dhcp_ip(iface)
Set Windows NIC to get IP from DHCP

CLI Example:

salt -G 'os_family:Windows' ip.set_dhcp_ip 'Local Area Connection'

salt.modules.win_ip.set_static_dns(iface, *addrs)
Set static DNS configuration on a Windows NIC

CLI Example:

salt -G 'os_family:Windows' ip.set_static_dns 'Local Area Connection' '192.168.1.1'
salt -G 'os_family:Windows' ip.set_static_dns 'Local Area Connection' '192.168.1.252' '192.168.1.253'

salt.modules.win_ip.set_static_ip(iface, addr, gateway=None, append=False)
Set static IP configuration on a Windows NIC

iface e name of the interface to manage

addr IP address with subnet length (ex. 10.1.2.3/24). e ip.get_subnet_length function can be
used to calculate the subnet length from a netmask.

gateway [None] If specified, the default gateway will be set to this value.

append [False] If True, this IP address will be added to the interface. Default is False, which overrides any
existing configuration for the interface and sets addr as the only address on the interface.

CLI Example:

salt -G 'os_family:Windows' ip.set_static_ip 'Local Area Connection' 10.1.2.3/24 gateway=10.1.2.1
salt -G 'os_family:Windows' ip.set_static_ip 'Local Area Connection' 10.1.2.4/24 append=True

22.16.225 salt.modules.win_network

Module for gathering and managing network information

salt.modules.win_network.dig(host)
Performs a DNS lookup with dig

Note: dig must be installed on the Windows minion

CLI Example:

salt '*' network.dig archlinux.org

salt.modules.win_network.hw_addr(iface)
Return the hardware address (a.k.a. MAC address) for a given interface

CLI Example:

22.16. Full list of builtin execution modules 877

Salt Documentation, Release 2014.7.6

salt '*' network.hw_addr 'Wireless Connection #1'

salt.modules.win_network.hwaddr(iface)
Return the hardware address (a.k.a. MAC address) for a given interface

CLI Example:

salt '*' network.hw_addr 'Wireless Connection #1'

salt.modules.win_network.in_subnet(cidr)
Returns True if host is within specified subnet, otherwise False

CLI Example:

salt '*' network.in_subnet 10.0.0.0/16

salt.modules.win_network.interfaces()
Return a dictionary of information about all the interfaces on the minion

CLI Example:

salt '*' network.interfaces

salt.modules.win_network.interfaces_names()
Return a list of all the interfaces names

CLI Example:

salt '*' network.interfaces_names

salt.modules.win_network.ip_addrs(interface=None, include_loopback=False)
Returns a list of IPv4 addresses assigned to the host. 127.0.0.1 is ignored, unless `include_loopback=True' is
indicated. If `interface' is provided, then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs

salt.modules.win_network.ip_addrs6(interface=None, include_loopback=False)
Returns a list of IPv6 addresses assigned to the host. ::1 is ignored, unless `include_loopback=True' is indicated.
If `interface' is provided, then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs6

salt.modules.win_network.ipaddrs(interface=None, include_loopback=False)
Returns a list of IPv4 addresses assigned to the host. 127.0.0.1 is ignored, unless `include_loopback=True' is
indicated. If `interface' is provided, then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs

salt.modules.win_network.ipaddrs6(interface=None, include_loopback=False)
Returns a list of IPv6 addresses assigned to the host. ::1 is ignored, unless `include_loopback=True' is indicated.
If `interface' is provided, then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs6

878 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.win_network.netstat()
Return information on open ports and states

CLI Example:

salt '*' network.netstat

salt.modules.win_network.nslookup(host)
ery DNS for information about a domain or ip address

CLI Example:

salt '*' network.nslookup archlinux.org

salt.modules.win_network.ping(host)
Performs a ping to a host

CLI Example:

salt '*' network.ping archlinux.org

salt.modules.win_network.subnets()
Returns a list of subnets to which the host belongs

CLI Example:

salt '*' network.subnets

salt.modules.win_network.traceroute(host)
Performs a traceroute to a 3rd party host

CLI Example:

salt '*' network.traceroute archlinux.org

22.16.226 salt.modules.win_ntp

Management of NTP servers on Windows

New in version 2014.1.0.

salt.modules.win_ntp.get_servers()
Get list of configured NTP servers

CLI Example:

salt '*' ntp.get_servers

salt.modules.win_ntp.set_servers(*servers)
Set Windows to use a list of NTP servers

CLI Example:

salt '*' ntp.set_servers 'pool.ntp.org' 'us.pool.ntp.org'

22.16.227 salt.modules.win_path

Manage the Windows System PATH

22.16. Full list of builtin execution modules 879

Salt Documentation, Release 2014.7.6

Note that not all Windows applications will rehash the PATH environment variable, Only the ones that listen to the
WM_SETTINGCHANGE message hp://support.microso.com/kb/104011

salt.modules.win_path.add(path, index=0)
Add the directory to the SYSTEM path in the index location

CLI Example:

Will add to the beginning of the path
salt '*' win_path.add 'c:\python27' 0

Will add to the end of the path
salt '*' win_path.add 'c:\python27' index='-1'

salt.modules.win_path.exists(path)
Check if the directory is configured in the SYSTEM path Case-insensitive and ignores trailing backslash

CLI Example:

salt '*' win_path.exists 'c:\python27'
salt '*' win_path.exists 'c:\python27\'
salt '*' win_path.exists 'C:\pyThon27'

salt.modules.win_path.get_path()
Returns the system path

salt.modules.win_path.rehash()
Send a WM_SETTINGCHANGE Broadcast to Windows to rehash the Environment variables

salt.modules.win_path.remove(path)
Remove the directory from the SYSTEM path

22.16.228 salt.modules.win_pkg

A module to manage soware on Windows

depends

• win32com

• win32con

• win32api

• pywintypes

salt.modules.win_pkg.get_repo_data(saltenv='base')
Returns the cached winrepo data

CLI Example:

salt '*' pkg.get_repo_data

salt.modules.win_pkg.install(name=None, refresh=False, pkgs=None, saltenv='base', **kwargs)
Install the passed package

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

880 Chapter 22. Reference

http://support.microsoft.com/kb/104011

Salt Documentation, Release 2014.7.6

salt '*' pkg.install <package name>

salt.modules.win_pkg.latest_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation. If more than one package
name is specified, a dict of name/version pairs is returned.

If the latest version of a given package is already installed, an empty string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

salt.modules.win_pkg.list_available(*names)
Return a list of available versions of the specified package.

CLI Example:

salt '*' pkg.list_available <package name>
salt '*' pkg.list_available <package name01> <package name02>

salt.modules.win_pkg.list_pkgs(versions_as_list=False, **kwargs)
List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs versions_as_list=True

salt.modules.win_pkg.list_upgrades(refresh=True)
List all available package upgrades on this system

CLI Example:

salt '*' pkg.list_upgrades

salt.modules.win_pkg.purge(name=None, pkgs=None, version=None, **kwargs)
Package purges are not supported, this function is identical to remove().

name e name of the package to be deleted.

version e version of the package to be deleted. If this option is used in combination with the pkgs option
below, then this version will be applied to all targeted packages.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

22.16. Full list of builtin execution modules 881

Salt Documentation, Release 2014.7.6

salt.modules.win_pkg.refresh_db(saltenv='base')
Just recheck the repository and return a dict:

{'<database name>': Bool}

CLI Example:

salt '*' pkg.refresh_db

salt.modules.win_pkg.remove(name=None, pkgs=None, version=None, extra_uninstall_flags=None,
**kwargs)

Remove packages.

name e name of the package to be deleted.

version e version of the package to be deleted. If this option is used in combination with the pkgs option
below, then this version will be applied to all targeted packages.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

salt.modules.win_pkg.upgrade(refresh=True)
Run a full system upgrade

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

salt.modules.win_pkg.upgrade_available(name)
Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

salt.modules.win_pkg.version(*names, **kwargs)
Returns a version if the package is installed, else returns an empty string

CLI Example:

salt '*' pkg.version <package name>

22.16.229 salt.modules.win_repo

Module to manage Windows soware repo on a Standalone Minion

882 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

e following options must be set in the Minion config: file_client: local win_repo_cachefile:
c:saltfile_rootswinrepowinrepo.p win_repo: c:saltfile_rootswinrepo

Place all Windows package files in the `win_repo' directory.

salt.modules.win_repo.genrepo()
Generate win_repo_cachefile based on sls files in the win_repo

CLI Example:

salt-call winrepo.genrepo -c c:\salt\conf

salt.modules.win_repo.update_git_repos()
Checkout git repos containing Windows Soware Package Definitions

Note: is function will not work unless git is installed and the git module is further updated to work on
Windows. In the meantime just place all Windows package files in the win_repo directory.

22.16.230 salt.modules.win_servermanager

Manage Windows features via the ServerManager powershell module

salt.modules.win_servermanager.install(feature, recurse=False)
Install a feature

Note: Some features requires reboot aer un/installation, if so until the server is restarted Other features can
not be installed !

Note: Some features takes a long time to complete un/installation, set -t with a long timeout

CLI Example:

salt '*' win_servermanager.install Telnet-Client
salt '*' win_servermanager.install SNMP-Services True

salt.modules.win_servermanager.list_available()
List available features to install

CLI Example:

salt '*' win_servermanager.list_available

salt.modules.win_servermanager.list_installed()
List installed features

CLI Example:

salt '*' win_servermanager.list_installed

salt.modules.win_servermanager.remove(feature)
Remove an installed feature

Note: Some features require a reboot aer installation/uninstallation. If one of these features are modified,
then other features cannot be installed until the server is restarted. Additionally, some features take a while
to complete installation/uninstallation, so it is a good idea to use the -t option to set a longer timeout.

CLI Example:

22.16. Full list of builtin execution modules 883

Salt Documentation, Release 2014.7.6

salt -t 600 '*' win_servermanager.remove Telnet-Client

22.16.231 salt.modules.win_service

Windows Service module.

salt.modules.win_service.available(name)
Returns True if the specified service is available, otherwise returns False.

CLI Example:

salt '*' service.available <service name>

salt.modules.win_service.create_win_salt_restart_task()
Create a task in Windows task scheduler to enable restarting the salt-minion

CLI Example:

salt '*' service.create_win_salt_restart_task()

salt.modules.win_service.disable(name, **kwargs)
Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

salt.modules.win_service.disabled(name)
Check to see if the named service is disabled to start on boot

CLI Example:

salt '*' service.disabled <service name>

salt.modules.win_service.enable(name, **kwargs)
Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

salt.modules.win_service.enabled(name)
Check to see if the named service is enabled to start on boot

CLI Example:

salt '*' service.enabled <service name>

salt.modules.win_service.execute_salt_restart_task()
Run the Windows Salt restart task

CLI Example:

salt '*' service.execute_salt_restart_task()

salt.modules.win_service.get_all()
Return all installed services

CLI Example:

884 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' service.get_all

salt.modules.win_service.get_disabled()
Return the disabled services

CLI Example:

salt '*' service.get_disabled

salt.modules.win_service.get_enabled()
Return the enabled services

CLI Example:

salt '*' service.get_enabled

salt.modules.win_service.get_service_name(*args)
e Display Name is what is displayed in Windows when services.msc is executed. Each Display Name has
an associated Service Name which is the actual name of the service. is function allows you to discover the
Service Name by returning a dictionary of Display Names and Service Names, or filter by adding arguments
of Display Names.

If no args are passed, return a dict of all services where the keys are the service Display Names and the values
are the Service Names.

If arguments are passed, create a dict of Display Names and Service Names

CLI Example:

salt '*' service.get_service_name
salt '*' service.get_service_name 'Google Update Service (gupdate)' 'DHCP Client'

salt.modules.win_service.getsid(name)
Return the sid for this windows service

CLI Example:

salt '*' service.getsid <service name>

salt.modules.win_service.has_powershell()
Confirm if Powershell is available

CLI Example:

salt '*' service.has_powershell

salt.modules.win_service.missing(name)
e inverse of service.available. Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing <service name>

salt.modules.win_service.restart(name)
Restart the named service

CLI Example:

salt '*' service.restart <service name>

22.16. Full list of builtin execution modules 885

Salt Documentation, Release 2014.7.6

salt.modules.win_service.start(name)
Start the specified service

CLI Example:

salt '*' service.start <service name>

salt.modules.win_service.status(name, sig=None)
Return the status for a service, returns the PID or an empty string if the service is running or not, pass a
signature to use to find the service via ps

CLI Example:

salt '*' service.status <service name> [service signature]

salt.modules.win_service.stop(name)
Stop the specified service

CLI Example:

salt '*' service.stop <service name>

22.16.232 salt.modules.win_shadow

Manage the shadow file

salt.modules.win_shadow.info(name)
Return information for the specified user is is just returns dummy data so that salt states can work.

CLI Example:

salt '*' shadow.info root

salt.modules.win_shadow.set_password(name, password)
Set the password for a named user.

CLI Example:

salt '*' shadow.set_password root mysecretpassword

22.16.233 salt.modules.win_status

Module for returning various status data about a minion. ese data can be useful for compiling into stats later.

depends

• pythoncom

• wmi

salt.modules.win_status.master(master=None, connected=True)
Fire an event if the minion gets disconnected from its master. is function is meant to be run via a scheduled
job from the minion. If master_ip is an FQDN/Hostname, is must be resolvable to a valid IPv4 address.

CLI Example:

salt '*' status.master

886 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.win_status.procs()
Return the process data

CLI Example:

salt '*' status.procs

22.16.234 salt.modules.win_system

Support for reboot, shutdown, etc

salt.modules.win_system.get_computer_desc()
Get the Windows computer description

CLI Example:

salt 'minion-id' system.get_computer_desc

salt.modules.win_system.get_computer_name()
Get the Windows computer name

CLI Example:

salt 'minion-id' system.get_computer_name

salt.modules.win_system.get_pending_computer_name()
Get a pending computer name. If the computer name has been changed, and the change is pending a system
reboot, this function will return the pending computer name. Otherwise, None will be returned. If there was
an error retrieving the pending computer name, False will be returned, and an error message will be logged
to the minion log.

CLI Example:

salt 'minion-id' system.get_pending_computer_name

salt.modules.win_system.get_system_date()
Get the Windows system date

CLI Example:

salt '*' system.get_system_date

salt.modules.win_system.get_system_time()
Get the Windows system time

CLI Example:

salt '*' system.get_system_time

salt.modules.win_system.halt(timeout=5)
Halt a running system

CLI Example:

salt '*' system.halt

salt.modules.win_system.init(runlevel)
Change the system runlevel on sysV compatible systems

CLI Example:

22.16. Full list of builtin execution modules 887

Salt Documentation, Release 2014.7.6

salt '*' system.init 3

salt.modules.win_system.join_domain(domain=None, username=None, password=None, ac-
count_ou=None, account_exists=False)

Join a computer to an Active Directory domain

domain e domain to which the computer should be joined, e.g. my-company.com

username Username of an account which is authorized to join computers to the specified domain. Need to
be either fully qualified like user@domain.tld or simply user

password Password of the specified user

account_ou [None] e DN of the OU below which the account for this computer should be created when
joining the domain, e.g. ou=computers,ou=departm_432,dc=my-company,dc=com

account_exists [False] Needs to be set to True to allow re-using an existing account

CLI Example:

salt 'minion-id' system.join_domain domain='domain.tld' \
username='joinuser' password='joinpassword' \
account_ou='ou=clients,ou=org,dc=domain,dc=tld' \
account_exists=False

salt.modules.win_system.poweroff(timeout=5)
Poweroff a running system

CLI Example:

salt '*' system.poweroff

salt.modules.win_system.reboot(timeout=5)
Reboot the system

CLI Example:

salt '*' system.reboot

salt.modules.win_system.set_computer_desc(desc)
Set the Windows computer description

CLI Example:

salt 'minion-id' system.set_computer_desc 'This computer belongs to Dave!'

salt.modules.win_system.set_computer_name(name)
Set the Windows computer name

CLI Example:

salt 'minion-id' system.set_computer_name 'DavesComputer'

salt.modules.win_system.set_system_date(newdate)
Set the Windows system date. Use <mm-dd-yy> format for the date.

CLI Example:

salt '*' system.set_system_date '03-28-13'

salt.modules.win_system.set_system_time(newtime)
Set the Windows system time

888 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CLI Example:

salt '*' system.set_system_time '11:31:15 AM'

salt.modules.win_system.shutdown(timeout=5)
Shutdown a running system

CLI Example:

salt '*' system.shutdown

salt.modules.win_system.shutdown_hard()
Shutdown a running system with no timeout or warning

CLI Example:

salt '*' system.shutdown_hard

salt.modules.win_system.start_time_service()
Start the Windows time service

CLI Example:

salt '*' system.start_time_service

salt.modules.win_system.stop_time_service()
Stop the Windows time service

CLI Example:

salt '*' system.stop_time_service

22.16.235 salt.modules.win_timezone

Module for managing timezone on Windows systems.

salt.modules.win_timezone.get_hwclock()
Get current hardware clock seing (UTC or localtime)

CLI Example:

salt '*' timezone.get_hwclock

salt.modules.win_timezone.get_offset()
Get current numeric timezone offset from UCT (i.e. -0700)

CLI Example:

salt '*' timezone.get_offset

salt.modules.win_timezone.get_zone()
Get current timezone (i.e. America/Denver)

CLI Example:

salt '*' timezone.get_zone

salt.modules.win_timezone.get_zonecode()
Get current timezone (i.e. PST, MDT, etc)

CLI Example:

22.16. Full list of builtin execution modules 889

Salt Documentation, Release 2014.7.6

salt '*' timezone.get_zonecode

salt.modules.win_timezone.set_hwclock(clock)
Sets the hardware clock to be either UTC or localtime

CLI Example:

salt '*' timezone.set_hwclock UTC

salt.modules.win_timezone.set_zone(timezone)
Unlinks, then symlinks /etc/localtime to the set timezone.

e timezone is crucial to several systemprocesses, each ofwhich SHOULDbe restarted (for instance, whatever
you system uses as its cron and syslog daemons). is will not be magically done for you!

CLI Example:

salt '*' timezone.set_zone 'America/Denver'

salt.modules.win_timezone.zone_compare(timezone)
Checks the md5sum between the given timezone, and the one set in /etc/localtime. Returns True if they match,
and False if not. Mostly useful for running state checks.

Example:

salt '*' timezone.zone_compare 'America/Denver'

22.16.236 salt.modules.win_update

Module for running windows updates.

depends

• win32com

• win32con

• win32api

• pywintypes

New in version 2014.7.0.

class salt.modules.win_update.PyWinUpdater(categories=None, skipUI=True, skip-
Downloaded=False, skipInstalled=True,
skipReboot=False, skipPresent=False, soware-
Updates=True, driverUpdates=False, skipHid-
den=True)

AutoSearch()
this function generates a search string. simplifying the search function while still providing as many
features as possible.

Download()

GetAvailableCategories()

GetCategories()

GetDownloadResults()

890 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

GetInstallationResults()
this gets results of installation process.

GetInstallationResultsPretty()
converts the installation results into a prey print.

GetSearchResults()

GetSearchResultsPretty()

Install()

Search(searchString)

SetCategories(categories)

SetInclude(include, state)

SetIncludes(includes)

salt.modules.win_update.download_updates(includes=None, retries=5, categories=None)
Downloads all available updates, skipping those that require user interaction.

Various aspects of the updates can be included or excluded. this feature is still in development.

retries Number of retries to make before giving up. is is total, not per step.

categories Specify the categories to update. Must be passed as a list.

salt '*' win_update.download_updates categories="['Updates']"

Categories include the following:

• Updates

• Windows 7

• Critical Updates

• Security Updates

• Update Rollups

CLI Examples:

Normal Usage
salt '*' win_update.download_updates

Download critical updates only
salt '*' win_update.download_updates categories="['Critical Updates']"

salt.modules.win_update.install_updates(includes=None, retries=5, categories=None)
Downloads and installs all available updates, skipping those that require user interaction.

various aspects of the updates can be included or excluded. this feature is still in development.

retries Number of retries to make before giving up. is is total, not per step.

categories Specify the categories to install. Must be passed as a list.

salt '*' win_update.install_updates categories="['Updates']"

Categories include the following:

• Updates

• Windows 7

22.16. Full list of builtin execution modules 891

Salt Documentation, Release 2014.7.6

• Critical Updates

• Security Updates

• Update Rollups

CLI Examples:

Normal Usage
salt '*' win_update.install_updates

Install all critical updates
salt '*' win_update.install_updates categories="['Critical Updates']"

salt.modules.win_update.list_updates(verbose=False, includes=None, retries=5, cate-
gories=None)

Returns a summary of available updates, grouped into their non-mutually exclusive categories.

verbose Print results in greater detail

retries Number of retries to make before giving up. is is total, not per step.

categories Specify the categories to list. Must be passed as a list.

salt '*' win_update.list_updates categories="['Updates']"

Categories include the following:

• Updates

• Windows 7

• Critical Updates

• Security Updates

• Update Rollups

CLI Examples:

Normal Usage
salt '*' win_update.list_updates

List all critical updates list in verbose detail
salt '*' win_update.list_updates categories=['Critical Updates'] verbose=True

22.16.237 salt.modules.win_useradd

Manage Windows users with the net user command

NOTE: is currently only works with local user accounts, not domain accounts

salt.modules.win_useradd.add(name, password=None, uid=None, gid=None, groups=None,
home=False, shell=None, unique=False, system=False, full-
name=False, roomnumber=False, workphone=False, home-
phone=False, createhome=False)

Add a user to the minion

CLI Example:

salt '*' user.add name password

892 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.win_useradd.addgroup(name, group)
Add user to a group

CLI Example:

salt '*' user.addgroup username groupname

salt.modules.win_useradd.chfullname(name, fullname)
Change the full name of the user

CLI Example:

salt '*' user.chfullname user 'First Last'

salt.modules.win_useradd.chgroups(name, groups, append=False)
Change the groups this user belongs to, add append to append the specified groups

CLI Example:

salt '*' user.chgroups foo wheel,root True

salt.modules.win_useradd.chhome(name, home)
Change the home directory of the user

CLI Example:

salt '*' user.chhome foo \\fileserver\home\foo

salt.modules.win_useradd.chprofile(name, profile)
Change the profile directory of the user

CLI Example:

salt '*' user.chprofile foo \\fileserver\profiles\foo

salt.modules.win_useradd.delete(name, purge=False, force=False)
Remove a user from the minion NOTE: purge and force have not been implemented on Windows yet

CLI Example:

salt '*' user.delete name

salt.modules.win_useradd.getent(refresh=False)
Return the list of all info for all users

CLI Example:

salt '*' user.getent

salt.modules.win_useradd.info(name)
Return user information

CLI Example:

salt '*' user.info root

salt.modules.win_useradd.list_groups(name)
Return a list of groups the named user belongs to

CLI Example:

salt '*' user.list_groups foo

22.16. Full list of builtin execution modules 893

Salt Documentation, Release 2014.7.6

salt.modules.win_useradd.list_users()
Return a list of users on Windows

salt.modules.win_useradd.removegroup(name, group)
Remove user from a group

CLI Example:

salt '*' user.removegroup username groupname

salt.modules.win_useradd.setpassword(name, password)
Set a user's password

CLI Example:

salt '*' user.setpassword name password

22.16.238 salt.modules.xapi

is module (mostly) uses the XenAPI to manage Xen virtual machines.

Big fat warning: the XenAPI used in this file is the one bundled with Xen Source, NOT XenServer nor Xen Cloud
Platform. As a maer of fact it will fail under those platforms. From what I've read, lile work is needed to adapt
this code to XS/XCP, mostly playing with XenAPI version, but as XCP is not taking precedence on Xen Source on
many platforms, please keep compatibility in mind.

Useful documentation:

. hp://downloads.xen.org/Wiki/XenAPI/xenapi-1.0.6.pdf . hp://docs.vmd.citrix.com/XenServer/6.0.0/1.0/en_gb/api/

. hps://github.com/xapi-project/xen-api/tree/master/scripts/examples/python .
hp://xenbits.xen.org/gitweb/?p=xen.git;a=tree;f=tools/python/xen/xm;hb=HEAD

salt.modules.xapi.create(config_)
Start a defined domain

CLI Example:

salt '*' virt.create <path to Xen cfg file>

salt.modules.xapi.destroy(vm_)
Hard power down the virtual machine, this is equivalent to pulling the power

CLI Example:

salt '*' virt.destroy <vm name>

salt.modules.xapi.freecpu()
Return an int representing the number of unallocated cpus on this hypervisor

CLI Example:

salt '*' virt.freecpu

salt.modules.xapi.freemem()
Return an int representing the amount of memory that has not been given to virtual machines on this node

CLI Example:

salt '*' virt.freemem

894 Chapter 22. Reference

http://downloads.xen.org/Wiki/XenAPI/xenapi-1.0.6.pdf
http://docs.vmd.citrix.com/XenServer/6.0.0/1.0/en_gb/api/
https://github.com/xapi-project/xen-api/tree/master/scripts/examples/python
http://xenbits.xen.org/gitweb/?p=xen.git;a=tree;f=tools/python/xen/xm;hb=HEAD

Salt Documentation, Release 2014.7.6

salt.modules.xapi.full_info()
Return the node_info, vm_info and freemem

CLI Example:

salt '*' virt.full_info

salt.modules.xapi.get_disks(vm_)
Return the disks of a named vm

CLI Example:

salt '*' virt.get_disks <vm name>

salt.modules.xapi.get_macs(vm_)
Return a list off MAC addresses from the named vm

CLI Example:

salt '*' virt.get_macs <vm name>

salt.modules.xapi.get_nics(vm_)
Return info about the network interfaces of a named vm

CLI Example:

salt '*' virt.get_nics <vm name>

salt.modules.xapi.is_hyper()
Returns a bool whether or not this node is a hypervisor of any kind

CLI Example:

salt '*' virt.is_hyper

salt.modules.xapi.list_vms()
Return a list of virtual machine names on the minion

CLI Example:

salt '*' virt.list_vms

salt.modules.xapi.migrate(vm_, target, live=1, port=0, node=-1, ssl=None, change_home_server=0)
Migrates the virtual machine to another hypervisor

CLI Example:

salt '*' virt.migrate <vm name> <target hypervisor> [live] [port] [node] [ssl] [change_home_server]

Optional values:

live Use live migration

port Use a specified port

node Use specified NUMA node on target

ssl use ssl connection for migration

ange_home_server change home server for managed domains

salt.modules.xapi.node_info()
Return a dict with information about this node

CLI Example:

22.16. Full list of builtin execution modules 895

Salt Documentation, Release 2014.7.6

salt '*' virt.node_info

salt.modules.xapi.pause(vm_)
Pause the named vm

CLI Example:

salt '*' virt.pause <vm name>

salt.modules.xapi.reboot(vm_)
Reboot a domain via ACPI request

CLI Example:

salt '*' virt.reboot <vm name>

salt.modules.xapi.reset(vm_)
Reset a VM by emulating the reset buon on a physical machine

CLI Example:

salt '*' virt.reset <vm name>

salt.modules.xapi.resume(vm_)
Resume the named vm

CLI Example:

salt '*' virt.resume <vm name>

salt.modules.xapi.setmem(vm_, memory)
Changes the amount of memory allocated to VM.

Memory is to be specified in MB

CLI Example:

salt '*' virt.setmem myvm 768

salt.modules.xapi.setvcpus(vm_, vcpus)
Changes the amount of vcpus allocated to VM.

vcpus is an int representing the number to be assigned

CLI Example:

salt '*' virt.setvcpus myvm 2

salt.modules.xapi.shutdown(vm_)
Send a so shutdown signal to the named vm

CLI Example:

salt '*' virt.shutdown <vm name>

salt.modules.xapi.start(config_)
Alias for the obscurely named `create' function

CLI Example:

salt '*' virt.start <path to Xen cfg file>

896 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.xapi.vcpu_pin(vm_, vcpu, cpus)
Set which CPUs a VCPU can use.

CLI Example:

salt 'foo' virt.vcpu_pin domU-id 2 1
salt 'foo' virt.vcpu_pin domU-id 2 2-6

salt.modules.xapi.vm_cputime(vm_=None)
Return cputime used by the vms on this hyper in a list of dicts:

[
'your-vm': {

'cputime' <int>
'cputime_percent' <int>
},

...
]

If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will
return all VMs.

CLI Example:

salt '*' virt.vm_cputime

salt.modules.xapi.vm_diskstats(vm_=None)
Return disk usage counters used by the vms on this hyper in a list of dicts:

[
'your-vm': {

'io_read_kbs' : 0,
'io_write_kbs' : 0
},

...
]

If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will
return all VMs.

CLI Example:

salt '*' virt.vm_diskstats

salt.modules.xapi.vm_info(vm_=None)
Return detailed information about the vms.

If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will
return all VMs.

CLI Example:

salt '*' virt.vm_info

salt.modules.xapi.vm_netstats(vm_=None)
Return combined network counters used by the vms on this hyper in a list of dicts:

[
'your-vm': {

'io_read_kbs' : 0,
'io_total_read_kbs' : 0,

22.16. Full list of builtin execution modules 897

Salt Documentation, Release 2014.7.6

'io_total_write_kbs' : 0,
'io_write_kbs' : 0
},

...
]

If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will
return all VMs.

CLI Example:

salt '*' virt.vm_netstats

salt.modules.xapi.vm_state(vm_=None)
Return list of all the vms and their state.

If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will
return all VMs.

CLI Example:

salt '*' virt.vm_state <vm name>

22.16.239 salt.modules.xmpp

Module for Sending Messages via XMPP (a.k.a. Jabber)

New in version 2014.1.0.

depends

• sleekxmpp python module

configuration is module can be used by either passing a jid and password directly to send_message,
or by specifying the name of a configuration profile in the minion config, minion pillar, or master
config.

For example:

my-xmpp-login:
xmpp.jid: myuser@jabber.example.org/resourcename
xmpp.password: verybadpass

e resourcename refers to the resource that is using this account. It is user-definable, and optional.
e following configurations are both valid:

my-xmpp-login:
xmpp.jid: myuser@jabber.example.org/salt
xmpp.password: verybadpass

my-xmpp-login:
xmpp.jid: myuser@jabber.example.org
xmpp.password: verybadpass

class salt.modules.xmpp.SendMsgBot(jid, password, recipient, msg)

start(event)

898 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.modules.xmpp.send_msg(recipient, message, jid=None, password=None, profile=None)
Send a message to an XMPP recipient. Designed for use in states.

CLI Examples:

xmpp.send_msg 'admins@xmpp.example.com' 'This is a salt module test' profile='my-xmpp-account'
xmpp.send_msg 'admins@xmpp.example.com' 'This is a salt module test' jid='myuser@xmpp.example.com/salt' password='verybadpass'

22.16.240 salt.modules.yumpkg

Support for YUM

Note: is module makes heavy use of the repoquery utility, from the yum-utils package. is package will be
installed as a dependency if salt is installed via EPEL. However, if salt has been installed using pip, or a host is
being managed using salt-ssh, then as of version 2014.7.0 yum-utils will be installed automatically to satisfy this
dependency.

salt.modules.yumpkg.check_db(*names, **kwargs)
New in version 0.17.0.

Returns a dict containing the following information for each specified package:

1.A key found, which will be a boolean value denoting if a match was found in the package database.

2.If found is False, then a second key called suggestions will be present, which will contain a list
of possible matches.

e fromrepo, enablerepo and disablerepo arguments are supported, as used in pkg states, and the
disableexcludes option is also supported.

New in version 2014.7.0: Support for the disableexcludes option

CLI Examples:

salt '*' pkg.check_db <package1> <package2> <package3>
salt '*' pkg.check_db <package1> <package2> <package3> fromrepo=epel-testing
salt '*' pkg.check_db <package1> <package2> <package3> disableexcludes=main

salt.modules.yumpkg.clean_metadata(**kwargs)
New in version 2014.1.0.

Cleans local yum metadata. Functionally identical to refresh_db().

CLI Example:

salt '*' pkg.clean_metadata

salt.modules.yumpkg.del_repo(repo, basedir=None, **kwargs)
Delete a repo from <basedir> (default basedir: all dirs in reposdir yum option).

If the .repo file that the repo exists in does not contain any other repo configuration, the file itself will be
deleted.

CLI Examples:

salt '*' pkg.del_repo myrepo
salt '*' pkg.del_repo myrepo basedir=/path/to/dir
salt '*' pkg.del_repo myrepo basedir=/path/to/dir,/path/to/another/dir

22.16. Full list of builtin execution modules 899

http://yum.baseurl.org/wiki/YumUtils
http://yum.baseurl.org/wiki/YumUtils

Salt Documentation, Release 2014.7.6

salt.modules.yumpkg.expand_repo_def(repokwargs)
Take a repository definition and expand it to the full pkg repository dict that can be used for comparison. is
is a helper function to make certain repo managers sane for comparison in the pkgrepo states.

ere is no use to calling this function via the CLI.

salt.modules.yumpkg.file_dict(*packages)
New in version 2014.1.0.

List the files that belong to a package, grouped by package. Not specifying any packages will return a list of
every file on the system's rpm database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

salt.modules.yumpkg.file_list(*packages)
New in version 2014.1.0.

List the files that belong to a package. Not specifying any packages will return a list of every file on the system's
rpm database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

salt.modules.yumpkg.get_locked_packages(paern=None, full=True)
Get packages that are currently locked yum -q versionlock list.

CLI Example:

salt '*' pkg.get_locked_packages

salt.modules.yumpkg.get_repo(repo, basedir=None, **kwargs)
Display a repo from <basedir> (default basedir: all dirs in reposdir yum option).

CLI Examples:

salt '*' pkg.get_repo myrepo
salt '*' pkg.get_repo myrepo basedir=/path/to/dir
salt '*' pkg.get_repo myrepo basedir=/path/to/dir,/path/to/another/dir

salt.modules.yumpkg.group_diff(name)
New in version 2014.1.0.

Lists packages belonging to a certain group, and which are installed

CLI Example:

salt '*' pkg.group_diff 'Perl Support'

salt.modules.yumpkg.group_info(name)
New in version 2014.1.0.

Lists packages belonging to a certain group

CLI Example:

900 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' pkg.group_info 'Perl Support'

salt.modules.yumpkg.group_install(name, skip=(), include=(), **kwargs)
New in version 2014.1.0.

Install the passed package group(s). is is basically a wrapper around pkg.install, which performs package
group resolution for the user. is function is currently considered experimental, and should be expected to
undergo changes.

name Package group to install. To install more than one group, either use a comma-separated list or pass the
value as a python list.

CLI Examples:

salt '*' pkg.group_install 'Group 1'
salt '*' pkg.group_install 'Group 1,Group 2'
salt '*' pkg.group_install '["Group 1", "Group 2"]'

skip e name(s), in a list, of any packages that would normally be installed by the package group (``default''
packages), which should not be installed. Can be passed either as a comma-separated list or a python
list.

CLI Examples:

salt '*' pkg.group_install 'My Group' skip='foo,bar'
salt '*' pkg.group_install 'My Group' skip='["foo", "bar"]'

include e name(s), in a list, of any packages which are included in a group, which would not normally
be installed (``optional'' packages). Note that this will not enforce group membership; if you include
packages which are not members of the specified groups, they will still be installed. Can be passed either
as a comma-separated list or a python list.

CLI Examples:

salt '*' pkg.group_install 'My Group' include='foo,bar'
salt '*' pkg.group_install 'My Group' include='["foo", "bar"]'

Note: Because this is essentially a wrapper around pkg.install, any argument which can be passed to
pkg.install may also be included here, and it will be passed along wholesale.

salt.modules.yumpkg.group_list()
New in version 2014.1.0.

Lists all groups known by yum on this system

CLI Example:

salt '*' pkg.group_list

salt.modules.yumpkg.hold(name=None, pkgs=None, sources=None, **kwargs)
New in version 2014.7.0.

Hold packages with yum -q versionlock.

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to hold. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

22.16. Full list of builtin execution modules 901

Salt Documentation, Release 2014.7.6

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.hold <package name>
salt '*' pkg.hold pkgs='["foo", "bar"]'

salt.modules.yumpkg.install(name=None, refresh=False, fromrepo=None, skip_verify=False,
pkgs=None, sources=None, reinstall=False, normalize=True,
**kwargs)

Install the passed package(s), add refresh=True to clean the yum database before package is installed.

name e name of the package to be installed. Note that this parameter is ignored if either ``pkgs'' or
``sources'' is passed. Additionally, please note that this option can only be used to install packages
from a soware repository. To install a package file manually, use the ``sources'' option.

32-bit packages can be installed on 64-bit systems by appending the architecture designation (.i686,
.i586, etc.) to the end of the package name.

CLI Example:

salt '*' pkg.install <package name>

refresh Whether or not to update the yum database before executing.

reinstall Specifying reinstall=True will use yum reinstall rather than yum install for requested
packages that are already installed.

If a version is specified with the requested package, then yum reinstall will only be used if the
installed version matches the requested version.

Works with sources when the package header of the source can be matched to the name and version of
an installed package.

New in version 2014.7.0.

skip_verify Skip the GPG verification check (e.g., --nogpgcheck)

version Install a specific version of the package, e.g. 1.2.3-4.el5. Ignored if ``pkgs'' or ``sources'' is passed.

Repository Options:

fromrepo Specify a package repository (or repositories) from which to install. (e.g., yum --
disablerepo='*' --enablerepo='somerepo')

enablerepo (ignored if fromrepo is specified) Specify a disabled package repository (or repositories) to en-
able. (e.g., yum --enablerepo='somerepo')

disablerepo (ignored if fromrepo is specified) Specify an enabled package repository (or repositories) to
disable. (e.g., yum --disablerepo='somerepo')

disableexcludes Disable exclude from main, for a repo or for everything. (e.g., yum --
disableexcludes='main')

New in version 2014.7.0.

Multiple Package Installation Options:

pkgs A list of packages to install from a soware repository. Must be passed as a python list. A specific
version number can be specified by using a single-element dict representing the package and its version.

CLI Examples:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-4.el5"}]'

902 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

sources A list of RPM packages to install. Must be passed as a list of dicts, with the keys being package names,
and the values being the source URI or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.rpm"}, {"bar": "salt://bar.rpm"}]'

normalize Normalize the package name by removing the architecture. Default is True. is is useful for
poorly created packages which might include the architecture as an actual part of the name such as
kernel modules which match a specific kernel version.

New in version 2014.7.0.

Example:

salt -G role:nsd pkg.install gpfs.gplbin-2.6.32-279.31.1.el6.x86_64 normalize=False

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

salt.modules.yumpkg.latest_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation. If more than one package
name is specified, a dict of name/version pairs is returned.

If the latest version of a given package is already installed, an empty string will be returned for that package.

A specific repo can be requested using the fromrepo keyword argument, and the disableexcludes
option is also supported.

New in version 2014.7.0: Support for the disableexcludes option

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name> fromrepo=epel-testing
salt '*' pkg.latest_version <package name> disableexcludes=main
salt '*' pkg.latest_version <package1> <package2> <package3> ...

salt.modules.yumpkg.list_pkgs(versions_as_list=False, **kwargs)
List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

salt.modules.yumpkg.list_repo_pkgs(*args, **kwargs)
New in version 2014.1.0.

Changed in version 2014.7.0: All available versions of each package are now returned. is required a slight
modification to the structure of the return dict. e return data shown below reflects the updated return dict
structure.

Returns all available packages. Optionally, package names (and name globs) can be passed and the results will
be filtered to packages matching those names. is is recommended as it speeds up the function considerably.

is function can be helpful in discovering the version or repo to specify in a pkg.installed state.

e return data is a dictionary of repo names, with each repo containing a dictionary in which the keys are
package names, and the values are a list of version numbers. Here is an example of the return data:

22.16. Full list of builtin execution modules 903

Salt Documentation, Release 2014.7.6

{
'base': {

'bash': ['4.1.2-15.el6_4'],
'kernel': ['2.6.32-431.el6']

},
'updates': {

'bash': ['4.1.2-15.el6_5.2', '4.1.2-15.el6_5.1'],
'kernel': ['2.6.32-431.29.2.el6',

'2.6.32-431.23.3.el6',
'2.6.32-431.20.5.el6',
'2.6.32-431.20.3.el6',
'2.6.32-431.17.1.el6',
'2.6.32-431.11.2.el6',
'2.6.32-431.5.1.el6',
'2.6.32-431.3.1.el6',
'2.6.32-431.1.2.0.1.el6']

}
}

fromrepo [None] Only include results from the specified repo(s). Multiple repos can be specified, comma-
separated.

CLI Example:

salt '*' pkg.list_repo_pkgs
salt '*' pkg.list_repo_pkgs foo bar baz
salt '*' pkg.list_repo_pkgs 'samba4*' fromrepo=base,updates

salt.modules.yumpkg.list_repos(basedir=None)
Lists all repos in <basedir> (default: all dirs in reposdir yum option).

CLI Example:

salt '*' pkg.list_repos
salt '*' pkg.list_repos basedir=/path/to/dir
salt '*' pkg.list_repos basedir=/path/to/dir,/path/to/another/dir

salt.modules.yumpkg.list_upgrades(refresh=True, **kwargs)
Check whether or not an upgrade is available for all packages

e fromrepo, enablerepo, and disablerepo arguments are supported, as used in pkg states, and the
disableexcludes option is also supported.

New in version 2014.7.0: Support for the disableexcludes option

CLI Example:

salt '*' pkg.list_upgrades

salt.modules.yumpkg.mod_repo(repo, basedir=None, **kwargs)
Modify one or more values for a repo. If the repo does not exist, it will be created, so long as the following
values are specified:

repo name by which the yum refers to the repo

name a human-readable name for the repo

baseurl the URL for yum to reference

mirrorlist the URL for yum to reference

904 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Key/Value pairs may also be removed from a repo's configuration by seing a key to a blank value. Bear in
mind that a name cannot be deleted, and a baseurl can only be deleted if a mirrorlist is specified (or vice versa).

CLI Examples:

salt '*' pkg.mod_repo reponame enabled=1 gpgcheck=1
salt '*' pkg.mod_repo reponame basedir=/path/to/dir enabled=1
salt '*' pkg.mod_repo reponame baseurl= mirrorlist=http://host.com/

salt.modules.yumpkg.normalize_name(name)
Strips the architecture from the specified package name, if necessary. Circumstances where this would be
done include:

•If the arch is 32 bit and the package name ends in a 32-bit arch.

•If the arch matches the OS arch, or is noarch.

CLI Example:

salt '*' pkg.normalize_name zsh.x86_64

salt.modules.yumpkg.owner(*paths)
New in version 2014.7.0.

Return the name of the package that owns the file. Multiple file paths can be passed. Like pkg.version
<salt.modules.yumpkg.version, if a single path is passed, a string will be returned, and if multiple
paths are passed, a dictionary of file/package name pairs will be returned.

If the file is not owned by a package, or is not present on the minion, then an empty string will be returned
for that path.

CLI Example:

salt `*' pkg.owner /usr/bin/apachectl salt `*' pkg.owner /usr/bin/apachectl
/etc/hpd/conf/hpd.conf

salt.modules.yumpkg.purge(name=None, pkgs=None, **kwargs)
Package purges are not supported by yum, this function is identical to pkg.remove.

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

salt.modules.yumpkg.refresh_db(**kwargs)
Check the yum repos for updated packages

Returns:

•True: Updates are available

•False: An error occurred

22.16. Full list of builtin execution modules 905

Salt Documentation, Release 2014.7.6

•None: No updates are available

CLI Example:

salt '*' pkg.refresh_db

salt.modules.yumpkg.remove(name=None, pkgs=None, **kwargs)
Remove packages with yum -q -y remove.

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

salt.modules.yumpkg.unhold(name=None, pkgs=None, sources=None, **kwargs)
New in version 2014.7.0.

Hold packages with yum -q versionlock.

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to unhold. Must be passed as a python list. e name parameter will be ignored if
this option is passed.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.unhold <package name>
salt '*' pkg.unhold pkgs='["foo", "bar"]'

salt.modules.yumpkg.upgrade(refresh=True, fromrepo=None, skip_verify=False, **kwargs)
Run a full system upgrade, a yum upgrade

Changed in version 2014.7.0.

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

Repository Options:

fromrepo Specify a package repository (or repositories) from which to install. (e.g., yum --
disablerepo='*' --enablerepo='somerepo')

906 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

enablerepo (ignored if fromrepo is specified) Specify a disabled package repository (or repositories) to en-
able. (e.g., yum --enablerepo='somerepo')

disablerepo (ignored if fromrepo is specified) Specify an enabled package repository (or repositories) to
disable. (e.g., yum --disablerepo='somerepo')

disableexcludes Disable exclude from main, for a repo or for everything. (e.g., yum --
disableexcludes='main')

New in version 2014.7.0.

salt.modules.yumpkg.upgrade_available(name)
Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

salt.modules.yumpkg.verify(*names, **kwargs)
New in version 2014.1.0.

Runs an rpm -Va on a system, and returns the results in a dict

Files with an aribute of config, doc, ghost, license or readme in the package header can be ignored using the
ignore_types keyword argument

CLI Example:

salt '*' pkg.verify
salt '*' pkg.verify httpd
salt '*' pkg.verify 'httpd postfix'
salt '*' pkg.verify 'httpd postfix' ignore_types=['config','doc']

salt.modules.yumpkg.version(*names, **kwargs)
Returns a string representing the package version or an empty string if not installed. If more than one package
name is specified, a dict of name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

22.16.241 salt.modules.zcbuildout

Management of zc.buildout

New in version 2014.1.0.

is module is inspired by minitage's buildout maker

Note: e zc.buildout integration is still in beta; the API is subject to change

General notes

You have those following methods:

• upgrade_bootstrap

• bootstrap

22.16. Full list of builtin execution modules 907

https://github.com/minitage/minitage/blob/master/src/minitage/core/makers/buildout.py

Salt Documentation, Release 2014.7.6

• run_buildout

• buildout

salt.modules.zcbuildout.bootstrap(*a, **kw)
Run the buildout bootstrap dance (python bootstrap.py).

directory directory to execute in

config alternative buildout configuration file to use

runas User used to run buildout as

env environment variables to set when running

buildout_ver force a specific buildout version (1 | 2)

test_release buildout accept test release

offline are we executing buildout in offline mode

distribute Forcing use of distribute

new_st Forcing use of setuptools >= 0.7

python path to a python executable to use in place of default (salt one)

onlyif Only execute cmd if statement on the host return 0

unless Do not execute cmd if statement on the host return 0

use_vt Use the new salt VT to stream output [experimental]

CLI Example:

salt '*' buildout.bootstrap /srv/mybuildout

salt.modules.zcbuildout.buildout(*a, **kw)
Run buildout in a directory.

directory directory to execute in

config buildout config to use

parts specific buildout parts to run

runas user used to run buildout as

env environment variables to set when running

buildout_ver force a specific buildout version (1 | 2)

test_release buildout accept test release

new_st Forcing use of setuptools >= 0.7

distribute use distribute over setuptools if possible

offline does buildout run offline

python python to use

debug run buildout with -D debug flag

onlyif Only execute cmd if statement on the host return 0

unless Do not execute cmd if statement on the host return 0

newest run buildout in newest mode

908 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

verbose run buildout in verbose mode (-vvvvv)

use_vt Use the new salt VT to stream output [experimental]

CLI Example:

salt '*' buildout.buildout /srv/mybuildout

salt.modules.zcbuildout.run_buildout(*a, **kw)
Run a buildout in a directory.

directory directory to execute in

config alternative buildout configuration file to use

offline are we executing buildout in offline mode

runas user used to run buildout as

env environment variables to set when running

onlyif Only execute cmd if statement on the host return 0

unless Do not execute cmd if statement on the host return 0

newest run buildout in newest mode

force run buildout unconditionally

verbose run buildout in verbose mode (-vvvvv)

use_vt Use the new salt VT to stream output [experimental]

CLI Example:

salt '*' buildout.run_buildout /srv/mybuildout

salt.modules.zcbuildout.upgrade_bootstrap(*a, **kw)
Upgrade current bootstrap.py with the last released one.

Indeed, when we first run a buildout, a common source of problem is to have a locally stale bootstrap, we just
try to grab a new copy

directory directory to execute in

offline are we executing buildout in offline mode

buildout_ver forcing to use a specific buildout version (1 | 2)

onlyif Only execute cmd if statement on the host return 0

unless Do not execute cmd if statement on the host return 0

CLI Example:

salt '*' buildout.upgrade_bootstrap /srv/mybuildout

22.16.242 salt.modules.zfs

Salt interface to ZFS commands

22.16. Full list of builtin execution modules 909

Salt Documentation, Release 2014.7.6

22.16.243 salt.modules.znc

znc - An advanced IRC bouncer

New in version 2014.7.0.

Provides an interface to basic ZNC functionality

salt.modules.znc.buildmod(*modules)
Build module using znc-buildmod

CLI Example:

salt '*' znc.buildmod module.cpp [...]

salt.modules.znc.dumpconf()
Write the active configuration state to config file

CLI Example:

salt '*' znc.dumpconf

salt.modules.znc.rehashconf()
Rehash the active configuration state from config file

CLI Example:

salt '*' znc.rehashconf

salt.modules.znc.version()
Return server version from znc --version

CLI Example:

salt '*' znc.version

22.16.244 salt.modules.zpool

Module for running ZFS zpool command

salt.modules.zpool.add(pool_name, vdev)
Add the specified vdev to the given pool

CLI Example:

salt '*' zpool.add myzpool /path/to/vdev

salt.modules.zpool.create(pool_name, *vdevs)
Create a new storage pool

CLI Example:

salt '*' zpool.create myzpool /path/to/vdev1 [/path/to/vdev2] [...]

salt.modules.zpool.create_file_vdev(size, *vdevs)
Creates file based virtual devices for a zpool

*vdevs is a list of full paths for mkfile to create

CLI Example:

910 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' zpool.create_file_vdev 7g /path/to/vdev1 [/path/to/vdev2] [...]

Depending on file size this may take a while to return

salt.modules.zpool.destroy(pool_name)
Destroys a storage pool

CLI Example:

salt '*' zpool.destroy myzpool

salt.modules.zpool.exists(pool_name)
Check if a ZFS storage pool is active

CLI Example:

salt '*' zpool.exists myzpool

salt.modules.zpool.iostat(name='`)
Display I/O statistics for the given pools

CLI Example:

salt '*' zpool.iostat myzpool

salt.modules.zpool.replace(pool_name, old, new)
Replaces old device with new device.

CLI Example:

salt '*' zpool.replace myzpool /path/to/vdev1 /path/to/vdev2

salt.modules.zpool.scrub(pool_name=None)
Begin a scrub

CLI Example:

salt '*' zpool.scrub myzpool

salt.modules.zpool.status(name='`)
Return the status of the named zpool

CLI Example:

salt '*' zpool.status myzpool

salt.modules.zpool.zpool_list()
Return a list of all pools in the system with health status and space usage

CLI Example:

salt '*' zpool.zpool_list

22.16.245 salt.modules.zypper

Package support for openSUSE via the zypper package manager

depends

• zypp Python module. Install with zypper install python-zypp

22.16. Full list of builtin execution modules 911

Salt Documentation, Release 2014.7.6

salt.modules.zypper.del_repo(repo, **kwargs)
Delete a repo.

CLI Examples:

salt '*' pkg.del_repo alias
salt '*' pkg.del_repo alias

salt.modules.zypper.get_repo(repo, **kwargs)
Display a repo.

CLI Example:

salt '*' pkg.get_repo alias

salt.modules.zypper.install(name=None, refresh=False, fromrepo=None, pkgs=None, sources=None,
**kwargs)

Install the passed package(s), add refresh=True to run `zypper refresh' before package is installed.

name e name of the package to be installed. Note that this parameter is ignored if either ``pkgs'' or
``sources'' is passed. Additionally, please note that this option can only be used to install packages
from a soware repository. To install a package file manually, use the ``sources'' option.

CLI Example:

salt '*' pkg.install <package name>

refresh Whether or not to refresh the package database before installing.

fromrepo Specify a package repository to install from.

version Can be either a version number, or the combination of a comparison operator (<, >, <=, >=, =) and a
version number (ex. `>1.2.3-4'). is parameter is ignored if ``pkgs'' or ``sources'' is passed.

Multiple Package Installation Options:

pkgs A list of packages to install from a soware repository. Must be passed as a python list. A specific
version number can be specified by using a single-element dict representing the package and its version.
As with the version parameter above, comparison operators can be used to target a specific version
of a package.

CLI Examples:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-4"}]'
salt '*' pkg.install pkgs='["foo", {"bar": "<1.2.3-4"}]'

sources A list of RPM packages to install. Must be passed as a list of dicts, with the keys being package names,
and the values being the source URI or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.rpm"},{"bar": "salt://bar.rpm"}]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

salt.modules.zypper.latest_version(*names, **kwargs)
Return the latest version of the named package available for upgrade or installation. If more than one package
name is specified, a dict of name/version pairs is returned.

912 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

If the latest version of a given package is already installed, an empty string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

salt.modules.zypper.list_pkgs(versions_as_list=False, **kwargs)
List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

salt.modules.zypper.list_repos()
Lists all repos.

CLI Example:

salt '*' pkg.list_repos

salt.modules.zypper.list_upgrades(refresh=True)
List all available package upgrades on this system

CLI Example:

salt '*' pkg.list_upgrades

salt.modules.zypper.mod_repo(repo, **kwargs)
Modify one or more values for a repo. If the repo does not exist, it will be created, so long as the following
values are specified:

repo alias by which the zypper refers to the repo

url or mirrorlist the URL for zypper to reference

Key/Value pairs may also be removed from a repo's configuration by seing a key to a blank value. Bear in
mind that a name cannot be deleted, and a url can only be deleted if a mirrorlist is specified (or vice versa).

CLI Examples:

salt '*' pkg.mod_repo alias alias=new_alias
salt '*' pkg.mod_repo alias enabled=True
salt '*' pkg.mod_repo alias url= mirrorlist=http://host.com/

salt.modules.zypper.purge(name=None, pkgs=None, **kwargs)
Recursively remove a package and all dependencies which were installed with it, this will call a zypper -n
remove -u

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

22.16. Full list of builtin execution modules 913

Salt Documentation, Release 2014.7.6

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

salt.modules.zypper.refresh_db()
Just run a zypper refresh, return a dict:

{'<database name>': Bool}

CLI Example:

salt '*' pkg.refresh_db

salt.modules.zypper.remove(name=None, pkgs=None, **kwargs)
Remove packages with zypper -n remove

name e name of the package to be deleted.

Multiple Package Options:

pkgs A list of packages to delete. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

salt.modules.zypper.upgrade(refresh=True)
Run a full system upgrade, a zypper upgrade

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

salt.modules.zypper.upgrade_available(name)
Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

salt.modules.zypper.version(*names, **kwargs)
Returns a string representing the package version or an empty string if not installed. If more than one package
name is specified, a dict of name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

914 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.17 Full list of netapi modules

22.17.1 rest_cherrypy

A REST API for Salt

New in version 2014.7.0.

depends

• CherryPy Python module (strongly recommend 3.2.x versions due to

an as yet unknown SSL error).

optdepends

• ws4py Python module for websockets support.

configuration All authentication is done through Salt's external auth system which requires additional
configuration not described here.

Example production-ready configuration; add to the Salt master config file and restart the salt-
master and salt-api daemons:

rest_cherrypy:
port: 8000
ssl_crt: /etc/pki/tls/certs/localhost.crt
ssl_key: /etc/pki/tls/certs/localhost.key

Using only a secure HTTPS connection is strongly recommended since Salt authentication creden-
tials will be sent over the wire.

A self-signed certificate can be generated using the create_self_signed_cert() execution
function. Running this function requires pyOpenSSL and the salt-call script is available in the
salt-minion package.

salt-call --local tls.create_self_signed_cert

All available configuration options are detailed below. ese seings configure the CherryPy
HTTP server and do not apply when using an external server such as Apache or Nginx.

port Required

e port for the webserver to listen on.

host [0.0.0.0] e socket interface for the HTTP server to listen on.

debug [False] Starts the web server in development mode. It will reload itself when the under-
lying code is changed and will output more debugging info.

ssl_crt e path to a SSL certificate. (See below)

ssl_key e path to the private key for your SSL certificate. (See below)

disable_ssl A flag to disable SSL. Warning: your Salt authentication credentials will be sent in the
clear!

webhook_disable_auth [False]eWebhookURL requires authentication by default but external
services cannot always be configured to send authentication. See theWebhook documentation
for suggestions on securing this interface.

webhook_url [/hook] Configure the URL endpoint for the Webhook entry point.

22.17. Full list of netapi modules 915

Salt Documentation, Release 2014.7.6

thread_pool [100] e number of worker threads to start up in the pool.

soet_queue_size [30] Specify the maximum number of HTTP connections to queue.

expire_responses [True] Whether to check for and kill HTTP responses that have exceeded the
default timeout.

max_request_body_size [1048576] Maximum size for the HTTP request body.

collect_stats [False] Collect and report statistics about the CherryPy server

Reports are available via the Stats URL.

static A filesystem path to static HTML/JavaScript/CSS/image assets.

static_path [/static] e URL prefix to use when serving static assets out of the directory
specified in the static seing.

app A filesystem path to an HTML file that will be served as a static file. is is useful for boot-
strapping a single-page JavaScript app.

app_path [/app] e URL prefix to use for serving the HTML file specified in the app seing.
is should be a simple name containing no slashes.

Any path information aer the specified path is ignored; this is useful for apps that utilize the
HTML5 history API.

root_prefix [/] A URL path to the main entry point for the application. is is useful for serving
multiple applications from the same URL.

Authentication

Authentication is performed by passing a session token with each request. Tokens are generated via the Login
URL.

e token may be sent in one of two ways:

• Include a custom header named X-Auth-Token.

For example, using curl:

curl -sSk https://localhost:8000/login -H 'Accept: application/x-yaml' -d username=saltdev -d password=saltdev -d eauth=auto

Copy the token value from the output and include it in subsequent requests:

curl -sSk hps://localhost:8000 -H `Accept: application/x-yaml' -H `X-Auth-Token:
697adbdc8fe971d09ae4c2a3add7248859c87079' -d client=local -d tgt='*' -d fun=test.ping

• Sent via a cookie. is option is a convenience for HTTP clients that automatically handle cookie support
(such as browsers).

For example, using curl:

Write the cookie file:
curl -sSk https://localhost:8000/login -c ~/cookies.txt -H 'Accept: application/x-yaml' -d username=saltdev -d password=saltdev -d eauth=auto

Read the cookie file:
curl -sSk https://localhost:8000 -b ~/cookies.txt -H 'Accept: application/x-yaml' -d client=local -d tgt='*' -d fun=test.ping

See also:

You can bypass the session handling via the Run URL.

916 Chapter 22. Reference

https://localhost:8000

Salt Documentation, Release 2014.7.6

Usage

Commands are sent to a running Salt master via this module by sending HTTP requests to the URLs detailed below.

Content negotiation

is REST interface is flexible in what data formats it will accept as well as what formats it will return (e.g., JSON,
YAML, x-www-form-urlencoded).

• Specify the format of data in the request body by including the Content-Type header.

• Specify the desired data format for the response body with the Accept header.

Data sent in POST and PUT requests must be in the format of a list of lowstate dictionaries. is allows multiple
commands to be executed in a single HTTP request. e order of commands in the request corresponds to the return
for each command in the response.

Lowstate, broadly, is a dictionary of values that are mapped to a function call. is paern is used pervasively
throughout Salt. e functions called from netapi modules are described in Client Interfaces.

e following example (in JSON format) causes Salt to execute two commands, a command sent to minions as well
as a runner function on the master:

[{
"client": "local",
"tgt": "*",
"fun": "test.fib",
"arg": ["10"]

},
{

"client": "runner",
"fun": "jobs.lookup_jid",
"jid": "20130603122505459265"

}]

x-www-form-urlencoded

Sending JSON or YAML in the request body is simple and most flexible, however sending data in urlencoded format
is also supported with the caveats below. It is the default format for HTML forms, many JavaScript libraries, and the
curl command.

For example, the equivalent to running salt '*' test.ping is sending
fun=test.ping&arg&client=local&tgt=* in the HTTP request body.

Caveats:

• Only a single command may be sent per HTTP request.

• Repeating the arg parameter multiple times will cause those parameters to be combined into a single list.

Note, some popular frameworks and languages (notably jery, PHP, and Ruby on Rails) will automatically
append empty brackets onto repeated parameters. E.g., arg=one, arg=two will be sent as arg[]=one,
arg[]=two. is is not supported; send JSON or YAML instead.

Deployment

e rest_cherrypy netapi module is a standard Python WSGI app. It can be deployed one of two ways.

22.17. Full list of netapi modules 917

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6

Salt Documentation, Release 2014.7.6

salt-api using the CherryPy server

e default configuration is to run this module using salt-api to start the Python-based CherryPy server. is
server is lightweight, multi-threaded, encrypted with SSL, and should be considered production-ready.

Using a WSGI-compliant web server

ismodule may be deployed on anyWSGI-compliant server such as Apache with mod_wsgi or Nginx with FastCGI,
to name just two (there are many).

Note, external WSGI servers handle URLs, paths, and SSL certs directly. e rest_cherrypy configuration op-
tions are ignored and the salt-api daemon does not need to be running at all. Remember Salt authentication
credentials are sent in the clear unless SSL is being enforced!

An example Apache virtual host configuration:

<VirtualHost *:80>
ServerName example.com
ServerAlias *.example.com

ServerAdmin webmaster@example.com

LogLevel warn
ErrorLog /var/www/example.com/logs/error.log
CustomLog /var/www/example.com/logs/access.log combined

DocumentRoot /var/www/example.com/htdocs

WSGIScriptAlias / /path/to/salt/netapi/rest_cherrypy/wsgi.py
</VirtualHost>

REST URI Reference

• /
• /login
• /logout
• /minions
• /jobs
• /run
• /events
• /hook
• /key
• /ws
• /stats

/

class salt.netapi.rest_cherrypy.app.LowDataAdapter
e primary entry point to Salt's REST API

GET()
An explanation of the API with links of where to go next

918 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

GET /
Request Headers

• Accept -- the desired response format.
Status Codes

• 200 -- success
• 401 -- authentication required
• 406 -- requested Content-Type not available

Example request:

curl -i localhost:8000

GET / HTTP/1.1
Host: localhost:8000
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

POST
Mock out specified imports

is allows autodoc to do its thing without having oodles of req'd installed libs. is doesn't work with
import * imports.

hp://read-the-docs.readthedocs.org/en/latest/faq.html#i-get-import-errors-on-libraries-that-depend-
on-c-modules

/login

class salt.netapi.rest_cherrypy.app.Login(*args, **kwargs)
Log in to receive a session token

Authentication information.

GET()
Present the login interface

GET /login
An explanation of how to log in.

Status Codes
• 200 -- success
• 401 -- authentication required
• 406 -- requested Content-Type not available

Example request:

curl -i localhost:8000/login

GET /login HTTP/1.1
Host: localhost:8000
Accept: text/html

Example response:

HTTP/1.1 200 OK
Content-Type: text/html

22.17. Full list of netapi modules 919

http://read-the-docs.readthedocs.org/en/latest/faq.html#i-get-import-errors-on-libraries-that-depend-on-c-modules
http://read-the-docs.readthedocs.org/en/latest/faq.html#i-get-import-errors-on-libraries-that-depend-on-c-modules

Salt Documentation, Release 2014.7.6

POST(**kwargs)
Authenticate against Salt's eauth system

POST /login
Request Headers

• X-Auth-Token -- a session token from Login.
• Accept -- the desired response format.
• Content-Type -- the format of the request body.

Form Parameters
• eauth -- the eauth backend configured for the user
• username -- username
• password -- password

Status Codes
• 200 -- success
• 401 -- authentication required
• 406 -- requested Content-Type not available

Example request:

curl -si localhost:8000/login \
-H "Accept: application/json" \
-d username='saltuser' \
-d password='saltpass' \
-d eauth='pam'

POST / HTTP/1.1
Host: localhost:8000
Content-Length: 42
Content-Type: application/x-www-form-urlencoded
Accept: application/json

username=saltuser&password=saltpass&eauth=pam

Example response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 206
X-Auth-Token: 6d1b722e
Set-Cookie: session_id=6d1b722e; expires=Sat, 17 Nov 2012 03:23:52 GMT; Path=/

{"return": {
"token": "6d1b722e",
"start": 1363805943.776223,
"expire": 1363849143.776224,
"user": "saltuser",
"eauth": "pam",
"perms": [

"grains.*",
"status.*",
"sys.*",
"test.*"

]
}}

920 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

/logout

class salt.netapi.rest_cherrypy.app.Logout
Class to remove or invalidate sessions

POST()
Destroy the currently active session and expire the session cookie

/minions

class salt.netapi.rest_cherrypy.app.Minions
Convenience URLs for working with minions

GET(mid=None)
A convenience URL for geing lists of minions or geing minion details

GET /minions/(mid)
Request Headers

• X-Auth-Token -- a session token from Login.
• Accept -- the desired response format.

Status Codes
• 200 -- success
• 401 -- authentication required
• 406 -- requested Content-Type not available

Example request:

curl -i localhost:8000/minions/ms-3

GET /minions/ms-3 HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

Example response:

HTTP/1.1 200 OK
Content-Length: 129005
Content-Type: application/x-yaml

return:
- ms-3:

grains.items:
...

POST(**kwargs)
Start an execution command and immediately return the job id

POST /minions
Request Headers

• X-Auth-Token -- a session token from Login.
• Accept -- the desired response format.
• Content-Type -- the format of the request body.

Response Headers
• Content-Type -- the format of the response body; depends on the Accept request
header.

Status Codes
• 200 -- success

22.17. Full list of netapi modules 921

Salt Documentation, Release 2014.7.6

• 401 -- authentication required
• 406 -- requested Content-Type not available

lowstate data describing Salt commands must be sent in the request body. e client option will
be set to local_async().

Example request:

curl -sSi localhost:8000/minions \
-H "Accept: application/x-yaml" \
-d tgt='*' \
-d fun='status.diskusage'

POST /minions HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml
Content-Length: 26
Content-Type: application/x-www-form-urlencoded

tgt=*&fun=status.diskusage

Example response:

HTTP/1.1 202 Accepted
Content-Length: 86
Content-Type: application/x-yaml

return:
- jid: '20130603122505459265'

minions: [ms-4, ms-3, ms-2, ms-1, ms-0]
_links:

jobs:
- href: /jobs/20130603122505459265

/jobs

class salt.netapi.rest_cherrypy.app.Jobs

GET(jid=None)
A convenience URL for geing lists of previously run jobs or geing the return from a single job

GET /jobs/(jid)
List jobs or show a single job from the job cache.

Status Codes
• 200 -- success
• 401 -- authentication required
• 406 -- requested Content-Type not available

Example request:

curl -i localhost:8000/jobs

GET /jobs HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

Example response:

922 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

HTTP/1.1 200 OK
Content-Length: 165
Content-Type: application/x-yaml

return:
- '20121130104633606931':

Arguments:
- '3'
Function: test.fib
Start Time: 2012, Nov 30 10:46:33.606931
Target: jerry
Target-type: glob

Example request:

curl -i localhost:8000/jobs/20121130104633606931

GET /jobs/20121130104633606931 HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

Example response:

HTTP/1.1 200 OK
Content-Length: 73
Content-Type: application/x-yaml

info:
- Arguments:

- '3'
Function: test.fib
Minions:
- jerry
Start Time: 2012, Nov 30 10:46:33.606931
Target: '*'
Target-type: glob
User: saltdev
jid: '20121130104633606931'

return:
- jerry:

- - 0
- 1
- 1
- 2
- 6.9141387939453125e-06

/run

class salt.netapi.rest_cherrypy.app.Run
Class to run commands without normal session handling

POST(**kwargs)
Run commands bypassing the normal session handling

POST /run
is entry point is primarily for ``one-off'' commands. Each request must pass full Salt authentica-
tion credentials. Otherwise this URL is identical to the root URL (/).

22.17. Full list of netapi modules 923

Salt Documentation, Release 2014.7.6

lowstate data describing Salt commands must be sent in the request body.
Status Codes

• 200 -- success
• 401 -- authentication required
• 406 -- requested Content-Type not available

Example request:

curl -sS localhost:8000/run \
-H 'Accept: application/x-yaml' \
-d client='local' \
-d tgt='*' \
-d fun='test.ping' \
-d username='saltdev' \
-d password='saltdev' \
-d eauth='pam'

POST /run HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml
Content-Length: 75
Content-Type: application/x-www-form-urlencoded

client=local&tgt=*&fun=test.ping&username=saltdev&password=saltdev&eauth=pam

Example response:

HTTP/1.1 200 OK
Content-Length: 73
Content-Type: application/x-yaml

return:
- ms-0: true

ms-1: true
ms-2: true
ms-3: true
ms-4: true

/events

class salt.netapi.rest_cherrypy.app.Events
Expose the Salt event bus

e event bus on the Salt master exposes a large variety of things, notably when executions are started on the
master and also when minions ultimately return their results. is URL provides a real-time window into a
running Salt infrastructure.

See also:

events

GET(token=None)
An HTTP stream of the Salt master event bus

is stream is formaed per the Server Sent Events (SSE) spec. Each event is formaed as JSON.

GET /events
Status Codes

• 200 -- success

924 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

• 401 -- authentication required
• 406 -- requested Content-Type not available

Example request:

curl -NsS localhost:8000/events

GET /events HTTP/1.1
Host: localhost:8000

Example response:

Note, the tag field is not part of the spec. SSE compliant clients should ignore unknown fields. is
addition allows non-compliant clients to only watch for certain tags without having to deserialze the
JSON object each time.

HTTP/1.1 200 OK
Connection: keep-alive
Cache-Control: no-cache
Content-Type: text/event-stream;charset=utf-8

retry: 400

tag: salt/job/20130802115730568475/new
data: {'tag': 'salt/job/20130802115730568475/new', 'data': {'minions': ['ms-4', 'ms-3', 'ms-2', 'ms-1', 'ms-0']}}

tag: salt/job/20130802115730568475/ret/jerry
data: {'tag': 'salt/job/20130802115730568475/ret/jerry', 'data': {'jid': '20130802115730568475', 'return': True, 'retcode': 0, 'success': True, 'cmd': '_return', 'fun': 'test.ping', 'id': 'ms-1'}}

e event stream can be easily consumed via JavaScript:

Note, you must be authenticated!
var source = new EventSource('/events');
source.onopen = function() { console.debug('opening') };
source.onerror = function(e) { console.debug('error!', e) };
source.onmessage = function(e) {

console.debug('Tag: ', e.data.tag)
console.debug('Data: ', e.data.data)

};

Or using CORS:

var source = new EventSource('/events', {withCredentials: true});

Some browser clients lack CORS support for the EventSource() API. Such clients may instead pass
the X-Auth-Token value as an URL parameter:

curl -NsS localhost:8000/events/6d1b722e

It is also possible to consume the stream via the shell.

Records are separated by blank lines; the data: and tag: prefixes will need to be removed manually
before aempting to unserialize the JSON.

curl's -N flag turns off input buffering which is required to process the stream incrementally.

Here is a basic example of printing each event as it comes in:

curl -NsS localhost:8000/events |\
while IFS= read -r line ; do

22.17. Full list of netapi modules 925

Salt Documentation, Release 2014.7.6

echo $line
done

Here is an example of using awk to filter events based on tag:

curl -NsS localhost:8000/events |\
awk '

BEGIN { RS=""; FS="\\n" }
$1 ~ /^tag: salt\/job\/[0-9]+\/new$/ { print $0 }

'
tag: salt/job/20140112010149808995/new
data: {"tag": "salt/job/20140112010149808995/new", "data": {"tgt_type": "glob", "jid": "20140112010149808995", "tgt": "jerry", "_stamp": "2014-01-12_01:01:49.809617", "user": "shouse", "arg": [], "fun": "test.ping", "minions": ["jerry"]}}
tag: 20140112010149808995
data: {"tag": "20140112010149808995", "data": {"fun_args": [], "jid": "20140112010149808995", "return": true, "retcode": 0, "success": true, "cmd": "_return", "_stamp": "2014-01-12_01:01:49.819316", "fun": "test.ping", "id": "jerry"}}

/hook

class salt.netapi.rest_cherrypy.app.Webhook
A generic web hook entry point that fires an event on Salt's event bus

External services can POST data to this URL to trigger an event in Salt. For example, Amazon SNS, Jenkins-CI
or Travis-CI, or GitHub web hooks.

Note: Be mindful of security
Salt's Reactor can run any code. A Reactor SLS that responds to a hook event is responsible for validating that
the event came from a trusted source and contains valid data.

is is a generic interface and securing it is up to you!

is URL requires authentication however not all external services can be configured to authenticate. For this
reason authentication can be selectively disabled for this URL. Follow best practices -- always use SSL, pass a
secret key, configure the firewall to only allow traffic from a known source, etc.

e event data is taken from the request body. e Content-Type header is respected for the payload.

e event tag is prefixed with salt/netapi/hook and the URL path is appended to the end. For exam-
ple, a POST request sent to /hook/mycompany/myapp/mydata will produce a Salt event with the tag
salt/netapi/hook/mycompany/myapp/mydata.

e following is an example .travis.yml file to send notifications to Salt of successful test runs:

language: python
script: python -m unittest tests
after_success:

- |
curl -sSk https://saltapi-url.example.com:8000/hook/travis/build/success -d branch="${TRAVIS_BRANCH}" -d commit="${TRAVIS_COMMIT}"

See also:

events, reactor

POST(*args, **kwargs)
Fire an event in Salt with a custom event tag and data

POST /hook
Status Codes

• 200 -- success
• 401 -- authentication required

926 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

• 406 -- requested Content-Type not available
• 413 -- request body is too large

Example request:

curl -sS localhost:8000/hook -d foo='Foo!' -d bar='Bar!'

POST /hook HTTP/1.1
Host: localhost:8000
Content-Length: 16
Content-Type: application/x-www-form-urlencoded

foo=Foo&bar=Bar!

Example response:

HTTP/1.1 200 OK
Content-Length: 14
Content-Type: application/json

{"success": true}

As a practical example, an internal continuous-integration build server could send anHTTP POST request
to the URL https://localhost:8000/hook/mycompany/build/success which contains
the result of a build and the SHA of the version that was built as JSON. at would then produce the
following event in Salt that could be used to kick off a deployment via Salt's Reactor:

Event fired at Fri Feb 14 17:40:11 2014

Tag: salt/netapi/hook/mycompany/build/success
Data:
{'_stamp': '2014-02-14_17:40:11.440996',

'headers': {
'X-My-Secret-Key': 'F0fAgoQjIT@W',
'Content-Length': '37',
'Content-Type': 'application/json',
'Host': 'localhost:8000',
'Remote-Addr': '127.0.0.1'},

'post': {'revision': 'aa22a3c4b2e7', 'result': True}}

Salt's Reactor could listen for the event:

reactor:
- 'salt/netapi/hook/mycompany/build/*':

- /srv/reactor/react_ci_builds.sls

And finally deploy the new build:

{% set secret_key = data.get('headers', {}).get('X-My-Secret-Key') %}
{% set build = data.get('post', {}) %}

{% if secret_key == 'F0fAgoQjIT@W' and build.result == True %}
deploy_my_app:

cmd.state.sls:
- tgt: 'application*'
- arg:

- myapp.deploy
- kwarg:

pillar:

22.17. Full list of netapi modules 927

Salt Documentation, Release 2014.7.6

revision: {{ revision }}
{% endif %}

/key

class salt.netapi.rest_cherrypy.app.Keys
Convenience URLs for working with minion keys

New in version 2014.7.0.

ese URLs wrap the functionality provided by the key wheel module functions.

GET(mid=None)
Show the list of minion keys or detail on a specific key

New in version 2014.7.0.

GET /keys/(mid)
List all keys or show a specific key

Status Codes
• 200 -- success
• 401 -- authentication required
• 406 -- requested Content-Type not available

Example request:

curl -i localhost:8000/keys

GET /keys HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

Example response:

HTTP/1.1 200 OK
Content-Length: 165
Content-Type: application/x-yaml

return:
local:
- master.pem
- master.pub
minions:
- jerry
minions_pre: []
minions_rejected: []

Example request:

curl -i localhost:8000/keys/jerry

GET /keys/jerry HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

Example response:

928 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

HTTP/1.1 200 OK
Content-Length: 73
Content-Type: application/x-yaml

return:
minions:

jerry: 51:93:b3:d0:9f:3a:6d:e5:28:67:c2:4b:27:d6:cd:2b

POST(mid, keysize=None, force=None, **kwargs)
Easily generate keys for a minion and auto-accept the new key

New in version 2014.7.0.

Example partial kickstart script to bootstrap a new minion:

%post
mkdir -p /etc/salt/pki/minion
curl -sSk https://localhost:8000/keys \

-d mid=jerry \
-d username=kickstart \
-d password=kickstart \
-d eauth=pam \

| tar -C /etc/salt/pki/minion -xf -

mkdir -p /etc/salt/minion.d
printf 'master: 10.0.0.5\nid: jerry' > /etc/salt/minion.d/id.conf
%end

POST /keys
Generate a public and private key and return both as a tarball

Authentication credentials must be passed in the request.
Status Codes

• 200 -- success
• 401 -- authentication required
• 406 -- requested Content-Type not available

Example request:

curl -sSk https://localhost:8000/keys \
-d mid=jerry \
-d username=kickstart \
-d password=kickstart \
-d eauth=pam \
-o jerry-salt-keys.tar

POST /keys HTTP/1.1
Host: localhost:8000

Example response:

HTTP/1.1 200 OK
Content-Length: 10240
Content-Disposition: attachment; filename="saltkeys-jerry.tar"
Content-Type: application/x-tar

jerry.pub0000644000000000000000000000070300000000000010730 0ustar 00000000000000

22.17. Full list of netapi modules 929

Salt Documentation, Release 2014.7.6

/ws

class salt.netapi.rest_cherrypy.app.WebsocketEndpoint
Open a WebSocket connection to Salt's event bus

e event bus on the Salt master exposes a large variety of things, notably when executions are started on the
master and also when minions ultimately return their results. is URL provides a real-time window into a
running Salt infrastructure. Uses websocket as the transport mechanism.

See also:

events

GET(token=None, **kwargs)
Return a websocket connection of Salt's event stream

GET /ws/(token)
ery Parameters

• format_events --e event streamwill undergo server-side formaing if thefor-
mat_events URL parameter is included in the request. is can be useful to avoid
formaing on the client-side:

curl -NsS <...snip...> localhost:8000/ws?format_events

Request Headers
• X-Auth-Token -- an authentication token from Login.

Status Codes
• 101 -- switching to the websockets protocol
• 401 -- authentication required
• 406 -- requested Content-Type not available

Example request:

curl -NsSk -H `X-Auth-Token: ffedf49d' -H `Host: localhost:8000' -H `Connection: Upgrade'
-H `Upgrade: websocket' -H `Origin: hps://localhost:8000' -H `Sec-WebSocket-Version:
13' -H `Sec-WebSocket-Key: `''$(echo -n $RANDOM | base64)'' localhost:8000/ws

GET /ws HTTP/1.1
Connection: Upgrade
Upgrade: websocket
Host: localhost:8000
Origin: https://localhost:8000
Sec-WebSocket-Version: 13
Sec-WebSocket-Key: s65VsgHigh7v/Jcf4nXHnA==
X-Auth-Token: ffedf49d

Example response:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: mWZjBV9FCglzn1rIKJAxrTFlnJE=
Sec-WebSocket-Version: 13

An authentication token may optionally be passed as part of the URL for browsers that cannot be con-
figured to send the authentication header or cookie:

curl -NsS <...snip...> localhost:8000/ws/ffedf49d

e event stream can be easily consumed via JavaScript:

930 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

// Note, you must be authenticated!
var source = new Websocket('ws://localhost:8000/ws/d0ce6c1a');
source.onerror = function(e) { console.debug('error!', e); };
source.onmessage = function(e) { console.debug(e.data); };

source.send('websocket client ready')

source.close();

Or via Python, using the Python module websocket-client for example.

Note, you must be authenticated!

from websocket import create_connection

ws = create_connection('ws://localhost:8000/ws/d0ce6c1a')
ws.send('websocket client ready')

Look at https://pypi.python.org/pypi/websocket-client/ for more
examples.
while listening_to_events:

print ws.recv()

ws.close()

Above examples show how to establish a websocket connection to Salt and activating real time updates
from Salt's event stream by signaling websocket client ready.

/stats

class salt.netapi.rest_cherrypy.app.Stats
Expose statistics on the running CherryPy server

GET()
Return a dump of statistics collected from the CherryPy server

GET /stats

Request Headers

• X-Auth-Token -- a session token from Login.

• Accept -- the desired response format.

Response Headers

• Content-Type -- the format of the response body; depends on the Accept
request header.

Status Codes

• 200 -- success

• 401 -- authentication required

• 406 -- requested Content-Type not available

22.17. Full list of netapi modules 931

https://pypi.python.org/pypi/websocket-client/

Salt Documentation, Release 2014.7.6

22.17.2 rest_tornado

A non-blocking REST API for Salt

depends

• tornado Python module

configuration All authentication is done through Salt's external auth system which requires additional
configuration not described here.

In order to run rest_tornado with the salt-master add the following to the Salt master config file.

rest_tornado:
can be any port
port: 8000
ssl_crt: /etc/pki/api/certs/server.crt
no need to specify ssl_key if cert and key
are in one single file
ssl_key: /etc/pki/api/certs/server.key
debug: False
disable_ssl: False

Authentication

Authentication is performed by passing a session token with each request. Tokens are generated via the SaltAu-
thHandler URL.

e token may be sent in one of two ways:

• Include a custom header named X-Auth-Token.

• Sent via a cookie. is option is a convenience for HTTP clients that automatically handle cookie support
(such as browsers).

See also:

You can bypass the session handling via the RunSaltAPIHandler URL.

Usage

Commands are sent to a running Salt master via this module by sending HTTP requests to the URLs detailed below.

Content negotiation

is REST interface is flexible in what data formats it will accept as well as what formats it will return (e.g., JSON,
YAML, x-www-form-urlencoded).

• Specify the format of data in the request body by including the Content-Type header.

• Specify the desired data format for the response body with the Accept header.

Data sent in POST and PUT requests must be in the format of a list of lowstate dictionaries. is allows multiple
commands to be executed in a single HTTP request.

932 Chapter 22. Reference

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6

Salt Documentation, Release 2014.7.6

lowstate A dictionary containing various keys that instruct Salt which command to run, where that command lives,
any parameters for that command, any authentication credentials, what returner to use, etc.

Salt uses the lowstate data format internally in many places to pass command data between functions. Salt
also uses lowstate for the LocalClient() Python API interface.

e following example (in JSON format) causes Salt to execute two commands:

[{
"client": "local",
"tgt": "*",
"fun": "test.fib",
"arg": ["10"]

},
{

"client": "runner",
"fun": "jobs.lookup_jid",
"jid": "20130603122505459265"

}]

Multiple commands in a Salt API request will be executed in serial and makes no gaurantees that all com-
mands will run. Meaning that if test.fib (from the example above) had an exception, the API would still execute
``jobs.lookup_jid''.

Responses to these lowstates are an in-order list of dicts containing the return data, a yaml response could look like:

- ms-1: true
ms-2: true

- ms-1: foo
ms-2: bar

In the event of an exception while executing a command the return for that lowstate will be a string, for example if
no minions matched the first lowstate we would get a return like:

- No minions matched the target. No command was sent, no jid was assigned.
- ms-1: true

ms-2: true

x-www-form-urlencoded

Sending JSON or YAML in the request body is simple and most flexible, however sending data in urlencoded format
is also supported with the caveats below. It is the default format for HTML forms, many JavaScript libraries, and the
curl command.

For example, the equivalent to running salt '*' test.ping is sending
fun=test.ping&arg&client=local&tgt=* in the HTTP request body.

Caveats:

• Only a single command may be sent per HTTP request.

• Repeating the arg parameter multiple times will cause those parameters to be combined into a single list.

Note, some popular frameworks and languages (notably jery, PHP, and Ruby on Rails) will automatically
append empty brackets onto repeated parameters. E.g., arg=one, arg=two will be sent as arg[]=one,
arg[]=two. is is not supported; send JSON or YAML instead.

22.17. Full list of netapi modules 933

Salt Documentation, Release 2014.7.6

A Websockets add-on to saltnado

depends

• tornado Python module

In order to enable saltnado_websockets you must add websockets: True to your saltnado config block.

rest_tornado:
can be any port
port: 8000
ssl_crt: /etc/pki/api/certs/server.crt
no need to specify ssl_key if cert and key
are in one single file
ssl_key: /etc/pki/api/certs/server.key
debug: False
disable_ssl: False
websockets: True

All Events

Exposes all ``real-time'' events from Salt's event bus on a websocket connection. It should be noted that ``Real-
time'' here means these events are made available to the server as soon as any salt related action (changes to minions,
new jobs etc) happens. Clients are however assumed to be able to tolerate any network transport related latencies.
Functionality provided by this endpoint is similar to the /events end point.

e event bus on the Salt master exposes a large variety of things, notably when executions are started on the master
and also when minions ultimately return their results. is URL provides a real-time window into a running Salt
infrastructure. Uses websocket as the transport mechanism.

Exposes GET method to return websocket connections. All requests should include an auth token. A way to obtain
obtain authentication tokens is shown below.

% curl -si localhost:8000/login \
-H "Accept: application/json" \
-d username='salt' \
-d password='salt' \
-d eauth='pam'

Which results in the response

{
"return": [{

"perms": [".*", "@runner", "@wheel"],
"start": 1400556492.277421,
"token": "d0ce6c1a37e99dcc0374392f272fe19c0090cca7",
"expire": 1400599692.277422,
"user": "salt",
"eauth": "pam"

}]
}

In this example the token returned is d0ce6c1a37e99dcc0374392f272fe19c0090cca7 and can be in-
cluded in subsequent websocket requests (as part of the URL).

e event stream can be easily consumed via JavaScript:

934 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

// Note, you must be authenticated!

// Get the Websocket connection to Salt
var source = new Websocket('wss://localhost:8000/all_events/d0ce6c1a37e99dcc0374392f272fe19c0090cca7');

// Get Salt's "real time" event stream.
source.onopen = function() { source.send('websocket client ready'); };

// Other handlers
source.onerror = function(e) { console.debug('error!', e); };

// e.data represents Salt's "real time" event data as serialized JSON.
source.onmessage = function(e) { console.debug(e.data); };

// Terminates websocket connection and Salt's "real time" event stream on the server.
source.close();

Or via Python, using the Python module websocket-client for example. Or the tornado client.

Note, you must be authenticated!

from websocket import create_connection

Get the Websocket connection to Salt
ws = create_connection('wss://localhost:8000/all_events/d0ce6c1a37e99dcc0374392f272fe19c0090cca7')

Get Salt's "real time" event stream.
ws.send('websocket client ready')

Simple listener to print results of Salt's "real time" event stream.
Look at https://pypi.python.org/pypi/websocket-client/ for more examples.
while listening_to_events:

print ws.recv() # Salt's "real time" event data as serialized JSON.

Terminates websocket connection and Salt's "real time" event stream on the server.
ws.close()

Please refer to https://github.com/liris/websocket-client/issues/81 when using a self signed cert

Above examples show how to establish a websocket connection to Salt and activating real time updates from Salt's
event stream by signaling websocket client ready.

Formaed Events

Exposes formatted ``real-time'' events from Salt's event bus on a websocket connection. It should be noted that
``Real-time'' here means these events are made available to the server as soon as any salt related action (changes to
minions, new jobs etc) happens. Clients are however assumed to be able to tolerate any network transport related
latencies. Functionality provided by this endpoint is similar to the /events end point.

e event bus on the Salt master exposes a large variety of things, notably when executions are started on the master
and also when minions ultimately return their results. is URL provides a real-time window into a running Salt
infrastructure. Uses websocket as the transport mechanism.

Formaed events parses the raw ``real time'' event stream and maintains a current view of the following:

22.17. Full list of netapi modules 935

https://pypi.python.org/pypi/websocket-client/
http://tornado.readthedocs.org/en/latest/websocket.html#client-side-support

Salt Documentation, Release 2014.7.6

• minions

• jobs

A change to the minions (such as addition, removal of keys or connection drops) or jobs is processed and clients are
updated. Since we use salt's presence events to track minions, please enable presence_events and set a small
value for the loop_interval in the salt master config file.

Exposes GET method to return websocket connections. All requests should include an auth token. A way to obtain
obtain authentication tokens is shown below.

% curl -si localhost:8000/login \
-H "Accept: application/json" \
-d username='salt' \
-d password='salt' \
-d eauth='pam'

Which results in the response

{
"return": [{

"perms": [".*", "@runner", "@wheel"],
"start": 1400556492.277421,
"token": "d0ce6c1a37e99dcc0374392f272fe19c0090cca7",
"expire": 1400599692.277422,
"user": "salt",
"eauth": "pam"

}]
}

In this example the token returned is d0ce6c1a37e99dcc0374392f272fe19c0090cca7 and can be in-
cluded in subsequent websocket requests (as part of the URL).

e event stream can be easily consumed via JavaScript:

// Note, you must be authenticated!

// Get the Websocket connection to Salt
var source = new Websocket('wss://localhost:8000/formatted_events/d0ce6c1a37e99dcc0374392f272fe19c0090cca7');

// Get Salt's "real time" event stream.
source.onopen = function() { source.send('websocket client ready'); };

// Other handlers
source.onerror = function(e) { console.debug('error!', e); };

// e.data represents Salt's "real time" event data as serialized JSON.
source.onmessage = function(e) { console.debug(e.data); };

// Terminates websocket connection and Salt's "real time" event stream on the server.
source.close();

Or via Python, using the Python module websocket-client for example. Or the tornado client.

Note, you must be authenticated!

from websocket import create_connection

936 Chapter 22. Reference

https://pypi.python.org/pypi/websocket-client/
http://tornado.readthedocs.org/en/latest/websocket.html#client-side-support

Salt Documentation, Release 2014.7.6

Get the Websocket connection to Salt
ws = create_connection('wss://localhost:8000/formatted_events/d0ce6c1a37e99dcc0374392f272fe19c0090cca7')

Get Salt's "real time" event stream.
ws.send('websocket client ready')

Simple listener to print results of Salt's "real time" event stream.
Look at https://pypi.python.org/pypi/websocket-client/ for more examples.
while listening_to_events:

print ws.recv() # Salt's "real time" event data as serialized JSON.

Terminates websocket connection and Salt's "real time" event stream on the server.
ws.close()

Please refer to https://github.com/liris/websocket-client/issues/81 when using a self signed cert

Above examples show how to establish a websocket connection to Salt and activating real time updates from Salt's
event stream by signaling websocket client ready.

Example responses

Minion information is a dictionary keyed by each connected minion's id (mid), grains information for each
minion is also included.

Minion information is sent in response to the following minion events:

• connection drops

– requires running manage.present periodically every loop_interval seconds

• minion addition

• minon removal

Not all grains are shown
data: {

"minions": {
"minion1": {

"id": "minion1",
"grains": {

"kernel": "Darwin",
"domain": "local",
"zmqversion": "4.0.3",
"kernelrelease": "13.2.0"

}
}

}
}

Job information is also tracked and delivered.

Job information is also a dictionary in which each job's information is keyed by salt's jid.

data: {
"jobs": {

"20140609153646699137": {

22.17. Full list of netapi modules 937

Salt Documentation, Release 2014.7.6

"tgt_type": "glob",
"jid": "20140609153646699137",
"tgt": "*",
"start_time": "2014-06-09T15:36:46.700315",
"state": "complete",
"fun": "test.ping",
"minions": {

"minion1": {
"return": true,
"retcode": 0,
"success": true

}
}

}
}

}

Setup

REST URI Reference

• /
• /login
• /minions
• /jobs
• /run
• /events
• /hook

/

salt.netapi.rest_tornado.saltnado.SaltAPIHandler
alias of <Mock object at 0x2af114cd30d0>

/login

salt.netapi.rest_tornado.saltnado.SaltAuthHandler
alias of <Mock object at 0x2af118e13590>

/minions

salt.netapi.rest_tornado.saltnado.MinionSaltAPIHandler
alias of <Mock object at 0x2af118a48e10>

/jobs

salt.netapi.rest_tornado.saltnado.JobsSaltAPIHandler
alias of <Mock object at 0x2af118a48550>

938 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

/run

salt.netapi.rest_tornado.saltnado.RunSaltAPIHandler
alias of <Mock object at 0x2af116004f10>

/events

salt.netapi.rest_tornado.saltnado.EventsSaltAPIHandler
alias of <Mock object at 0x2af118a48ed0>

/hook

salt.netapi.rest_tornado.saltnado.WebhookSaltAPIHandler
alias of <Mock object at 0x2af118a48d50>

22.17.3 rest_wsgi

A minimalist REST API for Salt

is rest_wsgi module provides a no-frills REST interface for sending commands to the Salt master. ere are
no dependencies.

Extra care must be taken when deploying this module into production. Please read this documentation in entirety.

All authentication is done through Salt's external auth system.

Usage

• All requests must be sent to the root URL (/).

• All requests must be sent as a POST request with JSON content in the request body.

• All responses are in JSON.

See also:

rest_cherrypy

e rest_cherrypy module is more full-featured, production-ready, and has builtin security features.

Deployment

e rest_wsgi netapi module is a standard Python WSGI app. It can be deployed one of two ways.

Using a WSGI-compliant web server

is module may be run via any WSGI-compliant production server such as Apache with mod_wsgi or Nginx with
FastCGI.

It is strongly recommended that this app be used with a server that supports HTTPS encryption since raw Salt
authentication credentials must be sent with every request. Any apps that access Salt through this interface will
need to manually manage authentication credentials (either username and password or a Salt token). Tread carefully.

22.17. Full list of netapi modules 939

Salt Documentation, Release 2014.7.6

salt-api using a development-only server

If run directly via the salt-api daemon it uses the wsgiref.simple_server() that ships in the Python standard library.
is is a single-threaded server that is intended for testing and development. is server does not use encryption;
please note that raw Salt authentication credentials must be sent with every HTTP request.

Running this module via salt-api is not recommended!

In order to start this module via the salt-api daemon the following must be put into the Salt master config:

rest_wsgi:
port: 8001

Usage examples

POST /
Example request for a basic test.ping:

% curl -sS -i \
-H 'Content-Type: application/json' \
-d '[{"eauth":"pam","username":"saltdev","password":"saltdev","client":"local","tgt":"*","fun":"test.ping"}]' localhost:8001

Example response:

HTTP/1.0 200 OK
Content-Length: 89
Content-Type: application/json

{"return": [{"ms--4": true, "ms--3": true, "ms--2": true, "ms--1": true, "ms--0": true}]}

Example request for an asynchronous test.ping:

% curl -sS -i \
-H 'Content-Type: application/json' \
-d '[{"eauth":"pam","username":"saltdev","password":"saltdev","client":"local_async","tgt":"*","fun":"test.ping"}]' localhost:8001

Example response:

HTTP/1.0 200 OK
Content-Length: 103
Content-Type: application/json

{"return": [{"jid": "20130412192112593739", "minions": ["ms--4", "ms--3", "ms--2", "ms--1", "ms--0"]}]}

Example request for looking up a job ID:

% curl -sS -i \
-H 'Content-Type: application/json' \
-d '[{"eauth":"pam","username":"saltdev","password":"saltdev","client":"runner","fun":"jobs.lookup_jid","jid":"20130412192112593739"}]' localhost:8001

Example response:

HTTP/1.0 200 OK
Content-Length: 89
Content-Type: application/json

{"return": [{"ms--4": true, "ms--3": true, "ms--2": true, "ms--1": true, "ms--0": true}]}

940 Chapter 22. Reference

http://docs.python.org/2/library/wsgiref.html#module-wsgiref.simple_server

Salt Documentation, Release 2014.7.6

form lowstate A list of lowstate data appropriate for the client interface you are calling.

status 200 success

status 401 authentication required

22.18 Full list of builtin output modules

Follow one of the below links for further information and examples

grains Special outpuer for grains
highstate Outpuer for displaying results of state runs
json_out Display return data in JSON format
key Display salt-key output
nested Recursively display nested data
newline_values_only Display values only, separated by newlines
no_out Display no output
no_return Display output for minions that did not return
overstatestage Display clean output of an overstate stage
pprint_out Python prey-print (pprint)
raw Display raw output data structure
txt Simple text outpuer
virt_query virt.query outpuer
yaml_out Display return data in YAML format

22.18.1 salt.output.grains

Special outpuer for grains

is outpuer is a more condensed version of the nested outpuer, used by default to display grains when the
following functions are invoked:

• grains.item

• grains.items

• grains.setval

Example output:

myminion:
dictionary: {'abc': 123, 'def': 456}
list:

Hello
World

bar: baz

salt.output.grains.output(grains)
Output the grains in a clean way

22.18. Full list of builtin output modules 941

Salt Documentation, Release 2014.7.6

22.18.2 salt.output.highstate

Outpuer for displaying results of state runs

e return data from the Highstate command is a standard data structure which is parsed by the highstate outpuer
to deliver a clean and readable set of information about the HighState run on minions.

Two configurations can be set to modify the highstate outpuer. ese values can be set in the master config to
change the output of the salt command or set in the minion config to change the output of the salt-call
command.

state_verbose: By default state_verbose is set to True, seing this to False will instruct the highstate outpuer to
omit displaying anything in green, this means that nothing with a result of True and no changes will not be
printed

state_output: e highstate outpuer has five output modes, full, terse, mixed, changes and filter.

• e default is set to full, which will display many lines of detailed information for each executed
chunk.

• If terse is used, then the output is greatly simplified and shown in only one line.

• If mixed is used, then terse output will be used unless a state failed, in which case full output will be
used.

• If changes is used, then terse output will be used if there was no error and no changes, otherwise full
output will be used.

• If filter is used, then either or both of two different filters can be used: exclude or terse.
ese can be set as such from the command line, or in the Salt config as state_output_exclude or
state_output_terse, respectively. e values to exclude must be a comma-separated list of True, False
and/or None. Because of parsing nuances, if only one of these is used, it must still contain a comma. For
instance: exclude=True,.

state_tabular: If state_output uses the terse output, set this to True for an aligned output format. If you wish to use
a custom format, this can be set to a string.

Example output:

myminion:

ID: test.ping
Function: module.run

Result: True
Comment: Module function test.ping executed
Changes:

ret:

True

Summary

Succeeded: 1
Failed: 0

Total: 0

salt.output.highstate.output(data)
e HighState Outpuer is only meant to be used with the state.highstate function, or a function that returns
highstate return data.

942 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.18.3 salt.output.json_out

Display return data in JSON format

configuration e output format can be configured in two ways: Using the --out-indent CLI flag
and specifying a positive integer or a negative integer to group JSON from each minion to a single
line.

Or seing the output_indent seing in the Master or Minion configuration file with one of
the following values:

• Null: put each minion return on a single line.

• pretty: use four-space indents and sort the keys.

• An integer: specify the indentation level.

Salt's outpuers operate on a per-minion basis. Each minion return will be output as a single JSON object once it
comes in to the master.

Some JSON parsers can guess when an object ends and a new one begins but many can not. A good way to differen-
tiate between each minion return is to use the single-line output format and to parse each line individually. Example
output (truncated):

{"dave": {"en0": {"hwaddr": "02:b0:26:32:4c:69", ...}}}
{"jerry": {"en0": {"hwaddr": "02:26:ab:0d:b9:0d", ...}}}
{"kevin": {"en0": {"hwaddr": "02:6d:7f:ce:9f:ee", ...}}}
{"mike": {"en0": {"hwaddr": "02:48:a2:4b:70:a0", ...}}}
{"phill": {"en0": {"hwaddr": "02:1d:cc:a2:33:55", ...}}}
{"stuart": {"en0": {"hwaddr": "02:9a:e0:ea:9e:3c", ...}}}

salt.output.json_out.output(data)
Print the output data in JSON

22.18.4 salt.output.key

Display salt-key output

e salt-key command makes use of this outpuer to format its output.

salt.output.key.output(data)
Read in the dict structure generated by the salt key API methods and print the structure.

22.18.5 salt.output.nested

Recursively display nested data

is is the default outpuer for most execution functions.

Example output:

myminion:

foo:

bar:

22.18. Full list of builtin output modules 943

Salt Documentation, Release 2014.7.6

baz
dictionary:

abc:

123
def:

456
list:

- Hello
- World

class salt.output.nested.NestDisplay
Manage the nested display contents

display(ret, indent, prefix, out)
Recursively iterate down through data structures to determine output

ustring(indent, color, msg, prefix='`, suffix='`, endc=None)

salt.output.nested.output(ret)
Display ret data

22.18.6 salt.output.newline_values_only

Display values only, separated by newlines

New in version Lithium.

is outpuer is designed for Salt CLI return data. It will do the following to the return dict:

1. Get just the values (ignoring the minion IDs).

2. Each value, if it is iterable, is split a separate line.

3. Each minion's values are separated by newlines.

is results in a single string of return data containing all the values from the various minions.

Warning: As noted above, this outpuer will discard the minion ID. If the minion ID is important, then an
outpuer that returns the full return dictionary in a parsable format (such as json, pprint,, or yaml) may
be more suitable.

Example 1

Input

{
'myminion': ['127.0.0.1', '10.0.0.1'],
'second-minion': ['127.0.0.1', '10.0.0.2']

}

Output

944 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

127.0.0.1
10.0.0.1
127.0.0.1
10.0.0.2

Example 2

Input

{
'myminion': 8,
'second-minion': 10

}

Output

8
10

salt.output.newline_values_only.output(data)
Display modified ret data

22.18.7 salt.output.no_out

Display no output

No output is produced when this outpuer is selected

salt.output.no_out.output(ret)
Don't display data. Used when you only are interested in the return.

22.18.8 salt.output.no_return

Display output for minions that did not return

is outpuer is used to display notices about which minions failed to return when a salt function is run with -v or
--verbose. It should not be called directly from the CLI.

Example output:

virtucentos:
Minion did not return

class salt.output.no_return.NestDisplay
Create generator for nested output

display(ret, indent, prefix, out)
Recursively iterate down through data structures to determine output

salt.output.no_return.output(ret)
Display ret data

22.18. Full list of builtin output modules 945

Salt Documentation, Release 2014.7.6

22.18.9 salt.output.overstatestage

Display clean output of an overstate stage

is outpuer is used to display OverState stages, and should not be called directly.

salt.output.overstatestage.output(data)
Format the data for printing stage information from the overstate system

22.18.10 salt.output.pprint_out

Python prey-print (pprint)

e python prey-print system was once the default outpuer. It simply passes the return data through to
pprint.pformat and prints the results.

Example output:

{'saltmine': {'foo': {'bar': 'baz',
'dictionary': {'abc': 123, 'def': 456},
'list': ['Hello', 'World']}}}

salt.output.pprint_out.output(data)
Print out via prey print

22.18.11 salt.output.raw

Display raw output data structure

is outpuer simply displays the output as a python data structure, by printing a string representation of it. It is
similar to the pprint outpuer, only the data is not nicely formaed/indented.

is was the original outpuer used by Salt before the outpuer system was developed.

Example output:

{'myminion': {'foo': {'list': ['Hello', 'World'], 'bar': 'baz', 'dictionary': {'abc': 123, 'def': 456}}}}

salt.output.raw.output(data)
Rather basic….

22.18.12 salt.output.txt

Simple text outpuer

e txt outpuer has been developed to make the output from shell commands on minions appear as they do when
the command is executed on the minion.

salt.output.txt.output(data)
Output the data in lines, very nice for running commands

946 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.18.13 salt.output.virt_query

virt.query outpuer

Used to display the output from the virt.query runner.

salt.output.virt_query.output(data)
Display output for the salt-run virt.query function

22.18.14 salt.output.yaml_out

Display return data in YAML format

is outpuer defaults to printing in YAML block mode for beer readability.

Example output:

saltmine:
foo:

bar: baz
dictionary:

abc: 123
def: 456

list:
- Hello
- World

salt.output.yaml_out.output(data)
Print out YAML using the block mode

22.19 Peer Communication

Salt 0.9.0 introduced the capability for Salt minions to publish commands. e intent of this feature is not for Salt
minions to act as independent brokers one with another, but to allow Salt minions to pass commands to each other.

In Salt 0.10.0 the ability to execute runners from the master was added. is allows for the master to return collective
data from runners back to the minions via the peer interface.

e peer interface is configured through two options in the master configuration file. For minions to send commands
from the master the peer configuration is used. To allow for minions to execute runners from the master the
peer_run configuration is used.

Since this presents a viable security risk by allowing minions access to the master publisher the capability is turned
off by default. e minions can be allowed access to the master publisher on a per minion basis based on regular
expressions. Minions with specific ids can be allowed access to certain Salt modules and functions.

22.19.1 Peer Configuration

e configuration is done under the peer seing in the Salt master configuration file, here are a number of config-
uration possibilities.

e simplest approach is to enable all communication for all minions, this is only recommended for very secure
environments.

22.19. Peer Communication 947

Salt Documentation, Release 2014.7.6

peer:
.*:

- .*

is configuration will allow minions with IDs ending in example.com access to the test, ps, and pkg module func-
tions.

peer:
.*example.com:

- test.*
- ps.*
- pkg.*

econfiguration logic is simple, a regular expression is passed formatchingminion ids, and then a list of expressions
matching minion functions is associated with the named minion. For instance, this configuration will also allow
minions ending with foo.org access to the publisher.

peer:
.*example.com:

- test.*
- ps.*
- pkg.*

.*foo.org:
- test.*
- ps.*
- pkg.*

22.19.2 Peer Runner Communication

Configuration to allow minions to execute runners from the master is done via the peer_run option on the master.
e peer_run configuration follows the same logic as the peer option. e only difference is that access is granted
to runner modules.

To open up access to all minions to all runners:

peer_run:
.*:

- .*

is configuration will allow minions with IDs ending in example.com access to the manage and jobs runner func-
tions.

peer_run:
.*example.com:

- manage.*
- jobs.*

22.19.3 Using Peer Communication

e publish module was created to manage peer communication. e publish module comes with a number of func-
tions to execute peer communication in different ways. Currently there are three functions in the publish module.
ese examples will show how to test the peer system via the salt-call command.

948 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

To execute test.ping on all minions:

salt-call publish.publish * test.ping

To execute the manage.up runner:

salt-call publish.runner manage.up

To match minions using other matchers, use expr_form:

salt-call publish.publish 'webserv* and not G@os:Ubuntu' test.ping expr_form='compound'

22.20 Pillars

Salt includes a number of built-in external pillars, listed at Full list of builtin pillar modules.

You may also wish to look at the standard pillar documentation, at Pillar Configuration

e source for the built-in Salt pillars can be found here: hps://github.com/saltstack/salt/blob/develop/salt/pillar

22.21 Full list of builtin pillar modules

cmd_json Execute a command and read the output as JSON.
cmd_yaml Execute a command and read the output as YAML.
cmd_yamlex Execute a command and read the output as YAMLEX.
cobbler A module to pull data from Cobbler via its API into the Pillar dictionary
django_orm Generate Pillar data from Django models through the Django ORM
etcd_pillar Use etcd data as a Pillar source
foreman A module to pull data from Foreman via its API into the Pillar dictionary
git_pillar Clone a remote git repository and use the filesystem as a Pillar source
hiera Use hiera data as a Pillar source
libvirt Load up the libvirt keys into Pillar for a given minion if said keys have been generated using the libvirt key runner
mongo Read Pillar data from a mongodb collection
mysql Retrieve Pillar data by doing a MySQL query
pillar_ldap Use LDAP data as a Pillar source
puppet Execute an unmodified puppet_node_classifier and read the output as YAML.
reclass_adapter Use the ``reclass'' database as a Pillar source
redismod Read pillar data from a Redis backend
s3 Copy pillar data from a bucket in Amazon S3
svn_pillar Clone a remote SVN repository and use the filesystem as a Pillar source
virtkey Accept a key from a hypervisor if the virt runner has already submied an authorization request

22.21.1 salt.pillar.cmd_json

Execute a command and read the output as JSON. e JSON data is then directly overlaid onto the minion's Pillar
data.

salt.pillar.cmd_json.ext_pillar(minion_id, pillar, command)

22.21. Full list of builtin pillar modules 949

https://github.com/saltstack/salt/blob/develop/salt/pillar

Salt Documentation, Release 2014.7.6

Execute a command and read the output as JSON

22.21.2 salt.pillar.cmd_yaml

Execute a command and read the output as YAML. e YAML data is then directly overlaid onto the minion's Pillar
data

salt.pillar.cmd_yaml.ext_pillar(minion_id, pillar, command)
Execute a command and read the output as YAML

22.21.3 salt.pillar.cmd_yamlex

Execute a command and read the output as YAMLEX. e YAMLEX data is then directly overlaid onto the minion's
Pillar data

salt.pillar.cmd_yamlex.ext_pillar(minion_id, pillar, command)
Execute a command and read the output as YAMLEX

22.21.4 salt.pillar.cobbler

A module to pull data from Cobbler via its API into the Pillar dictionary

Configuring the Cobbler ext_pillar

e same cobbler.* parameters are used for both the Cobbler tops and Cobbler pillar modules.

ext_pillar:
- cobbler:

key: cobbler # Nest results within this key. By default, values are not nested.
only: [parameters] # Add only these keys to pillar.

cobbler.url: https://example.com/cobbler_api #default is http://localhost/cobbler_api
cobbler.user: username # default is no username
cobbler.password: password # default is no password

Module Documentation

salt.pillar.cobbler.ext_pillar(minion_id, pillar, key=None, only=())
Read pillar data from Cobbler via its API.

22.21.5 salt.pillar.django_orm

Generate Pillar data from Django models through the Django ORM

maintainer Micah Hausler <micah.hausler@gmail.com>

maturity new

950 Chapter 22. Reference

mailto:micah.hausler@gmail.com

Salt Documentation, Release 2014.7.6

Configuring the django_orm ext_pillar

To use this module, your Django project must be on the salt master server with database access. is assumes you
are using virtualenv with all the project's requirements installed.

ext_pillar:
- django_orm:

pillar_name: my_application
project_path: /path/to/project/
settings_module: my_application.settings
env_file: /path/to/env/file.sh
Optional: If your project is not using the system python,
add your virtualenv path below.
env: /path/to/virtualenv/

django_app:

Required: the app that is included in INSTALLED_APPS
my_application.clients:

Required: the model name
Client:

Required: model field to use as the key in the rendered
Pillar. Must be unique; must also be included in the
``fields`` list below.
name: shortname

Optional:
See Django's QuerySet documentation for how to use .filter()
filter: {'kw': 'args'}

Required: a list of field names
List items will be used as arguments to the .values() method.
See Django's QuerySet documentation for how to use .values()
fields:

- field_1
- field_2

is would return pillar data that would look like

my_application:
my_application.clients:

Client:
client_1:

field_1: data_from_field_1
field_2: data_from_field_2

client_2:
field_1: data_from_field_1
field_2: data_from_field_2

As another example, data from multiple database tables can be fetched using Django's regular lookup syntax. Note,
usingManyToManyFields will not currentlywork since the return from values() changes if aManyToMany is present.

ext_pillar:
- django_orm:

22.21. Full list of builtin pillar modules 951

Salt Documentation, Release 2014.7.6

pillar_name: djangotutorial
project_path: /path/to/mysite
settings_module: mysite.settings

django_app:
mysite.polls:

Choices:
name: poll__question
fields:

- poll__question
- poll__id
- choice_text
- votes

Module Documentation

salt.pillar.django_orm.ext_pillar(minion_id, pillar, pillar_name, project_path, set-
tings_module, django_app, env=None, env_file=None,
*args, **kwargs)

Connect to a Django database through the ORM and retrieve model fields

Parameters

• pillar_name (str) -- e name of the pillar to be returned

• project_path (str) -- e full path to your Django project (the directory manage.py
is in)

• settings_module (str) -- e seings module for your project. is can be found
in your manage.py file

• django_app (str) -- A dictionary containing your apps, models, and fields

• env (str) -- e full path to the virtualenv for your Django project

• env_file (str) -- An optional bash file that sets up your environment. e file is run
in a subprocess and the changed variables are then added

22.21.6 salt.pillar.etcd_pillar

Use etcd data as a Pillar source

New in version 2014.7.0.

depends

• python-etcd

In order to use an etcd server, a profile must be created in the master configuration file:

my_etcd_config:
etcd.host: 127.0.0.1
etcd.port: 4001

Aer the profile is created, configure the external pillar system to use it. Optionally, a root may be specified.

952 Chapter 22. Reference

http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str

Salt Documentation, Release 2014.7.6

ext_pillar:
- etcd: my_etcd_config

ext_pillar:
- etcd: my_etcd_config root=/salt

Using these configuration profiles, multiple etcd sources may also be used:

ext_pillar:
- etcd: my_etcd_config
- etcd: my_other_etcd_config

e minion_id may be used in the root path to expose minion-specific information stored in etcd.

ext_pillar:
- etcd: my_etcd_config root=/salt/%(minion_id)s

Minion-specific values may override shared values when the minion-specific root appears aer the shared root:

ext_pillar:
- etcd: my_etcd_config root=/salt-shared
- etcd: my_other_etcd_config root=/salt-private/%(minion_id)s

Using the configuration above, the following commands could be used to share a key with all minions but override
its value for a specific minion:

etcdctl set /salt-shared/mykey my_value
etcdctl set /salt-private/special_minion_id/mykey my_other_value

salt.pillar.etcd_pillar.ext_pillar(minion_id, pillar, conf)
Check etcd for all data

22.21.7 salt.pillar.foreman

A module to pull data from Foreman via its API into the Pillar dictionary

Configuring the Foreman ext_pillar

Set the following Salt config to setup Foreman as external pillar source:

ext_pillar:
- foreman:

key: foreman # Nest results within this key
only: ['hostgroup_name', 'parameters'] # Add only these keys to pillar

foreman.url: https://example.com/foreman_api
foreman.user: username # default is admin
foreman.password: password # default is changeme

e following options are optional:

22.21. Full list of builtin pillar modules 953

Salt Documentation, Release 2014.7.6

foreman.api: apiversion # default is 2 (1 is not supported yet)
foreman.verifyssl: False # default is True
foreman.certfile: /etc/ssl/certs/mycert.pem # default is None
foreman.keyfile: /etc/ssl/private/mykey.pem # default is None
foreman.cafile: /etc/ssl/certs/mycert.ca.pem # default is None
foreman.lookup_parameters: True # default is True

Module Documentation

salt.pillar.foreman.ext_pillar(minion_id, pillar, key=None, only=())
Read pillar data from Foreman via its API.

22.21.8 salt.pillar.git_pillar

Clone a remote git repository and use the filesystem as a Pillar source

Currently GitPython is the only supported provider for git Pillars

is external Pillar source can be configured in the master config file like so:

ext_pillar:
- git: master git://gitserver/git-pillar.git root=subdirectory

e root= parameter is optional and used to set the subdirectory fromwhere to look for Pillar files (such astop.sls).

Changed in version 2014.7.0: e optional root parameter will be added.

Note that this is not the same thing as configuring pillar data using the pillar_roots parameter. e branch
referenced in the ext_pillar entry above (master), would evaluate to the base environment, so this branch
needs to contain a top.sls with a base section in it, like this:

base:
'*':

- foo

To use other environments from the same git repo as git_pillar sources, just add additional lines, like so:

ext_pillar:
- git: master git://gitserver/git-pillar.git
- git: dev git://gitserver/git-pillar.git

To remap a specific branch to a specific environment separate the branch name and the environment name with a
colon:

ext_pillar:
- git: develop:dev git://gitserver/git-pillar.git
- git: master:prod git://gitserver/git-pillar.git

In this case, the dev branch would need its own top.sls with a dev section in it, like this:

954 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

dev:
'*':

- bar

class salt.pillar.git_pillar.GitPillar(branch, repo_location, opts)
Deal with the remote git repository for Pillar

envs()
Return a list of refs that can be used as environments

update()
Ensure you are following the latest changes on the remote

Return boolean whether it worked

salt.pillar.git_pillar.envs(branch, repo_location)
Return a list of refs that can be used as environments

salt.pillar.git_pillar.ext_pillar(minion_id, repo_string, pillar_dirs)
Execute a command and read the output as YAML

salt.pillar.git_pillar.update(branch, repo_location)
Ensure you are following the latest changes on the remote

return boolean whether it worked

22.21.9 salt.pillar.hiera

Use hiera data as a Pillar source

salt.pillar.hiera.ext_pillar(minion_id, pillar, conf)
Execute hiera and return the data

22.21.10 salt.pillar.libvirt

Load up the libvirt keys into Pillar for a given minion if said keys have been generated using the libvirt key runner

salt.pillar.libvirt.ext_pillar(minion_id, pillar, command)
Read in the generated libvirt keys

salt.pillar.libvirt.gen_hyper_keys(minion_id, country='US', state='Utah', locality='Salt Lake
City', organization='Salted')

Generate the keys to be used by libvirt hypervisors, this routine gens the keys and applies them to the pillar
for the hypervisor minions

22.21.11 salt.pillar.mongo

Read Pillar data from a mongodb collection

depends pymongo (for salt-master)

is module will load a node-specific pillar dictionary from a mongo collection. It uses the node's id for lookups and
can load either the whole document, or just a specific field from that document as the pillar dictionary.

22.21. Full list of builtin pillar modules 955

Salt Documentation, Release 2014.7.6

Salt Master Mongo Configuration

e module shares the same base mongo connection variables as salt.returners.mongo_return. ese
variables go in your master config file.

• mongo.db - e mongo database to connect to. Defaults to 'salt'.

• mongo.host - e mongo host to connect to. Supports replica sets by specifying all hosts in the set, comma-
delimited. Defaults to 'salt'.

• mongo.port - e port that the mongo database is running on. Defaults to 27017.

• mongo.user -e username for connecting to mongo. Only required if you are using mongo authentication.
Defaults to ''.

• mongo.password - e password for connecting to mongo. Only required if you are using mongo authen-
tication. Defaults to ''.

Configuring the Mongo ext_pillar

e Mongo ext_pillar takes advantage of the fact that the Salt Master configuration file is yaml. It uses a sub-
dictionary of values to adjust specific features of the pillar. is is the explicit single-line dictionary notation for
yaml. One may be able to get the easier-to-read multi-line dict to work correctly with some experimentation.

ext_pillar:
- mongo: {collection: vm, id_field: name, re_pattern: \.example\.com, fields: [customer_id, software, apache_vhosts]}

In the example above, we've decided to use the vm collection in the database to store the data. Minion ids are stored
in the name field on documents in that collection. And, since minion ids are FQDNs in most cases, we'll need to trim
the domain name in order to find the minion by hostname in the collection. When we find a minion, return only the
customer_id, software, and apache_vhosts fields, as that will contain the data we want for a given node.
ey will be available directly inside the pillar dict in your SLS templates.

Module Documentation

salt.pillar.mongo.ext_pillar(minion_id, pillar, collection='pillar', id_field='_id', re_paern=None,
re_replace='`, fields=None)

Connect to a mongo database and read per-node pillar information.

Parameters:

• collection: e mongodb collection to read data from. Defaults to 'pillar'.

• id_field: e field in the collection that represents an individual minion id. Defaults to '_id'.

• re_paern: If your naming convention in the collection is shorter than the minion id, you can use
this to trim the name. re_paern will be used to match the name, and re_replace will be used to
replace it. Backrefs are supported as they are in the Python standard library. If None, no mangling
of the name will be performed - the collection will be searched with the entire minion id. Defaults
to None.

• re_replace: Use as the replacement value in node ids matched with re_paern. Defaults to `'. Feel
free to use backreferences here.

• fields: e specific fields in the document to use for the pillar data. If None, will use the entire
document. If using the entire document, the _id field will be converted to string. Be careful with
other fields in the document as they must be string serializable. Defaults to None.

956 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.21.12 salt.pillar.mysql

Retrieve Pillar data by doing a MySQL query

maturity new

depends python-mysqldb

platform all

Theory of mysql ext_pillar

Ok, here's the theory for how this works…

• If there's a keyword arg of mysql_query, that'll go first.

• en any non-keyword args are processed in order.

• Finally, remaining keywords are processed.

We do this so that it's backward compatiblewith older configs. Keyword arguments are sorted before being appended,
so that they're predictable, but they will always be applied last so overall it's moot.

For each of those items we process, it depends on the object type:

• Strings are executed as is and the pillar depth is determined by the number of fields returned.

• A list has the first entry used as the query, the second as the pillar depth.

• A mapping uses the keys ``query'' and ``depth'' as the tuple

You can retrieve as many fields as you like, how the get used depends on the exact seings.

Configuring the mysql ext_pillar

First an example of how legacy queries were specified.

ext_pillar:
- mysql:

mysql_query: "SELECT pillar,value FROM pillars WHERE minion_id = %s"

Alternatively, a list of queries can be passed in

ext_pillar:
- mysql:

- "SELECT pillar,value FROM pillars WHERE minion_id = %s"
- "SELECT pillar,value FROM more_pillars WHERE minion_id = %s"

Or you can pass in a mapping

ext_pillar:
- mysql:

main: "SELECT pillar,value FROM pillars WHERE minion_id = %s"
extras: "SELECT pillar,value FROM more_pillars WHERE minion_id = %s"

e query can be provided as a string as we have just shown, but they can be provided as lists

22.21. Full list of builtin pillar modules 957

Salt Documentation, Release 2014.7.6

ext_pillar:
- mysql:

- "SELECT pillar,value FROM pillars WHERE minion_id = %s"
2

Or as a mapping

ext_pillar:
- mysql:

- query: "SELECT pillar,value FROM pillars WHERE minion_id = %s"
depth: 2

e depth defines how the dicts are constructed. Essentially if you query for fields a,b,c,d for each row you'll get:

• With depth 1: {a: {``b'': b, ``c'': c, ``d'': d}}

• With depth 2: {a: {b: {``c'': c, ``d'': d}}}

• With depth 3: {a: {b: {c: d}}}

Depth greater than 3 wouldn't be different from 3 itself. Depth of 0 translates to the largest depth needed, so 3 in
this case. (max depth == key count - 1)

e legacy compatibility translates to depth 1.

en they are merged the in a similar way to plain pillar data, in the order returned by MySQL.

us subsequent results overwrite previous ones when they collide.

If you specify as_list: True in the mapping expression it will convert collisions to lists.

If you specifywith_lists: `…' in the mapping expression it will convert the specified depths to list. e string provided
is a sequence numbers that are comma separated. e string `1,3' will result in:

a,b,c,d,e,1 # field 1 same, field 3 differs
a,b,c,f,g,2 # ^^^^
a,z,h,y,j,3 # field 1 same, field 3 same
a,z,h,y,k,4 # ^^^^

^ ^

ese columns define list grouping

{a: [
{c: [

{e: 1},
{g: 2}
]

},
{h: [

{j: 3, k: 4 }
]

}
]}

e range for with_lists is 1 to number_of_fields, inclusive. Numbers outside this range are ignored.

Finally, if you use pass the queries in via a mapping, the key will be the first level name where as passing them in
as a list will place them in the root. is isolates the query results in to their own subtrees. is may be a help or
hindrance to your aims and can be used as such.

958 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

You can basically use any SELECT query that gets you the information, you could even do joins or subqueries in
case your minion_id is stored elsewhere. It is capable of handling single rows or multiple rows per minion.

MySQL configuration of the MySQL returner is being used (mysql.db, mysql.user, mysql.pass, mysql.port,
mysql.host)

Required python modules: MySQLdb

More complete example

mysql:
user: 'salt'
pass: 'super_secret_password'
db: 'salt_db'

ext_pillar:
- mysql:

fromdb:
query: 'SELECT col1,col2,col3,col4,col5,col6,col7

FROM some_random_table
WHERE minion_pattern LIKE %s'

depth: 5
as_list: True
with_lists: [1,3]

salt.pillar.mysql.ext_pillar(minion_id, pillar, *args, **kwargs)
Execute queries, merge and return as a dict

class salt.pillar.mysql.merger
is class receives and processes the database rows in a database agnostic way.

as_list = False

depth = 0

enter_root(root)
Set self.focus for kwarg queries

extract_queries(args, kwargs)
is function normalizes the config block in to a set of queries we can use. e return is a list of consis-
tently laid out dicts.

field_names = None

focus = None

num_fields = 0

process_fields(field_names, depth)
e primary purpose of this function is to store the sql field list and the depth to which we process.

process_results(rows)
is function takes a list of database results and iterates over, merging them in to a dict form.

result = None

with_lists = None

22.21. Full list of builtin pillar modules 959

Salt Documentation, Release 2014.7.6

22.21.13 salt.pillar.pillar_ldap

Use LDAP data as a Pillar source

is pillar module parses a config file (specified in the salt master config), and executes a series of LDAP searches
based on that config. Data returned by these searches is aggregated, with data items found later in the LDAP search
order overriding data found earlier on.

e final result set is merged with the pillar data.

salt.pillar.pillar_ldap.ext_pillar(minion_id, pillar, config_file)
Execute LDAP searches and return the aggregated data

22.21.14 salt.pillar.puppet

Execute an unmodified puppet_node_classifier and read the output as YAML.e YAML data is then directly overlaid
onto the minion's Pillar data.

salt.pillar.puppet.ext_pillar(minion_id, pillar, command)
Execute an unmodified puppet_node_classifier and read the output as YAML

22.21.15 salt.pillar.reclass_adapter

Use the ``reclass'' database as a Pillar source

is ext_pillar plugin provides access to the reclass database, such that Pillar data for a specific minion are
fetched using reclass.

You can find more information about reclass at hp://reclass.pantsfullofunix.net.

To use the plugin, add it to the ext_pillar list in the Salt master config and tell reclass by way of a few options
how and where to find the inventory:

ext_pillar:
- reclass:

storage_type: yaml_fs
inventory_base_uri: /srv/salt

is would cause reclass to read the inventory from YAML files in /srv/salt/nodes and
/srv/salt/classes.

If you are also using reclass as master_tops plugin, and youwant to avoid having to specify the same information
for both, use YAML anchors (take note of the differing data types for ext_pillar and master_tops):

reclass: &reclass
storage_type: yaml_fs
inventory_base_uri: /srv/salt
reclass_source_path: ~/code/reclass

ext_pillar:
- reclass: *reclass

master_tops:
reclass: *reclass

If you want to run reclass from source, rather than installing it, you can either let the master know via the PYTHON-
PATH environment variable, or by seing the configuration option, like in the example above.

960 Chapter 22. Reference

http://reclass.pantsfullofunix.net

Salt Documentation, Release 2014.7.6

salt.pillar.reclass_adapter.ext_pillar(minion_id, pillar, **kwargs)
Obtain the Pillar data from reclass for the given minion_id.

22.21.16 salt.pillar.redismod

Read pillar data from a Redis backend

New in version 2014.7.0.

depends

• redis Python module (on master)

Salt Master Redis Configuration

e module shares the same base Redis connection variables as salt.returners.redis_return. ese vari-
ables go in your master config file.

• redis.db - e Redis database to use. Defaults to 0.

• redis.host - e Redis host to connect to. Defaults to 'salt'.

• redis.port - e port that the Redis database is listening on. Defaults to 6379.

• redis.password -e password for authenticating with Redis. Only required if you are using master auth.
Defaults to None.

Configuring the Redis ext_pillar

ext_pillar:
- redis: {function: key_value}

salt.pillar.redismod.ext_pillar(minion_id, pillar, function, **kwargs)
Grabs external pillar data based on configured function

salt.pillar.redismod.key_json(minion_id, pillar, pillar_key=None)
Pulls a string from redis and deserializes it from json. Deserialized dictionary data loaded directly into top
level if pillar_key is not set.

pillar_key Pillar key to return data into

salt.pillar.redismod.key_value(minion_id, pillar, pillar_key='redis_pillar')
Looks for key in redis matching minion_id, returns a structure based on the data type of the redis key. String
for string type, dict for hash type and lists for lists, sets and sorted sets.

pillar_key Pillar key to return data into

22.21.17 salt.pillar.s3

Copy pillar data from a bucket in Amazon S3

e S3 pillar can be configured in the master config file with the following options

22.21. Full list of builtin pillar modules 961

Salt Documentation, Release 2014.7.6

ext_pillar:
- s3:

bucket: my.fancy.pillar.bucket
keyid: KASKFJWAKJASJKDAJKSD
key: ksladfDLKDALSFKSD93q032sdDasdfasdflsadkf
multiple_env: False
environment: base
prefix: somewhere/overthere
verify_ssl: True
service_url: s3.amazonaws.com

e bucket= parameter specifies the target S3 bucket. It is required.

e keyid= parameter specifies the key id to use when access the S3 bucket. It is required.

e key= parameter specifies the key to use when access the S3 bucket. It is required.

e multiple_env= defaults to False. It specifies whether the pillar should interpret top level folders as pillar envi-
ronments (see mode section below).

e environment= defaults to `base'. It specifies which environment the bucket represents when in single environ-
ments mode (see mode section below). It is ignored if multiple_env is True.

e prefix= defaults to `'. It specifies a key prefix to use when searching for data in the bucket for the pillar. It works
when multiple_env is True or False. Essentially it tells ext_pillar to look for your pillar data in a `subdirectory' of
your S3 bucket

e verify_ssl= parameter defaults to True. It specifies whether to check for valid S3 SSL certificates. NOTE If you
use bucket names with periods, this must be set to False else an invalid certificate error will be thrown (issue #12200).

e service_url= parameter defaults to `s3.amazonaws.com'. It specifies the base url to use for accessing S3.

is pillar can operate in two modes, single environment per bucket or multiple environments per bucket.

Single environment mode must have this bucket structure:

s3://<bucket name>/<prefix>/<files>

Multiple environment mode must have this bucket structure:

s3://<bucket name>/<prefix>/<environment>/<files>

If you wish to define your pillar data entirely within S3 it's recommended that you use the prefix= parameter and
specify one entry in ext_pillar for each environment rather than specifying multiple_env. is is due to issue #22471
(hps://github.com/saltstack/salt/issues/22471)

class salt.pillar.s3.S3Credentials(key, keyid, bucket, service_url, verify_ssl=True)

salt.pillar.s3.ext_pillar(minion_id, pillar, bucket, key, keyid, verify_ssl, multiple_env=False, envi-
ronment='base', prefix='`, service_url=None)

Execute a command and read the output as YAML

22.21.18 salt.pillar.svn_pillar

Clone a remote SVN repository and use the filesystem as a Pillar source

is external Pillar source can be configured in the master config file like so:

962 Chapter 22. Reference

https://github.com/saltstack/salt/issues/22471

Salt Documentation, Release 2014.7.6

ext_pillar:
- svn: trunk svn://svnserver/repo root=subdirectory

e root= parameter is optional and used to set the subdirectory fromwhere to look for Pillar files (such astop.sls).

Changed in version 2014.7.0: e optional root parameter will be added.

Note that this is not the same thing as configuring pillar data using the pillar_roots parameter. e branch
referenced in the ext_pillar entry above (master), would evaluate to the base environment, so this branch
needs to contain a top.sls with a base section in it, like this:

base:
'*':

- foo

To use other environments from the same SVN repo as svn_pillar sources, just add additional lines, like so:

ext_pillar:
- svn: trunk svn://svnserver/repo
- svn: dev svn://svnserver/repo

In this case, the dev branch would need its own top.sls with a dev section in it, like this:

dev:
'*':

- bar

class salt.pillar.svn_pillar.SvnPillar(branch, repo_location, root, opts)
Deal with the remote SVN repository for Pillar

pillar_dir()
Returns the directory of the pillars (repo cache + branch + root)

update()

salt.pillar.svn_pillar.ext_pillar(minion_id, pillar, repo_string)
Execute a command and read the output as YAML

22.21.19 salt.pillar.virtkey

Accept a key from a hypervisor if the virt runner has already submied an authorization request

salt.pillar.virtkey.ext_pillar(hyper_id, pillar, name, key)
Accept the key for the VM on the hyper, if authorized.

22.22 Renderers

e Salt state system operates by gathering information from common data types such as lists, dictionaries and
strings that would be familiar to any developer.

SLS files are translated from whatever data templating format they are wrien in back into Python data types to be
consumed by Salt.

22.22. Renderers 963

Salt Documentation, Release 2014.7.6

By default SLS files are rendered as Jinja templates and then parsed as YAML documents. But since the only thing
the state system cares about is raw data, the SLS files can be any structured format that can be dreamed up.

Currently there is support for Jinja + YAML, Mako + YAML, Wempy + YAML, Jinja + json, Mako +
json and Wempy + json.

Renderers can be wrien to support any template type. is means that the Salt states could be managed by XML
files, HTML files, Puppet files, or any format that can be translated into the Pythonic data structure used by the state
system.

22.22.1 Multiple Renderers

A default renderer is selected in the master configuration file by providing a value to the renderer key.

When evaluating an SLS, more than one renderer can be used.

When rendering SLS files, Salt checks for the presence of a Salt-specific shebang line.

e shebang line directly calls the name of the renderer as it is specified within Salt. One of the most common
reasons to use multiple renderers is to use the Python or py renderer.

Below, the first line is a shebang that references the py renderer.

#!py

def run():
'''
Install the python-mako package
'''
return {'include': ['python'],

'python-mako': {'pkg': ['installed']}}

22.22.2 Composing Renderers

A renderer can be composed from other renderers by connecting them in a series of pipes(|).

In fact, the default Jinja + YAML renderer is implemented by connecting a YAML renderer to a Jinja renderer.
Such renderer configuration is specified as: jinja | yaml.

Other renderer combinations are possible:

yaml i.e, just YAML, no templating.

mako | yaml pass the input to the mako renderer, whose output is then fed into the yaml renderer.

jinja | mako | yaml is one allows you to use both jinja and mako templating syntax in the
input and then parse the final rendered output as YAML.

e following is a contrived example SLS file using the jinja | mako | yaml renderer:

#!jinja|mako|yaml

An_Example:
cmd.run:

- name: |
echo "Using Salt ${grains['saltversion']}" \

"from path {{grains['saltpath']}}."
- cwd: /

964 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

<%doc> ${...} is Mako's notation, and so is this comment. </%doc>
{# Similarly, {{...}} is Jinja's notation, and so is this comment. #}

For backward compatibility, jinja | yaml can also be wrien as yaml_jinja, and similarly, the yaml_mako,
yaml_wempy, json_jinja, json_mako, and json_wempy renderers are all supported.

Keep in mind that not all renderers can be used alone or with any other renderers. For example, the template
renderers shouldn't be used alone as their outputs are just strings, which still need to be parsed by another renderer
to turn them into highstate data structures.

For example, it doesn't make sense to specify yaml | jinja because the output of the YAML renderer is a
highstate data structure (a dict in Python), which cannot be used as the input to a template renderer. erefore,
when combining renderers, you should know what each renderer accepts as input and what it returns as output.

22.22.3 Writing Renderers

A custom renderermust be a Pythonmodule placed in the rendered directory and themodule implement therender
function.

e render function will be passed the path of the SLS file as an argument.

e purpose of of render function is to parse the passed file and to return the Python data structure derived from
the file.

Custom renderers must be placed in a _renderers directory within the file_roots specified by the master
config file.

Custom renderers are distributed when any of the following are run: state.highstate

saltutil.sync_renderers

saltutil.sync_all

Any custom renderers which have been synced to a minion, that are named the same as one of Salt's default set of
renderers, will take the place of the default renderer with the same name.

22.22.4 Examples

e best place to find examples of renderers is in the Salt source code.

Documentation for renderers included with Salt can be found here:

hps://github.com/saltstack/salt/blob/develop/salt/renderers

Here is a simple YAML renderer example:

import yaml
def render(yaml_data, env='', sls='', **kws):

if not isinstance(yaml_data, basestring):
yaml_data = yaml_data.read()

data = yaml.load(yaml_data)
return data if data else {}

22.22. Renderers 965

https://github.com/saltstack/salt/blob/develop/salt/renderers

Salt Documentation, Release 2014.7.6

22.22.5 Full List of Renderers

Full list of builtin renderer modules

gpg Renderer that will decrypt GPG ciphers
jinja Jinja loading utils to enable a more powerful backend for jinja templates
json JSON Renderer for Salt
mako Mako Renderer for Salt
msgpack
py Pure python state renderer
pydsl A Python-based DSL
pyobjects Python renderer that includes a Pythonic Object based interface
stateconf A flexible renderer that takes a templating engine and a data format
wempy
yaml YAML Renderer for Salt
yamlex

salt.renderers.gpg

Renderer that will decrypt GPG ciphers

Any key in the SLS file can be a GPG cipher, and this renderer will decrypt it before passing it off to Salt. is allows
you to safely store secrets in source control, in such a way that only your Salt master can decrypt them and distribute
them only to the minions that need them.

e typical use-case would be to use ciphers in your pillar data, and keep a secret key on your master. You can put
the public key in source control so that developers can add new secrets quickly and easily.

is renderer requires the python-gnupg package. Be careful to install the python-gnupg package, not the gnupg
package, or you will get errors.

To set things up, you will first need to generate a keypair. On your master, run:

gpg --gen-key --homedir /etc/salt/gpgkeys

Do not supply a password for your keypair, and use a name that makes sense for your application. Be sure to back
up your gpg directory someplace safe!

To retrieve the public key:

gpg --armor --homedir /etc/salt/gpgkeys --armor --export <KEY-NAME> > exported_pubkey.gpg

Now, to encrypt secrets, copy the public key to your local machine and run:

$ gpg --import exported_pubkey.gpg

To generate a cipher from a secret:

$ echo -n"supersecret" | gpg --homedir --armor --encrypt -r <KEY-name>

Set up the renderer on your master by adding something like this line to your config:

966 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

renderer: jinja | yaml | gpg

Now you can include your ciphers in your pillar data like so:

a-secret: |
-----BEGIN PGP MESSAGE-----
Version: GnuPG v1

hQEMAweRHKaPCfNeAQf9GLTN16hCfXAbPwU6BbBK0unOc7i9/etGuVc5CyU9Q6um
QuetdvQVLFO/HkrC4lgeNQdM6D9E8PKonMlgJPyUvC8ggxhj0/IPFEKmrsnv2k6+
cnEfmVexS7o/U1VOVjoyUeliMCJlAz/30RXaME49Cpi6No2+vKD8a4q4nZN1UZcG
RhkhC0S22zNxOXQ38TBkmtJcqxnqT6YWKTUsjVubW3bVC+u2HGqJHu79wmwuN8tz
m4wBkfCAd8Eyo2jEnWQcM4TcXiF01XPL4z4g1/9AAxh+Q4d8RIRP4fbw7ct4nCJv
Gr9v2DTF7HNigIMl4ivMIn9fp+EZurJNiQskLgNbktJGAeEKYkqX5iCuB1b693hJ
FKlwHiJt5yA8X2dDtfk8/Ph1Jx2TwGS+lGjlZaNqp3R1xuAZzXzZMLyZDe5+i3RJ
skqmFTbOiA==
=Eqsm
-----END PGP MESSAGE-----

salt.renderers.gpg.decrypt_ciphertext(c, gpg)
Given a block of ciphertext as a string, and a gpg object, try to decrypt the cipher and return the decrypted
string. If the cipher cannot be decrypted, log the error, and return the ciphertext back out.

salt.renderers.gpg.decrypt_object(o, gpg)
Recursively try to decrypt any object. If the object is a string, and it contains a valid GPG header, decrypt it,
otherwise keep going until a string is found.

salt.renderers.gpg.render(gpg_data, saltenv='base', sls='`, argline='`, **kwargs)
Create a gpg object given a gpg_keydir, and then use it to try to decrypt the data to be rendered.

salt.renderers.jinja

Jinja loading utils to enable a more powerful backend for jinja templates

Jinja in States emost basic usage of Jinja in state files is using control structures towrap conditional or redundant
state elements:

{% if grains['os'] != 'FreeBSD' %}
tcsh:

pkg:
- installed

{% endif %}

motd:
file.managed:

{% if grains['os'] == 'FreeBSD' %}
- name: /etc/motd
{% elif grains['os'] == 'Debian' %}
- name: /etc/motd.tail
{% endif %}
- source: salt://motd

In this example, the first if block will only be evaluated on minions that aren't running FreeBSD, and the second
block changes the file name based on the os grain.

22.22. Renderers 967

Salt Documentation, Release 2014.7.6

Writing if-else blocks can lead to very redundant state files however. In this case, using pillars, or using a previously
defined variable might be easier:

{% set motd = ['/etc/motd'] %}
{% if grains['os'] == 'Debian' %}

{% set motd = ['/etc/motd.tail', '/var/run/motd'] %}
{% endif %}

{% for motdfile in motd %}
{{ motdfile }}:

file.managed:
- source: salt://motd

{% endfor %}

Using a variable set by the template, the for loop will iterate over the list of MOTD files to update, adding a state
block for each file.

Include and Import Includes and imports can be used to share common, reusable state configuration between state
files and between files.

{% from 'lib.sls' import test %}

is would import the test template variable or macro, not the test state element, from the file lib.sls. In the
case that the included file performs checks again grains, or something else that requires context, passing the context
into the included file is required:

{% from 'lib.sls' import test with context %}

Macros Macros are helpful for eliminating redundant code, however stripping whitespace from the template block,
as well as contained blocks, may be necessary to emulate a variable return from the macro.

init.sls
{% from 'lib.sls' import pythonpkg with context %}

python-virtualenv:
pkg.installed:

- name: {{ pythonpkg('virtualenv') }}

python-fabric:
pkg.installed:

- name: {{ pythonpkg('fabric') }}

lib.sls
{% macro pythonpkg(pkg) -%}

{%- if grains['os'] == 'FreeBSD' -%}
py27-{{ pkg }}

{%- elif grains['os'] == 'Debian' -%}
python-{{ pkg }}

{%- endif -%}
{%- endmacro %}

968 Chapter 22. Reference

http://jinja.pocoo.org/docs/templates/#for
http://jinja.pocoo.org/docs/templates/#import
http://jinja.pocoo.org/docs/templates/#macros

Salt Documentation, Release 2014.7.6

is would define a macro that would return a string of the full package name, depending on the packaging system's
naming convention. e whitespace of the macro was eliminated, so that the macro would return a string without
line breaks, using whitespace control.

Template Inheritance Template inheritance works fine from state files and files. e search path starts at the root
of the state tree or pillar.

Filters Saltstack extends builtin filters with his custom filters:

strime Converts any time related object into a time based string. It requires a valid strime directives. An exhaustive
list can be found in the official Python documentation. Fuzzy dates are parsed by timelib pythonmodule. Some
examples are available on this pages.

{{ "2002/12/25"|strftime("%y") }}
{{ "1040814000"|strftime("%Y-%m-%d") }}
{{ datetime|strftime("%u") }}
{{ "now"|strftime }}

Jinja in Files Jinja can be used in the same way in managed files:

redis.sls
/etc/redis/redis.conf:

file.managed:
- source: salt://redis.conf
- template: jinja
- context:

bind: 127.0.0.1

lib.sls
{% set port = 6379 %}

redis.conf
{% from 'lib.sls' import port with context %}
port {{ port }}
bind {{ bind }}

As an example, configuration was pulled from the file context and from an external template file.

Note: Macros and variables can be shared across templates. ey should not be starting with one or more un-
derscores, and should be managed by one of the following tags: macro, set, load_yaml, load_json, import_yaml and
import_json.

Calling Salt Functions e Jinja renderer provides a shorthand lookup syntax for the salt dictionary of execution
function.

New in version 2014.7.0.

The following two function calls are equivalent.
{{ salt['cmd.run']('whoami') }}
{{ salt.cmd.run('whoami') }}

22.22. Renderers 969

http://jinja.pocoo.org/docs/templates/#macros
http://jinja.pocoo.org/docs/templates/#whitespace-control
http://jinja.pocoo.org/docs/templates/#template-inheritance
http://jinja.pocoo.org/docs/templates/#builtin-filters
http://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
http://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
http://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://github.com/pediapress/timelib/
http://jinja.pocoo.org/docs/templates/

Salt Documentation, Release 2014.7.6

Debugging e show_full_context function can be used to output all variables present in the current Jinja
context.

New in version 2014.7.0.

Context is: {{ show_full_context() }}

salt.renderers.jinja.render(template_file, saltenv='base', sls='`, argline='`, context=None, tm-
plpath=None, **kws)

Render the template_file, passing the functions and grains into the Jinja rendering system.

Return type string

class salt.utils.jinja.SerializerExtension(environment)
Yaml and Json manipulation.

Format filters

Allows to jsonify or yamlify any data structure. For example, this dataset:

data = {
'foo': True,
'bar': 42,
'baz': [1, 2, 3],
'qux': 2.0

}

yaml = {{ data|yaml }}
json = {{ data|json }}
python = {{ data|python }}

will be rendered as:

yaml = {bar: 42, baz: [1, 2, 3], foo: true, qux: 2.0}
json = {"baz": [1, 2, 3], "foo": true, "bar": 42, "qux": 2.0}
python = {'bar': 42, 'baz': [1, 2, 3], 'foo': True, 'qux': 2.0}

e yaml filter takes an optional flow_style parameter to control the default-flow-style parameter of the YAML
dumper.

{{ data|yaml(False) }}

will be rendered as:

bar: 42
baz:

- 1
- 2
- 3

foo: true
qux: 2.0

Load filters

Strings and variables can be deserialized with load_yaml and load_json tags and filters. It allows one to
manipulate data directly in templates, easily:

{%- set yaml_src = "{foo: it works}"|load_yaml %}
{%- set json_src = "{'bar': 'for real'}"|load_yaml %}
Dude, {{ yaml_src.foo }} {{ json_src.bar }}!

970 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

will be rendered has:

Dude, it works for real!

Load tags

Salt implements import_yaml and import_json tags. ey work like the import tag, except that the document
is also deserialized.

Syntaxes are {% load_yaml as [VARIABLE] %}[YOUR DATA]{% endload %} and {% load_json as [VARIABLE]
%}[YOUR DATA]{% endload %}

For example:

{% load_yaml as yaml_src %}
foo: it works

{% endload %}
{% load_json as json_src %}

{
"bar": "for real"

}
{% endload %}
Dude, {{ yaml_src.foo }} {{ json_src.bar }}!

will be rendered has:

Dude, it works for real!

Import tags

External files can be imported and made available as a Jinja variable.

{% import_yaml "myfile.yml" as myfile %}
{% import_json "defaults.json" as defaults %}
{% import_text "completeworksofshakespeare.txt" as poems %}

Catalog

import_* and load_* tags will automatically expose their target variable to import. is feature makes
catalog of data to handle.

for example:

doc1.sls
{% load_yaml as var1 %}

foo: it works
{% endload %}
{% load_yaml as var2 %}

bar: for real
{% endload %}

doc2.sls
{% from "doc1.sls" import var1, var2 as local2 %}
{{ var1.foo }} {{ local2.bar }}

salt.renderers.json

JSON Renderer for Salt

22.22. Renderers 971

http://jinja.pocoo.org/docs/templates/#import

Salt Documentation, Release 2014.7.6

salt.renderers.json.render(json_data, saltenv='base', sls='`, **kws)
Accepts JSON as a string or as a file object and runs it through the JSON parser.

Return type A Python data structure

salt.renderers.mako

Mako Renderer for Salt

salt.renderers.mako.render(template_file, saltenv='base', sls='`, context=None, tmplpath=None,
**kws)

Render the template_file, passing the functions and grains into the Mako rendering system.

Return type string

salt.renderers.msgpack

salt.renderers.msgpack.render(msgpack_data, saltenv='base', sls='`, **kws)
Accepts a message pack string or a file object, renders said data back to a python dict.

Return type A Python data structure

salt.renderers.py

Pure python state renderer

e SLS file should contain a function called run which returns high state data.

In this module, a few objects are defined for you, giving access to Salt's execution functions, grains, pillar, etc. ey
are:

• __salt__ - Execution functions (i.e. __salt__['test.echo']('foo'))

• __grains__ - Grains (i.e. __grains__['os'])

• __pillar__ - Pillar data (i.e. __pillar__['foo'])

• __opts__ - Minion configuration options

• __env__ - e effective salt fileserver environment (i.e. base). Also referred to as a ``saltenv''. __env__
should not be modified in a pure python SLS file. To use a different environment, the environment should be
set when executing the state. is can be done in a couple different ways:

– Using the saltenv argument on the salt CLI (i.e. salt '*' state.sls foo.bar.baz
saltenv=env_name).

– By adding a saltenv argument to an individual state within the SLS file. In other words, adding a line
like this to the state's data structure: {'saltenv': 'env_name'}

• __sls__ - e SLS path of the file. For example, if the root of the base environment is /srv/salt, and the
SLS file is /srv/salt/foo/bar/baz.sls, then __sls__ in that file will be foo.bar.baz.

1 #!py
2

3 def run():
4 config = {}
5

6 if __grains__['os'] == 'Ubuntu':
7 user = 'ubuntu'

972 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

8 group = 'ubuntu'
9 home = '/home/{0}'.format(user)

10 else:
11 user = 'root'
12 group = 'root'
13 home = '/root/'
14

15 config['s3cmd'] = {
16 'pkg': [
17 'installed',
18 {'name': 's3cmd'},
19],
20 }
21

22 config[home + '/.s3cfg'] = {
23 'file.managed': [
24 {'source': 'salt://s3cfg/templates/s3cfg'},
25 {'template': 'jinja'},
26 {'user': user},
27 {'group': group},
28 {'mode': 600},
29 {'context': {
30 'aws_key': __pillar__['AWS_ACCESS_KEY_ID'],
31 'aws_secret_key': __pillar__['AWS_SECRET_ACCESS_KEY'],
32 },
33 },
34],
35 }
36

37 return config

salt.renderers.py.render(template, saltenv='base', sls='`, tmplpath=None, **kws)
Render the python module's components

Return type string

salt.renderers.pydsl

A Python-based DSL

maintainer Jack Kuan <kjkuan@gmail.com>

maturity new

platform all

e pydsl renderer allows one to author salt formulas (.sls files) in pure Python using a DSL that's easy to write and
easy to read. Here's an example:

1 #!pydsl
2

3 apache = state('apache')
4 apache.pkg.installed()
5 apache.service.running()
6 state('/var/www/index.html') \
7 .file('managed',
8 source='salt://webserver/index.html') \
9 .require(pkg='apache')

22.22. Renderers 973

mailto:kjkuan@gmail.com

Salt Documentation, Release 2014.7.6

Notice that any Python code is allow in the file as it's really a Python module, so you have the full power of Python
at your disposal. In this module, a few objects are defined for you, including the usual (with __ added) __salt__
dictionary, __grains__, __pillar__, __opts__, __env__, and __sls__, plus a few more:

__file__

local file system path to the sls module.

__pydsl__

Salt PyDSL object, useful for configuring DSL behavior per sls rendering.

include

Salt PyDSL function for creating Include declaration`s.

extend

Salt PyDSL function for creating Extend declaration`s.

state

Salt PyDSL function for creating ID declaration`s.

A state ID declaration is created with a state(id) function call. Subsequent state(id) call with the same id
returns the same object. is singleton access paern applies to all declaration objects created with the DSL.

state('example')
assert state('example') is state('example')
assert state('example').cmd is state('example').cmd
assert state('example').cmd.running is state('example').cmd.running

e id argument is optional. If omied, an UUID will be generated and used as the id.

state(id) returns an object under which you can create a State declaration object by accessing an aribute named
aer any state module available in Salt.

state('example').cmd
state('example').file
state('example').pkg
...

en, a Function declaration object can be created from a State declaration object by one of the following two ways:

1. by calling a method named aer the state function on the State declaration object.

state('example').file.managed(...)

2. by directly calling the aribute named for the State declaration, and supplying the state function name as the
first argument.

state('example').file('managed', ...)

With either way of creating a Function declaration object, any Function arg declaration`s can be passed as keyword
arguments to the call. Subsequent calls of a Function declaration will update the arg declarations.

974 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

state('example').file('managed', source='salt://webserver/index.html')
state('example').file.managed(source='salt://webserver/index.html')

As a shortcut, the special name argument can also be passed as the first or second positional argument depending
on the first or second way of calling the State declaration object. In the following two examples ls -la is the name
argument.

state('example').cmd.run('ls -la', cwd='/')
state('example').cmd('run', 'ls -la', cwd='/')

Finally, a Requisite declaration object with its Requisite reference`s can be created by invoking one of the requisite
methods (see State Requisites) on either a Function declaration object or a State declaration object. e return value
of a requisite call is also a Function declaration object, so you can chain several requisite calls together.

Arguments to a requisite call can be a list of State declaration objects and/or a set of keyword arguments whose
names are state modules and values are IDs of ID declaration`s or names of Name declaration`s.

apache2 = state('apache2')
apache2.pkg.installed()
state('libapache2-mod-wsgi').pkg.installed()

you can call requisites on function declaration
apache2.service.running() \

.require(apache2.pkg,
pkg='libapache2-mod-wsgi') \

.watch(file='/etc/apache2/httpd.conf')

or you can call requisites on state declaration.
this actually creates an anonymous function declaration object
to add the requisites.
apache2.service.require(state('libapache2-mod-wsgi').pkg,

pkg='apache2') \
.watch(file='/etc/apache2/httpd.conf')

we still need to set the name of the function declaration.
apache2.service.running()

Include declaration objects can be createdwith theinclude function, while Extend declaration objects can be created
with the extend function, whose arguments are just Function declaration objects.

include('edit.vim', 'http.server')
extend(state('apache2').service.watch(file='/etc/httpd/httpd.conf')

e include function, by default, causes the included sls file to be rendered as soon as the include function is
called. It returns a list of rendered module objects; sls files not rendered with the pydsl renderer return None`s. is
behavior creates no Include declaration`s in the resulting high state data structure.

import types

including multiple sls returns a list.
_, mod = include('a-non-pydsl-sls', 'a-pydsl-sls')

assert _ is None
assert isinstance(slsmods[1], types.ModuleType)

22.22. Renderers 975

Salt Documentation, Release 2014.7.6

including a single sls returns a single object
mod = include('a-pydsl-sls')

myfunc is a function that calls state(...) to create more states.
mod.myfunc(1, 2, "three")

Notice how you can define a reusable function in your pydsl sls module and then call it via the module returned by
include.

It's still possible to do late includes by passing the delayed=True keyword argument to include.

include('edit.vim', 'http.server', delayed=True)

Above will just create a Include declaration in the rendered result, and such call always returns None.

Special integration with the cmd state Taking advantage of rendering a Python module, PyDSL allows you to
declare a state that calls a pre-defined Python function when the state is executed.

greeting = "hello world"
def helper(something, *args, **kws):

print greeting # hello world
print something, args, kws # test123 ['a', 'b', 'c'] {'x': 1, 'y': 2}

state().cmd.call(helper, "test123", 'a', 'b', 'c', x=1, y=2)

e cmd.call state function takes care of calling our helper function with the arguments we specified in
the states, and translates the return value of our function into a structure expected by the state system. See
salt.states.cmd.call() for more information.

Implicit ordering of states Salt states are explicitly ordered via Requisite declaration`s. However, with pydsl it's
possible to let the renderer track the order of creation for Function declaration objects, and implicitly add re-
quire requisites for your states to enforce the ordering. is feature is enabled by seing the ordered option on
__pydsl__.

Note: this feature is only available if your minions are using Python >= 2.7.

include('some.sls.file')

A = state('A').cmd.run(cwd='/var/tmp')
extend(A)

__pydsl__.set(ordered=True)

for i in range(10):
i = str(i)
state(i).cmd.run('echo '+i, cwd='/')

state('1').cmd.run('echo one')
state('2').cmd.run(name='echo two')

Notice that the ordered option needs to be set aer any extend calls. is is to prevent pydsl from tracking the
creation of a state function that's passed to an extend call.

Above example should create states from 0 to 9 that will output 0, one, two, 3, … 9, in that order.

976 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

It's important to know that pydsl tracks the creations of Function declaration objects, and automatically adds a re-
quire requisite to a Function declaration object that requires the last Function declaration object created before it in
the sls file.

is means later calls (perhaps to update the function's Function arg declaration) to a previously created function
declaration will not change the order.

Render time state execution When Salt processes a salt formula file, the file is rendered to salt's high state data
representation by a renderer before the states can be executed. In the case of the pydsl renderer, the .sls file is
executed as a python module as it is being rendered which makes it easy to execute a state at render time. In pydsl,
executing one or more states at render time can be done by calling a configured ID declaration object.

#!pydsl

s = state() # save for later invocation

configure it
s.cmd.run('echo at render time', cwd='/')
s.file.managed('target.txt', source='salt://source.txt')

s() # execute the two states now

Once an ID declaration is called at render time it is detached from the sls module as if it was never defined.

Note: If implicit ordering is enabled (ie, via __pydsl__.set(ordered=True)) then the first invocation of a
ID declaration object must be done before a new Function declaration is created.

Integration with the stateconf renderer e salt.renderers.stateconf renderer offers a few interesting features that
can be leveraged by the pydsl renderer. In particular, when using with the pydsl renderer, we are interested in
stateconf `s sls namespacing feature (via dot-prefixed id declarations), as well as, the automatic start and goal states
generation.

Now you can use pydsl with stateconf like this:

#!pydsl|stateconf -ps

include('xxx', 'yyy')

ensure that states in xxx run BEFORE states in this file.
extend(state('.start').stateconf.require(stateconf='xxx::goal'))

ensure that states in yyy run AFTER states in this file.
extend(state('.goal').stateconf.require_in(stateconf='yyy::start'))

__pydsl__.set(ordered=True)

...

-s enables the generation of a stateconf start state, and -p lets us pipe high state data rendered by pydsl to stateconf.
is example shows that by require-ing or require_in-ing the included sls' start or goal states, it's possible to
ensure that the included sls files can be made to execute before or aer a state in the including sls file.

22.22. Renderers 977

Salt Documentation, Release 2014.7.6

Importing custom Python modules To use a custom Python module inside a PyDSL state, place the module some-
where that it can be loaded by the Salt loader, such as _modules in the /srv/salt directory.

en, copy it to any minions as necessary by using saltutil.sync_modules.

To import into a PyDSL SLS, one must bypass the Python importer and insert it manually by geing a reference from
Python's sys.modules dictionary.

For example:

#!pydsl|stateconf -ps

def main():
my_mod = sys.modules['salt.loaded.ext.module.my_mod']

salt.renderers.pydsl.render(template, saltenv='base', sls='`, tmplpath=None, rendered_sls=None,
**kws)

salt.renderers.pyobjects

Python renderer that includes a Pythonic Object based interface

maintainer Evan Borgstrom <evan@borgstrom.ca>

Let's take a look at how you use pyobjects in a state file. Here's a quick example that ensures the /tmp directory is
in the correct state.

1 #!pyobjects
2

3 File.managed("/tmp", user='root', group='root', mode='1777')

Nice and Pythonic!

By using the ``shebang'' syntax to switch to the pyobjects renderer we can now write our state data using an object
based interface that should feel at home to python developers. You can import any module and do anything that
you'd like (with caution, importing sqlalchemy, django or other large frameworks has not been tested yet). Using
the pyobjects renderer is exactly the same as using the built-in Python renderer with the exception that pyobjects
provides you with an object based interface for generating state data.

Creating state data Pyobjects takes care of creating an object for each of the available states on the minion. Each
state is represented by an object that is the CamelCase version of its name (ie. File, Service, User, etc), and
these objects expose all of their available state functions (ie. File.managed, Service.running, etc).

e name of the state is split based upon underscores (_), then each part is capitalized and finally the parts are joined
back together.

Some examples:

• postgres_user becomes PostgresUser

• ssh_known_hosts becomes SshKnownHosts

Context Managers and requisites How about something a lile more complex. Here we're going to get into the
core of how to use pyobjects to write states.

978 Chapter 22. Reference

mailto:evan@borgstrom.ca

Salt Documentation, Release 2014.7.6

1 #!pyobjects
2

3 with Pkg.installed("nginx"):
4 Service.running("nginx", enable=True)
5

6 with Service("nginx", "watch_in"):
7 File.managed("/etc/nginx/conf.d/mysite.conf",
8 owner='root', group='root', mode='0444',
9 source='salt://nginx/mysite.conf')

e objects that are returned from each of the magic method calls are setup to be used a Python context managers
(with) and when you use them as such all declarations made within the scope will automatically use the enclosing
state as a requisite!

e above could have also been wrien use direct requisite statements as.

1 #!pyobjects
2

3 Pkg.installed("nginx")
4 Service.running("nginx", enable=True, require=Pkg("nginx"))
5 File.managed("/etc/nginx/conf.d/mysite.conf",
6 owner='root', group='root', mode='0444',
7 source='salt://nginx/mysite.conf',
8 watch_in=Service("nginx"))

You can use the direct requisite statement for referencing states that are generated outside of the current file.

1 #!pyobjects
2

3 # some-other-package is defined in some other state file
4 Pkg.installed("nginx", require=Pkg("some-other-package"))

e last thing that direct requisites provide is the ability to select which of the SaltStack requisites you want to use
(require, require_in, watch, watch_in, use & use_in) when using the requisite as a context manager.

1 #!pyobjects
2

3 with Service("my-service", "watch_in"):
4 ...

e above example would cause all declarations inside the scope of the context manager to automatically have their
watch_in set to Service("my-service").

Including and Extending To include other states use the include() function. It takes one name per state to
include.

To extend another state use the extend() function on the name when creating a state.

1 #!pyobjects
2

3 include('http', 'ssh')
4

5 Service.running(extend('apache'),
6 watch=[File('/etc/httpd/extra/httpd-vhosts.conf')])

22.22. Renderers 979

Salt Documentation, Release 2014.7.6

Importing from other state files Like any Python project that grows you will likely reach a point where you want
to create reusability in your state tree and share objects between state files, Map Data (described below) is a perfect
example of this.

To facilitate this Python's import statement has been augmented to allow for a special case when working with a
Salt state tree. If you specify a Salt url (salt://...) as the target for importing from then the pyobjects renderer
will take care of fetching the file for you, parsing it with all of the pyobjects features available and then place the
requested objects in the global scope of the template being rendered.

is works for both types of import statements, import X and from X import Y.

1 #!pyobjects
2

3 import salt://myfile.sls
4 from salt://something/data.sls import Object

See the Map Data section for a more practical use.

Caveats:

• You cannot use the as syntax, you can only import objects using their existing name.

• Imported objects are ALWAYS put into the global scope of your template, regardless of where your import
statement is.

Salt object In the spirit of the object interface for creating state data pyobjects also provides a simple object interface
to the __salt__ object.

A function named salt exists in scope for your sls files and will dispatch its aributes to the __salt__ dictionary.

e following lines are functionally equivalent:

1 #!pyobjects
2

3 ret = salt.cmd.run(bar)
4 ret = __salt__['cmd.run'](bar)

Pillar, grain, mine & config data Pyobjects provides shortcut functions for calling pillar.get, grains.get,
mine.get & config.get on the __salt__ object. is helps maintain the readability of your state files.

Each type of data can be access by a function of the same name: pillar(), grains(), mine() and config().

e following pairs of lines are functionally equivalent:

1 #!pyobjects
2

3 value = pillar('foo:bar:baz', 'qux')
4 value = __salt__['pillar.get']('foo:bar:baz', 'qux')
5

6 value = grains('pkg:apache')
7 value = __salt__['grains.get']('pkg:apache')
8

9 value = mine('os:Fedora', 'network.interfaces', 'grain')
10 value = __salt__['mine.get']('os:Fedora', 'network.interfaces', 'grain')
11

12 value = config('foo:bar:baz', 'qux')
13 value = __salt__['config.get']('foo:bar:baz', 'qux')

980 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Map Data When building complex states or formulas you oen need a way of building up a map of data based on
grain data. emost common use of this is tracking the package and service name differences between distributions.

To build map data using pyobjects we provide a class named Map that you use to build your own classes with inner
classes for each set of values for the different grain matches.

1 #!pyobjects
2

3 class Samba(Map):
4 merge = 'samba:lookup'
5

6 class Debian:
7 server = 'samba'
8 client = 'samba-client'
9 service = 'samba'

10

11 class Ubuntu:
12 __grain__ = 'os'
13 service = 'smbd'
14

15 class RedHat:
16 server = 'samba'
17 client = 'samba'
18 service = 'smb'

To use this new data you can import it into your state file and then access your aributes. To access the data in the
map you simply access the aribute name on the base class that is extending Map. Assuming the above Map was in
the file samba/map.sls, you could do the following.

1 #!pyobjects
2

3 from salt://samba/map.sls import Samba
4

5 with Pkg.installed("samba", names=[Samba.server, Samba.client]):
6 Service.running("samba", name=Samba.service)

TODO

• Interface for working with reactor files

salt.renderers.pyobjects.load_states()
is loads our states into the salt __context__

salt.renderers.pyobjects.render(template, saltenv='base', sls='`, salt_data=True, **kwargs)

salt.renderers.stateconf

maintainer Jack Kuan <kjkuan@gmail.com>

maturity new

platform all

is module provides a custom renderer that processes a salt file with a specified templating engine (e.g., Jinja) and a
chosen data renderer (e.g., YAML), extracts arguments for any stateconf.set state, and provides the extracted
arguments (including Salt-specific args, such as require, etc) as template context. e goal is to make writing
reusable/configurable/parameterized salt files easier and cleaner.

22.22. Renderers 981

mailto:kjkuan@gmail.com

Salt Documentation, Release 2014.7.6

To use this renderer, either set it as the default renderer via the renderer option in master/minion's config, or use
the shebang line in each individual sls file, like so: #!stateconf. Note, due to the way this renderer works, it must
be specified as the first renderer in a render pipeline. at is, you cannot specify #!mako|yaml|stateconf, for
example. Instead, you specify them as renderer arguments: #!stateconf mako . yaml.

Here's a list of features enabled by this renderer.

• Prefixes any state id (declaration or reference) that starts with a dot (.) to avoid duplicated state ids when the
salt file is included by other salt files.

For example, in the salt://some/file.sls, a state id such as .sls_params will be turned into
some.file::sls_params. Example:

#!stateconf yaml . jinja

.vim:
pkg.installed

Above will be translated into:

some.file::vim:
pkg.installed:

- name: vim

Notice how that if a state under a dot-prefixed state id has no name argument then one will be added auto-
matically by using the state id with the leading dot stripped off.

e leading dot trick can be used with extending state ids as well, so you can include relatively and extend
relatively. For example, when extending a state in salt://some/other_file.sls, e.g.,:

#!stateconf yaml . jinja

include:
- .file

extend:
.file::sls_params:

stateconf.set:
- name1: something

Above will be pre-processed into:

include:
- some.file

extend:
some.file::sls_params:

stateconf.set:
- name1: something

• Adds a sls_dir context variable that expands to the directory containing the rendering salt file. So, you can
write salt://{{sls_dir}}/... to reference templates files used by your salt file.

• Recognizes the special state function, stateconf.set, that configures a default list of named arguments
usable within the template context of the salt file. Example:

#!stateconf yaml . jinja

.sls_params:
stateconf.set:

- name1: value1

982 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

- name2: value2
- name3:

- value1
- value2
- value3

- require_in:
- cmd: output

--- end of state config ---

.output:
cmd.run:

- name: |
echo 'name1={{sls_params.name1}}

name2={{sls_params.name2}}
name3[1]={{sls_params.name3[1]}}

'

is even works with include + extend so that you can override the default configured arguments by
including the salt file and then extend the stateconf.set states that come from the included salt file.
(IMPORTANT: Both the included and the extending sls files must use the stateconf renderer for this ``extend`` to
work!)

Notice that the end of configuration marker (# --- end of state config --) is needed to separate
the use of `stateconf.set' form the rest of your salt file. e regex that matches such marker can be configured
via the stateconf_end_marker option in your master or minion config file.

Sometimes, it is desirable to set a default argument value that's based on earlier arguments in the samestate-
conf.set. For example, it may be tempting to do something like this:

#!stateconf yaml . jinja

.apache:
stateconf.set:

- host: localhost
- port: 1234
- url: 'http://{{host}}:{{port}}/'

--- end of state config ---

.test:
cmd.run:

- name: echo '{{apache.url}}'
- cwd: /

However, this won't work. It can however be worked around like so:

#!stateconf yaml . jinja

.apache:
stateconf.set:

- host: localhost
- port: 1234

{# - url: 'http://{{host}}:{{port}}/' #}

--- end of state config ---
{{ apache.setdefault('url', "http://%(host)s:%(port)s/" % apache) }}

.test:

22.22. Renderers 983

Salt Documentation, Release 2014.7.6

cmd.run:
- name: echo '{{apache.url}}'
- cwd: /

• Adds support for relative include and exclude of .sls files. Example:

#!stateconf yaml . jinja

include:
- .apache
- .db.mysql

exclude:
- sls: .users

If the above is wrien in a salt file at salt://some/where.sls then it will include salt://some/apache.sls and
salt://some/db/mysql.sls, and exclude salt://some/users.ssl. Actually, it does that by rewriting the above in-
clude and exclude into:

include:
- some.apache
- some.db.mysql

exclude:
- sls: some.users

• Optionally (enabled by default, disable via the -G renderer option, e.g., in the shebang line: #!stateconf
-G), generates a stateconf.set goal state (state id named as .goal by default, configurable via the mas-
ter/minion config option, stateconf_goal_state) that requires all other states in the salt file. Note, the
.goal state id is subject to dot-prefix rename rule mentioned earlier.

Such goal state is intended to be required by some state in an including salt file. For example, in your webapp
salt file, if you include a sls file that is supposed to setup Tomcat, you might want to make sure that all states
in the Tomcat sls file will be executed before some state in the webapp sls file.

• Optionally (enable via the -o renderer option, e.g., in the shebang line: #!stateconf -o), orders the states
in a sls file by adding a require requisite to each state such that every state requires the state defined
just before it. e order of the states here is the order they are defined in the sls file. (Note: this feature is
only available if your minions are using Python >= 2.7. For Python2.6, it should also work if you install the
ordereddict module from PyPI)

By enabling this feature, you are basically agreeing to author your sls files in a way that gives up the explicit
(or implicit?) ordering imposed by the use of require, watch, require_in or watch_in requisites,
and instead, you rely on the order of states you define in the sls files. is may or may not be a beer way for
you. However, if there are many states defined in a sls file, then it tends to be easier to see the order they will
be executed with this feature.

You are still allowed to use all the requisites, with a few restrictions. You cannot require or watch a state
defined aer the current state. Similarly, in a state, you cannot require_in or watch_in a state defined
before it. Breaking any of the two restrictions above will result in a state loop. e renderer will check for
such incorrect uses if this feature is enabled.

Additionally, names declarations cannot be used with this feature because the way they are compiled into
low states make it impossible to guarantee the order in which they will be executed. is is also checked by
the renderer. As a workaround for not being able to use names, you can achieve the same effect, by generate
your states with the template engine available within your sls file.

Finally, with the use of this feature, it becomes possible to easily make an included sls file execute all its states
aer some state (say, with id X) in the including sls file. All you have to do is to make state, X, require_in

984 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

the first state defined in the included sls file.

When writing sls files with this renderer, one should avoid using what can be defined in a name argument of a state
as the state's id. at is, avoid writing states like this:

/path/to/some/file:
file.managed:

- source: salt://some/file

cp /path/to/some/file file2:
cmd.run:

- cwd: /
- require:

- file: /path/to/some/file

Instead, define the state id and the name argument separately for each state. Also, the ID should be something
meaningful and easy to reference within a requisite (which is a good habit anyway, and such extra indirection would
also makes the sls file easier to modify later). us, the above states should be wrien like this:

add-some-file:
file.managed:

- name: /path/to/some/file
- source: salt://some/file

copy-files:
cmd.run:

- name: cp /path/to/some/file file2
- cwd: /
- require:

- file: add-some-file

Moreover, when referencing a state from a requisite, you should reference the state's id plus the state name rather
than the state name plus its name argument. (Yes, in the above example, you can actually require the file:
/path/to/some/file, instead of the file: add-some-file). e reason is that this renderer will re-write
or rename state id's and their references for state id's prefixed with .. So, if you reference name then there's no way
to reliably rewrite such reference.

salt.renderers.wempy

salt.renderers.wempy.render(template_file, saltenv='base', sls='`, argline='`, context=None, **kws)
Render the data passing the functions and grains into the rendering system

Return type string

salt.renderers.yaml

Understanding YAML e default renderer for SLS files is the YAML renderer. YAML is a markup language with
many powerful features. However, Salt uses a small subset of YAML that maps over very commonly used data
structures, like lists and dictionaries. It is the job of the YAML renderer to take the YAML data structure and compile
it into a Python data structure for use by Salt.

ough YAML syntax may seem daunting and terse at first, there are only three very simple rules to remember when
writing YAML for SLS files.

22.22. Renderers 985

Salt Documentation, Release 2014.7.6

Rule One: Indentation YAML uses a fixed indentation scheme to represent relationships between data layers. Salt
requires that the indentation for each level consists of exactly two spaces. Do not use tabs.

Rule Two: Colons Python dictionaries are, of course, simply key-value pairs. Users from other languages may
recognize this data type as hashes or associative arrays.

Dictionary keys are represented in YAML as strings terminated by a trailing colon. Values are represented by either
a string following the colon, separated by a space:

my_key: my_value

In Python, the above maps to:

{'my_key': 'my_value'}

In Python, the above maps to:

{'my_key': 'my_value'}

Dictionaries can be nested:

first_level_dict_key:
second_level_dict_key: value_in_second_level_dict

And in Python:

{'first_level_dict_key': {'second_level_dict_key': 'value_in_second_level_dict' }

Rule ree: Dashes To represent lists of items, a single dash followed by a space is used. Multiple items are a part
of the same list as a function of their having the same level of indentation.

- list_value_one
- list_value_two
- list_value_three

Lists can be the value of a key-value pair. is is quite common in Salt:

my_dictionary:
- list_value_one
- list_value_two
- list_value_three

Reference YAML Renderer for Salt

salt.renderers.yaml.get_yaml_loader(argline)
Return the ordered dict yaml loader

salt.renderers.yaml.render(yaml_data, saltenv='base', sls='`, argline='`, **kws)
Accepts YAML as a string or as a file object and runs it through the YAML parser.

Return type A Python data structure

986 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.renderers.yamlex

YAMLEX renderer is a replacement of the YAML renderer. It's 100% YAML with a pinch of Salt magic:

• All mappings are automatically OrderedDict

• All strings are automatically str obj

• data aggregation with !aggregation yaml tag, based on the salt.utils.aggregation module.

• data aggregation over documents for pillar

Instructed aggregation within the !aggregation and the !reset tags:

#!yamlex
foo: !aggregate first
foo: !aggregate second
bar: !aggregate {first: foo}
bar: !aggregate {second: bar}
baz: !aggregate 42
qux: !aggregate default
!reset qux: !aggregate my custom data

is roughly equivalent to

foo: [first, second]
bar: {first: foo, second: bar}
baz: [42]
qux: [my custom data]

Reference
salt.renderers.yamlex.render(sls_data, saltenv='base', sls='`, **kws)

Accepts YAML_EX as a string or as a file object and runs it through the YAML_EX parser.

Return type A Python data structure

22.23 Returners

By default the return values of the commands sent to the Salt minions are returned to the Salt master, however
anything at all can be done with the results data.

By using a Salt returner, results data can be redirected to external data-stores for analysis and archival.

Returners pull their configuration values from the Salt minions. Returners are only configured once, which is gen-
erally at load time.

e returner interface allows the return data to be sent to any system that can receive data. is means that return
data can be sent to a Redis server, a MongoDB server, a MySQL server, or any system.

See also:

Full list of builtin returners

22.23. Returners 987

Salt Documentation, Release 2014.7.6

22.23.1 Using Returners

All Salt commands will return the command data back to the master. Specifying returners will ensure that the data
is _also_ sent to the specified returner interfaces.

Specifying what returners to use is done when the command is invoked:

salt '*' test.ping --return redis_return

is command will ensure that the redis_return returner is used.

It is also possible to specify multiple returners:

salt '*' test.ping --return mongo_return,redis_return,cassandra_return

In this scenario all three returners will be called and the data from the test.ping command will be sent out to the
three named returners.

22.23.2 Writing a Returner

A returner is a Python module which contains a function called returner.

e returner function must accept a single argument for the return data from the called minion function. So if
the minion function test.ping is called the value of the argument will be True.

A simple returner is implemented below:

import redis
import json

def returner(ret):
'''
Return information to a redis server
'''
Get a redis connection
serv = redis.Redis(

host='redis-serv.example.com',
port=6379,
db='0')

serv.sadd("%(id)s:jobs" % ret, ret['jid'])
serv.set("%(jid)s:%(id)s" % ret, json.dumps(ret['return']))
serv.sadd('jobs', ret['jid'])
serv.sadd(ret['jid'], ret['id'])

e above example of a returner set to send the data to a Redis server serializes the data as JSON and sets it in redis.

Place custom returners in a _returners directory within the file_roots specified by the master config file.

Custom returners are distributed when any of the following are called: state.highstate

saltutil.sync_returners

saltutil.sync_all

Any custom returners which have been synced to a minion that are named the same as one of Salt's default set of
returners will take the place of the default returner with the same name.

988 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Note that a returner's default name is its filename (i.e. foo.py becomes returner foo), but that its name can be
overridden by using a __virtual__ function. A good example of this can be found in the redis returner, which is
named redis_return.py but is loaded as simply redis:

try:
import redis
HAS_REDIS = True

except ImportError:
HAS_REDIS = False

__virtualname__ = 'redis'

def __virtual__():
if not HAS_REDIS:

return False
return __virtualname__

22.23.3 Full List of Returners

Full list of builtin returner modules

carbon_return Take data from salt and ``return'' it into a carbon receiver
cassandra_return Return data to a Cassandra ColumnFamily
couchbase_return Simple returner for Couchbase.
couchdb_return Simple returner for CouchDB.
elasticsearch_return Return data to an elasticsearch server for indexing.
etcd_return Return data to an etcd server or cluster
local e local returner is used to test the returner interface, it just prints the
local_cache Return data to local job cache
memcache_return Return data to a memcache server
mongo_future_return Return data to a mongodb server
mongo_return Return data to a mongodb server
multi_returner Read/Write multiple returners
mysql Return data to a mysql server
odbc Return data to an ODBC compliant server.
postgres Return data to a postgresql server
redis_return Return data to a redis server
sentry_return Salt returner that report execution results back to sentry.
smtp_return Return salt data via email
sqlite3_return Insert minion return data into a sqlite3 database
syslog_return Return data to the host operating system's syslog facility

salt.returners.carbon_return

Take data from salt and ``return'' it into a carbon receiver

Add the following configuration to the minion configuration files:

carbon.host: <server ip address>
carbon.port: 2003

22.23. Returners 989

https://github.com/saltstack/salt/tree/develop/salt/returners/redis_return.py

Salt Documentation, Release 2014.7.6

Errors when trying to convert data to numbers may be ignored by seing carbon.skip_on_error to True:

carbon.skip_on_error: True

By default, data will be sent to carbon using the plaintext protocol. To use the pickle protocol, set carbon.mode
to pickle:

carbon.mode: pickle

Carbon seings may also be configured as:

carbon:
host: <server IP or hostname>
port: <carbon port>
skip_on_error: True
mode: (pickle|text)

To use the carbon returner, append '--return carbon' to the salt command. ex:

salt '*' test.ping --return carbon

salt.returners.carbon_return.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.carbon_return.returner(ret)
Return data to a remote carbon server using the text metric protocol

Each metric will look like:

[module].[function].[minion_id].[metric path [...]].[metric name]

salt.returners.cassandra_return

Return data to a Cassandra ColumnFamily

Here's an example Keyspace / ColumnFamily setup that works with this returner:

create keyspace salt;
use salt;
create column family returns

with key_validation_class='UTF8Type'
and comparator='UTF8Type'
and default_validation_class='UTF8Type';

Required python modules: pycassa

To use the cassandra returner, append `--return cassandra' to the salt command. ex:

salt `*' test.ping --return cassandra

salt.returners.cassandra_return.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.cassandra_return.returner(ret)
Return data to a Cassandra ColumnFamily

990 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.returners.couchbase_return

Simple returner for Couchbase. Optional configuration seings are listed below, along with sane defaults.

couchbase.host: `salt' couchbase.port: 8091 couchbase.bucket: `salt' couchbase.skip_verify_views: False

To use the couchbase returner, append `--return couchbase' to the salt command. ex:

salt `*' test.ping --return couchbase

All of the return data will be stored in documents as follows:

JID load: load obj tgt_minions: list of minions targeted nocache: should we not cache the return data

JID/MINION_ID return: return_data out: out_data

salt.returners.couchbase_return.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.couchbase_return.get_jids()
Return a list of all job ids

salt.returners.couchbase_return.get_load(jid)
Return the load data that marks a specified jid

salt.returners.couchbase_return.prep_jid(nocache=False, passed_jid=None)
Return a job id and prepare the job id directory is is the function responsible for making sure jids don't
collide (unless its passed a jid) So do what you have to do to make sure that stays the case

salt.returners.couchbase_return.returner(load)
Return data to the local job cache

salt.returners.couchbase_return.save_load(jid, clear_load)
Save the load to the specified jid

salt.returners.couchdb_return

Simple returner for CouchDB. Optional configuration seings are listed below, along with sane defaults.

couchdb.db: `salt' couchdb.url: `hp://salt:5984/`

To use the couchdb returner, append `--return couchdb' to the salt command. ex:

salt `*' test.ping --return couchdb

salt.returners.couchdb_return.ensure_views()
is function makes sure that all the views that should exist in the design document do exist.

salt.returners.couchdb_return.get_fun(fun)
Return a dict with key being minion and value being the job details of the last run of function `fun'.

salt.returners.couchdb_return.get_jid(jid)
Get the document with a given JID.

salt.returners.couchdb_return.get_jids()
List all the jobs that we have..

salt.returners.couchdb_return.get_minions()
Return a list of minion identifiers from a request of the view.

22.23. Returners 991

http://salt:5984/

Salt Documentation, Release 2014.7.6

salt.returners.couchdb_return.get_valid_salt_views()
Returns a dict object of views that should be part of the salt design document.

salt.returners.couchdb_return.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.couchdb_return.returner(ret)
Take in the return and shove it into the couchdb database.

salt.returners.couchdb_return.set_salt_view()
Helper function that sets the salt design document. Uses get_valid_salt_views and some hardcoded values.

salt.returners.elasticsearch_return

Return data to an elasticsearch server for indexing.

maintainer Jurnell Cockhren <jurnell.cockhren@sophicware.com>

maturity New

depends elasticsearch-py

platform all

To enable this returner the elasticsearch python client must be installed on the desired minions (all or some subset).

e required configuration is as follows:

elasticsear: host: `somehost.example.com:9200' index: `salt' number_of_shards: 1 (optional) num-
ber_of_replicas: 0 (optional)

e above configuration can be placed in a targeted pillar, minion or master configurations.

To use the returner per salt call:

salt `*' test.ping --return elasticsearch

In order to have the returner apply to all minions:

ext_job_cache: elasticsearch

salt.returners.elasticsearch_return.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.elasticsearch_return.returner(ret)
Process the return from Salt

salt.returners.etcd_return

Return data to an etcd server or cluster

depends

• python-etcd

In order to return to an etcd server, a profile should be created in the master configuration file:

my_etd_config:
etcd.host: 127.0.0.1
etcd.port: 4001

992 Chapter 22. Reference

mailto:jurnell.cockhren@sophicware.com
http://elasticsearch-py.readthedocs.org/en/latest/

Salt Documentation, Release 2014.7.6

It is technically possible to configure etcd without using a profile, but this is not considered to be a best practice,
especially when multiple etcd servers or clusters are available.

etcd.host: 127.0.0.1
etcd.port: 4001

Additionally, two more options must be specified in the top-level configuration in order to use the etcd returner:

etcd.returner: my_etcd_config
etcd.returner_root: /salt/return

e etcd.returner option specifies which configuration profile to use. e etcd.returner_root option
specifies the path inside etcd to use as the root of the returner system.

Once the etcd options are configured, the returner may be used:

CLI Example:

salt `*' test.ping --return etcd

salt.returners.etcd_return.get_fun()
Return a dict of the last function called for all minions

salt.returners.etcd_return.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.etcd_return.get_jids()
Return a list of all job ids

salt.returners.etcd_return.get_load(jid)
Return the load data that marks a specified jid

salt.returners.etcd_return.get_minions()
Return a list of minions

salt.returners.etcd_return.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.etcd_return.returner(ret)
Return data to an etcd server or cluster

salt.returners.etcd_return.save_load(jid, load)
Save the load to the specified jid

salt.returners.local

e local returner is used to test the returner interface, it just prints the return data to the console to verify that it is
being passed properly

To use the local returner, append `--return local' to the salt command. ex:

salt `*' test.ping --return local

salt.returners.local.returner(ret)
Print the return data to the terminal to verify functionality

22.23. Returners 993

Salt Documentation, Release 2014.7.6

salt.returners.local_cache

Return data to local job cache

salt.returners.local_cache.clean_old_jobs()
Clean out the old jobs from the job cache

salt.returners.local_cache.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.local_cache.get_jids()
Return a list of all job ids

salt.returners.local_cache.get_load(jid)
Return the load data that marks a specified jid

salt.returners.local_cache.prep_jid(nocache=False, passed_jid=None)
Return a job id and prepare the job id directory is is the function responsible for making sure jids don't
collide (unless its passed a jid) So do what you have to do to make sure that stays the case

salt.returners.local_cache.returner(load)
Return data to the local job cache

salt.returners.local_cache.save_load(jid, clear_load)
Save the load to the specified jid

salt.returners.memcache_return

Return data to a memcache server

To enable this returner the minion will need the python client for memcache installed and the following values
configured in the minion or master config, these are the defaults:

memcache.host: `localhost' memcache.port: `11211'

python2-memcache uses `localhost' and `11211' as syntax on connection.

salt.returners.memcache_return.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.memcache_return.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.memcache_return.get_jids()
Return a list of all job ids

salt.returners.memcache_return.get_load(jid)
Return the load data that marks a specified jid

salt.returners.memcache_return.get_minions()
Return a list of minions

salt.returners.memcache_return.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.memcache_return.returner(ret)
Return data to a memcache data store

salt.returners.memcache_return.save_load(jid, load)
Save the load to the specified jid

994 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.returners.mongo_future_return

Return data to a mongodb server

Required python modules: pymongo

is returner will send data from the minions to a MongoDB server. To configure the seings for your MongoDB
server, add the following lines to the minion config files:

mongo.db: <database name>
mongo.host: <server ip address>
mongo.user: <MongoDB username>
mongo.password: <MongoDB user password>
mongo.port: 27017

is mongo returner is being developed to replace the default mongodb returner in the future and should not be
considered API stable yet.

To use the mongo returner, append `--return mongo' to the salt command. ex:

salt `*' test.ping --return mongo

salt.returners.mongo_future_return.get_fun(fun)
Return the most recent jobs that have executed the named function

salt.returners.mongo_future_return.get_jid(jid)
Return the return information associated with a jid

salt.returners.mongo_future_return.get_jids()
Return a list of job ids

salt.returners.mongo_future_return.get_load(jid)
Return the load associated with a given job id

salt.returners.mongo_future_return.get_minions()
Return a list of minions

salt.returners.mongo_future_return.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.mongo_future_return.returner(ret)
Return data to a mongodb server

salt.returners.mongo_future_return.save_load(jid, load)
Save the load for a given job id

salt.returners.mongo_return

Return data to a mongodb server

Required python modules: pymongo

is returner will send data from the minions to a MongoDB server. To configure the seings for your MongoDB
server, add the following lines to the minion config files:

mongo.db: <database name>
mongo.host: <server ip address>
mongo.user: <MongoDB username>
mongo.password: <MongoDB user password>
mongo.port: 27017

22.23. Returners 995

Salt Documentation, Release 2014.7.6

To use the mongo returner, append '--return mongo' to the salt command. ex:

salt '*' test.ping --return mongo

salt.returners.mongo_return.get_fun(fun)
Return the most recent jobs that have executed the named function

salt.returners.mongo_return.get_jid(jid)
Return the return information associated with a jid

salt.returners.mongo_return.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.mongo_return.returner(ret)
Return data to a mongodb server

salt.returners.multi_returner

Read/Write multiple returners

salt.returners.multi_returner.clean_old_jobs()
Clean out the old jobs from all returners (if you have it)

salt.returners.multi_returner.get_jid(jid)
Merge the return data from all returners

salt.returners.multi_returner.get_jids()
Return all job data from all returners

salt.returners.multi_returner.get_load(jid)
Merge the load data from all returners

salt.returners.multi_returner.prep_jid(nocache=False, passed_jid=None)
Call both with prep_jid on all returners in multi_returner

TODO: finish this, what do do when you get different jids from 2 returners… since our jids are time based, this
make this problem hard, because they aren't unique, meaning that we have to make sure that no one else got
the jid and if they did we spin to get a new one, which means ``locking'' the jid in 2 returners is non-trivial

salt.returners.multi_returner.returner(load)
Write return to all returners in multi_returner

salt.returners.multi_returner.save_load(jid, clear_load)
Write load to all returners in multi_returner

salt.returners.mysql

Return data to a mysql server

maintainer Dave Boucha <dave@saltstack.com>, Seth House <shouse@saltstack.com>

maturity new

depends python-mysqldb

platform all

To enable this returner the minion will need the python client for mysql installed and the following values configured
in the minion or master config, these are the defaults:

996 Chapter 22. Reference

mailto:dave@saltstack.com
mailto:shouse@saltstack.com

Salt Documentation, Release 2014.7.6

mysql.host: 'salt'
mysql.user: 'salt'
mysql.pass: 'salt'
mysql.db: 'salt'
mysql.port: 3306

Use the following mysql database schema:

CREATE DATABASE `salt`
DEFAULT CHARACTER SET utf8
DEFAULT COLLATE utf8_general_ci;

USE `salt`;

--
-- Table structure for table `jids`
--

DROP TABLE IF EXISTS `jids`;
CREATE TABLE `jids` (

`jid` varchar(255) NOT NULL,
`load` mediumtext NOT NULL,
UNIQUE KEY `jid` (`jid`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

--
-- Table structure for table `salt_returns`
--

DROP TABLE IF EXISTS `salt_returns`;
CREATE TABLE `salt_returns` (

`fun` varchar(50) NOT NULL,
`jid` varchar(255) NOT NULL,
`return` mediumtext NOT NULL,
`id` varchar(255) NOT NULL,
`success` varchar(10) NOT NULL,
`full_ret` mediumtext NOT NULL,
`alter_time` TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
KEY `id` (`id`),
KEY `jid` (`jid`),
KEY `fun` (`fun`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Required python modules: MySQLdb

To use the mysql returner, append `--return mysql' to the salt command. ex:

salt `*' test.ping --return mysql

salt.returners.mysql.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.mysql.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.mysql.get_jids()
Return a list of all job ids

22.23. Returners 997

Salt Documentation, Release 2014.7.6

salt.returners.mysql.get_load(jid)
Return the load data that marks a specified jid

salt.returners.mysql.get_minions()
Return a list of minions

salt.returners.mysql.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.mysql.returner(ret)
Return data to a mysql server

salt.returners.mysql.save_load(jid, load)
Save the load to the specified jid id

salt.returners.odbc

Return data to an ODBC compliant server. is driver was developed with Microso SQL Server in mind, but
theoretically could be used to return data to any compliant ODBC database as long as there is a working ODBC
driver for it on your minion platform.

maintainer

3. (a) Oldham (cr@saltstack.com)

maturity New

depends unixodbc, pyodbc, freetds (for SQL Server)

platform all

To enable this returner the minion will need

On Linux:

unixodbc (hp://www.unixodbc.org) pyodbc (pip install pyodbc) e FreeTDS ODBC driver for SQL
Server (hp://www.freetds.org) or another compatible ODBC driver

On Windows:

TBD

unixODBC and FreeTDS need to be configured via /etc/odbcinst.ini and /etc/odbc.ini.

/etc/odbcinst.ini:

[TDS]
Description=TDS
Driver=/usr/lib/x86_64-linux-gnu/odbc/libtdsodbc.so

(Note the above Driver line needs to point to the location of the FreeTDS shared library. is example is for Ubuntu
14.04.)

/etc/odbc.ini:

[TS]
Description = "Salt Returner"
Driver=TDS
Server = <your server ip or fqdn>
Port = 1433
Database = salt
Trace = No

998 Chapter 22. Reference

mailto:cr@saltstack.com
http://www.unixodbc.org
http://www.freetds.org

Salt Documentation, Release 2014.7.6

Also you need the following values configured in the minion or master config. Configure as you see fit:

returner.odbc.dsn: 'TS'
returner.odbc.user: 'salt'
returner.odbc.passwd: 'salt'

Running the following commands against Microso SQL Server in the desired database as the appropriate user
should create the database tables correctly. Replace with equivalent SQL for other ODBC-compliant servers:

--
-- Table structure for table 'jids'
--

if OBJECT_ID('dbo.jids', 'U') is not null
DROP TABLE dbo.jids

CREATE TABLE dbo.jids (
jid varchar(255) PRIMARY KEY,
load varchar(MAX) NOT NULL

);

--
-- Table structure for table 'salt_returns'
--
IF OBJECT_ID('dbo.salt_returns', 'U') IS NOT NULL

DROP TABLE dbo.salt_returns;

CREATE TABLE dbo.salt_returns (
added datetime not null default (getdate()),
fun varchar(100) NOT NULL,
jid varchar(255) NOT NULL,
retval varchar(MAX) NOT NULL,
id varchar(255) NOT NULL,
success bit default(0) NOT NULL,
full_ret varchar(MAX)

);

CREATE INDEX salt_returns_added on dbo.salt_returns(added);
CREATE INDEX salt_returns_id on dbo.salt_returns(id);
CREATE INDEX salt_returns_jid on dbo.salt_returns(jid);
CREATE INDEX salt_returns_fun on dbo.salt_returns(fun);

To use this returner, append '--return odbc' to the salt command. ex:

salt '*' status.diskusage --return odbc

salt.returners.odbc.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.odbc.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.odbc.get_jids()
Return a list of all job ids

22.23. Returners 999

Salt Documentation, Release 2014.7.6

salt.returners.odbc.get_load(jid)
Return the load data that marks a specified jid

salt.returners.odbc.get_minions()
Return a list of minions

salt.returners.odbc.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.odbc.returner(ret)
Return data to an odbc server

salt.returners.odbc.save_load(jid, load)
Save the load to the specified jid id

salt.returners.postgres

Return data to a postgresql server

maintainer None

maturity New

depends psycopg2

platform all

To enable this returner the minion will need the psycopg2 installed and the following values configured in theminion
or master config:

returner.postgres.host: 'salt'
returner.postgres.user: 'salt'
returner.postgres.passwd: 'salt'
returner.postgres.db: 'salt'
returner.postgres.port: 5432

Running the following commands as the postgres user should create the database correctly:

psql << EOF
CREATE ROLE salt WITH PASSWORD 'salt';
CREATE DATABASE salt WITH OWNER salt;
EOF

psql -h localhost -U salt << EOF
--
-- Table structure for table 'jids'
--

DROP TABLE IF EXISTS jids;
CREATE TABLE jids (

jid varchar(20) PRIMARY KEY,
load text NOT NULL

);

--
-- Table structure for table 'salt_returns'
--

DROP TABLE IF EXISTS salt_returns;

1000 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

CREATE TABLE salt_returns (
added TIMESTAMP WITH TIME ZONE DEFAULT now(),
fun text NOT NULL,
jid varchar(20) NOT NULL,
return text NOT NULL,
id text NOT NULL,
success boolean

);
CREATE INDEX ON salt_returns (added);
CREATE INDEX ON salt_returns (id);
CREATE INDEX ON salt_returns (jid);
CREATE INDEX ON salt_returns (fun);
EOF

Required python modules: psycopg2

To use the postgres returner, append `--return postgres' to the salt command. ex:

salt `*' test.ping --return postgres

salt.returners.postgres.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.postgres.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.postgres.get_jids()
Return a list of all job ids

salt.returners.postgres.get_load(jid)
Return the load data that marks a specified jid

salt.returners.postgres.get_minions()
Return a list of minions

salt.returners.postgres.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.postgres.returner(ret)
Return data to a postgres server

salt.returners.postgres.save_load(jid, load)
Save the load to the specified jid id

salt.returners.redis_return

Return data to a redis server

To enable this returner the minion will need the python client for redis installed and the following values configured
in the minion or master config, these are the defaults:

redis.db: `0' redis.host: `salt' redis.port: 6379

To use the redis returner, append `--return redis' to the salt command. ex:

salt `*' test.ping --return redis

salt.returners.redis_return.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.redis_return.get_jid(jid)
Return the information returned when the specified job id was executed

22.23. Returners 1001

Salt Documentation, Release 2014.7.6

salt.returners.redis_return.get_jids()
Return a list of all job ids

salt.returners.redis_return.get_load(jid)
Return the load data that marks a specified jid

salt.returners.redis_return.get_minions()
Return a list of minions

salt.returners.redis_return.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.redis_return.returner(ret)
Return data to a redis data store

salt.returners.redis_return.save_load(jid, load)
Save the load to the specified jid

salt.returners.sentry_return

Salt returner that report execution results back to sentry. e returner will inspect the payload to identify errors and
flag them as such.

Pillar need something like:

raven:
servers:

- http://192.168.1.1
- https://sentry.example.com

public_key: deadbeefdeadbeefdeadbeefdeadbeef
secret_key: beefdeadbeefdeadbeefdeadbeefdead
project: 1
tags:

- os
- master
- saltversion
- cpuarch

and hps://pypi.python.org/pypi/raven installed

e tags list (optional) specifies grains items that will be used as sentry tags, allowing tagging of events in the sentry
ui.

salt.returners.sentry_return.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.sentry_return.returner(ret)
Log outcome to sentry. e returner tries to identify errors and report them as such. All other messages will
be reported at info level.

salt.returners.smtp_return

Return salt data via email

e following fields can be set in the minion conf file:

1002 Chapter 22. Reference

https://pypi.python.org/pypi/raven

Salt Documentation, Release 2014.7.6

smtp.from (required)
smtp.to (required)
smtp.host (required)
smtp.port (optional, defaults to 25)
smtp.username (optional)
smtp.password (optional)
smtp.tls (optional, defaults to False)
smtp.subject (optional, but helpful)
smtp.gpgowner (optional)
smtp.fields (optional)

ere are a few things to keep in mind:

• If a username is used, a password is also required. It is recommended (but not required) to use the TLS seing
when authenticating.

• You should at least declare a subject, but you don't have to.

• e use of encryption, i.e. seing gpgowner in your seings, requires python-gnupg to be installed.

• e field gpgowner specifies a user's ~/.gpg directory. is must contain a gpg public key matching the address
the mail is sent to. If le unset, no encryption will be used.

• smtp.fields lets you include the value(s) of various fields in the subject line of the email. ese are comma-
delimited. For instance:

smtp.fields: id,fun

…will display the id of the minion and the name of the function in the subject line. You may also use `jid' (the
job id), but it is generally recommended not to use `return', which contains the entire return data structure
(which can be very large). Also note that the subject is always unencrypted.

To use the SMTP returner, append `--return smtp' to the salt command. ex:

salt '*' test.ping --return smtp

salt.returners.smtp_return.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.smtp_return.returner(ret)
Send an email with the data

salt.returners.sqlite3

Insert minion return data into a sqlite3 database

maintainer Mickey Malone <mickey.malone@gmail.com>

maturity New

depends None

platform All

Sqlite3 is a serverless database that lives in a single file. In order to use this returner the database file must exist,
have the appropriate schema defined, and be accessible to the user whom the minion process is running as. is
returner requires the following values configured in the master or minion config:

returner.sqlite3.database: /usr/lib/salt/salt.db
returner.sqlite3.timeout: 5.0

22.23. Returners 1003

mailto:mickey.malone@gmail.com

Salt Documentation, Release 2014.7.6

Use the commands to create the sqlite3 database and tables:

sqlite3 /usr/lib/salt/salt.db << EOF
--
-- Table structure for table 'jids'
--

CREATE TABLE jids (
jid TEXT PRIMARY KEY,
load TEXT NOT NULL
);

--
-- Table structure for table 'salt_returns'
--

CREATE TABLE salt_returns (
fun TEXT KEY,
jid TEXT KEY,
id TEXT KEY,
fun_args TEXT,
date TEXT NOT NULL,
full_ret TEXT NOT NULL,
success TEXT NOT NULL
);

EOF

To use the sqlite returner, append '--return sqlite' to the salt command. ex:

salt '*' test.ping --return sqlite

salt.returners.sqlite3_return.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.sqlite3_return.get_jid(jid)
Return the information returned from a specified jid

salt.returners.sqlite3_return.get_jids()
Return a list of all job ids

salt.returners.sqlite3_return.get_load(jid)
Return the load from a specified jid

salt.returners.sqlite3_return.get_minions()
Return a list of minions

salt.returners.sqlite3_return.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.sqlite3_return.returner(ret)
Insert minion return data into the sqlite3 database

salt.returners.sqlite3_return.save_load(jid, load)
Save the load to the specified jid

salt.returners.syslog_return

Return data to the host operating system's syslog facility

1004 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Required python modules: syslog, json

e syslog returner simply reuses the operating system's syslog facility to log return data

To use the syslog returner, append `--return syslog' to the salt command. ex:

salt `*' test.ping --return syslog

salt.returners.syslog_return.prep_jid(nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.syslog_return.returner(ret)
Return data to the local syslog

22.24 Full list of builtin roster modules

flat Read in the roster from a flat file using the renderer system
scan Scan a netmask or ipaddr for open ssh ports

22.24.1 salt.roster.flat

Read in the roster from a flat file using the renderer system

class salt.roster.flat.RosterMatcher(raw, tgt, tgt_type, ipv='ipv4')
Matcher for the roster data structure

get_data(minion)
Return the configured ip

ret_glob_minions()
Return minions that match via glob

ret_list_minions()
Return minions that match via list

ret_pcre_minions()
Return minions that match via pcre

targets()
Execute the correct tgt_type routine and return

salt.roster.flat.targets(tgt, tgt_type='glob', **kwargs)
Return the targets from the flat yaml file, checks opts for location but defaults to /etc/salt/roster

22.24.2 salt.roster.scan

Scan a netmask or ipaddr for open ssh ports

class salt.roster.scan.RosterMatcher(tgt, tgt_type)
Matcher for the roster data structure

targets()
Return ip addrs based on netmask, siing in the ``glob'' spot because it is the default

salt.roster.scan.targets(tgt, tgt_type='glob', **kwargs)
Return the targets from the flat yaml file, checks opts for location but defaults to /etc/salt/roster

22.24. Full list of builtin roster modules 1005

Salt Documentation, Release 2014.7.6

22.25 Salt Runners

Salt runners are convenience applications executed with the salt-run command.

Salt runners work similarly to Salt execution modules however they execute on the Salt master itself instead of
remote Salt minions.

A Salt runner can be a simple client call or a complex application.

See also:

e full list of runners

22.25.1 Full list of runner modules

cache Return cached data from minions
cloud e Salt Cloud Runner
doc A runner module to collect and display the inline documentation from the
error Error generator to enable integration testing of salt runner error handling
fileserver Directly manage the Salt fileserver plugins
git_pillar Directly manage the salt git_pillar plugin
jobs A convenience system to manage jobs, both active and already run
launchd Manage launchd plist files
lxc Control Linux Containers via Salt
manage General management functions for salt, tools like seeing what hosts are up
mine A runner to access data from the salt mine
network Network tools to run from the Master
pillar Functions to interact with the pillar compiler on the master
queue General management and processing of queues.
search Runner frontend to search system
state Execute overstate functions
survey A general map/reduce style salt runner for aggregating results returned by several different minions.
thin e thin runner is used to manage the salt thin systems.
virt Control virtual machines via Salt
winrepo Runner to manage Windows soware repo

salt.runners.cache

Return cached data from minions

salt.runners.cache.clear_all(tgt=None, expr_form='glob')
Clear the cached pillar, grains, and mine data of the targeted minions

CLI Example:

salt-run cache.clear_all

salt.runners.cache.clear_grains(tgt=None, expr_form='glob')
Clear the cached grains data of the targeted minions

CLI Example:

salt-run cache.clear_grains

1006 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.runners.cache.clear_mine(tgt=None, expr_form='glob')
Clear the cached mine data of the targeted minions

CLI Example:

salt-run cache.clear_mine

salt.runners.cache.clear_mine_func(tgt=None, expr_form='glob', clear_mine_func=None)
Clear the cached mine function data of the targeted minions

CLI Example:

salt-run cache.clear_mine_func tgt='*' clear_mine_func='network.interfaces'

salt.runners.cache.clear_pillar(tgt=None, expr_form='glob')
Clear the cached pillar data of the targeted minions

CLI Example:

salt-run cache.clear_pillar

salt.runners.cache.grains(tgt=None, expr_form='glob', **kwargs)
Return cached grains of the targeted minions

CLI Example:

salt-run cache.grains

salt.runners.cache.mine(tgt=None, expr_form='glob', **kwargs)
Return cached mine data of the targeted minions

CLI Example:

salt-run cache.mine

salt.runners.cache.pillar(tgt=None, expr_form='glob', **kwargs)
Return cached pillars of the targeted minions

CLI Example:

salt-run cache.pillar

salt.runners.cloud

The Salt Cloud Runner

is runner wraps the functionality of salt cloud making salt cloud routines available to all internal apis via the
runner system

salt.runners.cloud.action(func=None, cloudmap=None, instances=None, provider=None, in-
stance=None, **kwargs)

Execute a single action on the given map/provider/instance

salt.runners.cloud.create(provider, instances, **kwargs)
Create an instance using Salt Cloud

CLI Example:

salt-run cloud.create my-ec2-config myinstance image=ami-1624987f size='Micro Instance' ssh_username=ec2-user securitygroup=default delvol_on_destroy=True

22.25. Salt Runners 1007

Salt Documentation, Release 2014.7.6

salt.runners.cloud.destroy(instances)
Destroy the named vm(s)

salt.runners.cloud.full_query(query_type='list_nodes_full')
List all available cloud provider data

salt.runners.cloud.list_images(provider='all')
List cloud provider images for the given providers

salt.runners.cloud.list_locations(provider='all')
List cloud provider sizes for the given providers

salt.runners.cloud.list_sizes(provider='all')
List cloud provider sizes for the given providers

salt.runners.cloud.map_run(path, **kwargs)
Execute a salt cloud map file

salt.runners.cloud.profile(prof, instances, **kwargs)
Create a cloud vm with the given profile and instances, instances can be a list or comma delimited string

salt.runners.cloud.query(query_type='list_nodes')
List cloud provider data for all providers

salt.runners.cloud.select_query(query_type='list_nodes_select')
List selected nodes

salt.runners.doc

A runner module to collect and display the inline documentation from the various module types

salt.runners.doc.execution()
Collect all the sys.doc output from each minion and return the aggregate

CLI Example:

salt-run doc.execution

salt.runners.doc.runner()
Return all inline documentation for runner modules

CLI Example:

salt-run doc.runner

salt.runners.doc.wheel()
Return all inline documentation for wheel modules

CLI Example:

salt-run doc.wheel

salt.runners.error

Error generator to enable integration testing of salt runner error handling

salt.runners.error.error(name=None, message='`)
If name is None en return empty dict

Otherwise raise an exception with __name__ from name, message from message

CLI Example:

1008 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt-run error
salt-run error.error name="Exception" message="This is an error."

salt.runners.fileserver

Directly manage the Salt fileserver plugins

salt.runners.fileserver.clear_cache(backend=None)
New in version 2015.5.0.

Clear the fileserver cache from VCS fileserver backends (git, hg, svn). Executing this runner with no ar-
guments will clear the cache for all enabled VCS fileserver backends, but this can be narrowed using the
backend argument.

baend Only clear the update lock for the specified backend(s). If all passed backends start with a minus
sign (-), then these backends will be excluded from the enabled backends. However, if there is a mix of
backends with and without a minus sign (ex: backend=-roots,git) then the ones starting with a
minus sign will be disregarded.

CLI Example:

salt-run fileserver.clear_cache
salt-run fileserver.clear_cache backend=git,hg
salt-run fileserver.clear_cache hg
salt-run fileserver.clear_cache -roots

salt.runners.fileserver.clear_lock(backend=None, remote=None)
New in version 2015.5.0.

Clear the fileserver update lock from VCS fileserver backends (git, hg, svn). is should only need to be
done if a fileserver update was interrupted and a remote is not updating (generating a warning in the Master's
log file). Executing this runner with no arguments will remove all update locks from all enabled VCS fileserver
backends, but this can be narrowed by using the following arguments:

baend Only clear the update lock for the specified backend(s).

remote If not None, then any remotes which contain the passed string will have their lock cleared. For ex-
ample, a remote value of github will remove the lock from all github.com remotes.

CLI Example:

salt-run fileserver.clear_lock
salt-run fileserver.clear_lock backend=git,hg
salt-run fileserver.clear_lock backend=git remote=github
salt-run fileserver.clear_lock remote=bitbucket

salt.runners.fileserver.dir_list(saltenv='base', backend=None, outpuer='nested')
Return a list of directories in the given environment

saltenv [base] e salt fileserver environment to be listed

baend Narrow fileserver backends to a subset of the enabled ones. If all passed backends start with a minus
sign (-), then these backends will be excluded from the enabled backends. However, if there is a mix of
backends with and without a minus sign (ex: backend=-roots,git) then the ones starting with a
minus sign will be disregarded.

New in version 2015.5.0.

CLI Example:

22.25. Salt Runners 1009

Salt Documentation, Release 2014.7.6

salt-run fileserver.dir_list
salt-run fileserver.dir_list saltenv=prod
salt-run fileserver.dir_list saltenv=dev backend=git
salt-run fileserver.dir_list base hg,roots
salt-run fileserver.dir_list -git

salt.runners.fileserver.empty_dir_list(saltenv='base', backend=None, outpuer='nested')
New in version 2015.5.0.

Return a list of empty directories in the given environment

saltenv [base] e salt fileserver environment to be listed

baend Narrow fileserver backends to a subset of the enabled ones. If all passed backends start with a minus
sign (-), then these backends will be excluded from the enabled backends. However, if there is a mix of
backends with and without a minus sign (ex: backend=-roots,git) then the ones starting with a
minus sign will be disregarded.

Note: Some backends (such as git and hg) do not support empty directories. So, passing back-
end=git or backend=hg will result in an empty list being returned.

CLI Example:

salt-run fileserver.empty_dir_list
salt-run fileserver.empty_dir_list saltenv=prod
salt-run fileserver.empty_dir_list backend=roots

salt.runners.fileserver.envs(backend=None, sources=False, outpuer='nested')
Return the available fileserver environments. If no backend is provided, then the environments for all config-
ured backends will be returned.

baend Narrow fileserver backends to a subset of the enabled ones.

Changed in version 2015.5.0: If all passed backends start with a minus sign (-), then these backends
will be excluded from the enabled backends. However, if there is a mix of backends with and without a
minus sign (ex: backend=-roots,git) then the ones starting with a minus sign will be disregarded.

Additionally, fileserver backends can now be passed as a comma-separated list. In earlier versions, they
needed to be passed as a python list (ex: backend="['roots', 'git']")

CLI Example:

salt-run fileserver.envs
salt-run fileserver.envs outputter=nested
salt-run fileserver.envs backend=roots,git
salt-run fileserver.envs git

salt.runners.fileserver.file_list(saltenv='base', backend=None, outpuer='nested')
Return a list of files from the salt fileserver

saltenv [base] e salt fileserver environment to be listed

baend Narrow fileserver backends to a subset of the enabled ones. If all passed backends start with a minus
sign (-), then these backends will be excluded from the enabled backends. However, if there is a mix of
backends with and without a minus sign (ex: backend=-roots,git) then the ones starting with a
minus sign will be disregarded.

New in version 2015.5.0.

CLI Examples:

1010 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt-run fileserver.file_list
salt-run fileserver.file_list saltenv=prod
salt-run fileserver.file_list saltenv=dev backend=git
salt-run fileserver.file_list base hg,roots
salt-run fileserver.file_list -git

salt.runners.fileserver.lock(backend=None, remote=None)
New in version 2015.5.0.

Set a fileserver update lock for VCS fileserver backends (git, hg, svn).

Note: is will only operate on enabled backends (those configured in :master_conf:`fileserver_baend`).

baend Only set the update lock for the specified backend(s).

remote If not None, then any remotes which contain the passed string will have their lock cleared. For ex-
ample, a remote value of *github.com* will remove the lock from all github.com remotes.

CLI Example:

salt-run fileserver.lock
salt-run fileserver.lock backend=git,hg
salt-run fileserver.lock backend=git remote='*github.com*'
salt-run fileserver.lock remote=bitbucket

salt.runners.fileserver.symlink_list(saltenv='base', backend=None, outpuer='nested')
Return a list of symlinked files and dirs

saltenv [base] e salt fileserver environment to be listed

baend Narrow fileserver backends to a subset of the enabled ones. If all passed backends start with a minus
sign (-), then these backends will be excluded from the enabled backends. However, if there is a mix of
backends with and without a minus sign (ex: backend=-roots,git) then the ones starting with a
minus sign will be disregarded.

New in version 2015.5.0.

CLI Example:

salt-run fileserver.symlink_list
salt-run fileserver.symlink_list saltenv=prod
salt-run fileserver.symlink_list saltenv=dev backend=git
salt-run fileserver.symlink_list base hg,roots
salt-run fileserver.symlink_list -git

salt.runners.fileserver.update(backend=None)
Update the fileserver cache. If no backend is provided, then the cache for all configured backends will be
updated.

baend Narrow fileserver backends to a subset of the enabled ones.

Changed in version 2015.5.0: If all passed backends start with a minus sign (-), then these backends
will be excluded from the enabled backends. However, if there is a mix of backends with and without a
minus sign (ex: backend=-roots,git) then the ones starting with a minus sign will be disregarded.

Additionally, fileserver backends can now be passed as a comma-separated list. In earlier versions, they
needed to be passed as a python list (ex: backend="['roots', 'git']")

CLI Example:

22.25. Salt Runners 1011

Salt Documentation, Release 2014.7.6

salt-run fileserver.update
salt-run fileserver.update backend=roots,git

salt.runners.git_pillar

Directly manage the salt git_pillar plugin

salt.runners.git_pillar.update(branch, repo)
Execute an update for the configured git fileserver backend for Pillar

CLI Example:

salt-run git_pillar.update branch='branch' repo='location'

salt.runners.jobs

A convenience system to manage jobs, both active and already run

salt.runners.jobs.active()
Return a report on all actively running jobs from a job id centric perspective

CLI Example:

salt-run jobs.active

salt.runners.jobs.list_job(jid, ext_source=None)
List a specific job given by its jid

CLI Example:

salt-run jobs.list_job 20130916125524463507

salt.runners.jobs.list_jobs(ext_source=None)
List all detectable jobs and associated functions

CLI Example:

salt-run jobs.list_jobs

salt.runners.jobs.lookup_jid(jid, ext_source=None, missing=False)
Return the printout from a previously executed job

CLI Example:

salt-run jobs.lookup_jid 20130916125524463507

salt.runners.jobs.print_job(jid, ext_source=None)
Print job available details, including return data.

CLI Example:

salt-run jobs.print_job

salt.runners.launchd

Manage launchd plist files

1012 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.runners.launchd.write_launchd_plist(program)
Write a launchd plist for managing salt-master or salt-minion

CLI Example:

salt-run launchd.write_launchd_plist salt-master

salt.runners.lxc

Control Linux Containers via Salt

depends lxc execution module

salt.runners.lxc.cloud_init(names, host=None, quiet=False, **kwargs)
Wrapper for using lxc.init in saltcloud compatibility mode

names Name of the containers, supports a single name or a comma delimited list of names.

host Minion to start the container on. Required.

saltcloud_mode init the container with the saltcloud opts format instead

salt.runners.lxc.find_guest(name, quiet=False)
Returns the host for a container.

salt-run lxc.find_guest name

salt.runners.lxc.find_guests(names)
Return a dict of hosts and named guests

salt.runners.lxc.freeze(name, quiet=False)
Freeze the named container

salt-run lxc.freeze name

salt.runners.lxc.info(name, quiet=False)
Returns information about a container.

salt-run lxc.info name

salt.runners.lxc.init(names, host=None, saltcloud_mode=False, quiet=False, **kwargs)
Initialize a new container

salt-run lxc.init name host=minion_id [cpuset=cgroups_cpuset] \
[cpushare=cgroups_cpushare] [memory=cgroups_memory] \
[template=lxc template name] [clone=original name] \
[nic=nic_profile] [profile=lxc_profile] \
[nic_opts=nic_opts] [start=(true|false)] \
[seed=(true|false)] [install=(true|false)] \
[config=minion_config] [snapshot=(true|false)]

names Name of the containers, supports a single name or a comma delimited list of names.

host Minion to start the container on. Required.

saltcloud_mode init the container with the saltcloud opts format instead See lxc.init_interface module docu-
mentation

cpuset cgroups cpuset.

cpushare cgroups cpu shares.

22.25. Salt Runners 1013

Salt Documentation, Release 2014.7.6

memory cgroups memory limit, in MB.

template Name of LXC template on which to base this container

clone Clone this container from an existing container

nic Network interfaces profile (defined in config or pillar).

profile A LXC profile (defined in config or pillar).

nic_opts Extra options for network interfaces. E.g:

{"eth0": {"mac": "aa:bb:cc:dd:ee:ff", "ipv4": "10.1.1.1", "ipv6":
"2001:db8::ff00:42:8329"}}

start Start the newly created container.

seed Seed the container with the minion config and autosign its key. Default: true

install If salt-minion is not already installed, install it. Default: true

config Optional config parameters. By default, the id is set to the name of the container.

salt.runners.lxc.list_(host=None, quiet=False)
List defined containers (running, stopped, and frozen) for the named (or all) host(s).

salt-run lxc.list [host=minion_id]

salt.runners.lxc.purge(name, delete_key=True, quiet=False)
Purge the named container and delete its minion key if present. WARNING: Destroys all data associated with
the container.

salt-run lxc.purge name

salt.runners.lxc.start(name, quiet=False)
Start the named container.

salt-run lxc.start name

salt.runners.lxc.stop(name, quiet=False)
Stop the named container.

salt-run lxc.stop name

salt.runners.lxc.unfreeze(name, quiet=False)
Unfreeze the named container

salt-run lxc.unfreeze name

salt.runners.manage

General management functions for salt, tools like seeing what hosts are up and what hosts are down

salt.runners.manage.bootstrap(version='develop', script=None, hosts='`, root_user=True)
Bootstrap minions with salt-bootstrap

version [develop] Git tag of version to install

script [hps://bootstrap.saltstack.com] Script to execute

hosts Comma separated hosts [example: hosts=''host1.local,host2.local'']

root_user [True] Prepend root@ to each host.

1014 Chapter 22. Reference

https://bootstrap.saltstack.com

Salt Documentation, Release 2014.7.6

CLI Example:

salt-run manage.bootstrap hosts="host1,host2"
salt-run manage.bootstrap hosts="host1,host2" version="v0.17"
salt-run manage.bootstrap hosts="host1,host2" version="v0.17" script="https://bootstrap.saltstack.com/develop"
salt-run manage.bootstrap hosts="ec2-user@host1,ec2-user@host2" root_user=False

salt.runners.manage.bootstrap_psexec(hosts='`, master=None, version=None, arch='win32', in-
staller_url=None, username=None, password=None)

Bootstrap Windows minions via PsExec.

hosts Comma separated list of hosts to deploy the Windows Salt minion.

master Address of the Salt master passed as an argument to the installer.

version Point release of installer to download. Defaults to the most recent.

ar Architecture of installer to download. Defaults to win32.

installer_url URL of minion installer executable. Defaults to the latest version from
hp://docs.saltstack.com/downloads

username Optional user name for login on remote computer.

password Password for optional username. If omied, PsExec will prompt for one to be entered for each host.

CLI Example:

salt-run manage.bootstrap_psexec hosts='host1,host2'
salt-run manage.bootstrap_psexec hosts='host1,host2' version='0.17' username='DOMAIN\Administrator'
salt-run manage.bootstrap_psexec hosts='host1,host2' installer_url='http://exampledomain/salt-installer.exe'

salt.runners.manage.down(removekeys=False)
Print a list of all the down or unresponsive salt minions Optionally remove keys of down minions

CLI Example:

salt-run manage.down
salt-run manage.down removekeys=True

salt.runners.manage.key_regen()
is routine is used to regenerate all keys in an environment. is is invasive! ALL KEYS IN THE SALT
ENVIRONMENT WILL BE REGENERATED‼

e key_regen routine sends a command out to minions to revoke the master key and remove all minion keys,
it then removes all keys from the master and prompts the user to restart the master. e minions will all
reconnect and keys will be placed in pending.

Aer the master is restarted and minion keys are in the pending directory execute a salt-key -A command to
accept the regenerated minion keys.

e master must be restarted within 60 seconds of running this command or the minions will think there is
something wrong with the keys and abort.

Only Execute this runner aer upgrading minions and master to 0.15.1 or higher!

CLI Example:

salt-run manage.key_regen

salt.runners.manage.present(subset=None, show_ipv4=False)
Print a list of all minions that are up according to Salt's presence detection, no commands will be sent

subset [None] Pass in a CIDR range to filter minions by IP address.

22.25. Salt Runners 1015

http://docs.saltstack.com/downloads

Salt Documentation, Release 2014.7.6

show_ipv4 [False] Also show the IP address each minion is connecting from.

CLI Example:

salt-run manage.present

salt.runners.manage.safe_accept(target, expr_form='glob')
Accept a minion's public key aer checking the fingerprint over salt-ssh

CLI Example:

salt-run manage.safe_accept my_minion
salt-run manage.safe_accept minion1,minion2 expr_form=list

salt.runners.manage.status(output=True)
Print the status of all known salt minions

CLI Example:

salt-run manage.status

salt.runners.manage.up()
Print a list of all of the minions that are up

CLI Example:

salt-run manage.up

salt.runners.manage.versions()
Check the version of active minions

CLI Example:

salt-run manage.versions

salt.runners.mine

A runner to access data from the salt mine

salt.runners.mine.get(tgt, fun, tgt_type='glob', output='yaml')
Gathers the data from the specified minions' mine, pass in the target, function to look up and the target type

CLI Example:

salt-run mine.get '*' network.interfaces

salt.runners.network

Network tools to run from the Master

salt.runners.network.wol(mac, bcast=`255.255.255.255', destport=9)
Send a ``Magic Packet'' to wake up a Minion

CLI Example:

salt-run network.wol 08-00-27-13-69-77
salt-run network.wol 080027136977 255.255.255.255 7
salt-run network.wol 08:00:27:13:69:77 255.255.255.255 7

1016 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.runners.network.wollist(maclist, bcast=`255.255.255.255', destport=9)
Send a ``Magic Packet'' to wake up a list of Minions. is list must contain one MAC hardware address per
line

CLI Example:

salt-run network.wollist '/path/to/maclist'
salt-run network.wollist '/path/to/maclist' 255.255.255.255 7
salt-run network.wollist '/path/to/maclist' 255.255.255.255 7

salt.runners.pillar

Functions to interact with the pillar compiler on the master

salt.runners.pillar.show_pillar(minion='*', **kwargs)
Returns the compiled pillar either of a specific minion or just the global available pillars. I assume that no
minion is using the id *.

CLI Example:

shows minion specific pillar:

salt-run pillar.show_pillar 'www.example.com'

shows global pillar:

salt-run pillar.show_pillar

shows global pillar for `dev' pillar environment:

salt-run pillar.show_pillar 'saltenv=dev'

API Example:

import salt.config
import salt.runner
opts = salt.config.master_config('/etc/salt/master')
runner = salt.runner.RunnerClient(opts)
pillar = runner.cmd('pillar.show_pillar', [])
print pillar¬

salt.runners.pillar.show_top(minion=None, saltenv='base')
Returns the compiled top data for pillar for a specific minion. If no minion is specified, we use the first minion
we find.

CLI Example:

salt-run pillar.show_top

salt.runners.queue

General management and processing of queues.

is runner facilitates interacting with various queue backends such as the included sqlite3 queue or the planned
AWS SQS and Redis queues

e queue functions such as insert, delete, and pop can be used for typical management of the queue.

22.25. Salt Runners 1017

Salt Documentation, Release 2014.7.6

e process_queue function pops the requested number of items from the queue and creates a Salt Event that can
then be processed by a Reactor. e process_queue function can be called manually, or can be configured to run on a
schedule with the Salt Scheduler or regular system cron. It is also possible to use the peer system to allow a minion
to call the runner.

is runner, as well as the eues system, is not api stable at this time.

ere are many things that could potentially be done with queues within Salt. For the time being the focus will be
on queueing infrastructure actions on specific minions. e queues generally will be populated with minion IDs.
When the process_queue runner function is called events are created on the Salt Event bus that indicate the queue
and a list of one or more minion IDs. e reactor is set up to match on event tags for a specific queue and then take
infrastructure actions on those minion IDs. ese actions might be to delete the minion's key from the master, use
salt-cloud to destroy the vm, or some other custom action.

salt.runners.queue.delete(queue, items, backend='sqlite')
Delete an item or items from a queue

CLI Example:

salt-run queue.delete myqueue myitem
salt-run queue.delete myqueue myitem backend=sqlite
salt-run queue.delete myqueue "['item1', 'item2', 'item3']"

salt.runners.queue.insert(queue, items, backend='sqlite')
Add an item or items to a queue

CLI Example:

salt-run queue.insert myqueue myitem
salt-run queue.insert myqueue "['item1', 'item2', 'item3']"
salt-run queue.insert myqueue myitem backend=sqlite
salt-run queue.insert myqueue "['item1', 'item2', 'item3']" backend=sqlite

salt.runners.queue.list_items(queue, backend='sqlite')
List contents of a queue

CLI Example:

salt-run queue.list_items myqueue
salt-run queue.list_items myqueue backend=sqlite

salt.runners.queue.list_length(queue, backend='sqlite')
Provide the number of items in a queue

CLI Example:

salt-run queue.list_length myqueue
salt-run queue.list_length myqueue backend=sqlite

salt.runners.queue.list_queues(backend='sqlite')
Return a list of Salt eues on the backend

CLI Example:

salt-run queue.list_queues salt-run queue.list_queues backend=sqlite

salt.runners.queue.pop(queue, quantity=1, backend='sqlite')
Pop one or more or all items from a queue

CLI Example:

1018 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt-run queue.pop myqueue
salt-run queue.pop myqueue 6
salt-run queue.pop myqueue all
salt-run queue.pop myqueue 6 backend=sqlite
salt-run queue.pop myqueue all backend=sqlite

salt.runners.queue.process_queue(queue, quantity=1, backend='sqlite')
Pop items off a queue and create an event on the Salt event bus to be processed by a Reactor.

CLI Example:

salt-run queue.process_queue myqueue
salt-run queue.process_queue myqueue 6
salt-run queue.process_queue myqueue all backend=sqlite

salt.runners.search

Runner frontend to search system

salt.runners.search.query(term)
ery the search system

CLI Example:

salt-run search.query foo

salt.runners.state

Execute overstate functions

salt.runners.state.event(tagmatch='*', count=-1, quiet=False, sock_dir=None, prey=False)
Watch Salt's event bus and block until the given tag is matched

New in version 2014.7.0.

is is useful for utilizing Salt's event bus from shell scripts or for taking simple actions directly from the CLI.

Enable debug logging to see ignored events.

Parameters

• tagmatch -- the event is wrien to stdout for each tag that matches this paern; uses
the same matching semantics as Salt's Reactor.

• count -- this number is decremented for each event that matches the tagmatch pa-
rameter; pass -1 to listen forever.

• quiet -- do not print to stdout; just block

• sock_dir -- path to the Salt master's event socket file.

• pretty -- Output the JSON all on a single line if False (useful for shell tools); prey-
print the JSON output if True.

CLI Examples:

Reboot a minion and run highstate when it comes back online
salt 'jerry' system.reboot && \\

salt-run state.event 'salt/minion/jerry/start' count=1 quiet=True && \\
salt 'jerry' state.highstate

22.25. Salt Runners 1019

Salt Documentation, Release 2014.7.6

Reboot multiple minions and run highstate when all are back online
salt -L 'kevin,stewart,dave' system.reboot && \\

salt-run state.event 'salt/minion/*/start' count=3 quiet=True && \\
salt -L 'kevin,stewart,dave' state.highstate

Watch the event bus forever in a shell while-loop.
salt-run state.event | while read -r tag data; do

echo $tag
echo $data | jq -colour-output .

done

e following example monitors Salt's event bus in a background process watching for returns for a given job.
Requires a POSIX environment and jq <hp://stedolan.github.io/jq/>.

#!/bin/sh
Usage: ./eventlisten.sh '*' test.sleep 10

Mimic fnmatch from the Python stdlib.
fnmatch() { case "$2" in $1) return 0 ;; *) return 1 ;; esac ; }
count() { printf '%s\n' "$#" ; }

listen() {
events='events'
mkfifo $events
exec 3<>$events # Hold the fd open.

Start listening to events before starting the command to avoid race
conditions.
salt-run state.event count=-1 >&3 &
events_pid=$!

(
timeout=$((60 * 60))
sleep $timeout
kill -s USR2 $$

) &
timeout_pid=$!

Give the runner a few to connect to the event bus.
printf 'Subscribing to the Salt event bus...\n'
sleep 4

trap '
excode=$?; trap - EXIT;
exec 3>&-
kill '"${timeout_pid}"'
kill '"${events_pid}"'
rm '"${events}"'
exit
echo $excode

' INT TERM EXIT

trap '
printf '\''Timeout reached; exiting.\n'\''
exit 4

' USR2

Run the command and get the JID.

1020 Chapter 22. Reference

http://stedolan.github.io/jq/

Salt Documentation, Release 2014.7.6

jid=$(salt --async "$@")
jid="${jid#*: }" # Remove leading text up to the colon.

Create the event tags to listen for.
start_tag="salt/job/${jid}/new"
ret_tag="salt/job/${jid}/ret/*"

``read`` will block when no events are going through the bus.
printf 'Waiting for tag %s\n' "$ret_tag"
while read -r tag data; do

if fnmatch "$start_tag" "$tag"; then
minions=$(printf '%s\n' "${data}" | jq -r '.["minions"][]')
num_minions=$(count $minions)
printf 'Waiting for %s minions.\n' "$num_minions"
continue

fi

if fnmatch "$ret_tag" "$tag"; then
mid="${tag##*/}"
printf 'Got return for %s.\n' "$mid"
printf 'Pretty-printing event: %s\n' "$tag"
printf '%s\n' "$data" | jq .

minions="$(printf '%s\n' "$minions" | sed -e '/'"$mid"'/d')"
num_minions=$(count $minions)
if [$((num_minions)) -eq 0]; then

printf 'All minions returned.\n'
break

else
printf 'Remaining minions: %s\n' "$num_minions"

fi
else

printf 'Skipping tag: %s\n' "$tag"
continue

fi
done <&3

}

listen "$@"

salt.runners.state.orchestrate(mods, saltenv='base', test=None, exclude=None, pillar=None)
New in version 0.17.0.

Execute a state run from the master, used as a powerful orchestration system.

See also:

More Orchestrate documentation

•Full Orchestrate Tutorial

•Docs for the master-side state module

CLI Examples:

salt-run state.orchestrate webserver
salt-run state.orchestrate webserver saltenv=dev test=True

Changed in version 2014.1.1: Runner renamed from state.sls to state.orchestrate

Changed in version 2014.7.0: Runner uses the pillar variable

22.25. Salt Runners 1021

Salt Documentation, Release 2014.7.6

salt.runners.state.over(saltenv='base', os_fn=None)
New in version 0.11.0.

Warning: state.over is deprecated in favor of state.orchestrate, and will be removed in the
Salt feature release codenamed Boron. (ree feature releases aer the 2014.7.0 release, which is codenamed
Helium)

Execute an overstate sequence to orchestrate the executing of states over a group of systems

CLI Examples:

salt-run state.over base /path/to/myoverstate.sls

salt.runners.state.show_stages(saltenv='base', os_fn=None)
New in version 0.11.0.

Display the OverState's stage data

CLI Examples:

salt-run state.show_stages
salt-run state.show_stages saltenv=dev /root/overstate.sls

salt.runners.survey

A general map/reduce style salt runner for aggregating results returned by several different minions.

New in version 2014.7.0.

Aggregated results are sorted by the size of the minion pools which returned matching results.

Useful for playing the game: '' some of these things are not like the others… '' when identifying discrepancies in a
large infrastructure managed by salt.

salt.runners.survey.diff(*args, **kwargs)
Return the DIFFERENCE of the result sets returned by each matching minion pool

New in version 2014.7.0.

ese pools are determined from the aggregated and sorted results of a salt command. is command displays
the ``diffs'' as a series of 2-way differences-- namely the difference between the FIRST displayed minion pool
(according to sort order) and EACH SUBSEQUENTminion pool result set. Differences are displayed according
to the Python ``difflib.unified_diff()'' as in the case of the salt execution module ``file.get_diff''.

is command is submied via a salt runner using the general form:

salt-run survey.diff [survey_sort=up/down] <target> <salt-execution-module> <salt-
execution-module parameters>

Optionally accept a ``survey_sort='' parameter. Default: ``survey_sort=down''

CLI Example #1: (Example to display the ``differences of files'')

salt-run survey.diff survey_sort=up "*" cp.get_file_str file:///etc/hosts

salt.runners.survey.hash(*args, **kwargs)
Return the MATCHING minion pools from the aggregated and sorted results of a salt command

New in version 2014.7.0.

is command is submied via a salt runner using the general form:

1022 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt-run survey.hash [survey_sort=up/down] <target> <salt-execution-module> <salt-
execution-module parameters>

Optionally accept a ``survey_sort='' parameter. Default: ``survey_sort=down''

CLI Example #1: (functionally equivalent to ``salt-run manage.up'')

salt-run survey.hash "*" test.ping

CLI Example #2: (find an ``outlier'' minion config file)

salt-run survey.hash "*" file.get_hash /etc/salt/minion survey_sort=up

salt.runners.thin

e thin runner is used to manage the salt thin systems.

Salt in is a transport-less version of Salt that can be used to run routines in a standalone way. is runner has
tools which generate the standalone salt system for easy consumption.

salt.runners.thin.generate(extra_mods='`, overwrite=False, so_mods='`)
Generate the salt-thin tarball and print the location of the tarball Optional additional mods to include (e.g.
mako) can be supplied as a comma delimited string. Permits forcing an overwrite of the output file as well.

CLI Example:

salt-run thin.generate
salt-run thin.generate mako
salt-run thin.generate mako,wempy 1
salt-run thin.generate overwrite=1

salt.runners.virt

Control virtual machines via Salt

salt.runners.virt.force_off(name)
Force power down the named virtual machine

salt.runners.virt.hyper_info(hyper=None)
Return information about the hypervisors connected to this master

salt.runners.virt.init(name, cpu, mem, image, hyper=None, seed=True, nic='default', install=True)
is routine is used to create a new virtual machine. is routines takes a number of options to determine
what the newly created virtual machine will look like.

name e mandatory name of the new virtual machine. e name option is also the minion id, all minions
must have an id.

cpu e number of cpus to allocate to this new virtual machine.

mem e amount of memory to allocate tot his virtual machine. e number is interpreted in megabytes.

image e network location of the virtual machine image, commonly a location on the salt fileserver, but hp,
hps and p can also be used.

hyper e hypervisor to use for the new virtual machine, if this is omied Salt will automatically detect what
hypervisor to use.

seed Set to False to prevent Salt from seeding the new virtual machine.

22.25. Salt Runners 1023

Salt Documentation, Release 2014.7.6

nic e nic profile to use, defaults to the ``default'' nic profile which assumes a single network interface per
vm associated with the ``br0'' bridge on the master.

install Set to False to prevent Salt from installing a minion on the new vm before it spins up.

salt.runners.virt.list(hyper=None, quiet=False)
List the virtual machines on each hyper, this is a simplified query, showing only the virtual machine names
belonging to each hypervisor. A single hypervisor can be passed in to specify an individual hypervisor to list.

salt.runners.virt.migrate(name, target='`)
Migrate a vm from one hypervisor to another. is routine will just start themigration and display information
on how to look up the progress.

salt.runners.virt.next_hyper()
Return the hypervisor to use for the next autodeployed vm. is queries the available hypervisors and executes
some math the determine the most ``available'' next hypervisor.

salt.runners.virt.pause(name)
Pause the named vm

salt.runners.virt.purge(name, delete_key=True)
Destroy the named vm

salt.runners.virt.query(hyper=None, quiet=False)
ery the virtual machines. When called without options all hypervisors are detected and a full query is
returned. A single hypervisor can be passed in to specify an individual hypervisor to query.

salt.runners.virt.reset(name)
Force power down and restart an existing vm

salt.runners.virt.resume(name)
Resume a paused vm

salt.runners.virt.start(name)
Start a named virtual machine

salt.runners.virt.vm_info(name, quiet=False)
Return the information on the named vm

salt.runners.winrepo

Runner to manage Windows soware repo

salt.runners.winrepo.genrepo()
Generate win_repo_cachefile based on sls files in the win_repo

CLI Example:

salt-run winrepo.genrepo

salt.runners.winrepo.update_git_repos()
Checkout git repos containing Windows Soware Package Definitions

CLI Example:

salt-run winrepo.update_git_repos

1024 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.25.2 Writing Salt Runners

A Salt runner is wrien in a similar manner to a Salt execution module. Both are Python modules which contain
functions and each public function is a runner which may be executed via the salt-run command.

For example, if a Python module named test.py is created in the runners directory and contains a function called
foo, the test runner could be invoked with the following command:

salt-run test.foo

To add custom runners, put them in a directory and add it to runner_dirs in the master configuration file.

22.25.3 Examples

Examples of runners can be found in the Salt distribution:

hps://github.com/saltstack/salt/blob/develop/salt/runners

A simple runner that returns a well-formaed list of the minions that are responding to Salt calls could look like
this:

Import salt modules
import salt.client

def up():
'''
Print a list of all of the minions that are up
'''
client = salt.client.LocalClient(__opts__['conf_file'])
minions = client.cmd('*', 'test.ping', timeout=1)
for minion in sorted(minions):

print minion

22.26 State Enforcement

Salt offers an optional interface to manage the configuration or ``state'' of the Salt minions. is interface is a fully
capable mechanism used to enforce the state of systems from a central manager.

22.26.1 Mod Aggregate State Runtime Modifications

New in version 2014.7.0.

e mod_aggregate system was added in the 2014.7.0 release of Salt and allows for runtime modification of the
executing state data. Simply put, it allows for the data used by Salt's state system to be changed on the fly at
runtime, kind of like a configuration management JIT compiler or a runtime import system. All in all, it makes Salt
much more dynamic.

How it Works

e best example is the pkg state. One of the major requests in Salt has long been adding the ability to install all
packages defined at the same time. e mod_aggregate system makes this a reality. While executing Salt's state
system, when a pkg state is reached the mod_aggregate function in the state module is called. For pkg this

22.26. State Enforcement 1025

https://github.com/saltstack/salt/blob/develop/salt/runners

Salt Documentation, Release 2014.7.6

function scans all of the other states that are slated to run, and picks up the references to name and pkgs, then adds
them to pkgs in the first state. e result is a single call to yum, apt-get, pacman, etc as part of the first package
install.

How to Use it

Note: Since this option changes the basic behavior of the state runtime, aer it is enabled states should be executed
using test=True to ensure that the desired behavior is preserved.

In config files

e first way to enable aggregation is with a configuration option in either the master or minion configuration files.
Salt will invoke mod_aggregate the first time it encounters a state module that has aggregate support.

If this option is set in the master config it will apply to all state runs on all minions, if set in the minion config it will
only apply to said minion.

Enable for all states:

state_aggregate: True

Enable for only specific state modules:

state_aggregate:
- pkg

In states

e second way to enable aggregation is with the state-level aggregate keyword. In this configuration, Salt will
invoke the mod_aggregate function the first time it encounters this keyword. Any additional occurances of the
keyword will be ignored as the aggregation has already taken place.

e following example will trigger mod_aggregate when the lamp_stack state is processed resulting in a
single call to the underlying package manager.

lamp_stack:
pkg.installed:

- pkgs:
- php
- mysql-client

- aggregate: True

memcached:
pkg.installed:

- name: memcached

1026 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Adding mod_aggregate to a State Module

Adding a mod_aggregate routine to an existing state module only requires adding an additional function to the state
module called mod_aggregate.

e mod_aggregate function just needs to accept three parameters and return the low data to use. Since
mod_aggregate is working on the state runtime level it does need to manipulate low data.

e three parameters are low, chunks and running. e low option is the low data for the state execution which is
about to be called. e chunks is the list of all of the low data dictionaries which are being executed by the runtime
and the running dictionary is the return data from all of the state executions which have already be executed.

is example, simplified from the pkg state, shows how to create mod_aggregate functions:

def mod_aggregate(low, chunks, running):
'''
The mod_aggregate function which looks up all packages in the available
low chunks and merges them into a single pkgs ref in the present low data
'''
pkgs = []
What functions should we aggregate?
agg_enabled = [

'installed',
'latest',
'removed',
'purged',
]

The `low` data is just a dict with the state, function (fun) and
arguments passed in from the sls
if low.get('fun') not in agg_enabled:

return low
Now look into what other things are set to execute
for chunk in chunks:

The state runtime uses "tags" to track completed jobs, it may
look familiar with the _|-
tag = salt.utils.gen_state_tag(chunk)
if tag in running:

Already ran the pkg state, skip aggregation
continue

if chunk.get('state') == 'pkg':
if '__agg__' in chunk:

continue
Check for the same function
if chunk.get('fun') != low.get('fun'):

continue
Pull out the pkg names!
if 'pkgs' in chunk:

pkgs.extend(chunk['pkgs'])
chunk['__agg__'] = True

elif 'name' in chunk:
pkgs.append(chunk['name'])
chunk['__agg__'] = True

if pkgs:
if 'pkgs' in low:

low['pkgs'].extend(pkgs)
else:

low['pkgs'] = pkgs
The low has been modified and needs to be returned to the state

22.26. State Enforcement 1027

Salt Documentation, Release 2014.7.6

runtime for execution
return low

22.26.2 Altering States

Note: is documentation has been moved here.

22.26.3 File State Backups

In 0.10.2 a new feature was added for backing up files that are replaced by the file.managed and file.recurse states.
e new feature is called the backup mode. Seing the backup mode is easy, but it can be set in a number of places.

e backup_mode can be set in the minion config file:

backup_mode: minion

Or it can be set for each file:

/etc/ssh/sshd_config:
file.managed:

- source: salt://ssh/sshd_config
- backup: minion

Backed-up Files

e files will be saved in the minion cachedir under the directory named file_backup. e files will be in the
location relative to where they were under the root filesystem and be appended with a timestamp. is should make
them easy to browse.

Interacting with Backups

Starting with version 0.17.0, it will be possible to list, restore, and delete previously-created backups.

Listing

e backups for a given file can be listed using file.list_backups:

salt foo.bar.com file.list_backups /tmp/foo.txt
foo.bar.com:

0:

Backup Time:

Sat Jul 27 2013 17:48:41.738027
Location:

/var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:41_738027_2013
Size:

13

1028 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

1:

Backup Time:

Sat Jul 27 2013 17:48:28.369804
Location:

/var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:28_369804_2013
Size:

35

Restoring

Restoring is easy using file.restore_backup, just pass the path and the numeric id found with
file.list_backups:

salt foo.bar.com file.restore_backup /tmp/foo.txt 1
foo.bar.com:

comment:

Successfully restored /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:28_369804_2013 to /tmp/foo.txt
result:

True

e existing file will be backed up, just in case, as can be seen if file.list_backups is run again:

salt foo.bar.com file.list_backups /tmp/foo.txt
foo.bar.com:

0:

Backup Time:

Sat Jul 27 2013 18:00:19.822550
Location:

/var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_18:00:19_822550_2013
Size:

53
1:

Backup Time:

Sat Jul 27 2013 17:48:41.738027
Location:

/var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:41_738027_2013
Size:

13
2:

Backup Time:

Sat Jul 27 2013 17:48:28.369804
Location:

/var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:28_369804_2013
Size:

35

Note: Since no state is being run, restoring a file will not trigger any watches for the file. So, if you are restoring a
config file for a service, it will likely still be necessary to run a service.restart.

22.26. State Enforcement 1029

Salt Documentation, Release 2014.7.6

Deleting

Deleting backups can be done using mod:file.delete_backup <salt.modules.file.delete_backup>:

salt foo.bar.com file.delete_backup /tmp/foo.txt 0
foo.bar.com:

comment:

Successfully removed /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_18:00:19_822550_2013
result:

True

22.26.4 Understanding State Compiler Ordering

Note: is tutorial is an intermediate level tutorial. Some basic understanding of the state system and writing Salt
Formulas is assumed.

Salt's state system is built to deliver all of the power of configuration management systems without sacrificing
simplicity. is tutorial is made to help users understand in detail just how the order is defined for state executions
in Salt.

is tutorial is wrien to represent the behavior of Salt as of version 0.17.0.

Compiler Basics

To understand ordering in depth some very basic knowledge about the state compiler is very helpful. No need to
worry though, this is very high level!

High Data and Low Data

When defining Salt Formulas in YAML the data that is being represented is referred to by the compiler as High Data.
When the data is initially loaded into the compiler it is a single large python dictionary, this dictionary can be viewed
raw by running:

salt '*' state.show_highstate

is ``High Data'' structure is then compiled down to ``Low Data''. e Low Data is what is matched up to create
individual executions in Salt's configuration management system. e low data is an ordered list of single state calls
to execute. Once the low data is compiled the evaluation order can be seen.

e low data can be viewed by running:

salt '*' state.show_lowstate

Note: e state execution module contains MANY functions for evaluating the state system and is well worth a
read! ese routines can be very useful when debugging states or to help deepen one's understanding of Salt's state
system.

As an example, a state wrien thusly:

1030 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

apache:
pkg.installed:

- name: httpd
service.running:

- name: httpd
- watch:

- file: apache_conf
- pkg: apache

apache_conf:
file.managed:

- name: /etc/httpd/conf.d/httpd.conf
- source: salt://apache/httpd.conf

Will have High Data which looks like this represented in json:

{
"apache": {

"pkg": [
{

"name": "httpd"
},
"installed",
{

"order": 10000
}

],
"service": [

{
"name": "httpd"

},
{

"watch": [
{

"file": "apache_conf"
},
{

"pkg": "apache"
}

]
},
"running",
{

"order": 10001
}

],
"__sls__": "blah",
"__env__": "base"

},
"apache_conf": {

"file": [
{

"name": "/etc/httpd/conf.d/httpd.conf"
},
{

"source": "salt://apache/httpd.conf"
},

22.26. State Enforcement 1031

Salt Documentation, Release 2014.7.6

"managed",
{

"order": 10002
}

],
"__sls__": "blah",
"__env__": "base"

}
}

e subsequent Low Data will look like this:

[
{

"name": "httpd",
"state": "pkg",
"__id__": "apache",
"fun": "installed",
"__env__": "base",
"__sls__": "blah",
"order": 10000

},
{

"name": "httpd",
"watch": [

{
"file": "apache_conf"

},
{

"pkg": "apache"
}

],
"state": "service",
"__id__": "apache",
"fun": "running",
"__env__": "base",
"__sls__": "blah",
"order": 10001

},
{

"name": "/etc/httpd/conf.d/httpd.conf",
"source": "salt://apache/httpd.conf",
"state": "file",
"__id__": "apache_conf",
"fun": "managed",
"__env__": "base",
"__sls__": "blah",
"order": 10002

}
]

is tutorial discusses the Low Data evaluation and the state runtime.

1032 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Ordering Layers

Salt defines 2 order interfaces which are evaluated in the state runtime and defines these orders in a number of
passes.

Definition Order

Note: e Definition Order system can be disabled by turning the option state_auto_order to False in the master
configuration file.

e top level of ordering is the Definition Order. e Definition Order is the order in which states are defined in salt
formulas. is is very straightforward on basic states which do not contain include statements or a top file, as
the states are just ordered from the top of the file, but the include system starts to bring in some simple rules for how
the Definition Order is defined.

Looking back at the ``Low Data'' and ``High Data'' shown above, the order key has been transparently added to the
data to enable the Definition Order.

e Include Statement Basically, if there is an include statement in a formula, then the formulas which are included
will be run BEFORE the contents of the formula which is including them. Also, the include statement is a list, so
they will be loaded in the order in which they are included.

In the following case:

foo.sls

include:
- bar
- baz

bar.sls

include:
- quo

baz.sls

include:
- qux

In the above case if state.sls foo were called then the formulas will be loaded in the following order:

1. quo

2. bar

3. qux

4. baz

5. foo

22.26. State Enforcement 1033

Salt Documentation, Release 2014.7.6

The order Flag

e Definition Order happens transparently in the background, but the ordering can be explicitly overridden using
the order flag in states:

apache:
pkg.installed:

- name: httpd
- order: 1

is order flag will over ride the definition order, this makes it very simple to create states that are always executed
first, last or in specific stages, a great example is defining a number of package repositories that need to be set up
before anything else, or final checks that need to be run at the end of a state run by using order: last or order: -1.

When the order flag is explicitly set the Definition Order system will omit seing an order for that state and directly
use the order flag defined.

Lexicographical Fall-back

Salt states were wrien to ALWAYS execute in the same order. Before the introduction of Definition Order in version
0.17.0 everything was ordered lexicographically according to the name of the state, then function then id.

is is the way Salt has always ensured that states always run in the same order regardless of where they are
deployed, the addition of the Definition Order method mealy makes this finite ordering easier to follow.

e lexicographical ordering is still applied but it only has any effect when two order statements collide. is means
that if multiple states are assigned the same order number that they will fall back to lexicographical ordering to
ensure that every execution still happens in a finite order.

Note: If running with state_auto_order: False the order key is not set automatically, since the Lexicographical order
can be derived from other keys.

Requisite Ordering

Salt states are fully declarative, in that they are wrien to declare the state in which a system should be. is means
that components can require that other components have been set up successfully. Unlike the other ordering systems,
the Requisite system in Salt is evaluated at runtime.

e requisite system is also built to ensure that the ordering of execution never changes, but is always the same for
a given set of states. is is accomplished by using a runtime that processes states in a completely predictable order
instead of using an event loop based system like other declarative configuration management systems.

Runtime Requisite Evaluation

e requisite system is evaluated as the components are found, and the requisites are always evaluated in the same
order. is explanation will be followed by an example, as the raw explanation may be a lile dizzying at first as it
creates a linear dependency evaluation sequence.

e ``Low Data'' is an ordered list or dictionaries, the state runtime evaluates each dictionary in the order in which
they are arranged in the list. When evaluating a single dictionary it is checked for requisites, requisites are evaluated
in order, require then watch then prereq.

Note: If using requisite in statements like require_in and watch_in these will be compiled down to require and

1034 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

watch statements before runtime evaluation.

Each requisite contains an ordered list of requisites, these requisites are looked up in the list of dictionaries and then
executed. Once all requisites have been evaluated and executed then the requiring state can safely be run (or not
run if requisites have not been met).

ismeans that the requisites are always evaluated in the same order, again ensuring one of the core design principals
of Salt's State system to ensure that execution is always finite is intact.

Simple Runtime Evaluation Example

Given the above ``Low Data'' the states will be evaluated in the following order:

1. e pkg.installed is executed ensuring that the apache package is installed, it contains no requisites and is
therefore the first defined state to execute.

2. e service.running state is evaluated but NOT executed, a watch requisite is found, therefore they are read
in order, the runtime first checks for the file, sees that it has not been executed and calls for the file state to be
evaluated.

3. e file state is evaluated AND executed, since it, like the pkg state does not contain any requisites.

4. e evaluation of the service state continues, it next checks the pkg requisite and sees that it is met, with all
requisites met the service state is now executed.

Best Practice

e best practice in Salt is to choose a method and stick with it, official states are wrien using requisites for all
associations since requisites create clean, traceable dependency trails and make for the most portable formulas. To
accomplish something similar to how classical imperative systems function all requisites can be omied and the
failhard option then set to True in the master configuration, this will stop all state runs at the first instance of a
failure.

In the end, using requisites creates very tight and fine grained states, not using requisites makes full sequence runs
and while slightly easier to write, and gives much less control over the executions.

22.26.5 Extending External SLS Data

Sometimes a state defined in one SLS file will need to be modified from a separate SLS file. A good example of this
is when an argument needs to be overwrien or when a service needs to watch an additional state.

The Extend Declaration

e standard way to extend is via the extend declaration. e extend declaration is a top level declaration like
include and encapsulates ID declaration data included from other SLS files. A standard extend looks like this:

include:
- http
- ssh

extend:
apache:

file:

22.26. State Enforcement 1035

Salt Documentation, Release 2014.7.6

- name: /etc/httpd/conf/httpd.conf
- source: salt://http/httpd2.conf

ssh-server:
service:

- watch:
- file: /etc/ssh/banner

/etc/ssh/banner:
file.managed:

- source: salt://ssh/banner

A few critical things happened here, first off the SLS files that are going to be extended are included, then the extend
dec is defined. Under the extend dec 2 IDs are extended, the apache ID's file state is overwrien with a new name
and source. an the ssh server is extended to watch the banner file in addition to anything it is already watching.

Extend is a Top Level Declaration

is means that extend can only be called once in an sls, if if is used twice then only one of the extend blocks will
be read. So this is WRONG:

include:
- http
- ssh

extend:
apache:

file:
- name: /etc/httpd/conf/httpd.conf
- source: salt://http/httpd2.conf

Second extend will overwrite the first!! Only make one
extend:

ssh-server:
service:

- watch:
- file: /etc/ssh/banner

The Requisite ``in'' Statement

Since one of the most common things to do when extending another SLS is to add states for a service to watch, or
anything for a watcher to watch, the requisite in statement was added to 0.9.8 to make extending the watch and
require lists easier. e ssh-server extend statement above could be more cleanly defined like so:

include:
- ssh

/etc/ssh/banner:
file.managed:

- source: salt://ssh/banner
- watch_in:

- service: ssh-server

1036 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Rules to Extend By

ere are a few rules to remember when extending states:

1. Always include the SLS being extended with an include declaration

2. Requisites (watch and require) are appended to, everything else is overwrien

3. extend is a top level declaration, like an ID declaration, cannot be declared twice in a single SLS

4. Many IDs can be extended under the extend declaration

22.26.6 Failhard Global Option

Normally, when a state fails Salt continues to execute the remainder of the defined states and will only refuse to
execute states that require the failed state.

But the situation may exist, where you would want all state execution to stop if a single state execution fails. e
capability to do this is called failing hard.

State Level Failhard

A single state can have a failhard set, this means that if this individual state fails that all state execution will immedi-
ately stop. is is a great thing to do if there is a state that sets up a critical config file and seing a require for each
state that reads the config would be cumbersome. A good example of this would be seing up a package manager
early on:

/etc/yum.repos.d/company.repo:
file.managed:

- source: salt://company/yumrepo.conf
- user: root
- group: root
- mode: 644
- order: 1
- failhard: True

In this situation, the yum repo is going to be configured before other states, and if it fails to lay down the config file,
than no other states will be executed.

Global Failhard

It may be desired to have failhard be applied to every state that is executed, if this is the case, then failhard can be
set in the master configuration file. Seing failhard in the master configuration file will result in failing hard when
any minion gathering states from the master have a state fail.

is is NOT the default behavior, normally Salt will only fail states that require a failed state.

Using the global failhard is generally not recommended, since it can result in states not being executed or even
checked. It can also be confusing to see states failhard if an admin is not actively aware that the failhard has been
set.

To use the global failhard set failhard: True in the master configuration file.

22.26. State Enforcement 1037

Salt Documentation, Release 2014.7.6

22.26.7 Global State Arguments

Note: is documentation has been moved here.

22.26.8 Highstate data structure definitions

The Salt State Tree

A state tree is a collection of SLS files that live under the directory specified in file_roots. A state tree can be
organized into SLS modules.

Top file

e main state file that instructs minions what environment and modules to use during state execution.

Configurable via state_top.

See also:

A detailed description of the top file

Include declaration

Defines a list of Module reference strings to include in this SLS.

Occurs only in the top level of the highstate structure.

Example:

include:
- edit.vim
- http.server

Module reference

ename of a SLSmodule defined by a separate SLS file and residing on the SaltMaster. Amodule namededit.vim
is a reference to the SLS file salt://edit/vim.sls.

ID declaration

Defines an individual highstate component. Always references a value of a dictionary containing keys referencing
State declaration and Requisite declaration. Can be overridden by a Name declaration or a Names declaration.

Occurs on the top level or under the Extend declaration.

Must be unique across entire state tree. If the same ID declaration is used twice, only the first one matched will be
used. All subsequent ID declarations with the same name will be ignored.

Note: Naming gotchas
In Salt versions earlier than 0.9.7, ID declarations containing dots would result in unpredictable highstate output.

1038 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Extend declaration

Extends a Name declaration from an included SLS module. e keys of the extend declaration always define
existing :ref`ID declaration` which have been defined in included SLS modules.

Occurs only in the top level and defines a dictionary.

States cannot be extended more than once in a single state run.

Extend declarations are useful for adding-to or overriding parts of a State declaration that is defined in another
SLS file. In the following contrived example, the shown mywebsite.sls file is include -ing and extend
-ing the apache.sls module in order to add a watch declaration that will restart Apache whenever the Apache
configuration file, mywebsite changes.

include:
- apache

extend:
apache:

service:
- watch:

- file: mywebsite

mywebsite:
file.managed:

- name: /var/www/mysite

See also:

watch_in and require_in

Sometimes it is more convenient to use the watch_in or require_in syntax instead of extending another SLS file.

State Requisites

State declaration

A list which contains one string defining the Function declaration and any number of Function arg declaration dictio-
naries.

Can, optionally, contain a number of additional components like the name override components — name and names.
Can also contain requisite declarations.

Occurs under an ID declaration.

Requisite declaration

A list containing requisite references.

Used to build the action dependency tree. While Salt states are made to execute in a deterministic order, this order
is managed by requiring and watching other Salt states.

Occurs as a list component under a State declaration or as a key under an ID declaration.

22.26. State Enforcement 1039

Salt Documentation, Release 2014.7.6

Requisite reference

A single key dictionary. e key is the name of the referenced State declaration and the value is the ID of the
referenced ID declaration.

Occurs as a single index in a Requisite declaration list.

Function declaration

e name of the function to call within the state. A state declaration can contain only a single function declaration.

For example, the following state declaration calls the installed function in the pkg state module:

httpd:
pkg.installed: []

e function can be declared inline with the state as a shortcut. e actual data structure is compiled to this form:

httpd:
pkg:

- installed

Where the function is a string in the body of the state declaration. Technically when the function is declared in dot
notation the compiler converts it to be a string in the state declaration list. Note that the use of the first example
more than once in an ID declaration is invalid yaml.

INVALID:

httpd:
pkg.installed
service.running

When passing a function without arguments and another state declaration within a single ID declaration, then the
long or ``standard'' format needs to be used since otherwise it does not represent a valid data structure.

VALID:

httpd:
pkg.installed: []
service.running: []

Occurs as the only index in the State declaration list.

Function arg declaration

A single key dictionary referencing a Python type which is to be passed to the named Function declaration as a
parameter. e type must be the data type expected by the function.

Occurs under a Function declaration.

For example in the following state declaration user, group, and mode are passed as arguments to the managed
function in the file state module:

1040 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

/etc/http/conf/http.conf:
file.managed:

- user: root
- group: root
- mode: 644

Name declaration

Overrides the name argument of a State declaration. If name is not specified the ID declaration satisfies the name
argument.

e name is always a single key dictionary referencing a string.

Overriding name is useful for a variety of scenarios.

For example, avoiding clashing ID declarations. e following two state declarations cannot both have /etc/motd
as the ID declaration:

motd_perms:
file.managed:

- name: /etc/motd
- mode: 644

motd_quote:
file.append:

- name: /etc/motd
- text: "Of all smells, bread; of all tastes, salt."

Another common reason to override name is if the ID declaration is long and needs to be referenced in multiple
places. In the example below it is much easier to specify mywebsite than to specify /etc/apache2/sites-
available/mywebsite.com multiple times:

mywebsite:
file.managed:

- name: /etc/apache2/sites-available/mywebsite.com
- source: salt://mywebsite.com

a2ensite mywebsite.com:
cmd.wait:

- unless: test -L /etc/apache2/sites-enabled/mywebsite.com
- watch:

- file: mywebsite

apache2:
service.running:

- watch:
- file: mywebsite

Names declaration

Expands the contents of the containing State declaration into multiple state declarations, each with its own name.

For example, given the following state declaration:

22.26. State Enforcement 1041

Salt Documentation, Release 2014.7.6

python-pkgs:
pkg.installed:

- names:
- python-django
- python-crypto
- python-yaml

Once converted into the lowstate data structure the above state declaration will be expanded into the following three
state declarations:

python-django:
pkg.installed

python-crypto:
pkg.installed

python-yaml:
pkg.installed

Other values can be overridden during the expansion by providing an additional dictionary level.

New in version 2014.7.0.

ius:
pkgrepo.managed:

- humanname: IUS Community Packages for Enterprise Linux 6 - $basearch
- gpgcheck: 1
- baseurl: http://mirror.rackspace.com/ius/stable/CentOS/6/$basearch
- gpgkey: http://dl.iuscommunity.org/pub/ius/IUS-COMMUNITY-GPG-KEY
- names:

- ius
- ius-devel:

- baseurl: http://mirror.rackspace.com/ius/development/CentOS/6/$basearch

Large example

Here is the layout in yaml using the names of the highdata structure components.

<Include Declaration>:
- <Module Reference>
- <Module Reference>

<Extend Declaration>:
<ID Declaration>:

[<overrides>]

standard declaration

<ID Declaration>:
<State Module>:

- <Function>
- <Function Arg>
- <Function Arg>

1042 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

- <Function Arg>
- <Name>: <name>
- <Requisite Declaration>:

- <Requisite Reference>
- <Requisite Reference>

inline function and names

<ID Declaration>:
<State Module>.<Function>:

- <Function Arg>
- <Function Arg>
- <Function Arg>
- <Names>:

- <name>
- <name>
- <name>

- <Requisite Declaration>:
- <Requisite Reference>
- <Requisite Reference>

multiple states for single id

<ID Declaration>:
<State Module>:

- <Function>
- <Function Arg>
- <Name>: <name>
- <Requisite Declaration>:

- <Requisite Reference>
<State Module>:

- <Function>
- <Function Arg>
- <Names>:

- <name>
- <name>

- <Requisite Declaration>:
- <Requisite Reference>

22.26.9 Include and Exclude

Salt sls files can include other sls files and exclude sls files that have been otherwise included. is allows for an sls
file to easily extend or manipulate other sls files.

Include

When other sls files are included, everything defined in the included sls file will be added to the state run. When
including define a list of sls formulas to include:

include:
- http
- libvirt

22.26. State Enforcement 1043

Salt Documentation, Release 2014.7.6

e include statement will include sls formulas from the same environment that the including sls formula is in. But
the environment can be explicitly defined in the configuration to override the running environment, therefore if an
sls formula needs to be included from an external environment named ``dev'' the following syntax is used:

include:
- dev: http

Relative Include

In Salt 0.16.0 the capability to include sls formulas which are relative to the running sls formula was added, simply
precede the formula name with a .:

include:
- .virt
- .virt.hyper

Exclude

e exclude statement, added in Salt 0.10.3 allows an sls to hard exclude another sls file or a specific id. e compo-
nent is excluded aer the high data has been compiled, so nothing should be able to override an exclude.

Since the exclude can remove an id or an sls the type of component to exclude needs to be defined. an exclude
statement that verifies that the running highstate does not contain the hp sls and the /etc/vimrc id would look like
this:

exclude:
- sls: http
- id: /etc/vimrc

22.26.10 State System Layers

e Salt state system is comprised of multiple layers. While using Salt does not require an understanding of the state
layers, a deeper understanding of how Salt compiles and manages states can be very beneficial.

Function Call

e lowest layer of functionality in the state system is the direct state function call. State executions are executions
of single state functions at the core. ese individual functions are defined in state modules and can be called directly
via the state.single command.

salt '*' state.single pkg.installed name='vim'

Low Chunk

e low chunk is the boom of the Salt state compiler. is is a data representation of a single function call. e
low chunk is sent to the state caller and used to execute a single state function.

A single low chunk can be executed manually via the state.low command.

1044 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt '*' state.low '{name: vim, state: pkg, fun: installed}'

e passed data reflects what the state execution system gets aer compiling the data down from sls formulas.

Low State

e Low State layer is the list of low chunks ``evaluated'' in order. To see what the low state looks like for a highstate,
run:

salt '*' state.show_lowstate

is will display the raw lowstate in the order which each low chunk will be evaluated. e order of evaluation is
not necessarily the order of execution, since requisites are evaluated at runtime. Requisite execution and evaluation
is finite; this means that the order of execution can be ascertained with 100% certainty based on the order of the low
state.

High Data

High data is the data structure represented in YAML via SLS files. e High data structure is created by merging the
data components rendered inside sls files (or other render systems). e High data can be easily viewed by executing
the state.show_highstate or state.show_sls functions. Since this data is a somewhat complex data
structure, it may be easier to read using the json, yaml, or pprint outpuers:

salt '*' state.show_highstate --out yaml
salt '*' state.show_sls edit.vim --out pprint

SLS

Above ``High Data'', the logical layers are no longer technically required to be executed, or to be executed in a
hierarchy. is means that how the High data is generated is optional and very flexible. e SLS layer allows for
many mechanisms to be used to render sls data from files or to use the fileserver backend to generate sls and file
data from external systems.

e SLS layer can be called directly to execute individual sls formulas.

Note: SLS Formulas have historically been called ``SLS files''. is is because a single SLS was only constituted in a
single file. Now the term ``SLS Formula'' beer expresses how a compartmentalized SLS can be expressed in a much
more dynamic way by combining pillar and other sources, and the SLS can be dynamically generated.

To call a single SLS formula named edit.vim, execute state.sls:

salt '*' state.sls edit.vim

HighState

Calling SLS directly logically assigns what states should be executed from the context of the calling minion. e
Highstate layer is used to allow for full contextual assignment of what is executed where to be tied to groups of,
or individual, minions entirely from the master. is means that the environment of a minion, and all associated
execution data pertinent to said minion, can be assigned from the master without needing to execute or configure

22.26. State Enforcement 1045

Salt Documentation, Release 2014.7.6

anything on the target minion. is also means that the minion can independently retrieve information about its
complete configuration from the master.

To execute the High State call state.highstate:

salt '*' state.highstate

OverState

e overstate layer expresses the highest functional layer of Salt's automated logic systems. e Overstate allows
for stateful and functional orchestration of routines from the master. e overstate defines in data execution stages
which minions should execute states, or functions, and in what order using requisite logic.

22.26.11 The Orchestrate Runner

Note: is documentation has been moved here.

22.26.12 Ordering States

e way in which configuration management systems are executed is a hotly debated topic in the configuration
management world. Two major philosophies exist on the subject, to either execute in an imperative fashion where
things are executed in the order in which they are defined, or in a declarative fashion where dependencies need to
be mapped between objects.

Imperative ordering is finite and generally considered easier to write, but declarative ordering is muchmore powerful
and flexible but generally considered more difficult to create.

Salt has been created to get the best of both worlds. States are evaluated in a finite order, which guarantees that states
are always executed in the same order, and the states runtime is declarative, making Salt fully aware of dependencies
via the requisite system.

State Auto Ordering

Salt always executes states in a finite manner, meaning that they will always execute in the same order regardless
of the system that is executing them. But in Salt 0.17.0, the state_auto_order option was added. is option
makes states get evaluated in the order in which they are defined in sls files.

e evaluation order makes it easy to know what order the states will be executed in, but it is important to note that
the requisite system will override the ordering defined in the files, and the order option described below will also
override the order in which states are defined in sls files.

If the classic ordering is preferred (lexicographic), then set state_auto_order to False in the master config-
uration file.

Requisite Statements

Note: is document represents behavior exhibited by Salt requisites as of version 0.9.7 of Salt.

Oen when seing up states any single action will require or depend on another action. Salt allows for the building
of relationships between states with requisite statements. A requisite statement ensures that the named state is

1046 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

evaluated before the state requiring it. ere are three types of requisite statements in Salt, require, wat and
prereq.

ese requisite statements are applied to a specific state declaration:

httpd:
pkg.installed: []
file.managed:

- name: /etc/httpd/conf/httpd.conf
- source: salt://httpd/httpd.conf
- require:

- pkg: httpd

In this example, the require requisite is used to declare that the file /etc/hpd/conf/hpd.conf should only be set up
if the pkg state executes successfully.

e requisite system works by finding the states that are required and executing them before the state that requires
them. en the required states can be evaluated to see if they have executed correctly.

Require statements can refer to any state defined in Salt. e basic examples are pkg, service and file, but any used
state can be referenced.

In addition to state declarations such as pkg, file, etc., sls type requisites are also recognized, and essentially allow
`chaining' of states. is provides a mechanism to ensure the proper sequence for complex state formulas, especially
when the discrete states are split or groups into separate sls files:

include:
- network

httpd:
pkg.installed: []
service.running:

- require:
- pkg: httpd
- sls: network

In this example, the hpd service running state will not be applied (i.e., the hpd service will not be started) unless
both the hps package is installed AND the network state is satisfied.

Note: Requisite matching
Requisites match on both the ID Declaration and the name parameter. erefore, if using the pkgs or sources
argument to install a list of packages in a pkg state, it's important to note that it is impossible to match an individual
package in the list, since all packages are installed as a single state.

Multiple Requisites

e requisite statement is passed as a list, allowing for the easy addition of more requisites. Both requisite types can
also be separately declared:

httpd:
pkg.installed: []
service.running:

- enable: True
- watch:

- file: /etc/httpd/conf/httpd.conf

22.26. State Enforcement 1047

Salt Documentation, Release 2014.7.6

- require:
- pkg: httpd
- user: httpd
- group: httpd

file.managed:
- name: /etc/httpd/conf/httpd.conf
- source: salt://httpd/httpd.conf
- require:

- pkg: httpd
user.present: []
group.present: []

In this example, the hpd service is only going to be started if the package, user, group and file are executed suc-
cessfully.

Requisite Documentation

For detailed information on each of the individual requisites, please look here.

The Order Option

Before using the order option, remember that the majority of state ordering should be done with a Requisite decla-
ration, and that a requisite declaration will override an order option, so a state with order option should not require
or required by other states.

e order option is used by adding an order number to a state declaration with the option order :

vim:
pkg.installed:

- order: 1

By adding the order option to 1 this ensures that the vim package will be installed in tandem with any other state
declaration set to the order 1.

Any state declared without an order option will be executed aer all states with order options are executed.

But this construct can only handle ordering states from the beginning. Certain circumstances will present a situation
where it is desirable to send a state to the end of the line. To do this, set the order to last:

vim:
pkg.installed:

- order: last

22.26.13 OverState System

Note: is documentation has been moved here.

22.26.14 State Providers

New in version 0.9.8.

1048 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Salt predetermines what modules should be mapped to what uses based on the properties of a system. ese deter-
minations are generally made for modules that provide things like package and service management.

Sometimes in states, it may be necessary to use an alternative module to provide the needed functionality. For
instance, an older Arch Linux system may not be running systemd, so instead of using the systemd service module,
you can revert to the default service module:

httpd:
service.running:

- enable: True
- provider: service

In this instance, the basic servicemodule (which manages sysvinit-based services) will replace the systemd
module which is used by default on Arch Linux.

However, if it is necessary to make this override for most or every service, it is beer to just override the provider
in the minion config file, as described in the section below.

Seing a Provider in the Minion Config File

Sometimes, when running Salt on custom Linux spins, or distribution that are derived from other distributions, Salt
does not successfully detect providers. e providers which are most likely to be affected by this are:

• pkg

• service

• user

• group

When something like this happens, rather than specifying the provider manually in each state, it easier to use the
providers parameter in the minion config file to set the provider.

If you end up needing to override a provider because it was not detected, please let us know! File an issue on
the issue tracker, and provide the output from the grains.items function, taking care to sanitize any sensitive
information.

Below are tables that should help with deciding which provider to use if one needs to be overridden.

Provider: pkg

Execution Module Used for
apt Debian/Ubuntu-based distros which use apt-get(8) for package management
brew Mac OS soware management using Homebrew
ebuild Gentoo-based systems (utilizes the portage python module as well as emerge(1))
freebsdpkg FreeBSD-based OSes using pkg_add(1)
openbsdpkg OpenBSD-based OSes using pkg_add(1)
pacman Arch Linux-based distros using pacman(8)
pkgin NetBSD-based OSes using pkgin(1)
pkgng FreeBSD-based OSes using pkg(8)
pkgutil Solaris-based OSes using OpenCSW`s pkgutil(1)
solarispkg Solaris-based OSes using pkgadd(1M)
win_pkg Windows
yumpkg RedHat-based distros and derivatives (wraps yum(8))
zypper SUSE-based distros using zypper(8)

22.26. State Enforcement 1049

https://github.com/saltstack/salt/issues
http://brew.sh/
http://www.opencsw.org/

Salt Documentation, Release 2014.7.6

Provider: service

Execution
Module

Used for

de-
bian_service

Debian (non-systemd)

freebsdser-
vice

FreeBSD-based OSes using service(8)

gen-
too_service

Gentoo Linux using sysvinit and rc-update(8)

launchctl Mac OS hosts using launchctl(1)
netbsdser-
vice

NetBSD-based OSes

openbsdser-
vice

OpenBSD-based OSes

rh_service RedHat-based distros and derivatives using service(8) and chkconfig(8). Supports both
pure sysvinit and mixed sysvinit/upstart systems.

service Fallback which simply wraps sysvinit scripts
smf Solaris-based OSes which use SMF
systemd Linux distros which use systemd
upstart Ubuntu-based distros using upstart
win_service Windows

Provider: user

Execution
Module

Used for

useradd Linux, NetBSD, and OpenBSD systems using useradd(8), userdel(8), and
usermod(8)

pw_user FreeBSD-based OSes using pw(8)
solaris_user Solaris-based OSes using useradd(1M), userdel(1M), and usermod(1M)
win_useradd Windows

Provider: group

Execution
Module

Used for

groupadd Linux, NetBSD, and OpenBSD systems using groupadd(8), groupdel(8), and
groupmod(8)

pw_group FreeBSD-based OSes using pw(8)
solaris_group Solaris-based OSes using groupadd(1M), groupdel(1M), and groupmod(1M)
win_groupadd Windows

Arbitrary Module Redirects

e provider statement can also be used for more powerful means, instead of overwriting or extending the module
used for the named service an arbitrary module can be used to provide certain functionality.

1050 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

emacs:
pkg.installed:

- provider:
- cmd: customcmd

In this example, the state is being instructed to use a custom module to invoke commands.

Arbitrary module redirects can be used to dramatically change the behavior of a given state.

22.26.15 Requisites and Other Global State Arguments

Requisites

e Salt requisite system is used to create relationships between states. e core idea being that, when one state is
dependent somehow on another, that inter-dependency can be easily defined.

Requisites come in two types: Direct requisites (such as require), and requisite_ins (such as require_in).
e relationships are directional: a direct requisite requires something from another state. However, a requisite_in
inserts a requisite into the targeted state pointing to the targeting state. e following example demonstrates a direct
requisite:

vim:
pkg.installed: []

/etc/vimrc:
file.managed:

- source: salt://edit/vimrc
- require:

- pkg: vim

In the example above, the file /etc/vimrc depends on the vim package.

Requisite_in statements are the opposite. Instead of saying ``I depend on something'', requisite_ins say ``Someone
depends on me'':

vim:
pkg.installed:

- require_in:
- file: /etc/vimrc

/etc/vimrc:
file.managed:

- source: salt://edit/vimrc

So here, with a requisite_in, the same thing is accomplished as in the first example, but the other way around. e vim
package is saying ``/etc/vimrc depends on me''. is will result in a require being inserted into the /etc/vimrc
state which targets the vim state.

In the end, a single dependency map is created and everything is executed in a finite and predictable order.

Note: Requisite matching
Requisites match on both the ID Declaration and the name parameter. is means that, in the example above, the
require_in requisite would also have been matched if the /etc/vimrc state was wrien as follows:

22.26. State Enforcement 1051

Salt Documentation, Release 2014.7.6

vimrc:
file.managed:

- name: /etc/vimrc
- source: salt://edit/vimrc

Direct Requisite and Requisite_in types

ere are six direct requisite statements that can be used in Salt: require, watch, prereq, use, onchanges,
and onfail. Each direct requisite also has a corresponding requisite_in: require_in, watch_in, prereq_in,
use_in, onchanges_in, and onfail_in. All of the requisites define specific relationships and always work
with the dependency logic defined above.

require e use of require demands that the dependent state executes before the depending state. e state
containing the require requisite is defined as the depending state. e state specified in the require statement
is defined as the dependent state. If the dependent state's execution succeeds, the depending state will then execute.
If the dependent state's execution fails, the depending state will not execute. In the first example above, the file
/etc/vimrc will only execute aer the vim package is installed successfully.

Require an entire sls file As of Salt 0.16.0, it is possible to require an entire sls file. Do this first by including the
sls file and then seing a state to require the included sls file:

include:
- foo

bar:
pkg.installed:

- require:
- sls: foo

wat watch statements are used to add additional behavior when there are changes in other states.

Note: If a state should only execute when another state has changes, and otherwise do nothing, the new on-
changes requisite should be used instead of watch. watch is designed to add additional behavior when there
are changes, but otherwise execute normally.

e state containing the watch requisite is defined as the watching state. e state specified in the watch statement
is defined as the watched state. When the watched state executes, it will return a dictionary containing a key named
``changes''. Here are two examples of state return dictionaries, shown in json for clarity:

"local": {
"file_|-/tmp/foo_|-/tmp/foo_|-directory": {

"comment": "Directory /tmp/foo updated",
"__run_num__": 0,
"changes": {

"user": "bar"
},
"name": "/tmp/foo",
"result": true

}

1052 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

}

"local": {
"pkgrepo_|-salt-minion_|-salt-minion_|-managed": {

"comment": "Package repo 'salt-minion' already configured",
"__run_num__": 0,
"changes": {},
"name": "salt-minion",
"result": true

}
}

If the ``result'' of the watched state is True, the watching state will execute normally. is part of watch mirrors
the functionality of the require requisite. If the ``result'' of the watched state is False, the watching state will
never run, nor will the watching state's mod_watch function execute.

However, if the ``result'' of the watched state is True, and the ``changes'' key contains a populated dictionary
(changes occurred in the watched state), then the watch requisite can add additional behavior. is additional
behavior is defined by the mod_watch function within the watching state module. If the mod_watch function
exists in the watching state module, it will be called in addition to the normal watching state. e return data from
the mod_watch function is what will be returned to the master in this case; the return data from the main watching
function is discarded.

If the ``changes'' key contains an empty dictionary, the watch requisite acts exactly like the require requisite
(the watching state will execute if ``result'' is True, and fail if ``result'' is False in the watched state).

Note: Not all state modules contain mod_watch. If mod_watch is absent from the watching state module, the
watch requisite behaves exactly like a require requisite.

A good example of using watch is with a service.running state. When a service watches a state, then the
service is reloaded/restarted when the watched state changes, in addition to Salt ensuring that the service is running.

ntpd:
service.running:

- watch:
- file: /etc/ntp.conf

file.managed:
- name: /etc/ntp.conf
- source: salt://ntp/files/ntp.conf

prereq New in version 0.16.0.

prereq allows for actions to be taken based on the expected results of a state that has not yet been executed.
e state containing the prereq requisite is defined as the pre-requiring state. e state specified in the prereq
statement is defined as the pre-required state.

When a prereq requisite is evaluated, the pre-required state reports if it expects to have any changes. It does this
by running the pre-required single state as a test-run by enabling test=True. is test-run will return a dictionary
containing a key named ``changes''. (See the watch section above for examples of ``changes'' dictionaries.)

If the ``changes'' key contains a populated dictionary, it means that the pre-required state expects changes to occur
when the state is actually executed, as opposed to the test-run. e pre-requiring state will now actually run. If the
pre-requiring state executes successfully, the pre-required state will then execute. If the pre-requiring state fails, the
pre-required state will not execute.

22.26. State Enforcement 1053

Salt Documentation, Release 2014.7.6

If the ``changes'' key contains an empty dictionary, this means that changes are not expected by the pre-required
state. Neither the pre-required state nor the pre-requiring state will run.

e best way to define how prereq operates is displayed in the following practical example: When a service should
be shut down because underlying code is going to change, the service should be off-line while the update occurs. In
this example, graceful-down is the pre-requiring state and site-code is the pre-required state.

graceful-down:
cmd.run:

- name: service apache graceful
- prereq:

- file: site-code

site-code:
file.recurse:

- name: /opt/site_code
- source: salt://site/code

In this case the apache server will only be shutdown if the site-code state expects to deploy fresh code via the
file.recurse call. e site-code deployment will only be executed if the graceful-down run completes successfully.

onfail New in version 2014.7.0.

e onfail requisite allows for reactions to happen strictly as a response to the failure of another state. is can
be used in a number of ways, such as executing a second aempt to set up a service or begin to execute a separate
thread of states because of a failure.

e onfail requisite is applied in the same way as require as watch:

primary_mount:
mount.mounted:

- name: /mnt/share
- device: 10.0.0.45:/share
- fstype: nfs

backup_mount:
mount.mounted:

- name: /mnt/share
- device: 192.168.40.34:/share
- fstype: nfs
- onfail:

- mount: primary_mount

onanges New in version 2014.7.0.

e onchanges requisite makes a state only apply if the required states generate changes, and if the watched state's
``result'' is True. is can be a useful way to execute a post hook aer changing aspects of a system.

use e use requisite is used to inherit the arguments passed in another id declaration. is is useful when many
files need to have the same defaults.

/etc/foo.conf:
file.managed:

- source: salt://foo.conf

1054 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

- template: jinja
- mkdirs: True
- user: apache
- group: apache
- mode: 755

/etc/bar.conf
file.managed:

- source: salt://bar.conf
- use:

- file: /etc/foo.conf

e use statement was developed primarily for the networking states but can be used on any states in Salt. is
makes sense for the networking state because it can define a long list of options that need to be applied to multiple
network interfaces.

e use statement does not inherit the requisites arguments of the targeted state. is means also a chain of use
requisites would not inherit inherited options.

e _in versions of requisites All of the requisites also have corresponding requisite_in versions, which do the
reverse of their normal counterparts. e examples below all use require_in as the example, but note that all
of the _in requisites work the same way: ey result in a normal requisite in the targeted state, which targets the
state which has defines the requisite_in. us, a require_in causes the target state to require the targeting
state. Similarly, a watch_in causes the target state to watch the targeting state. is paern continues for the
rest of the requisites.

If a state declaration needs to be required by another state declaration then require_in can accommodate it.
erefore, these two sls files would be the same in the end:

Using require

httpd:
pkg.installed: []
service.running:

- require:
- pkg: httpd

Using require_in

httpd:
pkg.installed:

- require_in:
- service: httpd

service.running: []

e require_in statement is particularly useful when assigning a require in a separate sls file. For instance it
may be common for hpd to require components used to set up PHP or mod_python, but the HTTP state does not
need to be aware of the additional components that require it when it is set up:

hp.sls

httpd:
pkg.installed: []
service.running:

- require:
- pkg: httpd

22.26. State Enforcement 1055

Salt Documentation, Release 2014.7.6

php.sls

include:
- http

php:
pkg.installed:

- require_in:
- service: httpd

mod_python.sls

include:
- http

mod_python:
pkg.installed:

- require_in:
- service: httpd

Now the hpd server will only start if php or mod_python are first verified to be installed. us allowing for a
requisite to be defined ``aer the fact''.

Altering States

e state altering system is used to make sure that states are evaluated exactly as the user expects. It can be used
to double check that a state preformed exactly how it was expected to, or to make 100% sure that a state only runs
under certain conditions. e use of unless or onlyif options help make states even more stateful. e check_cmds
option helps ensure that the result of a state is evaluated correctly.

Unless

New in version 2014.7.0.

e unless requisite specifies that a state should only run when any of the specified commands return False. e
unless requisite operates as NOR and is useful in giving more granular control over when a state should execute.

vim:
pkg.installed:

- unless:
- rpm -q vim-enhanced
- ls /usr/bin/vim

In the example above, the state will only run if either the vim-enhanced package is not installed (returns False) or
if /usr/bin/vim does not exist (returns False). e state will run if both commands return False.

However, the state will not run if both commands return True.

1056 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Onlyif

New in version 2014.7.0.

onlyif is the opposite of unless. If all of the commands in onlyif return True, then the state is run. If any
of the specified commands return False, the state will not run.

stop-volume:
module.run:

- name: glusterfs.stop_volume
- m_name: work
- onlyif:

- gluster volume status work
- order: 1

remove-volume:
module.run:

- name: glusterfs.delete
- m_name: work
- onlyif:

- gluster volume info work
- watch:

- cmd: stop-volume

e above example ensures that the stop_volume and delete modules only run if the gluster commands return a 0
ret value.

check_cmd

New in version 2014.7.0.

Check Command is used for determining that a state did or did not run as expected.

comment-repo:
file.replace:

- path: /etc/yum.repos.d/fedora.repo
- pattern: ^enabled=0
- repl: enabled=1
- check_cmd:

- grep 'enabled=0' /etc/yum.repos.d/fedora.repo && return 1 || return 0

is will aempt to do a replace on all enabled=0 in the .repo file, and replace them with enabled=1. e check_cmd
is just a bash command. It will do a grep for enabled=0 in the file, and if it finds any, it will return a 0, which will
prompt the && portion of the command to return a 1, causing check_cmd to set the state as failed. If it returns a
1, meaning it didn't find any `enabled=0' it will hit the || portion of the command, returning a 0, and declaring the
function succeeded.

Overriding Checks

ere are two commands used for the above checks.

mod_run_check is used to check for onlyif and unless. If the goal is to override the global check for these to variables,
include a mod_run_check in the salt/states/ file.

22.26. State Enforcement 1057

Salt Documentation, Release 2014.7.6

mod_run_check_cmd is used to check for the check_cmd options. To override this one, include a
mod_run_check_cmd in the states file for the state.

22.26.16 Startup States

Sometimes it may be desired that the salt minion execute a state run when it is started. is alleviates the need for
the master to initiate a state run on a new minion and can make provisioning much easier.

As of Salt 0.10.3 the minion config reads options that allow for states to be executed at startup. e options are
startup_states, sls_list and top_file.

e startup_states option can be passed one of a number of arguments to define how to execute states. e available
options are:

highstate Execute state.highstate

sls Read in the sls_list option and execute the named sls files

top Read in the top_file option and execute states based on that top file on the Salt Master

Examples:

Execute state.highstate when starting the minion:

startup_states: highstate

Execute the sls files edit.vim and hyper :

startup_states: sls

sls_list:
- edit.vim
- hyper

22.26.17 State Testing

Executing a Salt state run can potentially change many aspects of a system and it may be desirable to first see what
a state run is going to change before applying the run.

Salt has a test interface to report on exactly what will be changed, this interface can be invoked on any of the major
state run functions:

salt '*' state.highstate test=True
salt '*' state.sls test=True
salt '*' state.single test=True

e test run is mandated by adding the test=True option to the states. e return information will show states
that will be applied in yellow and the result is reported as None.

1058 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Default Test

If the value test is set to True in the minion configuration file then states will default to being executed in test
mode. If this value is set then states can still be run by calling test=False:

salt '*' state.highstate test=False
salt '*' state.sls test=False
salt '*' state.single test=False

22.26.18 The Top File

e top file is used to map what SLS modules get loaded onto what minions via the state system. e top file creates
a few general abstractions. First it maps what nodes should pull from which environments, next it defines which
matches systems should draw from.

Environments

Environments allow conceptually organizing state tree directories. Environments can be made to be self-contained
or state trees can be made to bleed through environments.

Note: Environments in Salt are very flexible, this section defines how the top file can be used to define what states
from what environments are to be used for specific minions.

If the intent is to bind minions to specific environments, then the environment option can be set in the minion
configuration file.

e environments in the top file corresponds with the environments defined in the file_roots variable. In a
simple, single environment setup you only have the base environment, and therefore only one state tree. Here is a
simple example of file_roots in the master configuration:

file_roots:
base:

- /srv/salt

is means that the top file will only have one environment to pull from, here is a simple, single environment top
file:

base:
'*':

- core
- edit

is also means that /srv/salt has a state tree. But if you want to use multiple environments, or partition the
file server to serve more than just the state tree, then the file_roots option can be expanded:

file_roots:
base:

- /srv/salt/base
dev:

- /srv/salt/dev
qa:

- /srv/salt/qa

22.26. State Enforcement 1059

Salt Documentation, Release 2014.7.6

prod:
- /srv/salt/prod

en our top file could reference the environments:

dev:
'webserver*dev*':

- webserver
'db*dev*':

- db
qa:

'webserver*qa*':
- webserver

'db*qa*':
- db

prod:
'webserver*prod*':

- webserver
'db*prod*':

- db

In this setup we have state trees in three of the four environments, and no state tree in the base environment.
Notice that the targets for the minions specify environment data. In Salt the master determines who is in what
environment, and many environments can be crossed together. For instance, a separate global state tree could be
added to the base environment if it suits your deployment:

base:
'*':

- global
dev:

'webserver*dev*':
- webserver

'db*dev*':
- db

qa:
'webserver*qa*':

- webserver
'db*qa*':

- db
prod:

'webserver*prod*':
- webserver

'db*prod*':
- db

In this setup all systems will pull the global SLS from the base environment, as well as pull from their respective
environments. If you assign only one SLS to a system, as in this example, a shorthand is also available:

base:
'*': global

dev:
'webserver*dev*': webserver
'db*dev*': db

qa:
'webserver*qa*': webserver
'db*qa*': db

1060 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

prod:
'webserver*prod*': webserver
'db*prod*': db

Note: e top files from all defined environments will be compiled into a single top file for all states. Top files are
environment agnostic.

Remember, that since everything is a file in Salt, the environments are primarily file server environments, this means
that environments that have nothing to do with states can be defined and used to distribute other files. A clean and
recommended setup for multiple environments would look like this:

Master file_roots configuration:
file_roots:

base:
- /srv/salt/base

dev:
- /srv/salt/dev

qa:
- /srv/salt/qa

prod:
- /srv/salt/prod

en only place state trees in the dev, qa and prod environments, leaving the base environment open for generic file
transfers. en the top.sls file would look something like this:

dev:
'webserver*dev*':

- webserver
'db*dev*':

- db
qa:

'webserver*qa*':
- webserver

'db*qa*':
- db

prod:
'webserver*prod*':

- webserver
'db*prod*':

- db

Other Ways of Targeting Minions

In addition to globs, minions can be specified in top files a few other ways. Some common ones are compound
matches and node groups.

Here is a slightly more complex top file example, showing the different types of matches you can perform:

base:
'*':

- ldap-client
- networking
- salt.minion

22.26. State Enforcement 1061

Salt Documentation, Release 2014.7.6

'salt-master*':
- salt.master

'^(memcache|web).(qa|prod).loc$':
- match: pcre
- nagios.mon.web
- apache.server

'os:Ubuntu':
- match: grain
- repos.ubuntu

'os:(RedHat|CentOS)':
- match: grain_pcre
- repos.epel

'foo,bar,baz':
- match: list
- database

'somekey:abc':
- match: pillar
- xyz

'nag1* or G@role:monitoring':
- match: compound
- nagios.server

In this example top.sls, all minions get the ldap-client, networking and salt.minion states. Any minion with an
id matching the salt-master* glob will get the salt.master state. Any minion with ids matching the regular
expression ^(memcache|web).(qa|prod).loc$ will get the nagios.mon.web and apache.server states. All
Ubuntu minions will receive the repos.ubuntu state, while all RHEL and CentOS minions will receive the repos.epel
state. e minions foo, bar, and baz will receive the database state. Any minion with a pillar named somekey,
having a value of abc will receive the xyz state. Finally, minions with ids matching the nag1* glob or with a grain
named role equal to monitoring will receive the nagios.server state.

How Top Files Are Compiled

Warning: ere is currently a known issue with the topfile compilation. e below may not be completely valid
until hps://github.com/saltstack/salt/issues/12483#issuecomment-64181598 is closed.

As mentioned earlier, the top files in the different environments are compiled into a single set of data. e way
in which this is done follows a few rules, which are important to understand when arranging top files in different
environments. e examples below all assume that the file_roots are set as in the above multi-environment
example.

1. e base environment's top file is processed first. Any environment which is defined in the base top.sls as
well as another environment's top file, will use the instance of the environment configured in base and ignore
all other instances. In other words, the base top file is authoritative when defining environments. erefore,
in the example below, the dev section in /srv/salt/dev/top.sls would be completely ignored.

/srv/salt/base/top.sls:

base:
'*':

1062 Chapter 22. Reference

https://github.com/saltstack/salt/issues/12483#issuecomment-64181598

Salt Documentation, Release 2014.7.6

- common
dev:

'webserver*dev*':
- webserver

'db*dev*':
- db

/srv/salt/dev/top.sls:

dev:
'10.10.100.0/24':

- match: ipcidr
- deployments.dev.site1

'10.10.101.0/24':
- match: ipcidr
- deployments.dev.site2

Note: e rules below assume that the environments being discussed were not defined in the base top file.

2. If, for some reason, the base environment is not configured in the base environment's top file, then the
other environments will be checked in alphabetical order. e first top file found to contain a section for
the base environment wins, and the other top files' base sections are ignored. So, provided there is no
base section in the base top file, with the below two top files the dev environment would win out, and the
common.centos SLS would not be applied to CentOS hosts.

/srv/salt/dev/top.sls:

base:
'os:Ubuntu':

- common.ubuntu
dev:

'webserver*dev*':
- webserver

'db*dev*':
- db

/srv/salt/qa/top.sls:

base:
'os:Ubuntu':

- common.ubuntu
'os:CentOS':

- common.centos
qa:

'webserver*qa*':
- webserver

'db*qa*':
- db

3. For environments other than base, the top file in a given environment will be checked for a section matching
the environment's name. If one is found, then it is used. Otherwise, the remaining (non-base) environments
will be checked in alphabetical order. In the below example, the qa section in /srv/salt/dev/top.sls
will be ignored, but if /srv/salt/qa/top.sls were cleared or removed, then the states configured for
the qa environment in /srv/salt/dev/top.sls will be applied.

22.26. State Enforcement 1063

Salt Documentation, Release 2014.7.6

/srv/salt/dev/top.sls:

dev:
'webserver*dev*':

- webserver
'db*dev*':

- db
qa:

'10.10.200.0/24':
- match: ipcidr
- deployments.qa.site1

'10.10.201.0/24':
- match: ipcidr
- deployments.qa.site2

/srv/salt/qa/top.sls:

qa:
'webserver*qa*':

- webserver
'db*qa*':

- db

Note: When in doubt, the simplest way to configure your states is with a single top.sls in the base environment.

22.26.19 SLS Template Variable Reference

e template engines available to sls files and file templates come loaded with a number of context variables. ese
variables contain information and functions to assist in the generation of templates. See each variable below for its
availability -- not all variables are available in all templating contexts.

Salt

e salt variable is available to abstract the salt library functions. is variable is a python dictionary containing all
of the functions available to the running salt minion. It is available in all salt templates.

{% for file in salt['cmd.run']('ls -1 /opt/to_remove').splitlines() %}
/opt/to_remove/{{ file }}:

file.absent
{% endfor %}

Opts

e opts variable abstracts the contents of the minion's configuration file directly to the template. e opts variable
is a dictionary. It is available in all templates.

{{ opts['cachedir'] }}

e config.get function also searches for values in the opts dictionary.

1064 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Pillar

e pillar dictionary can be referenced directly, and is available in all templates:

{{ pillar['key'] }}

Using the pillar.get function via the salt variable is generally recommended since a default can be safely set in
the event that the value is not available in pillar and dictionaries can be traversed directly:

{{ salt['pillar.get']('key', 'failover_value') }}
{{ salt['pillar.get']('stuff:more:deeper') }}

Grains

e grains dictionary makes the minion's grains directly available, and is available in all templates:

{{ grains['os'] }}

e grains.get function can be used to traverse deeper grains and set defaults:

{{ salt['grains.get']('os') }}

env

e env variable is available in only in sls files when gathering the sls from an environment.

{{ env }}

sls

e sls variable contains the sls reference value, and is only available in the actual SLS file (not in any files referenced
in that SLS). e sls reference value is the value used to include the sls in top files or via the include option.

{{ sls }}

22.26.20 State Modules

State Modules are the components that map to actual enforcement and management of Salt states.

States are Easy to Write!

State Modules should be easy to write and straightforward. e information passed to the SLS data structures will
map directly to the states modules.

Mapping the information from the SLS data is simple, this example should illustrate:

22.26. State Enforcement 1065

Salt Documentation, Release 2014.7.6

/etc/salt/master: # maps to "name"
file: # maps to State module filename e.g. https://github.com/saltstack/salt/tree/develop/salt/states/file.py

- managed # maps to the managed function in the file State module
- user: root # one of many options passed to the manage function
- group: root
- mode: 644
- source: salt://salt/master

erefore this SLS data can be directly linked to a module, function and arguments passed to that function.

is does issue the burden, that function names, state names and function arguments should be very human readable
inside state modules, since they directly define the user interface.

Keyword Arguments

Salt passes a number of keyword arguments to states when rendering them, including the environment, a unique
identifier for the state, and more. Additionally, keep in mind that the requisites for a state are part of the keyword
arguments. erefore, if you need to iterate through the keyword arguments in a state, these must be considered
and handled appropriately. One such example is in the pkgrepo.managed state, which needs to be able to handle
arbitrary keyword arguments and pass them to module execution functions. An example of how these keyword
arguments can be handled can be found here.

Using Custom State Modules

Place your custom state modules inside a _states directory within the file_roots specified by the mas-
ter config file. ese custom state modules can then be distributed in a number of ways. Custom state mod-
ules are distributed when state.highstate is run, or by executing the saltutil.sync_states or
saltutil.sync_all functions.

Any custom states which have been synced to a minion, that are named the same as one of Salt's default set of
states, will take the place of the default state with the same name. Note that a state's default name is its filename (i.e.
foo.py becomes state foo), but that its name can be overridden by using a __virtual__ function.

Cross Calling Modules

As with Execution Modules, State Modules can also make use of the __salt__ and __grains__ data.

It is important to note that the real work of state management should not be done in the state module unless it is
needed. A good example is the pkg state module. is module does not do any package management work, it just
calls the pkg execution module. is makes the pkg state module completely generic, which is why there is only one
pkg state module and many backend pkg execution modules.

On the other hand some modules will require that the logic be placed in the state module, a good example of this
is the file module. But in the vast majority of cases this is not the best approach, and writing specific execution
modules to do the backend work will be the optimal solution.

Return Data

A State Module must return a dict containing the following keys/values:

• name: e same value passed to the state as ``name''.

• anges: A dict describing the changes made. Each thing changed should be a key, with its value being another
dict with keys called ``old'' and ``new'' containing the old/new values. For example, the pkg state's anges

1066 Chapter 22. Reference

https://github.com/saltstack/salt/blob/v0.16.2/salt/states/pkgrepo.py#L163-183

Salt Documentation, Release 2014.7.6

dict has one key for each package changed, with the ``old'' and ``new'' keys in its sub-dict containing the old
and new versions of the package.

• result: A boolean value. True if the action was successful, otherwise False.

• comment: A string containing a summary of the result.

Test State

All states should check for and support test being passed in the options. is will return data about what changes
would occur if the state were actually run. An example of such a check could look like this:

Return comment of changes if test.
if __opts__['test']:

ret['result'] = None
ret['comment'] = 'State Foo will execute with param {0}'.format(bar)
return ret

Make sure to test and return before performing any real actions on the minion.

Watcher Function

If the state being wrien should support the watch requisite then a watcher function needs to be declared. e
watcher function is called whenever the watch requisite is invoked and should be generic to the behavior of the
state itself.

e watcher function should accept all of the options that the normal state functions accept (as they will be passed
into the watcher function).

A watcher function typically is used to execute state specific reactive behavior, for instance, the watcher for the
service module restarts the named service and makes it useful for the watcher to make the service react to changes
in the environment.

e watcher function also needs to return the same data that a normal state function returns.

Mod_init Interface

Some states need to execute something only once to ensure that an environment has been set up, or certain conditions
global to the state behavior can be predefined. is is the realm of the mod_init interface.

A state module can have a function called mod_init which executes when the first state of this type is called. is
interface was created primarily to improve the pkg state. When packages are installed the package metadata needs
to be refreshed, but refreshing the package metadata every time a package is installed is wasteful. e mod_init
function for the pkg state sets a flag down so that the first, and only the first, package installation aempt will
refresh the package database (the package database can of course be manually called to refresh via the refresh
option in the pkg state).

e mod_init function must accept the Low State Data for the given executing state as an argument. e low state
data is a dict and can be seen by executing the state.show_lowstate function. en the mod_init function must return
a bool. If the return value is True, then the mod_init function will not be executed again, meaning that the needed
behavior has been set up. Otherwise, if the mod_init function returns False, then the function will be called the next
time.

A good example of the mod_init function is found in the pkg state module:

22.26. State Enforcement 1067

Salt Documentation, Release 2014.7.6

def mod_init(low):
'''
Refresh the package database here so that it only needs to happen once
'''
if low['fun'] == 'installed' or low['fun'] == 'latest':

rtag = __gen_rtag()
if not os.path.exists(rtag):

open(rtag, 'w+').write('')
return True

else:
return False

e mod_init function in the pkg state accepts the low state data as low and then checks to see if the function being
called is going to install packages, if the function is not going to install packages then there is no need to refresh the
package database. erefore if the package database is prepared to refresh, then return True and the mod_init will
not be called the next time a pkg state is evaluated, otherwise return False and the mod_init will be called next time
a pkg state is evaluated.

Full State Module Example

e following is a simplistic example of a full state module and function. Remember to call out to execution modules
to perform all the real work. e state module should only perform ``before'' and ``aer'' checks.

1. Make a custom state module by puing the code into a file at the following path:
/srv/salt/_states/my_custom_state.py.

2. Distribute the custom state module to the minions:

salt '*' saltutil.sync_states

3. Write a new state to use the custom state by making a new state file, for instance
/srv/salt/my_custom_state.sls.

4. Add the following SLS configuration to the file created in Step 3:

human_friendly_state_id: # An arbitrary state ID declaration.
my_custom_state: # The custom state module name.

- enforce_custom_thing # The function in the custom state module.
- name: a_value # Maps to the ``name`` parameter in the custom function.
- foo: Foo # Specify the required ``foo`` parameter.
- bar: False # Override the default value for the ``bar`` parameter.

Example state module

import salt.exceptions

def enforce_custom_thing(name, foo, baz=True):
'''
Enforce the state of a custom thing

This state module does a custom thing. It calls out to the execution module
``my_custom_module`` in order to check the current system and perform any
needed changes.

name

1068 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

The thing to do something to
foo

A required argument
bar : True

An argument with a default value
'''
ret = {'name': name, 'changes': {}, 'result': False, 'comment': ''}

Start with basic error-checking. Do all the passed parameters make sense
and agree with each-other?
if baz == True and foo.startswith('Foo'):

raise salt.exceptions.SaltInvocationError(
'Argument "foo" cannot start with "Foo" if argument "baz" is True.')

Check the current state of the system. Does anything need to change?
current_state = __salt__['my_custom_module.current_state'](name)

if current_state == foo:
ret['result'] = True
ret['comment'] = 'System already in the correct state'
return ret

The state of the system does need to be changed. Check if we're running
in ``test=true`` mode.
if __opts__['test'] == True:

ret['comment'] = 'The state of "{0}" will be changed.'.format(name)
ret['changes'] = {

'old': current_state,
'new': 'Description, diff, whatever of the new state',

}

Return ``None`` when running with ``test=true``.
ret['result'] = None

return ret

Finally, make the actual change and return the result.
new_state = __salt__['my_custom_module.change_state'](name, foo)

ret['comment'] = 'The state of "{0}" was changed!'.format(name)

ret['changes'] = {
'old': current_state,
'new': new_state,

}

ret['result'] = True

return ret

22.26.21 State Management

State management, also frequently called Soware Configuration Management (SCM), is a program that puts and
keeps a system into a predetermined state. It installs soware packages, starts or restarts services or puts configu-
ration files in place and watches them for changes.

Having a state management system in place allows one to easily and reliably configure and manage a few servers or

22.26. State Enforcement 1069

Salt Documentation, Release 2014.7.6

a few thousand servers. It allows configurations to be kept under version control.

Salt States is an extension of the Salt Modules that we discussed in the previous remote execution tutorial. Instead of
calling one-off executions the state of a system can be easily defined and then enforced.

22.26.22 Understanding the Salt State System Components

e Salt state system is comprised of a number of components. As a user, an understanding of the SLS and renderer
systems are needed. But as a developer, an understanding of Salt states and how to write the states is needed as well.

Note: States are compiled and executed only on minions that have been targeted. To execute functions directly on
masters, see runners.

Salt SLS System

e primary system used by the Salt state system is the SLS system. SLS stands for SaLt State.

e Salt States are files which contain the information about how to configure Salt minions. e states are laid out
in a directory tree and can be wrien in many different formats.

e contents of the files and they way they are laid out is intended to be as simple as possible while allowing for
maximum flexibility. e files are laid out in states and contains information about how the minion needs to be
configured.

SLS File Layout

SLS files are laid out in the Salt file server.

A simple layout can look like this:

top.sls
ssh.sls
sshd_config
users/init.sls
users/admin.sls
salt/master.sls
web/init.sls

e top.sls file is a key component. e top.sls files is used to determine which SLS files should be applied
to which minions.

e rest of the files with the .sls extension in the above example are state files.

Files without a .sls extensions are seen by the Salt master as files that can be downloaded to a Salt minion.

States are translated into dot notation. For example, the ssh.sls file is seen as the ssh state and the
users/admin.sls file is seen as the users.admin state.

Files named init.sls are translated to be the state name of the parent directory, so the web/init.sls file
translates to the web state.

In Salt, everything is a file; there is no ``magic translation'' of files and file types. is means that a state file can be
distributed to minions just like a plain text or binary file.

1070 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

SLS Files

e Salt state files are simple sets of data. Since SLS files are just data they can be represented in a number of different
ways.

e default format is YAML generated from a Jinja template. is allows for the states files to have all the language
constructs of Python and the simplicity of YAML.

State files can then be complicated Jinja templates that translate down to YAML, or just plain and simple YAML files.

e State files are simply common data structures such as dictionaries and lists, constructed using a templating
language such as YAML.

Here is an example of a Salt State:

vim:
pkg.installed: []

salt:
pkg.latest:

- name: salt
service.running:

- names:
- salt-master
- salt-minion

- require:
- pkg: salt

- watch:
- file: /etc/salt/minion

/etc/salt/minion:
file.managed:

- source: salt://salt/minion
- user: root
- group: root
- mode: 644
- require:

- pkg: salt

is short stanza will ensure that vim is installed, Salt is installed and up to date, the salt-master and salt-minion
daemons are running and the Salt minion configuration file is in place. It will also ensure everything is deployed in
the right order and that the Salt services are restarted when the watched file updated.

The Top File

e top file controls the mapping between minions and the states which should be applied to them.

e top file specifies which minions should have which SLS files applied and which environments they should draw
those SLS files from.

e top file works by specifying environments on the top-level.

Each environment contains globs to match minions. Finally, each glob contains a list of lists of Salt states to apply
to matching minions:

base:
'*':

22.26. State Enforcement 1071

Salt Documentation, Release 2014.7.6

- salt
- users
- users.admin

'saltmaster.*':
- match: pcre
- salt.master

is above example uses the base environment which is built into the default Salt setup.

e base environment has two globs. First, the `*' glob contains a list of SLS files to apply to all minions.

e second glob contains a regular expression that will match all minions with an ID matching saltmaster.* and
specifies that for those minions, the salt.master state should be applied.

Reloading Modules

Some Salt states require that specific packages be installed in order for the module to load. As an example the pip
state module requires the pip package for proper name and version parsing.

In most of the common cases, Salt is clever enough to transparently reload the modules. For example, if you install
a package, Salt reloads modules because some other module or state might require just that package which was
installed.

On some edge-cases salt might need to be told to reload the modules. Consider the following state file which we'll
call pep8.sls:

python-pip:
cmd.run:

- name: |
easy_install --script-dir=/usr/bin -U pip

- cwd: /

pep8:
pip.installed:

- require:
- cmd: python-pip

e above example installs pip using easy_install from setuptools and installs pep8 using pip, which, as told
earlier, requires pip to be installed system-wide. Let's execute this state:

salt-call state.sls pep8

e execution output would be something like:

State: - pip
Name: pep8
Function: installed

Result: False
Comment: State pip.installed found in sls pep8 is unavailable

Changes:

Summary

Succeeded: 1

1072 Chapter 22. Reference

https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/pep8
https://pypi.python.org/pypi/pip

Salt Documentation, Release 2014.7.6

Failed: 1

Total: 2

If we executed the state again the output would be:

State: - pip
Name: pep8
Function: installed

Result: True
Comment: Package was successfully installed
Changes: pep8==1.4.6: Installed

Summary

Succeeded: 2
Failed: 0

Total: 2

Since we installed pip using cmd, Salt has no way to know that a system-wide package was installed.

On the second execution, since the required pip package was installed, the state executed correctly.

Note: Salt does not reload modules on every state run because doing so would greatly slow down state execution.

So how do we solve this edge-case? reload_modules!

reload_modules is a boolean option recognized by salt on all available states which forces salt to reload its
modules once a given state finishes.

e modified state file would now be:

python-pip:
cmd.run:

- name: |
easy_install --script-dir=/usr/bin -U pip

- cwd: /
- reload_modules: true

pep8:
pip.installed:

- require:
- cmd: python-pip

Let's run it, once:

salt-call state.sls pep8

e output is:

State: - pip
Name: pep8
Function: installed

Result: True

22.26. State Enforcement 1073

https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip

Salt Documentation, Release 2014.7.6

Comment: Package was successfully installed
Changes: pep8==1.4.6: Installed

Summary

Succeeded: 2
Failed: 0

Total: 2

22.27 Full list of builtin state modules

alias Configuration of email aliases
alternatives Configuration of the alternatives system
apache Apache state
apache_module Manage Apache Modules
apt Package management operations specific to APT- and DEB-based systems
archive Extract an archive
at Configuration disposable regularly scheduled tasks for at.
augeas Configuration management using Augeas
aws_sqs Manage SQS eues
blockdev Management of Block Devices
boto_asg Manage Autoscale Groups
boto_cloudwatch_alarm Manage Cloudwatch alarms
boto_elasticache Manage Elasticache
boto_elb Manage ELBs
boto_iam_role Manage IAM roles.
boto_lc Manage Launch Configurations
boto_route53 Manage Route53 records
boto_secgroup Manage Security Groups
boto_sqs Manage SQS eues
cloud Using states instead of maps to deploy clouds
cmd Execution of arbitrary commands
composer Installation of Composer Packages
cron Management of cron, the Unix command scheduler
ddns Dynamic DNS updates
debconfmod Management of debconf selections
disk Disk monitoring state
dockerio Manage Docker containers
environ Support for geing and seing the environment variables of the current salt process.
eselect Management of Gentoo configuration using eselect
event Send events through Salt's event system during state runs
file Operations on regular files, special files, directories, and symlinks
gem Installation of Ruby modules packaged as gems
git Interaction with Git repositories
glusterfs Manage glusterfs pool.
gnomedesktop Configuration of the GNOME desktop
grains Manage grains on the minion
group Management of user groups

Continued on next page

1074 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Table 22.13 -- continued from previous page
hg Interaction with Mercurial repositories
host Management of addresses and names in hosts file
htpasswd Support for htpasswd module
incron Management of incron, the inotify cron
influxdb_database Management of InfluxDB databases
influxdb_user Management of InfluxDB users
ini_manage Manage ini files
ipset Management of ipsets
iptables Management of iptables
keyboard Management of keyboard layouts
keystone Management of Keystone users
kmod Loading and unloading of kernel modules
layman Management of Gentoo Overlays using layman
libvirt Manage libvirt certificates
locale Management of languages/locales
lvm Management of Linux logical volumes
lvs_server Management of LVS (Linux Virtual Server) Real Server
lvs_service Management of LVS (Linux Virtual Server) Service
lxc lxc / Spin up and control LXC containers
makeconf Management of Gentoo make.conf
mdadm Managing soware RAID with mdadm
memcached States for Management of Memcached Keys
modjk State to control Apache modjk
modjk_worker Manage modjk workers
module Execution of Salt modules from within states
mongodb_database Management of Mongodb databases
mongodb_user Management of Mongodb users
mount Mounting of filesystems
mysql_database Management of MySQL databases (schemas)
mysql_grants Management of MySQL grants (user permissions)
mysql_query Execution of MySQL queries
mysql_user Management of MySQL users
network Configuration of network interfaces
nftables Management of nables
npm Installation of NPM Packages
ntp Management of NTP servers
openstack_config Manage OpenStack configuration file seings.
pagerduty Create an Event in PagerDuty
pecl Installation of PHP Extensions Using pecl
pip_state Installation of Python Packages Using pip
pkg Installation of packages using OS package managers such as yum or apt-get
pkgng Manage package remote repo using FreeBSD pkgng
pkgrepo Management of APT/YUM package repos
portage_config Management of Portage package configuration on Gentoo
ports Manage soware from FreeBSD ports
postgres_database Management of PostgreSQL databases
postgres_extension Management of PostgreSQL extensions (e.g.: postgis)
postgres_group Management of PostgreSQL groups (roles)
postgres_user Management of PostgreSQL users (roles)
powerpath Powerpath configuration support

Continued on next page

22.27. Full list of builtin state modules 1075

Salt Documentation, Release 2014.7.6

Table 22.13 -- continued from previous page
process Process Management
pyenv Managing python installations with pyenv
quota Management of POSIX otas
rabbitmq_cluster Manage RabbitMQ Clusters
rabbitmq_plugin Manage RabbitMQ Plugins
rabbitmq_policy Manage RabbitMQ Policies
rabbitmq_user Manage RabbitMQ Users
rabbitmq_vhost Manage RabbitMQ Virtual Hosts
rbenv Managing Ruby installations with rbenv
rdp Manage RDP Service on Windows servers
redismod Management of Redis server
reg Manage the registry on Windows
rvm Managing Ruby installations and gemsets with Ruby Version Manager (RVM)
saltmod Control the Salt command interface
schedule Management of the Salt scheduler
selinux Management of SELinux rules
serverdensity_device Monitor Server with Server Density
service Starting or restarting of services and daemons
smtp Sending Messages via SMTP
ssh_auth Control of entries in SSH authorized_key files
ssh_known_hosts Control of SSH known_hosts entries
stateconf Stateconf System
status Minion status monitoring
supervisord Interaction with the Supervisor daemon
svn Manage SVN repositories
sysctl Configuration of the Linux kernel using sysctl
test Test States
timezone Management of timezones
tomcat is state uses the manager webapp to manage Apache tomcat webapps
user Management of user accounts
virtualenv_mod Setup of Python virtualenv sandboxes
win_dns_client Module for configuring DNS Client on Windows systems
win_firewall State for configuring Windows Firewall
win_network Configuration of network interfaces on Windows hosts
win_path Manage the Windows System PATH
win_servermanager Manage Windows features via the ServerManager powershell module
win_system Management of Windows system information
win_update Management of the windows update agent
winrepo Manage Windows Package Repository
xmpp Sending Messages over XMPP
zcbuildout Management of zc.buildout
zk_concurrency Control concurrency of steps within state execution using zookeeper

22.27.1 salt.states.alias

Configuration of email aliases

e mail aliases file can be managed to contain definitions for specific email aliases:

1076 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

username:
alias.present:

- target: user@example.com

salt.states.alias.absent(name)
Ensure that the named alias is absent

name e alias to remove

salt.states.alias.present(name, target)
Ensures that the named alias is present with the given target or list of targets. If the alias exists but the target
differs from the previous entry, the target(s) will be overwrien. If the alias does not exist, the alias will be
created.

name e local user/address to assign an alias to

target e forwarding address

22.27.2 salt.states.alternatives

Configuration of the alternatives system

Control the alternatives system

{% set my_hadoop_conf = '/opt/hadoop/conf' %}

{{ my_hadoop_conf }}:
file.directory

hadoop-0.20-conf:
alternatives.install:

- name: hadoop-0.20-conf
- link: /etc/hadoop-0.20/conf
- path: {{ my_hadoop_conf }}
- priority: 30
- require:

- file: {{ my_hadoop_conf }}

hadoop-0.20-conf:
alternatives.remove:

- name: hadoop-0.20-conf
- path: {{ my_hadoop_conf }}

salt.states.alternatives.auto(name)
New in version 0.17.0.

Instruct alternatives to use the highest priority path for <name>

name is the master name for this link group (e.g. pager)

salt.states.alternatives.install(name, link, path, priority)
Install new alternative for defined <name>

name is the master name for this link group (e.g. pager)

link is the symlink pointing to /etc/alternatives/<name>. (e.g. /usr/bin/pager)

path is the location of the new alternative target. NB: is file / directory must already exist. (e.g.
/usr/bin/less)

22.27. Full list of builtin state modules 1077

Salt Documentation, Release 2014.7.6

priority is an integer; options with higher numbers have higher priority in automatic mode.

salt.states.alternatives.remove(name, path)
Removes installed alternative for defined <name> and <path> or fallback to default alternative, if some defined
before.

name is the master name for this link group (e.g. pager)

path is the location of one of the alternative target files. (e.g. /usr/bin/less)

salt.states.alternatives.set_(name, path)
New in version 0.17.0.

Sets alternative for <name> to <path>, if <path> is defined as an alternative for <name>.

name is the master name for this link group (e.g. pager)

path is the location of one of the alternative target files. (e.g. /usr/bin/less)

22.27.3 salt.states.apache

Apache state

New in version 2014.7.0.

Allows for inpuing a yaml dictionary into a file for apache configuration files.

e variable this is special and signifies what should be included with the above word between angle brackets (<>).

/etc/httpd/conf.d/website.com.conf:
apache.configfile:

- config:
- VirtualHost:

this: '*:80'
ServerName:

- website.com
ServerAlias:

- www.website.com
- dev.website.com

ErrorLog: logs/website.com-error_log
CustomLog: logs/website.com-access_log combined
DocumentRoot: /var/www/vhosts/website.com
Directory:

this: /var/www/vhosts/website.com
Order: Deny,Allow
Deny from: all
Allow from:

- 127.0.0.1
- 192.168.100.0/24

Options:
- +Indexes
- FollowSymlinks

AllowOverride: All

salt.states.apache.configfile(name, config)

1078 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.27.4 salt.states.apache_module

Manage Apache Modules

New in version 2014.7.0.

Enable and disable apache modules.

Enable cgi module:
apache_module.enable:

- name: cgi

Disable cgi module:
apache_module.disable:

- name: cgi

salt.states.apache_module.disable(name)
Ensure an Apache module is disabled.

name Name of the Apache module

salt.states.apache_module.enable(name)
Ensure an Apache module is enabled.

name Name of the Apache module

22.27.5 salt.states.apt

Package management operations specific to APT- and DEB-based systems

salt.states.apt.held(name)
Set package in `hold' state, meaning it will not be upgraded.

name e name of the package, e.g., `tmux'

22.27.6 salt.states.archive

Extract an archive

New in version 2014.1.0.

salt.states.archive.extracted(name, source, archive_format, tar_options=None,
source_hash=None, if_missing=None, keep=False)

New in version 2014.1.0.

State that make sure an archive is extracted in a directory. e downloaded archive is erased if successfully
extracted. e archive is downloaded only if necessary.

Note: If if_missing is not defined, this state will check for name instead. If name exists, it will assume
the archive was previously extracted successfully and will not extract it again.

graylog2-server:
archive.extracted:

- name: /opt/
- source: https://github.com/downloads/Graylog2/graylog2-server/graylog2-server-0.9.6p1.tar.lzma
- source_hash: md5=499ae16dcae71eeb7c3a30c75ea7a1a6

22.27. Full list of builtin state modules 1079

Salt Documentation, Release 2014.7.6

- tar_options: J
- archive_format: tar
- if_missing: /opt/graylog2-server-0.9.6p1/

graylog2-server:
archive.extracted:

- name: /opt/
- source: https://github.com/downloads/Graylog2/graylog2-server/graylog2-server-0.9.6p1.tar.gz
- source_hash: md5=499ae16dcae71eeb7c3a30c75ea7a1a6
- archive_format: tar
- if_missing: /opt/graylog2-server-0.9.6p1/

name Directory name where to extract the archive

source Archive source, same syntax as file.managed source argument.

source_hash Hash of source file, or file with list of hash-to-file mappings. It uses the same syntax as the
file.managed source_hash argument.

arive_format tar, zip or rar

if_missing Some archives, such as tar, extract themselves in a subfolder. is directive can be used to validate
if the archive had been previously extracted.

tar_options Required if used with archive_format: tar, otherwise optional. It needs to be the tar
argument specific to the archive being extracted, such as `J' for LZMA or `v' to verbosely list files pro-
cessed. Using this option means that the tar executable on the target will be used, which is less platform
independent. Main operators like -x, --extract, --get, -c, etc. and -f/--file are shoult not be used here. If
this option is not set, then the Python tarfile module is used. e tarfile module supports gzip and bz2
in Python 2.

keep Keep the archive in the minion's cache

22.27.7 salt.states.at

Configuration disposable regularly scheduled tasks for at.

e at state can be add disposable regularly scheduled tasks for your system.

salt.states.at.absent(name, jobid=None, **kwargs)
Remove a job from queue e `kwargs' can include hour. minute. day. month. year

limit Target range

tag Job's tag

runas Runs user-specified jobs

example1:
at.absent:

- limit: all

example2:
at.absent:

- limit: all
- year: 13

1080 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

example3:
at.absent:

- limit: all
- tag: rose
- runas: jim

example4:
at.absent:

- limit: all
- tag: rose
- day: 13
- hour: 16

salt.states.at.present(name, timespec, tag=None, runas=None, user=None, job=None)
Add a job to queue.

job Command to run.

timespec e `timespec' follows the format documented in the at(1) manpage.

tag Make a tag for the job.

runas Users run the job.

Deprecated since version 2014.1.4.

user e user to run the at job

New in version 2014.1.4.
rose:

at.present:
- job: 'echo "I love saltstack" > love'
- timespec: '9:09 11/09/13'
- tag: love
- user: jam

22.27.8 salt.states.augeas

Configuration management using Augeas

New in version 0.17.0.

is state requires the augeas Python module.

Augeas can be used to manage configuration files.

Warning: Minimal installations of Debian and Ubuntu have been seen to have packaging bugs with python-
augeas, causing the augeas module to fail to import. If the minion has the augeas module installed, and the state
fails with a comment saying that the state is unavailable, first restart the salt-minion service. If the problem
persists past that, the following command can be run from the master to determine what is causing the import
to fail:

salt minion-id cmd.run 'python -c "from augeas import Augeas"'

For affected Debian/Ubuntu hosts, installing libpython2.7 has been known to resolve the issue.

salt.states.augeas.change(name, context=None, changes=None, lens=None, **kwargs)
New in version 2014.7.0.

22.27. Full list of builtin state modules 1081

http://augeas.net/

Salt Documentation, Release 2014.7.6

is state replaces setvalue().

Issue changes to Augeas, optionally for a specific context, with a specific lens.

name State name

context e context to use. Set this to a file path, prefixed by /files, to avoid redundancy, e.g.:

redis-conf:
augeas.change:

- context: /files/etc/redis/redis.conf
- changes:

- set bind 0.0.0.0
- set maxmemory 1G

anges List of changes that are issued to Augeas. Available commands are set, mv/move, ins/insert,
and rm/remove.

lens e lens to use, needs to be suffixed with .lns, e.g.: Nginx.lns. See the list of stock lenses shipped with
Augeas.

Usage examples:

Set the bind parameter in /etc/redis/redis.conf:

redis-conf:
augeas.change:

- changes:
- set /files/etc/redis/redis.conf/bind 0.0.0.0

Note: Use the context parameter to specify the file you want to manipulate. is way you don't have to
include this in the changes every time:

redis-conf:
augeas.change:

- context: /files/etc/redis/redis.conf
- changes:

- set bind 0.0.0.0
- set databases 4
- set maxmemory 1G

Augeas is aware of a lot of common configuration files and their syntax. It knows the difference between for
example ini and yaml files, but also files with very specific syntax, like the hosts file. is is done with lenses,
which provide mappings between the Augeas tree and the file.

ere aremany preconfigured lenses that comewith Augeas by default, and they specify the common locations
for configuration files. So most of the time Augeas will know how to manipulate a file. In the event that you
need to manipulate a file that Augeas doesn't know about, you can specify the lens to use like this:

redis-conf:
augeas.change:

- lens: redis
- context: /files/etc/redis/redis.conf
- changes:

- set bind 0.0.0.0

Note: Even though Augeas knows that /etc/redis/redis.conf is a Redis configuration file and knows
how to parse it, it is recommended to specify the lens anyway. is is because by default, Augeas loads all
known lenses and their associated file paths. All these files are parsed when Augeas is loaded, which can take
some time. When specifying a lens, Augeas is loaded with only that lens, which speeds things up quite a bit.

1082 Chapter 22. Reference

http://augeas.net/stock_lenses.html
http://augeas.net/stock_lenses.html

Salt Documentation, Release 2014.7.6

A more complex example, this adds an entry to the services file for Zabbix, and removes an obsolete service:

zabbix-service:
augeas.change:

- lens: services
- context: /files/etc/services
- changes:

- ins service-name after service-name[last()]
- set service-name[last()] zabbix-agent
- set service-name[. = 'zabbix-agent']/#comment "Zabbix Agent service"
- set service-name[. = 'zabbix-agent']/port 10050
- set service-name[. = 'zabbix-agent']/protocol tcp
- rm service-name[. = 'im-obsolete']

- unless: grep "zabbix-agent" /etc/services

Warning: Don't forget the unless here, otherwise a new entry will be added every time this state is
run.

salt.states.augeas.setvalue(name, prefix=None, changes=None, **kwargs)
Deprecated since version 2014.7.0: Use change() instead.

Set a value for a specific augeas path

22.27.9 salt.states.aws_sqs

Manage SQS eues

Create and destroy SQS queues. Be aware that this interacts with Amazon's services, and so may incur charges.

is module uses the awscli tool provided by Amazon. is can be downloaded from pip. Also check the documen-
tation for awscli for configuration information.

myqueue:
aws_sqs.exists:

- region: eu-west-1

salt.states.aws_sqs.absent(name, region, user=None, opts=False)
Remove the named SQS queue if it exists.

name Name of the SQS queue.

region Region to remove the queue from

user Name of the user performing the SQS operations

opts Include additional arguments and options to the aws command line

salt.states.aws_sqs.exists(name, region, user=None, opts=False)
Ensure the SQS queue exists.

name Name of the SQS queue.

region Region to create the queue

user Name of the user performing the SQS operations

opts Include additional arguments and options to the aws command line

22.27. Full list of builtin state modules 1083

Salt Documentation, Release 2014.7.6

22.27.10 salt.states.blockdev

Management of Block Devices

A state module to manage blockdevices

/dev/sda:
blockdev.tuned:

- read-only: True

master-data:
blockdev.tuned::

- name : /dev/vg/master-data
- read-only: True
- read-ahead: 1024

salt.states.blockdev.formatted(name, fs_type='ext4', **kwargs)
Manage filesystems of partitions.

name e name of the block device

fs_type e filesystem it should be formaed as

salt.states.blockdev.tuned(name, **kwargs)
Manage options of block device

name e name of the block device

opts:

• read-ahead Read-ahead buffer size

• filesystem-read-ahead Filesystem Read-ahead buffer size

• read-only Set Read-Only

• read-write Set Read-Write

22.27.11 salt.states.boto_asg

Manage Autoscale Groups

New in version 2014.7.0.

Create and destroy autoscale groups. Be aware that this interacts with Amazon's services, and so may incur charges.

is module uses boto, which can be installed via package, or pip.

is module accepts explicit autoscale credentials but can also utilize IAM roles assigned to the instance trough
Instance Profiles. Dynamic credentials are then automatically obtained from AWS API and no further configuration
is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or in the minion's config file:

asg.keyid: GKTADJGHEIQSXMKKRBJ08H
asg.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

1084 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

It's also possible to specify key, keyid and region via a profile, either as a passed in dict, or as a string to pull from
pillars or minion config:

myprofile: keyid: GKTADJGHEIQSXMKKRBJ08H key: askdjghsdkghWupUjasdflkdlgjsdajkghs re-
gion: us-east-1

Ensure myasg exists:
boto_asg.present:

- name: myasg
- launch_config_name: mylc
- availability_zones:

- us-east-1a
- us-east-1b

- min_size: 1
- max_size: 1
- desired_capacity: 1
- load_balancers:

- myelb
- suspended_processes:

- AddToLoadBalancer
- AlarmNotification

- scaling_policies

- adjustment_type: ChangeInCapacity
- as_name: api-production-iad
- cooldown: 1800
- min_adjustment_step: None
- name: ScaleDown
- scaling_adjustment: -1

- region: us-east-1
- keyid: GKTADJGHEIQSXMKKRBJ08H
- key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

Using a profile from pillars.
Ensure myasg exists:

boto_asg.present:
- name: myasg
- launch_config_name: mylc
- availability_zones:

- us-east-1a
- us-east-1b

- min_size: 1
- max_size: 1
- desired_capacity: 1
- load_balancers:

- myelb
- profile: myprofile

Passing in a profile.
Ensure myasg exists:

boto_asg.present:
- name: myasg
- launch_config_name: mylc
- availability_zones:

- us-east-1a
- us-east-1b

- min_size: 1
- max_size: 1

22.27. Full list of builtin state modules 1085

Salt Documentation, Release 2014.7.6

- desired_capacity: 1
- load_balancers:

- myelb
- profile:

keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
region: us-east-1

Deleting an autoscale group with running instances.
Ensure myasg is deleted:

boto_asg.absent:
- name: myasg
If instances exist, we must force the deletion of the asg.
- force: True

salt.states.boto_asg.absent(name, force=False, region=None, key=None, keyid=None, pro-
file=None)

Ensure the named autoscale group is deleted.

name Name of the autoscale group.

force Force deletion of autoscale group.

region e region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

salt.states.boto_asg.present(name, launch_config_name, availability_zones, min_size, max_size,
launch_config=None, desired_capacity=None, load_balancers=None,
default_cooldown=None, health_check_type=None,
health_check_period=None, placement_group=None,
vpc_zone_identifier=None, tags=None, termination_policies=None,
suspended_processes=None, scaling_policies=None, region=None,
key=None, keyid=None, profile=None)

Ensure the autoscale group exists.

name Name of the autoscale group.

launch_config_name Name of the launch config to use for the group. Or, if launch_config is specified, this will
be the launch config name's prefix. (see below)

launch_config A dictionary of launch config aributes. If specified, a launch config will be used or created,
matching this set of aributes, and the autoscale group will be set to use that launch config. e launch config
name will be the launch_config_name followed by a hyphen followed by a hash of the launch_config dict
contents.

availability_zones List of availability zones for the group.

min_size Minimum size of the group.

max_size Maximum size of the group.

desired_capacity e desired capacity of the group.

load_balancers List of load balancers for the group. Once set this can not be updated (Amazon restriction).

default_cooldown Number of seconds aer a Scaling Activity completes before any further scaling activities
can start.

1086 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

health_e_type e service you want the health status from, Amazon EC2 or Elastic Load Balancer (EC2
or ELB).

health_e_period Length of time in seconds aer a new EC2 instance comes into service that Auto Scaling
starts checking its health.

placement_group Physical location of your cluster placement group created in Amazon EC2. Once set this
can not be updated (Amazon restriction).

vpc_zone_identifier A list of the subnet identifiers of the Virtual Private Cloud.

tags

A list of tags. Example:

• key: `key' value: `value' propagate_at_launch: true

termination_policies A list of termination policies. Valid values are: “OldestInstance”, “NewestInstance”,
“OldestLaunchConfiguration”, “ClosestToNextInstanceHour”, “Default”. If no value is specified, the “De-
fault” value is used.

suspended_processes List of processes to be suspended. see hp://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/US_SuspendResume.html

scaling_policies List of scaling policies. Each policy is a dict of key-values described by
hp://boto.readthedocs.org/en/latest/ref/autoscale.html#boto.ec2.autoscale.policy.ScalingPolicy

region e region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

22.27.12 salt.states.boto_cloudwatch_alarm

Manage Cloudwatch alarms

New in version 2014.7.0.

Create and destroy cloudwatch alarms. Be aware that this interacts with Amazon's services, and so may incur
charges.

is module uses boto, which can be installed via package, or pip.

is module accepts explicit credentials but can also utilize IAM roles assigned to the instance trough Instance Pro-
files. Dynamic credentials are then automatically obtained from AWS API and no further configuration is necessary.
More Information available at:

hp://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or in the minion's config file:

cloudwatch.keyid: GKTADJGHEIQSXMKKRBJ08H
cloudwatch.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

It's also possible to specify key, keyid and region via a profile, either as a passed in dict, or as a string to pull from
pillars or minion config:

22.27. Full list of builtin state modules 1087

http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/US_SuspendResume.html
http://boto.readthedocs.org/en/latest/ref/autoscale.html#boto.ec2.autoscale.policy.ScalingPolicy
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Salt Documentation, Release 2014.7.6

myprofile:
keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
region: us-east-1

my test alarm:
boto_cloudwatch_alarm.present:

- name: my test alarm
- attributes:

metric: ApproximateNumberOfMessagesVisible
namespace: AWS/SQS
statistic: Average
comparison: ">="
threshold: 20000.0
period: 60
evaluation_periods: 1
description: test alarm via salt
dimensions:

QueueName:
- the-sqs-queue-name

alarm_actions:
- arn:aws:sns:us-east-1:1111111:myalerting-action

salt.states.boto_cloudwatch_alarm.absent(name, region=None, key=None, keyid=None, pro-
file=None)

Ensure the named cloudwatch alarm is deleted.

name Name of the alarm.

region Region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

salt.states.boto_cloudwatch_alarm.present(name, aributes, region=None, key=None,
keyid=None, profile=None)

Ensure the cloudwatch alarm exists.

name Name of the alarm

attributes A dict of key/value cloudwatch alarm aributes.

region Region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

1088 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.27.13 salt.states.boto_elasticache

Manage Elasticache

New in version 2014.7.0.

Create, destroy and update Elasticache clusters. Be aware that this interacts with Amazon's services, and so may
incur charges.

Note: is module currently only supports creation and deletion of elasticache resources and will not modify clusters
when their configuration changes in your state files.

is module uses boto, which can be installed via package, or pip.

is module accepts explicit elasticache credentials but can also utilize IAM roles assigned to the instance through
Instance Profiles. Dynamic credentials are then automatically obtained from AWS API and no further configuration
is necessary. More information available here.

If IAM roles are not used you need to specify them either in a pillar file or in the minion's config file:

elasticache.keyid: GKTADJGHEIQSXMKKRBJ08H
elasticache.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

It's also possible to specify key, keyid and region via a profile, either passed in as a dict, or as a string to pull
from pillars or minion config:

myprofile:
keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

region: us-east-1

Ensure myelasticache exists:
boto_elasticache.present:

- name: myelasticache
- engine: redis
- cache_node_type: cache.t1.micro
- num_cache_nodes: 1
- notification_topic_arn: arn:aws:sns:us-east-1:879879:my-sns-topic
- region: us-east-1
- keyid: GKTADJGHEIQSXMKKRBJ08H
- key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

Using a profile from pillars
Ensure myelasticache exists:

boto_elasticache.present:
- name: myelasticache
- engine: redis
- cache_node_type: cache.t1.micro
- num_cache_nodes: 1
- notification_topic_arn: arn:aws:sns:us-east-1:879879:my-sns-topic
- region: us-east-1
- profile: myprofile

Passing in a profile
Ensure myelasticache exists:

boto_elasticache.present:
- name: myelasticache

22.27. Full list of builtin state modules 1089

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Salt Documentation, Release 2014.7.6

- engine: redis
- cache_node_type: cache.t1.micro
- num_cache_nodes: 1
- notification_topic_arn: arn:aws:sns:us-east-1:879879:my-sns-topic
- region: us-east-1
- profile:

keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

salt.states.boto_elasticache.absent(name, wait=True, region=None, key=None, keyid=None,
profile=None)

Ensure the named elasticache cluster is deleted.

name Name of the cache cluster.

wait Boolean. Wait for confirmation from boto that the cluster is in the deleting state.

region Region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

salt.states.boto_elasticache.present(name, engine, cache_node_type, num_cache_nodes=1,
preferred_availability_zone=None, port=None,
cache_parameter_group_name=None,
cache_security_group_names=None,
replication_group_id=None,
auto_minor_version_upgrade=True, secu-
rity_group_ids=None, cache_subnet_group_name=None,
engine_version=None, notification_topic_arn=None,
preferred_maintenance_window=None, wait=True,
region=None, key=None, keyid=None, profile=None)

Ensure the cache cluster exists.

name Name of the cache cluster (cache cluster id).

engine e name of the cache engine to be used for this cache cluster. Valid values are memcached or redis.

cae_node_type e compute and memory capacity of the nodes in
the cache cluster. cache.t1.micro, cache.m1.small, etc. See:
hp://boto.readthedocs.org/en/latest/ref/elasticache.html#boto.elasticache.layer1.ElastiCacheConnection.create_cache_cluster

num_cae_nodes e number of cache nodes that the cache cluster will have.

preferred_availability_zone e EC2 Availability Zone in which the cache cluster will be created. All cache
nodes belonging to a cache cluster are placed in the preferred availability zone.

port e port number on which each of the cache nodes will accept connections.

cae_parameter_group_name e name of the cache parameter group to associate with this cache cluster.
If this argument is omied, the default cache parameter group for the specified engine will be used.

cae_security_group_names A list of cache security group names to associate with this cache cluster. Use
this parameter only when you are creating a cluster outside of a VPC.

replication_group_id e replication group to which this cache cluster should belong. If this parameter is
specified, the cache cluster will be added to the specified replication group as a read replica; otherwise,
the cache cluster will be a standalone primary that is not part of any replication group.

1090 Chapter 22. Reference

http://boto.readthedocs.org/en/latest/ref/elasticache.html#boto.elasticache.layer1.ElastiCacheConnection.create_cache_cluster

Salt Documentation, Release 2014.7.6

auto_minor_version_upgrade Determines whether minor engine upgrades will be applied automatically to
the cache cluster during the maintenance window. A value of True allows these upgrades to occur; False
disables automatic upgrades.

security_group_ids One or more VPC security groups associated with the cache cluster. Use this parameter
only when you are creating a cluster in a VPC.

cae_subnet_group_name e name of the cache subnet group to be used for the cache cluster. Use this
parameter only when you are creating a cluster in a VPC.

engine_version e version number of the cache engine to be used for this cluster.

notification_topic_arn e Amazon Resource Name (ARN) of the Amazon Simple Notification Service (SNS)
topic to which notifications will be sent. e Amazon SNS topic owner must be the same as the cache
cluster owner.

preferred_maintenance_window e weekly time range (in UTC) during which system maintenance can
occur. Example: sun:05:00-sun:09:00

wait Boolean. Wait for confirmation from boto that the cluster is in the creating state.

region Region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

22.27.14 salt.states.boto_elb

Manage ELBs

New in version 2014.7.0.

Create and destroy ELBs. Be aware that this interacts with Amazon's services, and so may incur charges.

is module uses boto, which can be installed via package, or pip.

is module accepts explicit elb credentials but can also utilize IAM roles assigned to the instance through Instance
Profiles. Dynamic credentials are then automatically obtained from AWS API and no further configuration is neces-
sary. More information available here.

If IAM roles are not used you need to specify them either in a pillar file or in the minion's config file:

elb.keyid: GKTADJGHEIQSXMKKRBJ08H
elb.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

It's also possible to specify key, keyid and region via a profile, either passed in as a dict, or as a string to pull
from pillars or minion config:

myprofile:
keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

region: us-east-1

22.27. Full list of builtin state modules 1091

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Salt Documentation, Release 2014.7.6

Ensure myelb ELB exists:
boto_elb.present:

- name: myelb
- region: us-east-1
- keyid: GKTADJGHEIQSXMKKRBJ08H
- key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
- listeners:

- elb_port: 443
instance_port: 80
elb_protocol: HTTPS
instance_protocol: HTTP
certificate: 'arn:aws:iam::1111111:server-certificate/mycert'

- elb_port: 8210
instance_port: 8210
elb_protocol: TCP

- health_check:
target: 'HTTP:80/'

- attributes:
cross_zone_load_balancing:

enabled: true
access_log:

enabled: true
s3_bucket_name: 'mybucket'
s3_bucket_prefix: 'my-logs'
emit_interval: 5

- cnames:
- name: mycname.example.com.

zone: example.com.
ttl: 60

- name: myothercname.example.com.
zone: example.com.

Using a profile from pillars
Ensure myelb ELB exists:

boto_elb.present:
- name: myelb
- region: us-east-1
- profile: myelbprofile

Passing in a profile
Ensure myelb ELB exists:

boto_elb.present:
- name: myelb
- region: us-east-1
- profile:

keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

salt.states.boto_elb.absent(name, region=None, key=None, keyid=None, profile=None)

salt.states.boto_elb.present(name, listeners, availability_zones=None, subnets=None, secu-
rity_groups=None, scheme='internet-facing', health_check=None, at-
tributes=None, cnames=None, region=None, key=None, keyid=None,
profile=None)

Ensure the IAM role exists.

name Name of the IAM role.

availability_zones A list of availability zones for this ELB.

1092 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

listeners A list of listener lists; example: [[`443', `HTTPS', `arn:aws:iam::1111111:server-certificate/mycert'],
[`8443', `80', `HTTPS', `HTTP', `arn:aws:iam::1111111:server-certificate/mycert']]

subnets A list of subnet IDs in your VPC to aach to your LoadBalancer.

security_groups e security groups assigned to your LoadBalancer within your VPC.

seme e type of a LoadBalancer. internet-facing or internal. Once set, can not be modified.

health_e A dict defining the health check for this ELB.

attributes A dict defining the aributes to set on this ELB.

cnames A list of cname dicts with aributes: name, zone, l, and identifier. See the boto_route53 state for
information about these aributes.

region Region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

22.27.15 salt.states.boto_iam_role

Manage IAM roles.

New in version 2014.7.0.

is module uses boto, which can be installed via package, or pip.

is module accepts explicit IAM credentials but can also utilize IAM roles assigned to the instance through In-
stance Profiles. Dynamic credentials are then automatically obtained from AWS API and no further configuration is
necessary. More information available here.

If IAM roles are not used you need to specify them either in a pillar file or in the minion's config file:

iam.keyid: GKTADJGHEIQSXMKKRBJ08H
iam.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

It's also possible to specify key, keyid and region via a profile, either passed in as a dict, or as a string to pull
from pillars or minion config:

myprofile:
keyid: GKTADJGHEIQSXMKKRBJ08H
key: askjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
region: us-east-1

Creating a role will automatically create an instance profile and associate it with the role. is is the default behavior
of the AWS console.

myrole:
boto_iam_role.present:

- region: us-east-1
- key: GKTADJGHEIQSXMKKRBJ08H
- keyid: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
- policies:

22.27. Full list of builtin state modules 1093

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Salt Documentation, Release 2014.7.6

MySQSPolicy:
Statement:

- Action:
- sqs:*

Effect: Allow
Resource:

- arn:aws:sqs:*:*:*
Sid: MyPolicySQS1

MyS3Policy:
Statement:

- Action:
- s3:GetObject

Effect: Allow
Resource:

- arn:aws:s3:*:*:mybucket/*

Using a credentials profile from pillars
myrole:

boto_iam_role.present:
- region: us-east-1
- profile: myiamprofile

Passing in a credentials profile
myrole:

boto_iam_role.present:
- region: us-east-1
- profile:

key: GKTADJGHEIQSXMKKRBJ08H
keyid: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

salt.states.boto_iam_role.absent(name, region=None, key=None, keyid=None, profile=None)
Ensure the IAM role is deleted.

name Name of the IAM role.

region Region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

salt.states.boto_iam_role.present(name, policy_document=None, path=None, policies=None, re-
gion=None, key=None, keyid=None, profile=None)

Ensure the IAM role exists.

name Name of the IAM role.

policy_document e policy that grants an entity permission to assume the role. (See
hp://boto.readthedocs.org/en/latest/ref/iam.html#boto.iam.connection.IAMConnection.create_role)

path epath to the instance profile. (See hp://boto.readthedocs.org/en/latest/ref/iam.html#boto.iam.connection.IAMConnection.create_role)

policies A dict of IAM role policies.

region Region to connect to.

key Secret key to be used.

keyid Access key to be used.

1094 Chapter 22. Reference

http://boto.readthedocs.org/en/latest/ref/iam.html#boto.iam.connection.IAMConnection.create_role
http://boto.readthedocs.org/en/latest/ref/iam.html#boto.iam.connection.IAMConnection.create_role

Salt Documentation, Release 2014.7.6

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

22.27.16 salt.states.boto_lc

Manage Launch Configurations

New in version 2014.7.0.

Create and destroy Launch Configurations. Be aware that this interacts with Amazon's services, and so may incur
charges.

A limitation of this module is that you can not modify launch configurations once they have been created. If a
launch configuration with the specified name exists, this module will always report success, even if the specified
configuration doesn't match. is is due to a limitation in Amazon's launch configuration API, as it only allows
launch configurations to be created and deleted.

Also note that a launch configuration that's in use by an autoscale group can not be deleted until the autoscale group
is no longer using it. is may affect the way in which you want to order your states.

is module uses boto, which can be installed via package, or pip.

is module accepts explicit autoscale credentials but can also utilize IAM roles assigned to the instance through
Instance Profiles. Dynamic credentials are then automatically obtained from AWS API and no further configuration
is necessary. More information available here.

If IAM roles are not used you need to specify them either in a pillar file or in the minion's config file:

asg.keyid: GKTADJGHEIQSXMKKRBJ08H
asg.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

It's also possible to specify key, keyid and region via a profile, either passed in as a dict, or as a string to pull
from pillars or minion config:

myprofile:
keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
region: us-east-1

Credential information is shared with autoscale groups as launch configurations and autoscale groups are completely
dependent on each other.

Ensure mylc exists:
boto_lc.present:

- name: mylc
- image_id: ami-0b9c9f62
- key_name: mykey
- security_groups:

- mygroup
- instance_type: m1.small
- instance_monitoring: true
- block_device_mappings:

- '/dev/sda1':
size: 20

- cloud_init:
scripts:

22.27. Full list of builtin state modules 1095

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Salt Documentation, Release 2014.7.6

'run_salt.sh': |
#!/bin/bash

add-apt-repository -y ppa:saltstack/salt
apt-get update
apt-get install -y salt-minion
salt-call state.highstate

- region: us-east-1
- keyid: GKTADJGHEIQSXMKKRBJ08H
- key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

Using a profile from pillars.
Ensure mylc exists:

boto_lc.present:
- name: mylc
- image_id: ami-0b9c9f62
- profile: myprofile

Passing in a profile.
Ensure mylc exists:

boto_lc.present:
- name: mylc
- image_id: ami-0b9c9f62
- profile:

keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
region: us-east-1

salt.states.boto_lc.absent(name, region=None, key=None, keyid=None, profile=None)
Ensure the named launch configuration is deleted.

name Name of the launch configuration.

region e region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

salt.states.boto_lc.present(name, image_id, key_name=None, secu-
rity_groups=None, user_data=None, cloud_init=None, in-
stance_type='m1.small', kernel_id=None, ramdisk_id=None,
block_device_mappings=None, instance_monitoring=False,
spot_price=None, instance_profile_name=None,
ebs_optimized=False, associate_public_ip_address=None, vol-
ume_type=None, delete_on_termination=True, iops=None,
use_block_device_types=False, region=None, key=None, keyid=None,
profile=None)

Ensure the launch configuration exists.

name Name of the launch configuration.

image_id AMI to use for instances. AMI must exist or creation of the launch configuration will fail.

key_name Name of the EC2 key pair to use for instances. Key must exist or creation of the launch configura-
tion will fail.

1096 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

security_groups List of Names or security group id’s of the security groups with which to associate the EC2
instances or VPC instances, respectively. Security groups must exist, or creation of the launch configu-
ration will fail.

user_data e user data available to launched EC2 instances.

cloud_init A dict of cloud_init configuration. Currently supported values: scripts, cloud-config. Mutually
exlusive with user_data.

instance_type e instance type. ex: m1.small.

kernel_id e kernel id for the instance.

ramdisk_id e RAM disk ID for the instance.

blo_device_mappings A dict of block device mappings.

instance_monitoring Whether instances in group are launched with detailed monitoring.

spot_price e spot price you are bidding. Only applies if you are building an autoscaling group with spot
instances.

instance_profile_name ename or theAmazon Resource Name (ARN) of the instance profile associatedwith
the IAM role for the instance. Instance profile must exist or the creation of the launch configuration will
fail.

ebs_optimized Specifies whether the instance is optimized for EBS I/O (true) or not (false).

associate_public_ip_address Used for Auto Scaling groups that launch instances into an Amazon Virtual
Private Cloud. Specifies whether to assign a public IP address to each instance launched in a Amazon
VPC.

volume_type Undocumented in boto.

delete_on_termination Undocumented in boto.

iops Undocumented in boto.

use_blo_device_types Undocumented in boto.

region e region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

22.27.17 salt.states.boto_route53

Manage Route53 records

New in version 2014.7.0.

Create and delete Route53 records. Be aware that this interacts with Amazon's services, and so may incur charges.

is module uses boto, which can be installed via package, or pip.

is module accepts explicit route53 credentials but can also utilize IAM roles assigned to the instance through
Instance Profiles. Dynamic credentials are then automatically obtained from AWS API and no further configuration
is necessary. More information available here.

If IAM roles are not used you need to specify them either in a pillar file or in the minion's config file:

22.27. Full list of builtin state modules 1097

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Salt Documentation, Release 2014.7.6

route53.keyid: GKTADJGHEIQSXMKKRBJ08H
route53.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

It's also possible to specify key, keyid and region via a profile, either passed in as a dict, or as a string to pull
from pillars or minion config:

myprofile:
keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

region: us-east-1

mycnamerecord:
boto_route53.present:

- name: test.example.com.
- value: my-elb.us-east-1.elb.amazonaws.com.
- zone: example.com.
- ttl: 60
- record_type: CNAME
- region: us-east-1
- keyid: GKTADJGHEIQSXMKKRBJ08H
- key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

Using a profile from pillars
myarecord:

boto_route53.present:
- name: test.example.com.
- value: 1.1.1.1
- zone: example.com.
- ttl: 60
- record_type: A
- region: us-east-1
- profile: myprofile

Passing in a profile
myarecord:

boto_route53.present:
- name: test.example.com.
- value: 1.1.1.1
- zone: example.com.
- ttl: 60
- record_type: A
- region: us-east-1
- profile:

keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

salt.states.boto_route53.absent(name, zone, record_type, identifier=None, region=None,
key=None, keyid=None, profile=None)

Ensure the Route53 record is deleted.

name Name of the record.

zone e zone to delete the record from.

identifier An identifier to match for deletion.

region e region to connect to.

1098 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

salt.states.boto_route53.present(name, value, zone, record_type, l=None, identifier=None, re-
gion=None, key=None, keyid=None, profile=None)

Ensure the Route53 record is present.

name Name of the record.

value Value of the record.

zone e zone to create the record in.

record_type e record type. Currently supported values: A, CNAME, MX

ttl e time to live for the record.

identifier e unique identifier to use for this record.

region e region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

22.27.18 salt.states.boto_secgroup

Manage Security Groups

New in version 2014.7.0.

Create and destroy Security Groups. Be aware that this interacts with Amazon's services, and so may incur charges.

is module uses boto, which can be installed via package, or pip.

is module accepts explicit EC2 credentials but can also utilize IAM roles assigned to the instance through In-
stance Profiles. Dynamic credentials are then automatically obtained from AWS API and no further configuration is
necessary. More information available here.

If IAM roles are not used you need to specify them either in a pillar file or in the minion's config file:

secgroup.keyid: GKTADJGHEIQSXMKKRBJ08H
secgroup.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

It's also possible to specify key, keyid and region via a profile, either passed in as a dict, or as a string to pull
from pillars or minion config:

myprofile:
keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
region: us-east-1

22.27. Full list of builtin state modules 1099

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Salt Documentation, Release 2014.7.6

Ensure mysecgroup exists:
boto_secgroup.present:

- name: mysecgroup
- description: My security group
- rules:

- ip_protocol: tcp
from_port: 80
to_port: 80
cidr_ip:

- 10.0.0.0/0
- 192.168.0.0/0

- region: us-east-1
- keyid: GKTADJGHEIQSXMKKRBJ08H
- key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

Using a profile from pillars
Ensure mysecgroup exists:

boto_secgroup.present:
- name: mysecgroup
- description: My security group
- region: us-east-1
- profile: myprofile

Passing in a profile
Ensure mysecgroup exists:

boto_secgroup.present:
- name: mysecgroup
- description: My security group
- region: us-east-1
- profile:

keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

salt.states.boto_secgroup.absent(name, vpc_id=None, region=None, key=None, keyid=None, pro-
file=None)

Ensure a security group with the specified name does not exist.

name Name of the security group.

vpc_id e ID of the VPC to create the security group in, if any.

region Region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

salt.states.boto_secgroup.present(name, description, vpc_id=None, rules=None, region=None,
key=None, keyid=None, profile=None)

Ensure the security group exists with the specified rules.

name Name of the security group.

description A description of this security group.

vpc_id e ID of the VPC to create the security group in, if any.

rules A list of ingress rule dicts.

1100 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

region Region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

22.27.19 salt.states.boto_sqs

Manage SQS eues

New in version 2014.7.0.

Create and destroy SQS queues. Be aware that this interacts with Amazon's services, and so may incur charges.

is module uses boto, which can be installed via package, or pip.

is module accepts explicit SQS credentials but can also utilize IAM roles assigned to the instance through In-
stance Profiles. Dynamic credentials are then automatically obtained from AWS API and no further configuration is
necessary. More information available here.

If IAM roles are not used you need to specify them either in a pillar file or in the minion's config file:

sqs.keyid: GKTADJGHEIQSXMKKRBJ08H
sqs.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

It's also possible to specify key, keyid and region via a profile, either passed in as a dict, or as a string to pull
from pillars or minion config:

myprofile:
keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

region: us-east-1

myqueue:
boto_sqs.present:

- region: us-east-1
- keyid: GKTADJGHEIQSXMKKRBJ08H
- key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
- attributes:

ReceiveMessageWaitTimeSeconds: 20

Using a profile from pillars
myqueue:

boto_sqs.present:
- region: us-east-1
- profile: mysqsprofile

Passing in a profile
myqueue:

boto_sqs.present:
- region: us-east-1
- profile:

keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

22.27. Full list of builtin state modules 1101

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Salt Documentation, Release 2014.7.6

salt.states.boto_sqs.absent(name, region=None, key=None, keyid=None, profile=None)
Ensure the named sqs queue is deleted.

name Name of the SQS queue.

region Region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

salt.states.boto_sqs.present(name, aributes=None, region=None, key=None, keyid=None, pro-
file=None)

Ensure the SQS queue exists.

name Name of the SQS queue.

attributes A dict of key/value SQS aributes.

region Region to connect to.

key Secret key to be used.

keyid Access key to be used.

profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and
keyid.

22.27.20 salt.states.cloud

Using states instead of maps to deploy clouds

New in version 2014.1.0.

Use this minion to spin up a cloud instance:

my-ec2-instance:
cloud.profile:

my-ec2-config

salt.states.cloud.absent(name, onlyif=None, unless=None)
Ensure that no instances with the specified names exist.

CAUTION:is is a destructive state, which will search all configured cloud providers for the named instance,
and destroy it.

name e name of the instance to destroy

onlyif Do run the state only if is unless succeed

unless Do not run the state at least unless succeed

salt.states.cloud.present(name, cloud_provider, onlyif=None, unless=None, **kwargs)
Spin up a single instance on a cloud provider, using salt-cloud. is state does not take a profile argument;
rather, it takes the arguments that would normally be configured as part of the state.

Note that while this function does take any configuration argument that would normally be used to create an
instance, it will not verify the state of any of those arguments on an existing instance. Stateful properties of
an instance should be configured using their own individual state (i.e., cloud.tagged, cloud.untagged, etc).

1102 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

name e name of the instance to create

cloud_provider e name of the cloud provider to use

onlyif Do run the state only if is unless succeed

unless Do not run the state at least unless succeed

salt.states.cloud.profile(name, profile, onlyif=None, unless=None, **kwargs)
Create a single instance on a cloud provider, using a salt-cloud profile.

Note that while profiles used this function do take any configuration argument that would normally be used
to create an instance using a profile, this state will not verify the state of any of those arguments on an
existing instance. Stateful properties of an instance should be configured using their own individual state
(i.e., cloud.tagged, cloud.untagged, etc).

name e name of the instance to create

profile e name of the cloud profile to use

onlyif Do run the state only if is unless succeed

unless Do not run the state at least unless succeed

kwargs Any profile override or addition

salt.states.cloud.volume_absent(name, provider=None, **kwargs)
Check that a block volume exists.

salt.states.cloud.volume_attached(name, server_name, provider=None, **kwargs)
Check if a block volume is aached.

salt.states.cloud.volume_detached(name, server_name=None, provider=None, **kwargs)
Check if a block volume is aached.

Returns True if server or Volume do not exist.

salt.states.cloud.volume_present(name, provider=None, **kwargs)
Check that a block volume exists.

22.27.21 salt.states.cmd

Execution of arbitrary commands

e cmd state module manages the enforcement of executed commands, this state can tell a command to run under
certain circumstances.

A simple example to execute a command:

date > /tmp/salt-run:
cmd.run

Only run if another execution failed, in this case truncate syslog if there is no disk space:

> /var/log/messages:
cmd.run:

- unless: echo 'foo' > /tmp/.test

Only run if the file specified by creates does not exist, in this case touch /tmp/foo if it does not exist.

22.27. Full list of builtin state modules 1103

Salt Documentation, Release 2014.7.6

touch /tmp/foo:
cmd.run:

- creates: /tmp/foo

Note: e creates option was added to version 2014.7.0

Salt determines whether the cmd state is successfully enforced based on the exit code returned by the command. If
the command returns a zero exit code, then salt determines that the state was successfully enforced. If the script
returns a non-zero exit code, then salt determines that it failed to successfully enforce the state. If a command
returns a non-zero exit code but you wish to treat this as a success, then you must place the command in a script
and explicitly set the exit code of the script to zero.

Please note that the success or failure of the state is not affected by whether a state change occurred nor the stateful
argument.

When executing a command or script, the state (i.e., changed or not) of the command is unknown to Salt's state
system. erefore, by default, the cmd state assumes that any command execution results in a changed state.

is means that if a cmd state is watched by another state then the state that's watching will always be executed due
to the changed state in the cmd state.

Many state functions in this module now also accept a stateful argument. If stateful is specified to be true
then it is assumed that the command or script will determine its own state and communicate it back by following a
simple protocol described below:

1. If there's nothing in the stdout of the command, then assume no anges. Otherwise, the stdout must be
either in JSON or its last non-empty line must be a string of key=value pairs delimited by spaces (no spaces
on either side of =).

2. If it's JSON then it must be a JSON object (e.g., {}). If it's key=value pairs then quoting may be used to include
spaces. (Python's shlex module is used to parse the key=value string)

Two special keys or aributes are recognized in the output:

changed: bool (i.e., 'yes', 'no', 'true', 'false', case-insensitive)
comment: str (i.e., any string)

So, only if changed is True then assume the command execution has changed the state, and any other key
values or aributes in the output will be set as part of the changes.

3. If there's a comment then it will be used as the comment of the state.

Here's an example of how one might write a shell script for use with a stateful command:

#!/bin/bash
#
echo "Working hard..."

writing the state line
echo # an empty line here so the next line will be the last.
echo "changed=yes comment='something has changed' whatever=123"

And an example SLS file using this module:

Run myscript:
cmd.run:

- name: /path/to/myscript
- cwd: /
- stateful: True

1104 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Run only if myscript changed something:
cmd.wait:

- name: echo hello
- cwd: /
- watch:

- cmd: Run myscript

Note that if the cmd.wait state also specifies stateful: True it can then be watched by some other
states as well.

cmd.wait is not restricted to watching only cmd states. For example it can also watch a git state for changes

Watch for changes to a git repo and rebuild the project on updates
my-project:

git.latest:
- name: git@github.com/repo/foo
- target: /opt/foo
- rev: master

cmd.wait:
- name: make install
- cwd: /opt/foo
- watch:

- git: my-project

Should I use cmd.run or cmd.wait? ---

ese two states are oen confused. e important thing to remember about them is that cmd.run states are run
each time the SLS file that contains them is applied. If it is more desirable to have a command that only runs aer
some other state changes, then cmd.wait does just that. cmd.wait is designed to watch other states, and is
executed when the state it is watching changes. Example:

/usr/local/bin/postinstall.sh:
cmd.wait:

- watch:
- pkg: mycustompkg

file.managed:
- source: salt://utils/scripts/postinstall.sh

mycustompkg:
pkg.installed:

- require:
- file: /usr/local/bin/postinstall.sh

How do I create an environment from a pillar map?

e map that comes from a pillar cannot be directly consumed by the env option. To use it one must convert it to a
list. Example:

printenv:
cmd.run:

- env:
{% for key, value in pillar['keys'].iteritems() %}
- '{{ key }}': '{{ value }}'
{% endfor %}

22.27. Full list of builtin state modules 1105

Salt Documentation, Release 2014.7.6

salt.states.cmd.call(name, func, args=(), kws=None, onlyif=None, unless=None, creates=None, out-
put_loglevel='debug', use_vt=False, **kwargs)

Invoke a pre-defined Python functionwith arguments specified in the state declaration. is function is mainly
used by the salt.renderers.pydsl renderer.

e interpretation of onlyif and unless arguments are identical to those of cmd.run, and all other
arguments(cwd, runas, …) allowed by cmd.run are allowed here, except that their effects apply only to
the commands specified in onlyif and unless rather than to the function to be invoked.

In addition, the stateful argument has no effects here.

e return value of the invoked function will be interpreted as follows.

If it's a dictionary then it will be passed through to the state system, which expects it to have the usual structure
returned by any salt state function.

Otherwise, the return value (denoted as result in the code below) is expected to be a JSON serializable
object, and this dictionary is returned:

{
'name': name
'changes': {'retval': result},
'result': True if result is None else bool(result),
'comment': result if isinstance(result, string_types) else ''

}

salt.states.cmd.mod_run_check(cmd_kwargs, onlyif, unless, group, creates)
Execute the onlyif and unless logic. Return a result dict if: * group is not available * onlyif failed (onlyif != 0)
* unless succeeded (unless == 0) else return True

salt.states.cmd.mod_watch(name, **kwargs)
Execute a cmd function based on a watch call

salt.states.cmd.run(name, onlyif=None, unless=None, creates=None, cwd=None, user=None,
group=None, shell=None, env=None, stateful=False, umask=None, out-
put_loglevel='debug', quiet=False, timeout=None, use_vt=False, **kwargs)

Run a command if certain circumstances are met. Use cmd.wait if you want to use the watch requisite.

name e command to execute, remember that the command will execute with the path and permissions of
the salt-minion.

onlyif A command to run as a check, run the named command only if the command passed to the onlyif
option returns true

unless A command to run as a check, only run the named command if the command passed to the unless
option returns false

cwd e current working directory to execute the command in, defaults to /root

user e user name to run the command as

group e group context to run the command as

shell e shell to use for execution, defaults to the shell grain

env A list of environment variables to be set prior to execution. Example:

salt://scripts/foo.sh:
cmd.script:

- env:
- BATCH: 'yes'

1106 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Warning: e above illustrates a common PyYAML pitfall, that yes, no, on, off, true, and false are
all loaded as boolean True and False values, and must be enclosed in quotes to be used as strings.
More info on this (and other) PyYAML idiosyncrasies can be found here.

stateful e command being executed is expected to return data about executing a state

umask e umask (in octal) to use when running the command.

output_loglevel Control the loglevel at which the output from the command is logged. Note that the com-
mand being run will still be logged (loglevel: DEBUG) regardless, unless quiet is used for this value.

quiet e command will be executed quietly, meaning no log entries of the actual command or its return data.
is is deprecated as of the 2014.1.0 release, and is being replaced with output_loglevel: quiet.

timeout If the command has not terminated aer timeout seconds, send the subprocess sigterm, and if sigterm
is ignored, follow up with sigkill

creates Only run if the file specified by creates does not exist.

New in version 2014.7.0.

use_vt Use VT utils (saltstack) to stream the command output more interactively to the console and the logs.
is is experimental.

Note: cmd.run supports the usage of reload_modules. is functionality allows you to force Salt to
reload all modules. You should only use reload_modules if your cmd.run does some sort of installation
(such as pip), if you do not reload the modules future items in your state which rely on the soware being
installed will fail.

getpip:
cmd.run:

- name: /usr/bin/python /usr/local/sbin/get-pip.py
- unless: which pip
- require:

- pkg: python
- file: /usr/local/sbin/get-pip.py

- reload_modules: True

salt.states.cmd.script(name, source=None, template=None, onlyif=None, unless=None, creates=None,
cwd=None, user=None, group=None, shell=None, env=None, stateful=False,
umask=None, timeout=None, use_vt=False, output_loglevel='debug',
**kwargs)

Download a script and execute it with specified arguments.

source e location of the script to download. If the file is located on the master in the directory named spam,
and is called eggs, the source string is salt://spam/eggs

template If this seing is applied then the named templating engine will be used to render the downloaded
file. Currently jinja, mako, and wempy are supported

name Either ``cmd arg1 arg2 arg3…'' (cmd is not used) or a source ``salt://…''.

onlyif Run the named command only if the command passed to the onlyif option returns true

unless Run the named command only if the command passed to the unless option returns false

cwd e current working directory to execute the command in, defaults to /root

user e name of the user to run the command as

group e group context to run the command as

22.27. Full list of builtin state modules 1107

Salt Documentation, Release 2014.7.6

shell e shell to use for execution. e default is set in grains['shell']

env A list of environment variables to be set prior to execution. Example:

salt://scripts/foo.sh:
cmd.script:

- env:
- BATCH: 'yes'

Warning: e above illustrates a common PyYAML pitfall, that yes, no, on, off, true, and false are
all loaded as boolean True and False values, and must be enclosed in quotes to be used as strings.
More info on this (and other) PyYAML idiosyncrasies can be found here.

umask e umask (in octal) to use when running the command.

stateful e command being executed is expected to return data about executing a state

timeout If the command has not terminated aer timeout seconds, send the subprocess sigterm, and if sigterm
is ignored, follow up with sigkill

args String of command line args to pass to the script. Only used if no args are specified as part of the name
argument. To pass a string containing spaces in YAML, you will need to doubly-quote it: ``arg1 `arg
two' arg3''

creates Only run if the file specified by creates does not exist.

New in version 2014.7.0.

use_vt Use VT utils (saltstack) to stream the command output more interactively to the console and the logs.
is is experimental.

output_loglevel Control the loglevel at which the output from the command is logged. Note that the com-
mand being run will still be logged (loglevel: DEBUG) regardless, unless quiet is used for this value.

salt.states.cmd.wait(name, onlyif=None, unless=None, creates=None, cwd=None, user=None,
group=None, shell=None, env=(), stateful=False, umask=None, out-
put_loglevel='debug', use_vt=False, **kwargs)

Run the given command only if the watch statement calls it

name e command to execute, remember that the command will execute with the path and permissions of
the salt-minion.

onlyif A command to run as a check, run the named command only if the command passed to the onlyif
option returns true

unless A command to run as a check, only run the named command if the command passed to the unless
option returns false

cwd e current working directory to execute the command in, defaults to /root

user e user name to run the command as

group e group context to run the command as

shell e shell to use for execution, defaults to /bin/sh

env A list of environment variables to be set prior to execution. Example:

salt://scripts/foo.sh:
cmd.script:

- env:
- BATCH: 'yes'

1108 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Warning: e above illustrates a common PyYAML pitfall, that yes, no, on, off, true, and false are
all loaded as boolean True and False values, and must be enclosed in quotes to be used as strings.
More info on this (and other) PyYAML idiosyncrasies can be found here.

umask e umask (in octal) to use when running the command.

stateful e command being executed is expected to return data about executing a state

creates Only run if the file specified by creates does not exist.

New in version 2014.7.0.

output_loglevel Control the loglevel at which the output from the command is logged. Note that the com-
mand being run will still be logged (loglevel: DEBUG) regardless, unless quiet is used for this value.

use_vt Use VT utils (saltstack) to stream the command output more interactively to the console and the logs.
is is experimental.

salt.states.cmd.wait_call(name, func, args=(), kws=None, onlyif=None, unless=None, creates=None,
stateful=False, use_vt=False, output_loglevel='debug', **kwargs)

salt.states.cmd.wait_script(name, source=None, template=None, onlyif=None, unless=None,
cwd=None, user=None, group=None, shell=None, env=None, state-
ful=False, umask=None, use_vt=False, output_loglevel='debug',
**kwargs)

Download a script from a remote source and execute it only if a watch statement calls it.

source e source script being downloaded to theminion, this source script is hosted on the salt master server.
If the file is located on the master in the directory named spam, and is called eggs, the source string is
salt://spam/eggs

template If this seing is applied then the named templating engine will be used to render the downloaded
file, currently jinja, mako, and wempy are supported

name e command to execute, remember that the command will execute with the path and permissions of
the salt-minion.

onlyif A command to run as a check, run the named command only if the command passed to the onlyif
option returns true

unless A command to run as a check, only run the named command if the command passed to the unless
option returns false

cwd e current working directory to execute the command in, defaults to /root

user e user name to run the command as

group e group context to run the command as

shell e shell to use for execution, defaults to the shell grain

env A list of environment variables to be set prior to execution. Example:

salt://scripts/foo.sh:
cmd.script:

- env:
- BATCH: 'yes'

Warning: e above illustrates a common PyYAML pitfall, that yes, no, on, off, true, and false are
all loaded as boolean True and False values, and must be enclosed in quotes to be used as strings.
More info on this (and other) PyYAML idiosyncrasies can be found here.

22.27. Full list of builtin state modules 1109

Salt Documentation, Release 2014.7.6

umask e umask (in octal) to use when running the command.

stateful e command being executed is expected to return data about executing a state

use_vt

Use VT utils (saltstack) to stream the command output more interactively to the console and
the logs. is is experimental.

output_loglevel Control the loglevel at which the output from the command is logged. Note that the
command being run will still be logged (loglevel: DEBUG) regardless, unless quiet is used for
this value.

22.27.22 salt.states.composer

Installation of Composer Packages

ese states manage the installed packages for composer for PHP. Note that either composer is installed and acces-
sible via a bin directory or you can pass the location of composer in the state.

get-composer:
cmd.run:

- name: 'CURL=`which curl`; $CURL -sS https://getcomposer.org/installer | php'
- unless: test -f /usr/local/bin/composer
- cwd: /root/

install-composer:
cmd.wait:

- name: mv /root/composer.phar /usr/local/bin/composer
- cwd: /root/
- watch:

- cmd: get-composer

/path/to/project:
composer.installed:

- no_dev: true
- require:

- cmd: install-composer

Without composer installed in your PATH
Note: composer.phar must be executable for state to work properly
/path/to/project:

composer.installed:
- composer: /path/to/composer.phar
- php: /usr/local/bin/php
- no_dev: true

salt.states.composer.installed(name, composer=None, php=None, user=None, pre-
fer_source=None, prefer_dist=None, no_scripts=None,
no_plugins=None, optimize=None, no_dev=None, quiet=False,
composer_home='/root', always_check=True)

Verify that the correct versions of composer dependencies are present.

dir Directory location of the composer.json file.

composer Location of the composer.phar file. If not set composer will just execute ``composer'' as if it is
installed globally. (i.e. /path/to/composer.phar)

1110 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

php Location of the php executable to use with composer. (i.e. /usr/bin/php)

user Which system user to run composer as.

New in version 2014.1.4.

prefer_source --prefer-source option of composer.

prefer_dist --prefer-dist option of composer.

no_scripts --no-scripts option of composer.

no_plugins --no-plugins option of composer.

optimize --optimize-autoloader option of composer. Recommended for production.

no_dev --no-dev option for composer. Recommended for production.

quiet --quiet option for composer. Whether or not to return output from composer.

composer_home $COMPOSER_HOME environment variable

always_e If True, _always_ run composer install in the directory. is is the default behavior. If False,
only run composer install if there is no vendor directory present.

salt.states.composer.update(name, composer=None, php=None, user=None, prefer_source=None,
prefer_dist=None, no_scripts=None, no_plugins=None, optimize=None,
no_dev=None, quiet=False, composer_home='/root')

Composer update the directory to ensure we have the latest versions of all project dependencies.

dir Directory location of the composer.json file.

composer Location of the composer.phar file. If not set composer will just execute ``composer'' as if it is
installed globally. (i.e. /path/to/composer.phar)

php Location of the php executable to use with composer. (i.e. /usr/bin/php)

user Which system user to run composer as.

New in version 2014.1.4.

prefer_source --prefer-source option of composer.

prefer_dist --prefer-dist option of composer.

no_scripts --no-scripts option of composer.

no_plugins --no-plugins option of composer.

optimize --optimize-autoloader option of composer. Recommended for production.

no_dev --no-dev option for composer. Recommended for production.

quiet --quiet option for composer. Whether or not to return output from composer.

composer_home $COMPOSER_HOME environment variable

22.27.23 salt.states.cron

Management of cron, the Unix command scheduler

Cron declarations require a number of parameters. e following are the parameters used by Salt to define the
various timing values for a cron job:

• minute

22.27. Full list of builtin state modules 1111

Salt Documentation, Release 2014.7.6

• hour

• daymonth

• month

• dayweek (0 to 6 are Sunday through Saturday, 7 can also be used for Sunday)

Warning: Any timing arguments not specified take a value of *. is means that seing hour to 5, while not
defining the minute param, will result in Salt adding a job that will execute every minute between 5 and 6 A.M.!
Additionally, the default user for these states is root. erefore, if the cron job is for another user, it is necessary
to specify that user with the user parameter.

A long time ago (before 2014.2), when making changes to an existing cron job, the name declaration is the parameter
used to uniquely identify the job, so if an existing cron that looks like this:

date > /tmp/crontest:
cron.present:

- user: root
- minute: 5

Is changed to this:

date > /tmp/crontest:
cron.present:

- user: root
- minute: 7
- hour: 2

en the existing cron will be updated, but if the cron command is changed, then a new cron job will be added to
the user's crontab.

e current behavior is still relying on that mechanism, but you can also specify an identifier to identify your
crontabs:

date > /tmp/crontest:
cron.present:

- identifier: SUPERCRON
- user: root
- minute: 7
- hour: 2

New in version 2014.1.2.

And, some months later, you modify it:

superscript > /tmp/crontest:
cron.present:

- identifier: SUPERCRON
- user: root
- minute: 3
- hour: 4

New in version 2014.1.2.

e old date > /tmp/crontest will be replaced by superscript > /tmp/crontest.

1112 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Additionally, Salt also supports running a cron every x minutes very similarly to the Unix convention of using
*/5 to have a job run every five minutes. In Salt, this looks like:

date > /tmp/crontest:
cron.present:

- user: root
- minute: '*/5'

e job will now run every 5 minutes.

Additionally, the temporal parameters (minute, hour, etc.) can be randomized by using random instead of using
a specific value. For example, by using the random keyword in the minute parameter of a cron state, the same
cron job can be pushed to hundreds or thousands of hosts, and they would each use a randomly-generated minute.
is can be helpful when the cron job accesses a network resource, and it is not desirable for all hosts to run the job
concurrently.

/path/to/cron/script:
cron.present:

- user: root
- minute: random
- hour: 2

New in version 0.16.0.

Since Salt assumes a value of * for unspecified temporal parameters, adding a parameter to the state and seing it
to random will change that value from * to a randomized numeric value. However, if that field in the cron entry
on the minion already contains a numeric value, then using the random keyword will not modify it.

salt.states.cron.absent(name, user='root', identifier=None, **kwargs)
Verifies that the specified cron job is absent for the specified user; only the name is matched when removing
a cron job.

name e command that should be absent in the user crontab.

user e name of the user whose crontab needs to be modified, defaults to the root user

identifier Custom-defined identifier for tracking the cron line for future crontab edits. is defaults to the
state id

salt.states.cron.env_absent(name, user='root')
Verifies that the specified environment variable is absent from the crontab for the specified user

name e name of the environment variable to remove from the user crontab

user e name of the user whose crontab needs to be modified, defaults to the root user

salt.states.cron.env_present(name, value=None, user='root')
Verifies that the specified environment variable is present in the crontab for the specified user.

name e name of the environment variable to set in the user crontab

user e name of the user whose crontab needs to be modified, defaults to the root user

value e value to set for the given environment variable

salt.states.cron.file(name, source_hash='`, user='root', template=None, context=None, replace=True,
defaults=None, env=None, backup='`, **kwargs)

Provides file.managed-like functionality (templating, etc.) for a pre-made crontab file, to be assigned to a given
user.

22.27. Full list of builtin state modules 1113

Salt Documentation, Release 2014.7.6

name e source file to be used as the crontab. is source file can be hosted on either the salt master server,
or on an HTTP or FTP server. For files hosted on the salt file server, if the file is located on the master
in the directory named spam, and is called eggs, the source string is salt://spam/eggs

If the file is hosted on a HTTP or FTP server then the source_hash argument is also required

source_hash is can be either a file which contains a source hash string for the source, or a source
hash string. e source hash string is the hash algorithm followed by the hash of the file:
md5=e138491e9d5b97023cea823fe17bac22

user e user to whom the crontab should be assigned. is defaults to root.

template If this seing is applied then the named templating engine will be used to render the downloaded
file. Currently, jinja and mako are supported.

context Overrides default context variables passed to the template.

replace If the crontab should be replaced, if False then this command will be ignored if a crontab exists for
the specified user. Default is True.

defaults Default context passed to the template.

baup Overrides the default backup mode for the user's crontab.

salt.states.cron.present(name, user='root', minute='*', hour='*', daymonth='*', month='*', day-
week='*', comment=None, identifier=None)

Verifies that the specified cron job is present for the specified user. For more advanced information about what
exactly can be set in the cron timing parameters, check your cron system's documentation. Most Unix-like
systems' cron documentation can be found via the crontab man page: man 5 crontab.

name e command that should be executed by the cron job.

user e name of the user whose crontab needs to be modified, defaults to the root user

minute e information to be set into the minute section, this can be any string supported by your cron
system's the minute field. Default is *

hour e information to be set in the hour section. Default is *

daymonth e information to be set in the day of month section. Default is *

month e information to be set in the month section. Default is *

dayweek e information to be set in the day of week section. Default is *

comment User comment to be added on line previous the cron job

identifier Custom-defined identifier for tracking the cron line for future crontab edits. is defaults to the
state id

22.27.24 salt.states.ddns

Dynamic DNS updates

Ensure a DNS record is present or absent utilizing RFC 2136 type dynamic updates. Requires dnspython module.

webserver:
ddns.present:

- zone: example.com
- ttl: 60
- data: 111.222.333.444

1114 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

- nameserver: 123.234.345.456
- keyfile: /srv/salt/tsig_key.txt

salt.states.ddns.absent(name, zone, data=None, rdtype=None, **kwargs)
Ensures that the named DNS record is absent.

name e host portion of the DNS record, e.g., `webserver'

zone e zone to check

data Data for the DNS record. E.g., the IP address for an A record. If omied, all records matching name (and
rdtype, if provided) will be purged.

rdtype DNS resource type. If omied, all types will be purged.

**kwargs Additional arguments the ddns.delete function may need (e.g. nameserver, keyfile, keyname).

salt.states.ddns.present(name, zone, l, data, rdtype='A', **kwargs)
Ensures that the named DNS record is present with the given l.

name e host portion of the DNS record, e.g., `webserver'

zone e zone to check/update

ttl TTL for the record

data Data for the DNS record. E.g., the IP address for an A record.

rdtype DNS resource type. Default `A'.

**kwargs Additional arguments the ddns.update function may need (e.g. nameserver, keyfile, keyname).

22.27.25 salt.states.debconfmod

Management of debconf selections

depends

• debconf-utils package

e debconfmod state module manages the enforcement of debconf selections, this state can set those selections
prior to package installation.

Available Functions

e debconfmod state has two functions, the set and set_file functions

set Set debconf selections from the state itself

set_file Set debconf selections from a file

nullmailer-debconf:
debconf.set:

- name: nullmailer
- data:

'shared/mailname': {'type': 'string', 'value': 'server.domain.tld'}
'nullmailer/relayhost': {'type': 'string', 'value': 'mail.domain.tld'}

ferm-debconf:
debconf.set:

- name: ferm

22.27. Full list of builtin state modules 1115

Salt Documentation, Release 2014.7.6

- data:
'ferm/enable': {'type': 'boolean', 'value': True}

Note: Due to how PyYAML imports nested dicts (see here), the values in the data dict must be indented four
spaces instead of two.

salt.states.debconfmod.set(name, data)
Set debconf selections

<state_id>:
debconf.set:

- name: <name>
- data:

<question>: {'type': <type>, 'value': <value>}
<question>: {'type': <type>, 'value': <value>}

<state_id>:
debconf.set:

- name: <name>
- data:

<question>: {'type': <type>, 'value': <value>}
<question>: {'type': <type>, 'value': <value>}

name: e package name to set answers for.

data: A set of questions/answers for debconf. Note that everything under this must be indented twice.

question: e question the is being pre-answered

type: e type of question that is being asked (string, boolean, select, etc.)

value: e answer to the question

salt.states.debconfmod.set_file(name, source, **kwargs)
Set debconf selections from a file

<state_id>:
debconf.set_file:

- source: salt://pathto/pkg.selections

<state_id>:
debconf.set_file:

- source: salt://pathto/pkg.selections?saltenv=myenvironment

source: e location of the file containing the package selections

22.27.26 salt.states.disk

Disk monitoring state

Monitor the state of disk resources

salt.states.disk.status(name, maximum=None, minimum=None)
Return the current disk usage stats for the named mount point

1116 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.27.27 salt.states.dockerio

Manage Docker containers

Docker is a lightweight, portable, self-sufficient soware container wrapper. e base supported wrapper type is
LXC, cgroups, and the Linux Kernel.

Warning: is state module is beta. e API is subject to change. No promise as to performance or functionality
is yet present.

Note: is state module requires docker-py which supports Docker Remote API version 1.6.

Available Functions

• built

corp/mysuperdocker_img:
docker.built:

- path: /path/to/dir/container

• pulled

ubuntu:
docker.pulled:

- tag: latest

• pushed

corp/mysuperdocker_img:
docker.pushed

• installed

mysuperdocker-container:
docker.installed:

- name: mysuperdocker
- hostname: superdocker
- image: corp/mysuperdocker_img

• running

my_service:
docker.running:

- container: mysuperdocker
- port_bindings:

"5000/tcp":
HostIp: ""
HostPort: "5000"

Note: e port_bindings argument above is a dictionary. Note the double-indentation, this is required
for PyYAML to load the data structure properly as a dictionary. More information can be found here

• absent

22.27. Full list of builtin state modules 1117

https://www.docker.io
https://en.wikipedia.org/wiki/Linux_Containers
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Linux_kernel
https://github.com/dotcloud/docker-py
http://docs.docker.io/en/latest/reference/api/docker_remote_api_v1.6

Salt Documentation, Release 2014.7.6

mys_old_uperdocker:
docker.absent

• run

/finish-install.sh:
docker.run:

- cid: mysuperdocker
- unless: grep -q something /var/log/foo
- docker_unless: grep -q done /install_log

Note: e docker modules are named dockerio because the name `docker' would conflict with the underlying
docker-py library.

We should add magic to all methods to also match containers by name now that the `naming link' stuff has been
merged in docker. is applies for example to:

• running

• absent

• run

salt.states.dockerio.absent(name)
Ensure that the container is absent; if not, it will will be killed and destroyed. (docker inspect)

name: Either the container name or id

salt.states.dockerio.built(name, path=None, quiet=False, nocache=False, rm=True, force=False,
timeout=None, *args, **kwargs)

Build a docker image from a path or URL to a dockerfile. (docker build)

name Name of the image

path URL (e.g. url/branch/docker_dir/dockerfile) or filesystem path to the dockerfile

salt.states.dockerio.installed(name, image, command=None, hostname=None, user=None,
detach=True, stdin_open=False, y=False, mem_limit=0,
ports=None, environment=None, dns=None, volumes=None,
volumes_from=None, *args, **kwargs)

Ensure that a container with the given name exists; if not, build a new container from the specified image.
(docker run)

name Name for the container

image Image from which to build this container

environment

Environment variables for the container, either

• a mapping of key, values

• a list of mappings of key, values

ports

List of ports definitions, either:

• a port to map

• a mapping of mapping portInHost : PortInContainer

volumes List of volumes

1118 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

For other parameters, see absolutely first the salt.modules.dockerio execution module and the docker-
py python bindings for docker documentation <hps://github.com/dotcloud/docker-py#api>`_ for
docker.create_container.

Note: is command does not verify that the named container is running the specified image.

salt.states.dockerio.mod_watch(name, sfun=None, *args, **kw)

salt.states.dockerio.present(name)
If a container with the given name is not present, this state will fail. (docker inspect)

name: container id

salt.states.dockerio.pulled(name, tag='latest', force=False, *args, **kwargs)
Pull an image from a docker registry. (docker pull)

Note: See first the documentation for docker login, docker pull, docker push, and docker.import_image
(docker import). NOTE that we added in SaltStack a way to authenticate yourself with the Docker Hub Reg-
istry by supplying your credentials (username, email & password) using pillars. For more information, see
salt.modules.dockerio execution module.

name Name of the image

tag Tag of the image

force Pull even if the image is already pulled

salt.states.dockerio.pushed(name, tag='latest')
Push an image from a docker registry. (docker push)

Note: See first the documentation for docker login, docker pull, docker push, and docker.import_image
(docker import). NOTE that we added in SaltStack a way to authenticate yourself with the Docker Hub Reg-
istry by supplying your credentials (username, email & password) using pillars. For more information, see
salt.modules.dockerio execution module.

name Name of the image

tag Tag of the image [Optional]

salt.states.dockerio.run(name, cid=None, hostname=None, onlyif=None, unless=None,
docked_onlyif=None, docked_unless=None, *args, **kwargs)

Run a command in a specific container

You can match by either name or hostname

name command to run in the container

cid Container id

state_id state_id

onlyif Only execute cmd if statement on the host returns 0

unless Do not execute cmd if statement on the host returns 0

doed_onlyif Only execute cmd if statement in the container returns 0

doed_unless Do not execute cmd if statement in the container returns 0

22.27. Full list of builtin state modules 1119

https://github.com/dotcloud/docker-py#api
https://github.com/dotcloud/docker-py#api
http://docs.docker.io/en/latest/reference/commandline/cli/#import
https://github.com/dotcloud/docker-py#api
http://docs.docker.io/en/latest/reference/commandline/cli/#import

Salt Documentation, Release 2014.7.6

salt.states.dockerio.running(name, container=None, port_bindings=None, binds=None,
publish_all_ports=False, links=None, lxc_conf=None, privi-
leged=False, dns=None, volumes_from=None, network_mode=None,
restart_policy=None, cap_add=None, cap_drop=None,
check_is_running=True)

Ensure that a container is running. (docker inspect)

name name of the service

container name of the container to start

publish_all_ports

links Link several container together

- links:
name_other_container: alias_for_other_container

port_bindings

List of ports to expose on host system

• a mapping port's guest, hostname's host and port's host.

- port_bindings:
"5000/tcp":

HostIp: ""
HostPort: "5000"

binds List of volumes to mount (like -v of docker run command), mapping host directory to container
directory.

For read-write mounting, use the short form:

- binds:
/var/log/service: /var/log/service

Or, to specify read-only mounting, use the extended form:

- binds:
/home/user1:

bind: /mnt/vol2
ro: true

/var/www:
bind: /mnt/vol1
ro: false

dns List of DNS servers.

- dns:
- 127.0.0.1

volumes_from List of container names to get volumes definition from

- volumes_from:
- name_other_container

network_mode

• `bridge': creates a new network stack for the container on the docker bridge

• `none': no networking for this container

• `container:[name|id]': reuses another container network stack)

1120 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

• `host': use the host network stack inside the container

- network_mode: host

restart_policy Restart policy to apply when a container exits (no, on-failure[:max-retry], always)

- restart_policy:
MaximumRetryCount: 5
Name: on-failure

cap_add List of capabilities to add in a container.

cap_drop List of capabilities to drop in a container.

e_is_running Enable checking if a container should run or not. Useful for data-only containers that must
be linked to another one. e.g. nginx <- static-files

salt.states.dockerio.script(*args, **kw)
Placeholder function for a cmd.script alike.

Note: Not yet implemented. Its implementation might be very similar from
salt.states.dockerio.run

22.27.28 salt.states.environ

Support for geing and seing the environment variables of the current salt process.

salt.states.environ.setenv(name, value, false_unsets=False, clear_all=False, update_minion=False)
Set the salt process environment variables.

name e environment key to set. Must be a string.

value Either a string or dict. When string, it will be the value set for the environment key of `name' above.
When a dict, each key/value pair represents an environment variable to set.

false_unsets If a key's value is False and false_unsets is True, then the key will be removed from the salt
processes environment dict entirely. If a key's value is False and false_unsets is not True, then the key's
value will be set to an empty string. Default: False

clear_all USE WITH CAUTION! is option can unset environment variables needed for salt to function
properly. If clear_all is True, then any environment variables not defined in the environ dict will be
deleted. Default: False

update_minion If True, apply these environ changes to the main salt-minion process. If False, the environ
changes will only affect the current salt subprocess. Default: False

CLI Example:

a_string_env:
environ.set:

- name: foo
- value: bar
- update_minion: True

a_dict_env:
environ.set:

- name: does_not_matter
- value:

foo: bar
baz: quux

22.27. Full list of builtin state modules 1121

Salt Documentation, Release 2014.7.6

22.27.29 salt.states.eselect

Management of Gentoo configuration using eselect

A state module to manage Gentoo configuration via eselect

profile:
eselect.set:

target: hardened/linux/amd64

salt.states.eselect.set_(name, target, parameter=None, module_parameter=None, ac-
tion_parameter=None)

Verify that the given module is set to the given target

name e name of the module

target e target to be set for this module

module_parameter additional params passed to the defined module

action_parameter additional params passed to the defined action

parameter additional params passed to the defined action

Deprecated since version Lithium.

22.27.30 salt.states.event

Send events through Salt's event system during state runs

salt.states.event.send(name, data=None, preload=None, with_env=False, with_grains=False,
with_pillar=False, **kwargs)

Send an event to the Salt Master

New in version 2014.7.0.

Accepts the same arguments as the event.send execution module of the same name.

Example:

...snip bunch of states above

mycompany/mystaterun/status/update:
event.send:

- data:
status: "Half-way through the state run!"

...snip bunch of states below

salt.states.event.wait(name, sfun=None)
Fire an event on the Salt master event bus if called from a watch statement

New in version 2014.7.0.

Example:

Stand up a new web server.
apache:

pkg:
- installed

1122 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

- name: httpd
service:

- running
- enable: True
- name: httpd

Notify the load balancer to update the pool once Apache is running.
refresh_pool:

event:
- wait
- name: mycompany/loadbalancer/pool/update
- data:

new_web_server_ip: {{ grains['ipv4'] | first() }}
- watch:

- pkg: apache

22.27.31 salt.states.file

Operations on regular files, special files, directories, and symlinks

Salt States can aggressively manipulate files on a system. ere are a number of ways in which files can be managed.

Regular files can be enforced with the file.managed state. is state downloads files from the salt master and
places them on the target system. Managed files can be rendered as a jinja, mako, or wempy template, adding a
dynamic component to file management. An example of file.managed which makes use of the jinja templating
system would look like this:

/etc/http/conf/http.conf:
file.managed:

- source: salt://apache/http.conf
- user: root
- group: root
- mode: 644
- template: jinja
- defaults:

custom_var: "default value"
other_var: 123

{% if grains['os'] == 'Ubuntu' %}
- context:

custom_var: "override"
{% endif %}

It is also possible to use the py renderer as a templating option. e template would be a python script which
would need to contain a function called run(), which returns a string. e returned string will be the contents of
the managed file. For example:

def run():
lines = ('foo', 'bar', 'baz')
return '\n\n'.join(lines)

Note: e defaults and context arguments require extra indentation (four spaces instead of the normal two)
in order to create a nested dictionary. More information.

22.27. Full list of builtin state modules 1123

Salt Documentation, Release 2014.7.6

If using a template, any user-defined template variables in the file defined in source must be passed in using the
defaults and/or context arguments. e general best practice is to place default values in defaults, with
conditional overrides going into context, as seen above.

e templatewill receive a variablecustom_var, whichwould be accessed in the template using{{ custom_var
}}. If the operating system is Ubuntu, the value of the variable custom_var would be override, otherwise it is the
default default value

e source parameter can be specified as a list. If this is done, then the first file to be matched will be the one
that is used. is allows you to have a default file on which to fall back if the desired file does not exist on the salt
fileserver. Here's an example:

/etc/foo.conf:
file.managed:

- source:
- salt://foo.conf.{{ grains['fqdn'] }}
- salt://foo.conf.fallback

- user: foo
- group: users
- mode: 644
- backup: minion

Note: Salt supports backing up managed files via the backup option. For more details on this functionality please
review the backup_mode documentation.

e source parameter can also specify a file in another Salt environment. In this example foo.conf in the dev
environment will be used instead.

/etc/foo.conf:
file.managed:

- source:
- salt://foo.conf?saltenv=dev

- user: foo
- group: users
- mode: '0644'

Warning: When using a mode that includes a leading zero you must wrap the value in single quotes. If the
value is not wrapped in quotes it will be read by YAML as an integer and evaluated as an octal.

Special files can be managed via the mknod function. is function will create and enforce the permissions on a
special file. e function supports the creation of character devices, block devices, and fifo pipes. e function will
create the directory structure up to the special file if it is needed on the minion. e function will not overwrite or
operate on (change major/minor numbers) existing special files with the exception of user, group, and permissions.
In most cases the creation of some special files require root permisisons on the minion. is would require that the
minion to be run as the root user. Here is an example of a character device:

/var/named/chroot/dev/random:
file.mknod:

- ntype: c
- major: 1
- minor: 8
- user: named
- group: named
- mode: 660

1124 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Here is an example of a block device:

/var/named/chroot/dev/loop0:
file.mknod:

- ntype: b
- major: 7
- minor: 0
- user: named
- group: named
- mode: 660

Here is an example of a fifo pipe:

/var/named/chroot/var/log/logfifo:
file.mknod:

- ntype: p
- user: named
- group: named
- mode: 660

Directories can be managed via the directory function. is function can create and enforce the permissions on
a directory. A directory statement will look like this:

/srv/stuff/substuf:
file.directory:

- user: fred
- group: users
- mode: 755
- makedirs: True

If you need to enforce user and/or group ownership or permissions recursively on the directory's contents, you can
do so by adding a recurse directive:

/srv/stuff/substuf:
file.directory:

- user: fred
- group: users
- mode: 755
- makedirs: True
- recurse:

- user
- group
- mode

As a default, mode will resolve to dir_mode and file_mode, to specify both directory and file permissions, use
this form:

/srv/stuff/substuf:
file.directory:

- user: fred
- group: users
- file_mode: 744
- dir_mode: 755
- makedirs: True
- recurse:

- user

22.27. Full list of builtin state modules 1125

Salt Documentation, Release 2014.7.6

- group
- mode

Symlinks can be easily created; the symlink function is very simple and only takes a few arguments:

/etc/grub.conf:
file.symlink:

- target: /boot/grub/grub.conf

Recursive directory management can also be set via the recurse function. Recursive directory management allows
for a directory on the salt master to be recursively copied down to the minion. is is a great tool for deploying large
code and configuration systems. A state using recurse would look something like this:

/opt/code/flask:
file.recurse:

- source: salt://code/flask
- include_empty: True

A more complex recurse example:

{% set site_user = 'testuser' %}
{% set site_name = 'test_site' %}
{% set project_name = 'test_proj' %}
{% set sites_dir = 'test_dir' %}

django-project:
file.recurse:

- name: {{ sites_dir }}/{{ site_name }}/{{ project_name }}
- user: {{ site_user }}
- dir_mode: 2775
- file_mode: '0644'
- template: jinja
- source: salt://project/templates_dir
- include_empty: True

salt.states.file.absent(name)
Make sure that the named file or directory is absent. If it exists, it will be deleted. is will work to reverse
any of the functions in the file state module.

name e path which should be deleted

salt.states.file.accumulated(name, filename, text, **kwargs)
Prepare accumulator which can be used in template in file.managed state. Accumulator dictionary becomes
available in template. It can also be used in file.blockreplace.

name Accumulator name

filename Filename which would receive this accumulator (see file.managed state documentation about name)

text String or list for adding in accumulator

require_in / wat_in One of them required for sure we fill up accumulator before we manage the file. Prob-
ably the same as filename

Example:

Given the following:

1126 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

animals_doing_things:
file.accumulated:

- filename: /tmp/animal_file.txt
- text: ' jumps over the lazy dog.'
- require_in:

- file: animal_file

animal_file:
file.managed:

- name: /tmp/animal_file.txt
- source: salt://animal_file.txt
- template: jinja

One might write a template for animal_file.txt like the following:

The quick brown fox{% for animal in accumulator['animals_doing_things'] %}{{ animal }}{% endfor %}

Collectively, the above states and template file will produce:

The quick brown fox jumps over the lazy dog.

Multiple accumulators can be ``chained'' together.

Note: e `accumulator' data structure is a Python dictionary. Do not expect any loop over the keys in a
deterministic order!

salt.states.file.append(name, text=None, makedirs=False, source=None, source_hash=None, tem-
plate='jinja', sources=None, source_hashes=None, defaults=None, con-
text=None)

Ensure that some text appears at the end of a file.

e text will not be appended if it already exists in the file. A single string of text or a list of strings may be
appended.

name e location of the file to append to.

text e text to be appended, which can be a single string or a list of strings.

makedirs If the file is located in a path without a parent directory, then the state will fail. If makedirs is set
to True, then the parent directories will be created to facilitate the creation of the named file. Defaults
to False.

source A single source file to append. is source file can be hosted on either the salt master server,
or on an HTTP or FTP server. Both HTTPS and HTTP are supported as well as downloading di-
rectly from Amazon S3 compatible URLs with both pre-configured and automatic IAM credentials
(see s3.get state documentation). File retrieval from Openstack Swi object storage is supported via
swi://container/object_path URLs (see swi.get documentation).

For files hosted on the salt file server, if the file is located on the master in the directory named spam,
and is called eggs, the source string is salt://spam/eggs.

If the file is hosted on an HTTP or FTP server, the source_hash argument is also required.

source_hash

is can be one of the following:

1. a source hash string

2. the URI of a file that contains source hash strings

22.27. Full list of builtin state modules 1127

Salt Documentation, Release 2014.7.6

e function accepts the first encountered long unbroken alphanumeric string of correct length as a
valid hash, in order from most secure to least secure:

Type Length
====== ======
sha512 128
sha384 96
sha256 64
sha224 56
sha1 40
md5 32

e file can contain several checksums for several files. Each line must contain both the file name and
the hash. If no file name is matched, the first hash encountered will be used, otherwise the most secure
hash with the correct source file name will be used.

Debian file type *.dsc is supported.

Examples:

/etc/rc.conf ef6e82e4006dee563d98ada2a2a80a27
sha254c8525aee419eb649f0233be91c151178b30f0dff8ebbdcc8de71b1d5c8bcc06a /etc/resolv.conf
ead48423703509d37c4a90e6a0d53e143b6fc268

Known issues: If the remote server URL has the hash file as an apparent sub-directory of the source
file, the module will discover that it has already cached a directory where a file should be cached.
For example:

tomdroid-src-0.7.3.tar.gz:
file.managed:

- name: /tmp/tomdroid-src-0.7.3.tar.gz
- source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz
- source_hash: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz/+md5

template [jinja]e named templating engine will be used to render the appended-to file. Defaults to jinja.

sources A list of source files to append. If the files are hosted on an HTTP or FTP server, the source_hashes
argument is also required.

source_hashes A list of source_hashes corresponding to the sources list specified in the sources argument.

defaults Default context passed to the template.

context Overrides default context variables passed to the template.

Multi-line example:

/etc/motd:
file.append:

- text: |
Thou hadst better eat salt with the Philosophers of Greece,
than sugar with the Courtiers of Italy.
- Benjamin Franklin

Multiple lines of text:

/etc/motd:
file.append:

- text:
- Trust no one unless you have eaten much salt with him.
- "Salt is born of the purest of parents: the sun and the sea."

1128 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Gather text from multiple template files:

/etc/motd:
file:

- append
- template: jinja
- sources:

- salt://motd/devops-messages.tmpl
- salt://motd/hr-messages.tmpl
- salt://motd/general-messages.tmpl

New in version 0.9.5.

salt.states.file.blockreplace(name, marker_start='#-- start managed zone --`, marker_end='#-
- end managed zone --`, content='`, append_if_not_found=False,
prepend_if_not_found=False, backup='.bak', show_changes=True)

Maintain an edit in a file in a zone delimited by two line markers

New in version 2014.1.0.

A block of content delimited by comments can help you manage several lines entries without worrying about
old entries removal. is can help you maintaining an un-managed file containing manual edits. Note: this
function will store two copies of the file in-memory (the original version and the edited version) in order to
detect changes and only edit the targeted file if necessary.

Parameters

• name -- Filesystem path to the file to be edited

• marker_start -- e line content identifying a line as the start of the content block.
Note that the whole line containing this marker will be considered, so whitespace or
extra content before or aer the marker is included in final output

• marker_end -- e line content identifying a line as the end of the content block.
Note that the whole line containing this marker will be considered, so whitespace or
extra content before or aer the marker is included in final output. Note: you can use
file.accumulated and target this state. All accumulated data dictionaries content will be
added as new lines in the content.

• content -- e content to be used between the two lines identified by marker_start
and marker_stop.

• append_if_not_found -- False by default, if markers are not found and set to True
then the markers and content will be appended to the file

• prepend_if_not_found -- False by default, if markers are not found and set to
True then the markers and content will be prepended to the file

• backup -- e file extension to use for a backup of the file if any edit is made. Set to
False to skip making a backup.

• dry_run -- Don't make any edits to the file

• show_changes -- Output a unified diff of the old file and the new file. If False
return a boolean if any changes were made.

Return type bool or str

Example of usage with an accumulator and with a variable:

{% set myvar = 42 %}
hosts-config-block-{{ myvar }}:

file.blockreplace:

22.27. Full list of builtin state modules 1129

Salt Documentation, Release 2014.7.6

- name: /etc/hosts
- marker_start: "# START managed zone {{ myvar }} -DO-NOT-EDIT-"
- marker_end: "# END managed zone {{ myvar }} --"
- content: 'First line of content'
- append_if_not_found: True
- backup: '.bak'
- show_changes: True

hosts-config-block-{{ myvar }}-accumulated1:
file.accumulated:

- filename: /etc/hosts
- name: my-accumulator-{{ myvar }}
- text: "text 2"
- require_in:

- file: hosts-config-block-{{ myvar }}

hosts-config-block-{{ myvar }}-accumulated2:
file.accumulated:

- filename: /etc/hosts
- name: my-accumulator-{{ myvar }}
- text: |

text 3
text 4

- require_in:
- file: hosts-config-block-{{ myvar }}

will generate and maintain a block of content in /etc/hosts:

START managed zone 42 -DO-NOT-EDIT-
First line of content
text 2
text 3
text 4
END managed zone 42 --

salt.states.file.comment(name, regex, char='#', backup='.bak')
Comment out specified lines in a file.

name e full path to the file to be edited

regex A regular expression used to find the lines that are to be commented; this paern will be wrapped in
parenthesis and will move any preceding/trailing ^ or $ characters outside the parenthesis (e.g., the
paern ^foo$will be rewrien as ^(foo)$) Note that you _need_ the leading ^, otherwise each time
you run highstate, another comment char will be inserted.

ar [#] e character to be inserted at the beginning of a line in order to comment it out

baup [.bak] e file will be backed up before edit with this file extension

Warning: is backup will be overwrien each time sed / comment / uncomment is called.
Meaning the backup will only be useful aer the first invocation.

Usage:

/etc/fstab:
file.comment:

- regex: ^bind 127.0.0.1

New in version 0.9.5.

1130 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.states.file.copy(name, source, force=False, makedirs=False)
If the source file exists on the system, copy it to the named file. e named file will not be overwrien if it
already exists unless the force option is set to True.

name e location of the file to copy to

source e location of the file to copy to the location specified with name

force If the target location is present then the file will not be moved, specify ``force: True'' to overwrite the
target file

makedirs If the target subdirectories don't exist create them

salt.states.file.directory(name, user=None, group=None, recurse=None, dir_mode=None,
file_mode=None, makedirs=False, clean=False, require=None,
exclude_pat=None, follow_symlinks=False, force=False, backup-
name=None, **kwargs)

Ensure that a named directory is present and has the right perms

name e location to create or manage a directory

user e user to own the directory; this defaults to the user salt is running as on the minion

group e group ownership set for the directory; this defaults to the group salt is running as on the minion.
On Windows, this is ignored

recurse Enforce user/group ownership and mode of directory recursively. Accepts a list of strings represent-
ing what you would like to recurse. If `mode' is defined, will recurse on both `file_mode' and `dir_mode'
if they are defined. Example:

/var/log/httpd:
file.directory:
- user: root
- group: root
- dir_mode: 755
- file_mode: 644
- recurse:

- user
- group
- mode

dir_mode / mode e permissions mode to set any directories created. Not supported on Windows

file_mode epermissionsmode to set any files created if `mode' is run in `recurse'. is defaults to dir_mode.
Not supported on Windows

makedirs If the directory is located in a path without a parent directory, then the state will fail. If makedirs
is set to True, then the parent directories will be created to facilitate the creation of the named file.

clean Make sure that only files that are set up by salt and required by this function are kept. If this option is
set then everything in this directory will be deleted unless it is required.

require Require other resources such as packages or files

exclude_pat When `clean' is set to True, exclude this paern from removal list and preserve in the destination.

follow_symlinks [False] If the desired path is a symlink (or recurse is defined and a symlink is encountered
while recursing), follow it and check the permissions of the directory/file to which the symlink points.

New in version 2014.1.4.

force If the name of the directory exists and is not a directory and force is set to False, the state will fail. If
force is set to True, the file in the way of the directory will be deleted to make room for the directory,
unless backupname is set, then it will be renamed.

22.27. Full list of builtin state modules 1131

Salt Documentation, Release 2014.7.6

New in version 2014.7.0.

baupname If the name of the directory exists and is not a directory, it will be renamed to the backupname.
If the backupname already exists and force is False, the state will fail. Otherwise, the backupname will
be removed first.

New in version 2014.7.0.

salt.states.file.exists(name)
Verify that the named file or directory is present or exists. Ensures pre-requisites outside of Salt's purview
(e.g., keytabs, private keys, etc.) have been previously satisfied before deployment.

name Absolute path which must exist

salt.states.file.managed(name, source=None, source_hash='`, user=None, group=None, mode=None,
template=None, makedirs=False, dir_mode=None, context=None, re-
place=True, defaults=None, env=None, backup='`, show_diff=True,
create=True, contents=None, contents_pillar=None, contents_grains=None,
contents_newline=True, follow_symlinks=True, check_cmd=None,
**kwargs)

Manage a given file, this function allows for a file to be downloaded from the salt master and potentially run
through a templating system.

name e location of the file to manage

source e source file to download to the minion, this source file can be hosted on either the salt master
server, or on an HTTP or FTP server. Both HTTPS and HTTP are supported as well as download-
ing directly from Amazon S3 compatible URLs with both pre-configured and automatic IAM creden-
tials. (see s3.get state documentation) File retrieval from Openstack Swi object storage is supported
via swi://container/object_path URLs, see swi.get documentation. For files hosted on the salt file
server, if the file is located on the master in the directory named spam, and is called eggs, the source
string is salt://spam/eggs. If source is le blank or None (use ~ in YAML), the file will be created as an
empty file and the content will not be managed

If the file is hosted on a HTTP or FTP server then the source_hash argument is also required

A list of sources can also be passed in to provide a default source and a set of fallbacks. e first source
in the list that is found to exist will be used and subsequent entries in the list will be ignored.

file_override_example:
file.managed:

- source:
- salt://file_that_does_not_exist
- salt://file_that_exists

source_hash

is can be one of the following:

1. a source hash string

2. the URI of a file that contains source hash strings

e function accepts the first encountered long unbroken alphanumeric string of correct length as a
valid hash, in order from most secure to least secure:

Type Length
====== ======
sha512 128
sha384 96
sha256 64
sha224 56

1132 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

sha1 40
md5 32

e file can contain several checksums for several files. Each line must contain both the file name and
the hash. If no file name is matched, the first hash encountered will be used, otherwise the most secure
hash with the correct source file name will be used.

Debian file type *.dsc is supported.

Examples:

/etc/rc.conf ef6e82e4006dee563d98ada2a2a80a27
sha254c8525aee419eb649f0233be91c151178b30f0dff8ebbdcc8de71b1d5c8bcc06a /etc/resolv.conf
ead48423703509d37c4a90e6a0d53e143b6fc268

Known issues: If the remote server URL has the hash file as an apparent sub-directory of the source
file, the module will discover that it has already cached a directory where a file should be cached.
For example:

tomdroid-src-0.7.3.tar.gz:
file.managed:

- name: /tmp/tomdroid-src-0.7.3.tar.gz
- source: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz
- source_hash: https://launchpad.net/tomdroid/beta/0.7.3/+download/tomdroid-src-0.7.3.tar.gz/+md5

user e user to own the file, this defaults to the user salt is running as on the minion

group e group ownership set for the file, this defaults to the group salt is running as on the minion On
Windows, this is ignored

mode e permissions to set on this file, aka 644, 0775, 4664. Not supported on Windows

template If this seing is applied then the named templating engine will be used to render the downloaded
file, currently jinja, mako, and wempy are supported

makedirs If the file is located in a path without a parent directory, then the state will fail. If makedirs is set
to True, then the parent directories will be created to facilitate the creation of the named file.

dir_mode If directories are to be created, passing this option specifies the permissions for those directories.
If this is not set, directories will be assigned permissions from the `mode' argument.

replace If this file should be replaced. If false, this command will not overwrite file contents but will enforce
permissions if the file exists already. Default is True.

context Overrides default context variables passed to the template.

defaults Default context passed to the template.

baup Overrides the default backup mode for this specific file.

show_diff If set to False, the diff will not be shown.

create Default is True, if create is set to False then the file will only be managed if the file already exists on
the system.

contents Default is None. If specified, will use the given string as the contents of the file. Should not be used
in conjunction with a source file of any kind. Ignores hashes and does not use a templating engine.

contents_pillar New in version 0.17.0.

22.27. Full list of builtin state modules 1133

Salt Documentation, Release 2014.7.6

Operates like contents, but draws from a value stored in pillar, using the pillar path syntax used in
pillar.get. is is useful when the pillar value contains newlines, as referencing a pillar variable us-
ing a jinja/mako template can result in YAML formaing issues due to the newlines causing indentation
mismatches.

For example, the following could be used to deploy an SSH private key:

/home/deployer/.ssh/id_rsa:
file.managed:

- user: deployer
- group: deployer
- mode: 600
- contents_pillar: userdata:deployer:id_rsa

is would populate /home/deployer/.ssh/id_rsa with the contents of pil-
lar['userdata']['deployer']['id_rsa']. An example of this pillar setup would be
like so:

userdata:
deployer:

id_rsa: |
-----BEGIN RSA PRIVATE KEY-----
MIIEowIBAAKCAQEAoQiwO3JhBquPAalQF9qP1lLZNXVjYMIswrMe2HcWUVBgh+vY
U7sCwx/dH6+VvNwmCoqmNnP+8gTPKGl1vgAObJAnMT623dMXjVKwnEagZPRJIxDy
B/HaAre9euNiY3LvIzBTWRSeMfT+rWvIKVBpvwlgGrfgz70m0pqxu+UyFbAGLin+
GpxzZAMaFpZw4sSbIlRuissXZj/sHpQb8p9M5IeO4Z3rjkCP1cxI
-----END RSA PRIVATE KEY-----

Note: e private key above is shortened to keep the example brief, but shows how to do multiline
string in YAML. e key is followed by a pipe character, and the mutliline string is indented two more
spaces.

contents_grains New in version 2014.7.0.

Same as contents_pillar, but with grains

contents_newline New in version 2014.7.0.

When using contents, contents_pillar, or contents_grains, this option ensures the file will have a newline
at the end. When loading some data this newline is beer le off. Seing contents_newline to False will
omit this final newline.

follow_symlinks [True] New in version 2014.7.0.

If the desired path is a symlink follow it and make changes to the file to which the symlink points.

e_cmd New in version 2014.7.0.

e specified command will be run with the managed file as an argument. If the command exits with a
nonzero exit code, the command will not be run.

salt.states.file.missing(name)
Verify that the named file or directory is missing, this returns True only if the named file is missing but does
not remove the file if it is present.

name Absolute path which must NOT exist

salt.states.file.mknod(name, ntype, major=0, minor=0, user=None, group=None, mode=`0600')
Create a special file similar to the `nix mknod command. e supported device types are p (fifo pipe), c
(character device), and b (block device). Provide the major and minor numbers when specifying a character
device or block device. A fifo pipe does not require this information. e command will create the necessary

1134 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

dirs if needed. If a file of the same name not of the same type/major/minor exists, it will not be overwrien
or unlinked (deleted). is is logically in place as a safety measure because you can really shoot yourself in
the foot here and it is the behavior of `nix mknod. It is also important to note that not just anyone can create
special devices. Usually this is only done as root. If the state is executed as none other than root on a minion,
you may receive a permission error.

name name of the file

ntype node type `p' (fifo pipe), `c' (character device), or `b' (block device)

major major number of the device does not apply to a fifo pipe

minor minor number of the device does not apply to a fifo pipe

user owning user of the device/pipe

group owning group of the device/pipe

mode permissions on the device/pipe

Usage:

/dev/chr:
file.mknod:

- ntype: c
- major: 180
- minor: 31
- user: root
- group: root
- mode: 660

/dev/blk:
file.mknod:

- ntype: b
- major: 8
- minor: 999
- user: root
- group: root
- mode: 660

/dev/fifo:
file.mknod:

- ntype: p
- user: root
- group: root
- mode: 660

New in version 0.17.0.

salt.states.file.mod_run_check_cmd(cmd, filename, **check_cmd_opts)
Execute the check_cmd logic Return a result dict if: * check_cmd succeeded (check_cmd == 0) else return True

salt.states.file.patch(name, source=None, hash=None, options='`, dry_run_first=True, env=None,
**kwargs)

Apply a patch to a file. Note: a suitable patch executable must be available on the minion when using this
state function.

name e file to with the patch will be applied.

source e source patch to download to the minion, this source file must be hosted on the salt master server.
If the file is located in the directory named spam, and is called eggs, the source string is salt://spam/eggs.
A source is required.

22.27. Full list of builtin state modules 1135

Salt Documentation, Release 2014.7.6

hash Hash of the patched file. If the hash of the target file matches this value then the patch is as-
sumed to have been applied. e hash string is the hash algorithm followed by the hash of the file:
md5=e138491e9d5b97023cea823fe17bac22

options Extra options to pass to patch.

dry_run_first [True] Run patch with --dry-run first to check if it will apply cleanly.

env Specify the environment from which to retrieve the patch file indicated by the source parameter. If not
provided, this defaults to the environment from which the state is being executed.

Usage:

Equivalent to ``patch --forward /opt/file.txt file.patch``
/opt/file.txt:

file.patch:
- source: salt://file.patch
- hash: md5=e138491e9d5b97023cea823fe17bac22

salt.states.file.prepend(name, text=None, makedirs=False, source=None, source_hash=None, tem-
plate='jinja', sources=None, source_hashes=None, defaults=None, con-
text=None)

Ensure that some text appears at the beginning of a file

e text will not be prepended again if it already exists in the file. You may specify a single line of text or a
list of lines to append.

Multi-line example:

/etc/motd:
file.prepend:

- text: |
Thou hadst better eat salt with the Philosophers of Greece,
than sugar with the Courtiers of Italy.
- Benjamin Franklin

Multiple lines of text:

/etc/motd:
file.prepend:

- text:
- Trust no one unless you have eaten much salt with him.
- "Salt is born of the purest of parents: the sun and the sea."

Gather text from multiple template files:

/etc/motd:
file:

- prepend
- template: jinja
- sources:

- salt://motd/devops-messages.tmpl
- salt://motd/hr-messages.tmpl
- salt://motd/general-messages.tmpl

New in version 2014.7.0.

salt.states.file.recurse(name, source, clean=False, require=None, user=None, group=None,
dir_mode=None, file_mode=None, sym_mode=None, template=None,
context=None, defaults=None, env=None, include_empty=False,
backup='`, include_pat=None, exclude_pat=None, maxdepth=None,
keep_symlinks=False, force_symlinks=False, **kwargs)

1136 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Recurse through a subdirectory on the master and copy said subdirectory over to the specified path.

name e directory to set the recursion in

source e source directory, this directory is located on the salt master file server and is specified with the
salt:// protocol. If the directory is located on the master in the directory named spam, and is called eggs,
the source string is salt://spam/eggs

clean Make sure that only files that are set up by salt and required by this function are kept. If this option is
set then everything in this directory will be deleted unless it is required.

require Require other resources such as packages or files

user e user to own the directory. is defaults to the user salt is running as on the minion

group e group ownership set for the directory. is defaults to the group salt is running as on the minion.
On Windows, this is ignored

dir_mode e permissions mode to set on any directories created. Not supported on Windows

file_mode e permissions mode to set on any files created. Not supported on Windows

sym_mode e permissions mode to set on any symlink created. Not supported on Windows

template If this seing is applied then the named templating engine will be used to render the downloaded
file. Supported templates are: jinja, mako and wempy.

Note: e template option is required when recursively applying templates.

context Overrides default context variables passed to the template.

defaults Default context passed to the template.

include_empty Set this to True if empty directories should also be created (default is False)

include_pat When copying, include only this paern from the source. Default is glob match; if prefixed with
`E@', then regexp match. Example:

- include_pat: hello* :: glob matches 'hello01', 'hello02'
... but not 'otherhello'

- include_pat: E@hello :: regexp matches 'otherhello',
'hello01' ...

exclude_pat Exclude this paern from the source when copying. If both include_pat and exclude_pat are
supplied, then it will apply conditions cumulatively. i.e. first select based on include_pat, and then
within that result apply exclude_pat.

Also, when `clean=True', exclude this paern from the removal list and preserve in the destination.
Example:

- exclude_pat: APPDATA* :: glob matches APPDATA.01,
APPDATA.02,.. for exclusion

- exclude_pat: E@(APPDATA)|(TEMPDATA) :: regexp matches APPDATA
or TEMPDATA for exclusion

maxdepth When copying, only copy paths which are of depth maxdepth from the source path. Example:

- maxdepth: 0 :: Only include files located in the source
directory

- maxdepth: 1 :: Only include files located in the source
or immediate subdirectories

22.27. Full list of builtin state modules 1137

Salt Documentation, Release 2014.7.6

keep_symlinks Keep symlinks when copying from the source. is option will cause the copy operation to
terminate at the symlink. If desire behavior similar to rsync, then set this to True.

force_symlinks Force symlink creation. is option will force the symlink creation. If a file or directory is
obstructing symlink creation it will be recursively removed so that symlink creation can proceed. is
option is usually not needed except in special circumstances.

salt.states.file.rename(name, source, force=False, makedirs=False)
If the source file exists on the system, rename it to the named file. e named file will not be overwrien if it
already exists unless the force option is set to True.

name e location of the file to rename to

source e location of the file to move to the location specified with name

force If the target location is present then the file will not be moved, specify ``force: True'' to overwrite the
target file

makedirs If the target subdirectories don't exist create them

salt.states.file.replace(name, paern, repl, count=0, flags=0, bufsize=1, ap-
pend_if_not_found=False, prepend_if_not_found=False,
not_found_content=None, backup='.bak', show_changes=True)

Maintain an edit in a file.

New in version 0.17.0.

name Filesystem path to the file to be edited.

pattern Python's `regular expression sear<https://docs.python.org/2/library/re.html>`_.

repl e replacement text.

count Maximum number of paern occurrences to be replaced.

flags A list of flags defined in the re module documentation. Each list item should be a string that will correlate
to the human-friendly flag name. E.g., ['IGNORECASE', 'MULTILINE']. Note: multiline searches
must specify file as the bufsize argument below. Defaults to 0 and can be a list or an int.

bufsize How much of the file to buffer into memory at once. e default value 1 processes one line at a time.
e special value filemay be specified which will read the entire file into memory before processing.
Note: multiline searches must specify file buffering. Can be an int or a str.

append_if_not_found If paern is not found and set to True then, the content will be appended to the file.

New in version 2014.7.0.

prepend_if_not_found If paern is not found and set to True then, the content will be prepended to the file.

New in version 2014.7.0.

not_found_content Content to use for append/prepend if not found. If None (default), uses repl. Useful
when repl uses references to group in paern.

New in version 2014.7.0.

baup e file extension to use for a backup of the file before editing. Set to False to skip making a backup.

show_anges Output a unified diff of the old file and the new file. If False return a boolean if any changes
were made. Returns a boolean or a string.

For complex regex paerns it can be useful to avoid the need for complex quoting and escape sequences by
making use of YAML's multiline string syntax.

1138 Chapter 22. Reference

http://docs.python.org/3/library/re.html#contents-of-module-re

Salt Documentation, Release 2014.7.6

complex_search_and_replace:
file.replace:

<...snip...>
- pattern: |

CentOS \(2.6.32[^\n]+\n\s+root[^\n]+\n\)+

salt.states.file.sed(name, before, aer, limit='`, backup='.bak', options='-r -e', flags='g',
negate_match=False)

Deprecated since version 0.17.0: Use the file.replace state instead.

Maintain a simple edit to a file

e file will be searched for the before paern before making the edit. In general the limit paern should
be as specific as possible and before and after should contain the minimal text to be changed.

before A paern that should exist in the file before the edit.

aer A paern that should exist in the file aer the edit.

limit An optional second paern that can limit the scope of the before paern.

baup [`.bak'] e extension for the backed-up version of the file before the edit. If no backups is desired,
pass in the empty string: `'

options [-r -e] Any options to pass to the sed command. -r uses extended regular expression syntax and
-e denotes that what follows is an expression that sed will execute.

flags [g] Any flags to append to the sed expression. g specifies the edit should be made globally (and not stop
aer the first replacement).

negate_mat [False] Negate the search command (!)

New in version 0.17.0.

Usage:

Disable the epel repo by default
/etc/yum.repos.d/epel.repo:

file.sed:
- before: 1
- after: 0
- limit: ^enabled=

Remove ldap from nsswitch
/etc/nsswitch.conf:

file.sed:
- before: 'ldap'
- after: ''
- limit: '^passwd:'

New in version 0.9.5.

salt.states.file.serialize(name, dataset, user=None, group=None, mode=None, env=None,
backup='`, makedirs=False, show_diff=True, create=True,
merge_if_exists=False, **kwargs)

Serializes dataset and store it into managed file. Useful for sharing simple configuration files.

name e location of the file to create

dataset the dataset that will be serialized

formatter Write the data as this format. Supported output formats:

• JSON

22.27. Full list of builtin state modules 1139

Salt Documentation, Release 2014.7.6

• YAML

• Python (via pprint.pformat)

user e user to own the directory, this defaults to the user salt is running as on the minion

group e group ownership set for the directory, this defaults to the group salt is running as on the minion

mode e permissions to set on this file, aka 644, 0775, 4664

baup Overrides the default backup mode for this specific file.

makedirs Create parent directories for destination file.

New in version 2014.1.3.

show_diff If set to False, the diff will not be shown.

create Default is True, if create is set to False then the file will only be managed if the file already exists on
the system.

merge_if_exists Default is False, if merge_if_exists is True then the existing file will be parsed and the dataset
passed in will be merged with the existing content

New in version 2014.7.0.

For example, this state:

/etc/dummy/package.json:
file.serialize:

- dataset:
name: naive
description: A package using naive versioning
author: A confused individual <iam@confused.com>
dependencies:

express: >= 1.2.0
optimist: >= 0.1.0

engine: node 0.4.1
- formatter: json

will manage the file /etc/dummy/package.json:

{
"author": "A confused individual <iam@confused.com>",
"dependencies": {

"express": ">= 1.2.0",
"optimist": ">= 0.1.0"

},
"description": "A package using naive versioning",
"engine": "node 0.4.1",
"name": "naive"

}

salt.states.file.symlink(name, target, force=False, backupname=None, makedirs=False, user=None,
group=None, mode=None, **kwargs)

Create a symlink

If the file already exists and is a symlink pointing to any location other than the specified target, the symlink
will be replaced. If the symlink is a regular file or directory then the state will return False. If the regular file or
directory is desired to be replaced with a symlink pass force: True, if it is to be renamed, pass a backupname.

name e location of the symlink to create

target e location that the symlink points to

1140 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

force If the name of the symlink exists and is not a symlink and force is set to False, the state will fail. If force
is set to True, the file or directory in the way of the symlink file will be deleted to make room for the
symlink, unless backupname is set, when it will be renamed

baupname If the name of the symlink exists and is not a symlink, it will be renamed to the backupname. If
the backupname already exists and force is False, the state will fail. Otherwise, the backupname will be
removed first.

makedirs If the location of the symlink does not already have a parent directory then the state will fail, seing
makedirs to True will allow Salt to create the parent directory

user e user to own the file, this defaults to the user salt is running as on the minion

group e group ownership set for the file, this defaults to the group salt is running as on the minion. On
Windows, this is ignored

mode e permissions to set on this file, aka 644, 0775, 4664. Not supported on Windows

salt.states.file.touch(name, atime=None, mtime=None, makedirs=False)
Replicate the `nix ``touch'' command to create a new empty file or update the atime and mtime of an existing
file.

Note that if you just want to create a file and don't care about atime or mtime, you should use file.managed
instead, as it is more feature-complete. (Just leave out the source/template/contents arguments, and
it will just create the file and/or check its permissions, without messing with contents)

name name of the file

atime atime of the file

mtime mtime of the file

makedirs whether we should create the parent directory/directories in order to touch the file

Usage:

/var/log/httpd/logrotate.empty:
file.touch

New in version 0.9.5.

salt.states.file.uncomment(name, regex, char='#', backup='.bak')
Uncomment specified commented lines in a file

name e full path to the file to be edited

regex A regular expression used to find the lines that are to be uncommented. is regex should not include
the comment character. A leading ^ character will be stripped for convenience (for easily switching
between comment() and uncomment()). e regex will be searched for from the beginning of the line,
ignoring leading spaces (we prepend `^[t]*')

ar [#] e character to remove in order to uncomment a line

baup [.bak] e file will be backed up before edit with this file extension; WARNING: each time
sed/comment/uncomment is called will overwrite this backup

Usage:

/etc/adduser.conf:
file.uncomment:

- regex: EXTRA_GROUPS

New in version 0.9.5.

22.27. Full list of builtin state modules 1141

Salt Documentation, Release 2014.7.6

22.27.32 salt.states.gem

Installation of Ruby modules packaged as gems

A state module to manage rubygems. Gems can be set up to be installed or removed. is module will use RVM or
rbenv if they are installed. In that case, you can specify what ruby version and gemset to target.

addressable:
gem.installed:

- user: rvm
- ruby: jruby@jgemset

salt.states.gem.installed(name, ruby=None, runas=None, user=None, version=None, rdoc=False,
ri=False, proxy=None)

Make sure that a gem is installed.

name e name of the gem to install

ruby: None For RVM or rbenv installations: the ruby version and gemset to target.

runas: None e user under which to run the gem command

Deprecated since version 0.17.0.

user: None e user under which to run the gem command

New in version 0.17.0.

version [None] Specify the version to install for the gem. Doesn't play nice with multiple gems at once

rdoc [False] Generate RDoc documentation for the gem(s).

ri [False] Generate RI documentation for the gem(s).

proxy [None] Use the specified HTTP proxy server for all outgoing traffic. Format: hp://hostname[:port]

salt.states.gem.removed(name, ruby=None, runas=None, user=None)
Make sure that a gem is not installed.

name e name of the gem to uninstall

ruby: None For RVM or rbenv installations: the ruby version and gemset to target.

runas: None e user under which to run the gem command

Deprecated since version 0.17.0.

user: None e user under which to run the gem command

New in version 0.17.0.

22.27.33 salt.states.git

Interaction with Git repositories

Important: Before using git over ssh, make sure your remote host fingerprint exists in ``~/.ssh/known_hosts'' file.
To avoid requiring password authentication, it is also possible to pass private keys to use explicitly.

1142 Chapter 22. Reference

http://hostname{[}:port

Salt Documentation, Release 2014.7.6

https://github.com/saltstack/salt.git:
git.latest:

- rev: develop
- target: /tmp/salt

salt.states.git.config(name, value, repo=None, user=None, is_global=False)
New in version 2014.7.0.

Manage a git config seing for a user or repository

name Name of the git config value to set

value Value to set

repo [None] An optional location of a git repository for local operations

user [None] Optional name of a user as whom git config will be run

is_global [False] Whether or not to pass the --global option to git config

Local config example:

mylocalrepo:
git.config:

- name: user.email
- value: fester@bestertester.net
- repo: file://my/path/to/repo

Global config example:

mylocalrepo:
git.config:

- name: user.name
- value: Esther Bestertester
- user: ebestertester
- is_global: True

salt.states.git.latest(name, rev=None, target=None, runas=None, user=None, force=None,
force_checkout=False, force_reset=False, submodules=False, mirror=False,
bare=False, remote_name='origin', always_fetch=False, identity=None,
onlyif=False, unless=False)

Make sure the repository is cloned to the given directory and is up to date

name Address of the remote repository as passed to ``git clone''

rev e remote branch, tag, or revision ID to checkout aer clone / before update

target Name of the target directory where repository is about to be cloned

runas Name of the user performing repository management operations

Deprecated since version 0.17.0.

user Name of the user performing repository management operations

New in version 0.17.0.

force Force git to clone into pre-existing directories (deletes contents)

force_eout Force a checkout even if there might be overwrien changes (Default: False)

submodules Update submodules on clone or branch change (Default: False)

22.27. Full list of builtin state modules 1143

Salt Documentation, Release 2014.7.6

mirror True if the repository is to be a mirror of the remote repository. is implies bare, and thus is incom-
patible with rev.

bare True if the repository is to be a bare clone of the remote repository. is is incompatible with rev, as
nothing will be checked out.

remote_name defines a different remote name. For the first clone the given name is set to the default remote,
else it is just a additional remote. (Default: `origin')

always_fet If a tag or branch name is used as the rev a fetch will not occur until the tag or branch name
changes. Seing this to true will force a fetch to occur. Only applies when rev is set. (Default: False)

identity A path to a private key to use over SSH

onlyif A command to run as a check, run the named command only if the command passed to the onlyif
option returns true

unless A command to run as a check, only run the named command if the command passed to the unless
option returns false

Note: Clashing ID declarations can be avoided when including different branches from the same git repository
in the same sls file by using the name declaration. e example below checks out the gh-pages and gh-
pages-prod branches from the same repository into separate directories. e example also sets up the
ssh_known_hosts ssh key required to perform the git checkout.

gitlab.example.com:
ssh_known_hosts:

- present
- user: root
- enc: ecdsa
- fingerprint: 4e:94:b0:54:c1:5b:29:a2:70:0e:e1:a3:51:ee:ee:e3

git-website-staging:
git.latest:

- name: git@gitlab.example.com:user/website.git
- rev: gh-pages
- target: /usr/share/nginx/staging
- identity: /root/.ssh/website_id_rsa
- require:

- pkg: git
- ssh_known_hosts: gitlab.example.com

git-website-prod:
git.latest:

- name: git@gitlab.example.com:user/website.git
- rev: gh-pages-prod
- target: /usr/share/nginx/prod
- identity: /root/.ssh/website_id_rsa
- require:

- pkg: git
- ssh_known_hosts: gitlab.example.com

salt.states.git.mod_run_check(cmd_kwargs, onlyif, unless)
Execute the onlyif and unless logic. Return a result dict if: * onlyif failed (onlyif != 0) * unless succeeded (unless
== 0) else return True

salt.states.git.present(name, bare=True, runas=None, user=None, force=False)
Make sure the repository is present in the given directory

name Name of the directory where the repository is about to be created

1144 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

bare Create a bare repository (Default: True)

runas Name of the user performing repository management operations

Deprecated since version 0.17.0.

user Name of the user performing repository management operations

New in version 0.17.0.

force Force-create a new repository into an pre-existing non-git directory (deletes contents)

22.27.34 salt.states.glusterfs

Manage glusterfs pool.

salt.states.glusterfs.created(name, bricks, stripe=False, replica=False, device_vg=False, trans-
port='tcp', start=False)

Check if volume already exists

name name of the volume

myvolume:
glusterfs.created:

- bricks:
- host1:/srv/gluster/drive1
- host2:/srv/gluster/drive2

Replicated Volume:
glusterfs.created:

- name: volume2
- bricks:

- host1:/srv/gluster/drive2
- host2:/srv/gluster/drive3

- replica: 2
- start: True

salt.states.glusterfs.peered(name)
Check if node is peered.

name e remote host with which to peer.

peer-cluster:
glusterfs.peered:

- name: two

peer-clusters:
glusterfs.peered:

- names:
- one
- two
- three
- four

salt.states.glusterfs.started(name)
Check if volume has been started

name name of the volume

mycluster:
glusterfs.started: []

22.27. Full list of builtin state modules 1145

Salt Documentation, Release 2014.7.6

22.27.35 salt.states.gnomedesktop

Configuration of the GNOME desktop

Control the GNOME seings

localdesktop_wm_prefs:
gnomedesktop.wm_preferences:

- user: username
- audible_bell: false
- action_double_click_titlebar: 'toggle-maximize'
- visual_bell: true
- num_workspaces: 6

localdesktop_lockdown:
gnomedesktop.desktop_lockdown:

- user: username
- disable_user_switching: true

localdesktop_interface:
gnomedesktop.desktop_interface:

- user: username
- clock_show_date: true
- clock_format: 12h

salt.states.gnomedesktop.desktop_interface(name, user=None, auto-
matic_mnemonics=None,
buons_have_icons=None,
can_change_accels=None,
clock_format=None, clock_show_date=None,
clock_show_seconds=None, cur-
sor_blink=None, cursor_blink_time=None,
cursor_blink_timeout=None, cur-
sor_size=None, cursor_theme=None,
document_font_name=None,
enable_animations=None,
font_name=None, gtk_color_palee=None,
gtk_color_scheme=None,
gtk_im_module=None,
gtk_im_preedit_style=None,
gtk_im_status_style=None,
gtk_key_theme=None, gtk_theme=None,
gtk_timeout_initial=None,
gtk_timeout_repeat=None,
icon_theme=None, menubar_accel=None,
menubar_detachable=None,
menus_have_icons=None,
menus_have_tearoff=None,
monospace_font_name=None,
show_input_method_menu=None,
show_unicode_menu=None,
text_scaling_factor=None, tool-
bar_detachable=None, tool-
bar_icons_size=None, toolbar_style=None,
toolkit_accessibility=None, **kwargs)

desktop_interface: sets values in the org.gnome.desktop.interface schema

1146 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.states.gnomedesktop.desktop_lockdown(name, user=None, dis-
able_application_handlers=None,
disable_command_line=None, dis-
able_lock_screen=None, dis-
able_log_out=None, disable_print_setup=None,
disable_printing=None, dis-
able_save_to_disk=None, dis-
able_user_switching=None,
user_administration_disabled=None, **kwargs)

desktop_lockdown: sets values in the org.gnome.desktop.lockdown schema

salt.states.gnomedesktop.wm_preferences(name, user=None, ac-
tion_double_click_titlebar=None, ac-
tion_middle_click_titlebar=None, ac-
tion_right_click_titlebar=None, appli-
cation_based=None, audible_bell=None,
auto_raise=None, auto_raise_delay=None, but-
ton_layout=None, disable_workarounds=None,
focus_mode=None, focus_new_windows=None,
mouse_buon_modifier=None,
num_workspaces=None, raise_on_click=None,
resize_with_right_buon=None, theme=None, title-
bar_font=None, titlebar_uses_system_font=None,
visual_bell=None, visual_bell_type=None,
workspace_names=None, **kwargs)

wm_preferences: sets values in the org.gnome.desktop.wm.preferences schema

22.27.36 salt.states.grains

Manage grains on the minion

is state allows for grains to be set. Grains set or altered this way are stored in the `grains' file on the minions, by
default at: /etc/salt/grains

Note: is does NOT override any grains set in the minion file.

salt.states.grains.absent(name, destructive=False)
New in version 2014.7.0.

Delete a grain from the grains config file

name e grain name

Parameters destructive -- If destructive is True, delete the entire grain. If destructive is False,
set the grain's value to None. Defaults to False.

grain_name:
grains.absent

salt.states.grains.append(name, value, convert=False)
New in version 2014.7.0.

Append a value to a list in the grains config file

name e grain name

value e value to append

22.27. Full list of builtin state modules 1147

Salt Documentation, Release 2014.7.6

Parameters convert -- If convert is True, convert non-list contents into a list. If convert is False
and the grain contains non-list contents, an error is given. Defaults to False.

grain_name:
grains.append:

- value: to_be_appended

salt.states.grains.list_absent(name, value)
Delete a value from a grain formed as a list.

New in version 2014.1.0.

name e grain name.

value e value to delete from the grain list.

e grain should be list type

roles:
grains.list_absent:

- value: db

For multiple grains, the syntax looks like:

roles:
grains.list_absent:

- value:
- web
- dev

salt.states.grains.list_present(name, value)
New in version 2014.1.0.

Ensure the value is present in the list type grain.

name e grain name.

value e value is present in the list type grain.

e grain should be list type

roles:
grains.list_present:

- value: web

For multiple grains, the syntax looks like:

roles:
grains.list_present:

- value:
- web
- dev

salt.states.grains.present(name, value)
Ensure that a grain is set

name e grain name

value e value to set on the grain

If the grain with the given name exists, its value is updated to the new value. If the grain does not yet exist, a
new grain is set to the given value.

1148 Chapter 22. Reference

http://docs.python.org/2/tutorial/datastructures.html#data-structures
http://docs.python.org/2/tutorial/datastructures.html#data-structures

Salt Documentation, Release 2014.7.6

cheese:
grains.present:

- value: edam

22.27.37 salt.states.group

Management of user groups

e group module is used to create and manage unix group seings, groups can be either present or absent:

cheese:
group.present:

- gid: 7648
- system: True
- addusers:

- user1
- users2

- delusers:
- foo

cheese:
group.present:

- gid: 7648
- system: True
- members:

- foo
- bar
- user1
- user2

salt.states.group.absent(name)
Ensure that the named group is absent

name e name of the group to remove

salt.states.group.present(name, gid=None, system=False, addusers=None, delusers=None, mem-
bers=None)

Ensure that a group is present

name e name of the group to manage

gid e group id to assign to the named group; if le empty, then the next available group id will be assigned

system Whether or not the named group is a system group. is is essentially the `-r' option of `groupadd'.

addusers List of additional users to be added as a group members.

delusers Ensure these user are removed from the group membership.

members Replace existing group members with a list of new members.

Note: Options `members' and `addusers/delusers' are mutually exclusive and can not be used together.

22.27. Full list of builtin state modules 1149

Salt Documentation, Release 2014.7.6

22.27.38 salt.states.hg

Interaction with Mercurial repositories

Before using hg over ssh, make sure the remote host fingerprint already exists in ~/.ssh/known_hosts, and the remote
host has this host's public key.

https://bitbucket.org/example_user/example_repo:
hg.latest:

- rev: tip
- target: /tmp/example_repo

salt.states.hg.latest(name, rev=None, target=None, clean=False, runas=None, user=None,
force=False, opts=False)

Make sure the repository is cloned to the given directory and is up to date

name Address of the remote repository as passed to ``hg clone''

rev e remote branch, tag, or revision hash to clone/pull

target Name of the target directory where repository is about to be cloned

clean Force a clean update with -C (Default: False)

runas Name of the user performing repository management operations

Deprecated since version 0.17.0.

user Name of the user performing repository management operations

force Force hg to clone into pre-existing directories (deletes contents)

opts Include additional arguments and options to the hg command line

22.27.39 salt.states.host

Management of addresses and names in hosts file

e /etc/hosts file can be managed to contain definitions for specific hosts:

salt-master:
host.present:

- ip: 192.168.0.42

Or using the names directive, you can put several names for the same IP. (Do not try one name with space-separated
values).

server1:
host.present:

- ip: 192.168.0.42
- names:

- server1
- florida

Note: Changing the names in host.present does not cause an update to remove the old entry.

1150 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

server1:
host.present:

- ip:
- 192.168.0.42
- 192.168.0.43
- 192.168.0.44

- names:
- server1

salt.states.host.absent(name, ip)
Ensure that the named host is absent

name e host to remove

ip e ip addr(s) of the host to remove

salt.states.host.present(name, ip)
Ensures that the named host is present with the given ip

name e host to assign an ip to

ip e ip addr(s) to apply to the host

22.27.40 salt.states.htpasswd

Support for htpasswd module

New in version 2014.7.0.

username:
webutil.user_exists:

- password: secr3t
- htpasswd_file: /etc/nginx/htpasswd
- options: d
- force: true

salt.states.htpasswd.user_exists(name, password=None, htpasswd_file=None, options='`,
force=False, **kwargs)

Make sure the user is inside the /etc/nginx/htpasswd

name username

password password of the user

htpasswd_file path to the file that htpasswd will handle

options see salt.module.htpasswd.useradd

force touch the file even if user already created

22.27.41 salt.states.incron

Management of incron, the inotify cron

e incron state module allows for user incrontabs to be cleanly managed.

Incron declarations require a number of parameters. e parameters needed to be declared: path, mask, and cmd.
e user whose incrontab is to be edited also needs to be defined.

22.27. Full list of builtin state modules 1151

Salt Documentation, Release 2014.7.6

When making changes to an existing incron job, the path declaration is the unique factor, so if an existing cron
that looks like this:

Watch for modifications in /home/user:
incron.present:

- user: root
- path: /home/user
- mask:

- IN_MODIFY
- cmd: 'echo "$$ $@"'

Is changed to this:

Watch for modifications and access in /home/user:
incron.present:

- user: root
- path: /home/user
- mask:

- IN_MODIFY
- IN_ACCESS

- cmd: 'echo "$$ $@"'

en the existing cron will be updated, but if the cron command is changed, then a new cron job will be added to
the user's crontab.

New in version 0.17.0.

salt.states.incron.absent(name, path, mask, cmd, user='root')
Verifies that the specified incron job is absent for the specified user; only the name is matched when removing
a incron job.

name Unique comment describing the entry

path e path that should be watched

user e name of the user who's crontab needs to be modified, defaults to the root user

mask e mask of events that should be monitored for

cmd e cmd that should be executed

salt.states.incron.present(name, path, mask, cmd, user='root')
Verifies that the specified incron job is present for the specified user. For more advanced information about
what exactly can be set in the cron timing parameters, check your incron system's documentation. Most
Unix-like systems' incron documentation can be found via the incrontab man page: man 5 incrontab.

name Unique comment describing the entry

path e path that should be watched

user e name of the user who's crontab needs to be modified, defaults to the root user

mask e mask of events that should be monitored for

cmd e cmd that should be executed

1152 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.27.42 salt.states.influxdb_database

Management of InfluxDB databases

(compatible with InfluxDB version 0.5+)

New in version 2014.7.0.

salt.states.influxdb_database.absent(name, user=None, password=None, host=None,
port=None)

Ensure that the named database is absent

name e name of the database to remove

user e user to connect as (must be able to remove the database)

password e password of the user

host e host to connect to

port e port to connect to

salt.states.influxdb_database.present(name, user=None, password=None, host=None,
port=None)

Ensure that the named database is present

name e name of the database to create

user e user to connect as (must be able to remove the database)

password e password of the user

host e host to connect to

port e port to connect to

22.27.43 salt.states.influxdb_user

Management of InfluxDB users

(compatible with InfluxDB version 0.5+)

New in version 2014.7.0.

salt.states.influxdb_user.absent(name, database=None, user=None, password=None, host=None,
port=None)

Ensure that the named cluster admin or database user is absent.

name e name of the user to remove

database e database to remove the user from

user e user to connect as (must be able to remove the user)

password e password of the user

host e host to connect to

port e port to connect to

salt.states.influxdb_user.present(name, passwd, database=None, user=None, password=None,
host=None, port=None)

Ensure that the cluster admin or database user is present.

name e name of the user to manage

22.27. Full list of builtin state modules 1153

Salt Documentation, Release 2014.7.6

passwd e password of the user

database e database to create the user in

user e user to connect as (must be able to create the user)

password e password of the user

host e host to connect to

port e port to connect to

22.27.44 salt.states.ini_manage

Manage ini files

maintainer <akilesh1597@gmail.com>

maturity new

depends re

platform all

use section as DEFAULT_IMPLICIT if your ini file does not have any section for example /etc/sysctl.conf

salt.states.ini_manage.options_absent(name, sections=None)

/home/saltminion/api-paste.ini:
ini_manage:

- options_absent
- sections:

test:
- testkey
- secondoption

test1:
- testkey1

options present in file and not specified in sections dict will be untouched

changes dict will contain the list of changes made

salt.states.ini_manage.options_present(name, sections=None)

/home/saltminion/api-paste.ini:
ini_manage:

- options_present
- sections:

test:
testkey: 'testval'
secondoption: 'secondvalue'

test1:
testkey1: 'testval121'

options present in file and not specified in sections dict will be untouched

changes dict will contain the list of changes made

salt.states.ini_manage.sections_absent(name, sections=None)

1154 Chapter 22. Reference

mailto:akilesh1597@gmail.com

Salt Documentation, Release 2014.7.6

/home/saltminion/api-paste.ini:
ini_manage:

- sections_absent
- sections:

- test
- test1

options present in file and not specified in sections will be deleted changes dict will contain the sections that
changed

salt.states.ini_manage.sections_present(name, sections=None)

/home/saltminion/api-paste.ini:
ini_manage:

- sections_present
- sections:

test:
testkey: testval
secondoption: secondvalue

test1:
testkey1: 'testval121'

options present in file and not specified in sections will be deleted changes dict will contain the sections that
changed

22.27.45 salt.states.ipset

Management of ipsets

is is an ipset-specific module designed to manage IPSets for use in IPTables Firewalls.

setname:
ipset.set_present:

- set_type: bitmap:ip
- range: 192.168.0.0/16
- comment: True

setname:
ipset.set_absent:

- set_type: bitmap:ip
- range: 192.168.0.0/16
- comment: True

setname_entries:
ipset.present:

- set_name: setname
- entry: 192.168.0.3
- comment: Hello
- require:

- ipset: baz

setname_entries:
ipset.present:

- set_name: setname
- entry:

- 192.168.0.3

22.27. Full list of builtin state modules 1155

Salt Documentation, Release 2014.7.6

- 192.168.1.3
- comment: Hello
- require:

- ipset: baz

setname_entries:
ipset.absent:

- set_name: setname
- entry:

- 192.168.0.3
- 192.168.1.3

- comment: Hello
- require:

- ipset: baz

setname:
ipset.flush:

salt.states.ipset.absent(name, entry=None, entries=None, family='ipv4', **kwargs)
New in version 2014.7.0.

Remove a entry or entries from a chain

name A user-defined name to call this entry by in another part of a state or formula. is should not be an
actual entry.

family Network family, ipv4 or ipv6.

salt.states.ipset.flush(name, family='ipv4', **kwargs)
New in version 2014.7.0.

Flush current ipset set

family Networking family, either ipv4 or ipv6

salt.states.ipset.present(name, entry=None, family='ipv4', **kwargs)
New in version 2014.7.0.

Append a entry to a set

name A user-defined name to call this entry by in another part of a state or formula. is should not be an
actual entry.

entry A single entry to add to a set or a list of entries to add to a set

family Network family, ipv4 or ipv6.

salt.states.ipset.set_absent(name, family='ipv4', **kwargs)
New in version 2014.7.0.

Verify the set is absent.

family Networking family, either ipv4 or ipv6

salt.states.ipset.set_present(name, set_type, family='ipv4', **kwargs)
New in version 2014.7.0.

Verify the chain is exist.

name A user-defined set name.

set_type e type for the set

family Networking family, either ipv4 or ipv6

1156 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.27.46 salt.states.iptables

Management of iptables

is is an iptables-specific module designed to manage Linux firewalls. It is expected that this state module, and
other system-specific firewall states, may at some point be deprecated in favor of a more generic firewall state.

httpd:
iptables.append:

- table: filter
- chain: INPUT
- jump: ACCEPT
- match: state
- connstate: NEW
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
iptables.append:

- table: filter
- chain: INPUT
- jump: ACCEPT
- match:

- state
- comment

- comment: "Allow HTTP"
- connstate: NEW
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
iptables.append:

- table: filter
- chain: INPUT
- jump: ACCEPT
- match:

- state
- comment

- comment: "Allow HTTP"
- connstate: NEW
- source: '127.0.0.1'
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

.. Invert Rule
httpd:

iptables.append:
- table: filter
- chain: INPUT
- jump: ACCEPT
- match:

- state

22.27. Full list of builtin state modules 1157

Salt Documentation, Release 2014.7.6

- comment
- comment: "Allow HTTP"
- connstate: NEW
- source: '! 127.0.0.1'
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
iptables.append:

- table: filter
- chain: INPUT
- jump: ACCEPT
- match:

- state
- comment

- comment: "Allow HTTP"
- connstate: NEW
- source: 'not 127.0.0.1'
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
iptables.append:

- table: filter
- family: ipv6
- chain: INPUT
- jump: ACCEPT
- match: state
- connstate: NEW
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
iptables.append:

- table: filter
- family: ipv4
- chain: INPUT
- jump: ACCEPT
- match: state
- connstate: NEW
- dports:

- 80
- 443

- proto: tcp
- sport: 1025:65535
- save: True

httpd:
iptables.insert:

- position: 1
- table: filter
- chain: INPUT

1158 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

- jump: ACCEPT
- match: state
- connstate: NEW
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
iptables.insert:

- position: 1
- table: filter
- family: ipv6
- chain: INPUT
- jump: ACCEPT
- match: state
- connstate: NEW
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
iptables.delete:

- table: filter
- chain: INPUT
- jump: ACCEPT
- match: state
- connstate: NEW
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
iptables.delete:

- position: 1
- table: filter
- chain: INPUT
- jump: ACCEPT
- match: state
- connstate: NEW
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
iptables.delete:

- table: filter
- family: ipv6
- chain: INPUT
- jump: ACCEPT
- match: state
- connstate: NEW
- dport: 80
- proto: tcp
- sport: 1025:65535

22.27. Full list of builtin state modules 1159

Salt Documentation, Release 2014.7.6

- save: True

salt.states.iptables.append(name, family='ipv4', **kwargs)
New in version 0.17.0.

Append a rule to a chain

name A user-defined name to call this rule by in another part of a state or formula. is should not be an
actual rule.

family Network family, ipv4 or ipv6.

All other arguments are passed in with the same name as the long option that would normally be used for
iptables, with one exception: --state is specified as connstate instead of state (not to be confused with
ctstate).

salt.states.iptables.chain_absent(name, table='filter', family='ipv4')
New in version 2014.1.0.

Verify the chain is absent.

family Networking family, either ipv4 or ipv6

salt.states.iptables.chain_present(name, table='filter', family='ipv4')
New in version 2014.1.0.

Verify the chain is exist.

name A user-defined chain name.

table e table to own the chain.

family Networking family, either ipv4 or ipv6

salt.states.iptables.delete(name, family='ipv4', **kwargs)
New in version 2014.1.0.

Delete a rule to a chain

name A user-defined name to call this rule by in another part of a state or formula. is should not be an
actual rule.

family Networking family, either ipv4 or ipv6

All other arguments are passed in with the same name as the long option that would normally be used for
iptables, with one exception: --state is specified as connstate instead of state (not to be confused with
ctstate).

salt.states.iptables.flush(name, family='ipv4', **kwargs)
New in version 2014.1.0.

Flush current iptables state

family Networking family, either ipv4 or ipv6

salt.states.iptables.insert(name, family='ipv4', **kwargs)
New in version 2014.1.0.

Insert a rule into a chain

name A user-defined name to call this rule by in another part of a state or formula. is should not be an
actual rule.

family Networking family, either ipv4 or ipv6

1160 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

All other arguments are passed in with the same name as the long option that would normally be used for
iptables, with one exception: --state is specified as connstate instead of state (not to be confused with
ctstate).

salt.states.iptables.set_policy(name, family='ipv4', **kwargs)
New in version 2014.1.0.

Sets the default policy for iptables firewall tables

family Networking family, either ipv4 or ipv6

22.27.47 salt.states.keyboard

Management of keyboard layouts

e keyboard layout can be managed for the system:

us:
keyboard.system

Or it can be managed for XOrg:

us:
keyboard.xorg

salt.states.keyboard.system(name)
Set the keyboard layout for the system

name e keyboard layout to use

salt.states.keyboard.xorg(name)
Set the keyboard layout for XOrg

layout e keyboard layout to use

22.27.48 salt.states.keystone

Management of Keystone users

depends

• keystoneclient Python module

configuration See salt.modules.keystone for setup instructions.

Keystone tenants:
keystone.tenant_present:

- names:
- admin
- demo
- service

Keystone roles:
keystone.role_present:

- names:
- admin

22.27. Full list of builtin state modules 1161

Salt Documentation, Release 2014.7.6

- Member

admin:
keystone.user_present:

- password: R00T_4CC3SS
- email: admin@domain.com
- roles:

admin: # tenants
- admin # roles

service:
- admin
- Member

- require:
- keystone: Keystone tenants
- keystone: Keystone roles

nova:
keystone.user_present:

- password: '$up3rn0v4'
- email: nova@domain.com
- tenant: service
- roles:

service:
- admin

- require:
- keystone: Keystone tenants
- keystone: Keystone roles

demo:
keystone.user_present:

- password: 'd3m0n$trati0n'
- email: demo@domain.com
- tenant: demo
- roles:

demo:
- Member

- require:
- keystone: Keystone tenants
- keystone: Keystone roles

nova service:
keystone.service_present:

- name: nova
- service_type: compute
- description: OpenStack Compute Service

salt.states.keystone.endpoint_absent(name, profile=None, **connection_args)
Ensure that the endpoint for a service doesn't exist in Keystone catalog

name e name of the service whose endpoints should not exist

salt.states.keystone.endpoint_present(name, publicurl=None, internalurl=None, admin-
url=None, region='RegionOne', profile=None, **connec-
tion_args)

Ensure the specified endpoints exists for service

name e Service name

public url e public url of service endpoint

1162 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

internal url e internal url of service endpoint

admin url e admin url of the service endpoint

region e region of the endpoint

salt.states.keystone.role_absent(name, profile=None, **connection_args)
Ensure that the keystone role is absent.

name e name of the role that should not exist

salt.states.keystone.role_present(name, profile=None, **connection_args)
` Ensures that the keystone role exists

name e name of the role that should be present

salt.states.keystone.service_absent(name, profile=None, **connection_args)
Ensure that the service doesn't exist in Keystone catalog

name e name of the service that should not exist

salt.states.keystone.service_present(name, service_type, description=None, profile=None,
**connection_args)

Ensure service present in Keystone catalog

name e name of the service

service_type e type of Openstack Service

description (optional) Description of the service

salt.states.keystone.tenant_absent(name, profile=None, **connection_args)
Ensure that the keystone tenant is absent.

name e name of the tenant that should not exist

salt.states.keystone.tenant_present(name, description=None, enabled=True, profile=None,
**connection_args)

Ensures that the keystone tenant exists

name e name of the tenant to manage

description e description to use for this tenant

enabled Availability state for this tenant

salt.states.keystone.user_absent(name, profile=None, **connection_args)
Ensure that the keystone user is absent.

name e name of the user that should not exist

salt.states.keystone.user_present(name, password, email, tenant=None, enabled=True,
roles=None, profile=None, **connection_args)

Ensure that the keystone user is present with the specified properties.

name e name of the user to manage

password e password to use for this user

email e email address for this user

tenant e tenant for this user

enabled Availability state for this user

roles e roles the user should have under given tenants. Passed as a dictionary mapping tenant names to a
list of roles in this tenant, i.e.:

22.27. Full list of builtin state modules 1163

Salt Documentation, Release 2014.7.6

roles:
admin: # tenant

- admin # role
service:

- admin
- Member

22.27.49 salt.states.kmod

Loading and unloading of kernel modules

e Kernel modules on a system can be managed cleanly with the kmod state module:

kvm_amd:
kmod.present

pcspkr:
kmod.absent

salt.states.kmod.absent(name, persist=False, comment=True)
Verify that the named kernel module is not loaded

name e name of the kernel module to verify is not loaded

persist Delete module from /etc/modules

comment Don't remove module from /etc/modules, only comment it

salt.states.kmod.present(name, persist=False)
Ensure that the specified kernel module is loaded

name e name of the kernel module to verify is loaded

persist Also add module to /etc/modules

22.27.50 salt.states.layman

Management of Gentoo Overlays using layman

A state module to manage Gentoo package overlays via layman

sunrise:
layman.present

salt.states.layman.absent(name)
Verify that the overlay is absent

name e name of the overlay to delete

salt.states.layman.present(name)
Verify that the overlay is present

name e name of the overlay to add

1164 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.27.51 salt.states.libvirt

Manage libvirt certificates

is state uses the external pillar in the master to call for the generation and signing of certificates for systems
running libvirt:

libvirt_keys:
libvirt.keys

salt.states.libvirt.keys(name, basepath='/etc/pki')
Manage libvirt keys.

name e name variable used to track the execution

basepath Defaults to /etc/pki, this is the root location used for libvirt keys on the hypervisor

22.27.52 salt.states.locale

Management of languages/locales

e locale can be managed for the system:

en_US.UTF-8:
locale.system

salt.states.locale.present(name)
Generate a locale if it is not present

New in version 2014.7.0.

name e name of the locale to be present

salt.states.locale.system(name)
Set the locale for the system

name e name of the locale to use

22.27.53 salt.states.lvm

Management of Linux logical volumes

A state module to manage LVMs

/dev/sda:
lvm.pv_present

my_vg:
lvm.vg_present:

- devices: /dev/sda

lvroot:
lvm.lv_present:

- vgname: my_vg
- size: 10G

22.27. Full list of builtin state modules 1165

Salt Documentation, Release 2014.7.6

- stripes: 5
- stripesize: 8K

salt.states.lvm.lv_absent(name, vgname=None)
Remove a given existing logical volume from a named existing volume group

name e logical volume to remove

vgname e volume group name

salt.states.lvm.lv_present(name, vgname=None, size=None, extents=None, snapshot=None, pv='`,
**kwargs)

Create a new logical volume

name e name of the logical volume

vgname e volume group name for this logical volume

size e initial size of the logical volume

extents e number of logical extents to allocate

snapshot e name of the snapshot

pv e physical volume to use

kwargs Any supported options to lvcreate. See linux_lvm for more details.

salt.states.lvm.pv_absent(name)
Ensure that a Physical Device is not being used by lvm

name e device name to initialize.

salt.states.lvm.pv_present(name, **kwargs)
Set a physical device to be used as an LVM physical volume

name e device name to initialize.

kwargs Any supported options to pvcreate. See linux_lvm for more details.

salt.states.lvm.vg_absent(name)
Remove an LVM volume group

name e volume group to remove

salt.states.lvm.vg_present(name, devices=None, **kwargs)
Create an LVM volume group

name e volume group name to create

devices A list of devices that will be added to the volume group

kwargs Any supported options to vgcreate. See linux_lvm for more details.

22.27.54 salt.states.lvs_server

Management of LVS (Linux Virtual Server) Real Server

salt.states.lvs_server.absent(name, protocol=None, service_address=None,
server_address=None)

Ensure the LVS Real Server in specified service is absent.

name e name of the LVS server.

1166 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

protocol e service protocol(only support tcp, udp and fwmark service).

service_address e LVS service address.

server_address e LVS real server address.

salt.states.lvs_server.present(name, protocol=None, service_address=None,
server_address=None, packet_forward_method='dr', weight=1)

Ensure that the named service is present.

name e LVS server name

protocol e service protocol

service_address e LVS service address

server_address e real server address.

paet_forward_method e LVS packet forwarding method(dr for direct routing, tunnel for tunneling,
nat for network access translation).

weight e capacity of a server relative to the others in the pool.

lvsrs:
lvs_server.present:

- protocol: tcp
- service_address: 1.1.1.1:80
- server_address: 192.168.0.11:8080
- packet_forward_method: dr
- weight: 10

22.27.55 salt.states.lvs_service

Management of LVS (Linux Virtual Server) Service

salt.states.lvs_service.absent(name, protocol=None, service_address=None)
Ensure the LVS service is absent.

name e name of the LVS service

protocol e service protocol

service_address e LVS service address

salt.states.lvs_service.present(name, protocol=None, service_address=None, scheduler='wlc')
Ensure that the named service is present.

name e LVS service name

protocol e service protocol

service_address e LVS service address

seduler Algorithm for allocating TCP connections and UDP datagrams to real servers.

lvstest:
lvs_service.present:

- service_address: 1.1.1.1:80
- protocol: tcp
- scheduler: rr

22.27. Full list of builtin state modules 1167

Salt Documentation, Release 2014.7.6

22.27.56 salt.states.lxc

lxc / Spin up and control LXC containers

salt.states.lxc.absent(name)
Destroy a container

name id of the container to destroy

destroyer:
lxc.absent:

- name: my_instance_name2

salt.states.lxc.cloned(name, orig, snapshot=True, size=None, vgname=None, profile=None)
Clone a container

name id of the container to clone to

orig id of the container to clone from

snapshot do we use snapshots

size Which size

vgname If LVM, which volume group

profile pillar lxc profile

myclone:
lxc.cloned:

- name: my_instance_name2
- orig: ubuntu
- vgname: lxc
- snapshot: true

salt.states.lxc.created(name, template='ubuntu', profile=None, fstype=None, size=None, back-
ing=None, vgname=None, lvname=None)

Create a container using a template

name id of the container to act on

template template to create from

profile pillar lxc profile

fstype fstype to use

size Which size

baing Which backing

None Filesystem

lvm lv

brtfs brtfs

vgname If LVM, which volume group

lvname If LVM, which lv

mycreation:
lxc.created:

- name: my_instance_name2
- backing: lvm

1168 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

- size: 1G
- template: ubuntu

salt.states.lxc.edited_conf(name, lxc_conf=None, lxc_conf_unset=None)
Edit LXC configuration options

setconf:
lxc.edited_conf:

- name: ubuntu
- lxc_conf:

- network.ipv4.ip: 10.0.3.6
- lxc_conf_unset:

- lxc.utsname

salt.states.lxc.set_pass(name, password=None, user=None, users=None)
Set the password of system users inside containers

name id of the container to act on

user user to set password

users users to set password to

setpass:
lxc.stopped:

- name: my_instance_name2
- password: s3cret
- user: foo

setpass2:
lxc.stopped:

- name: my_instance_name2
- password: s3cret
- users:

- foo
- bar

salt.states.lxc.started(name, restart=False)
Start a container

name id of the container to start

force force reboot

destroyer:
lxc.started:

- name: my_instance_name2

salt.states.lxc.stopped(name)
Stop a container

name id of the container to stop

sleepingcontainer:
lxc.stopped:

- name: my_instance_name2

22.27. Full list of builtin state modules 1169

Salt Documentation, Release 2014.7.6

22.27.57 salt.states.makeconf

Management of Gentoo make.conf

A state module to manage Gentoo's make.conf file

makeopts:
makeconf.present:

- value: '-j3'

salt.states.makeconf.absent(name)
Verify that the variable is not in the make.conf.

name e variable name. is will automatically be converted to upper case since variables in make.conf
are in upper case

salt.states.makeconf.present(name, value=None, contains=None, excludes=None)
Verify that the variable is in the make.conf and has the provided seings. If value is set, contains and
excludes will be ignored.

name e variable name. is will automatically be converted to upper case since variables in make.conf
are in upper case

value Enforce that the value of the variable is set to the provided value

contains Enforce that the value of the variable contains the provided value

excludes Enforce that the value of the variable does not contain the provided value.

22.27.58 salt.states.mdadm

Managing soware RAID with mdadm

A state module for creating or destroying soware RAID devices.

/dev/md0:
raid.present:

- opts: level=1 chunk=256 raid-devices=2 /dev/xvdd /dev/xvde

salt.states.mdadm.absent(name)
Verify that the raid is absent

name e name of raid device to be destroyed

/dev/md0:
raid:

- absent

salt.states.mdadm.present(name, level, devices, **kwargs)
Verify that the raid is present

Changed in version 2014.7.0.

name e name of raid device to be created

level e RAID level to use when creating the raid.

devices A list of devices used to build the array.

1170 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Example:

/dev/md0:
raid.present:

- level: 5
- devices:

- /dev/xvdd
- /dev/xvde
- /dev/xvdf

- chunk: 256
- run: True

22.27.59 salt.states.memcached

States for Management of Memcached Keys

New in version 2014.1.0.

salt.states.memcached.absent(name, value=None, host=`127.0.0.1', port=11211, time=0)
Ensure that a memcached key is not present.

name e key

value [None] If specified, only ensure that the key is absent if it matches the specified value.

host e memcached server IP address

port e memcached server port

foo:
memcached.absent

bar:
memcached.absent:

- host: 10.0.0.1

salt.states.memcached.managed(name, value=None, host=`127.0.0.1', port=11211, time=0,
min_compress_len=0)

Manage a memcached key.

name e key to manage

value e value to set for that key

host e memcached server IP address

port e memcached server port

foo:
memcached.managed:

- value: bar

22.27.60 salt.states.modjk

State to control Apache modjk

salt.states.modjk.worker_activated(name, workers=None, profile='default')
Activate all the workers in the modjk load balancer

Example:

22.27. Full list of builtin state modules 1171

Salt Documentation, Release 2014.7.6

loadbalancer:
modjk.worker_activated:

- workers:
- app1
- app2

salt.states.modjk.worker_disabled(name, workers=None, profile='default')
Disable all the workers in the modjk load balancer

Example:

loadbalancer:
modjk.worker_disabled:

- workers:
- app1
- app2

salt.states.modjk.worker_recover(name, workers=None, profile='default')
Recover all the workers in the modjk load balancer

Example:

loadbalancer:
modjk.worker_recover:

- workers:
- app1
- app2

salt.states.modjk.worker_stopped(name, workers=None, profile='default')
Stop all the workers in the modjk load balancer

Example:

loadbalancer:
modjk.worker_stopped:

- workers:
- app1
- app2

22.27.61 salt.states.modjk_worker

Manage modjk workers

Send commands to a modjk load balancer via the peer system.

is module can be used with the prereq requisite to remove/add the worker from the load balancer before deploy-
ing/restarting service.

Mandatory Seings:

• eminion needs to have permission to publish themodjk.* functions (see here for information on configuring
peer publishing permissions)

• e modjk load balancer must be configured as stated in the modjk execution module documentation

salt.states.modjk_worker.activate(name, lbn, target, profile='default', expr_form='glob')
Activate the named worker from the lbn load balancers at the targeted minions

Example:

1172 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

disable-before-deploy:
modjk_worker.activate:

- name: {{ grains['id'] }}
- lbn: application
- target: 'roles:balancer'
- expr_form: grain

salt.states.modjk_worker.disable(name, lbn, target, profile='default', expr_form='glob')
Disable the named worker from the lbn load balancers at the targeted minions. e worker will get traffic only
for current sessions and won't get new ones.

Example:

disable-before-deploy:
modjk_worker.disable:

- name: {{ grains['id'] }}
- lbn: application
- target: 'roles:balancer'
- expr_form: grain

salt.states.modjk_worker.stop(name, lbn, target, profile='default', expr_form='glob')
Stop the named worker from the lbn load balancers at the targeted minions e worker won't get any traffic
from the lbn

Example:

disable-before-deploy:
modjk_worker.stop:

- name: {{ grains['id'] }}
- lbn: application
- target: 'roles:balancer'
- expr_form: grain

22.27.62 salt.states.module

Execution of Salt modules from within states

ese states allow individual execution module calls to be made via states. To call a single module function use a
module.run state:

mine.send:
module.run:

- name: network.interfaces

Note that this example is probably unnecessary to use in practice, since the mine_functions and
mine_interval config parameters can be used to schedule updates for the mine (see here for more info).

It is sometimes desirable to trigger a function call aer a state is executed, for this the module.wait state can be
used:

mine.send:
module.wait:

- name: network.interfaces
- watch:

- file: /etc/network/interfaces

22.27. Full list of builtin state modules 1173

Salt Documentation, Release 2014.7.6

All arguments that the module state does not consume are passed through to the execution module function being
executed:

fetch_out_of_band:
module.run:

- name: git.fetch
- cwd: /path/to/my/repo
- user: myuser
- opts: '--all'

Due to how the state system works, if a module function accepts an argument called, name, then m_name must be
used to specify that argument, to avoid a collision with the name argument. For example:

disable_nfs:
module.run:

- name: service.disable
- m_name: nfs

salt.states.module.mod_watch(name, **kwargs)
Run a single module function

name e module function to execute

returner Specify the returner to send the return of the module execution to

**kwargs Pass any arguments needed to execute the function

salt.states.module.run(name, **kwargs)
Run a single module function

name e module function to execute

returner Specify the returner to send the return of the module execution to

**kwargs Pass any arguments needed to execute the function

salt.states.module.wait(name, **kwargs)
Run a single module function only if the watch statement calls it

name e module function to execute

**kwargs Pass any arguments needed to execute the function

Note: Like thecmd.run state, this state will returnTrue but not actually execute, unless one of the following
two things happens:

1.e state has a watch requisite, and the state which it is watching changes.

2.Another state has a watch_in requisite which references this state, and the state wth the watch_in
changes.

22.27.63 salt.states.mongodb_database

Management of Mongodb databases

Only deletion is supported, creation doesn't make sense and can be done using mongodb_user.present

salt.states.mongodb_database.absent(name, user=None, password=None, host=None,
port=None)

Ensure that the named database is absent

1174 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

name e name of the database to remove

user e user to connect as (must be able to create the user)

password e password of the user

host e host to connect to

port e port to connect to

22.27.64 salt.states.mongodb_user

Management of Mongodb users

Note: is module requires PyMongo to be installed.

salt.states.mongodb_user.absent(name, user=None, password=None, host=None, port=None,
database='admin')

Ensure that the named user is absent

name e name of the user to remove

user e user to connect as (must be able to create the user)

password e password of the user

host e host to connect to

port e port to connect to

database e database to create the user in (if the db doesn't exist, it will be created)

salt.states.mongodb_user.present(name, passwd, database='admin', user=None, password=None,
host='localhost', port=27017)

Ensure that the user is present with the specified properties

name e name of the user to manage

passwd e password of the user

user e user to connect as (must be able to create the user)

password e password of the user

host e host to connect to

port e port to connect to

database e database to create the user in (if the db doesn't exist, it will be created)

22.27.65 salt.states.mount

Mounting of filesystems

Mount any type of mountable filesystem with the mounted function:

/mnt/sdb:
mount.mounted:

- device: /dev/sdb1
- fstype: ext4

22.27. Full list of builtin state modules 1175

Salt Documentation, Release 2014.7.6

- mkmnt: True
- opts:

- defaults

/srv/bigdata:
mount.mounted:

- device: UUID=066e0200-2867-4ebe-b9e6-f30026ca2314
- fstype: xfs
- opts: nobootwait,noatime,nodiratime,nobarrier,logbufs=8
- dump: 0
- pass_num: 2
- persist: True
- mkmnt: True

salt.states.mount.mod_watch(name, **kwargs)
e mounted watcher, called to invoke the watch command.

name e name of the mount point

salt.states.mount.mounted(name, device, fstype, mkmnt=False, opts=None, dump=0, pass_num=0,
config='/etc/fstab', persist=True, mount=True)

Verify that a device is mounted

name e path to the location where the device is to be mounted

device e device name, typically the device node, such as /dev/sdb1 or UUID=066e0200-2867-
4ebe-b9e6-f30026ca2314 or LABEL=DATA

fstype e filesystem type, this will be xfs, ext2/3/4 in the case of classic filesystems, and fuse in the
case of fuse mounts

mkmnt If the mount point is not present then the state will fail, set mkmnt: True to create the mount point
if it is otherwise not present

opts A list object of options or a comma delimited list

dump e dump value to be passed into the fstab, Default is 0

pass_num e pass value to be passed into the fstab, Default is 0

config Set an alternative location for the fstab, Default is /etc/fstab

persist Set if the mount should be saved in the fstab, Default is True

mount Set if the mount should be mounted immediately, Default is True

salt.states.mount.swap(name, persist=True, config='/etc/fstab')
Activates a swap device

/root/swapfile:
mount.swap

Note: swap does not currently support LABEL

salt.states.mount.unmounted(name, config='/etc/fstab', persist=False)
New in version 0.17.0.

Verify that a device is not mounted

name e path to the location where the device is to be unmounted from

config Set an alternative location for the fstab, Default is /etc/fstab

1176 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

persist Set if the mount should be purged from the fstab, Default is False

22.27.66 salt.states.mysql_database

Management of MySQL databases (schemas)

depends

• MySQLdb Python module

configuration See salt.modules.mysql for setup instructions.

e mysql_database module is used to create and manage MySQL databases. Databases can be set as either absent
or present.

frank:
mysql_database.present

salt.states.mysql_database.absent(name, **connection_args)
Ensure that the named database is absent

name e name of the database to remove

salt.states.mysql_database.present(name, **connection_args)
Ensure that the named database is present with the specified properties

name e name of the database to manage

22.27.67 salt.states.mysql_grants

Management of MySQL grants (user permissions)

depends

• MySQLdb Python module

configuration See salt.modules.mysql for setup instructions.

e mysql_grants module is used to grant and revoke MySQL permissions.

e name you pass in purely symbolic and does not have anything to do with the grant itself.

e database parameter needs to specify a `priv_level' in the same specification as defined in the MySQL docu-
mentation:

• *

• *.*

• db_name.*

• db_name.tbl_name

• etc…

frank_exampledb:
mysql_grants.present:
- grant: select,insert,update
- database: exampledb.*
- user: frank

22.27. Full list of builtin state modules 1177

Salt Documentation, Release 2014.7.6

- host: localhost

frank_otherdb:
mysql_grants.present:

- grant: all privileges
- database: otherdb.*
- user: frank

restricted_singletable:
mysql_grants.present:

- grant: select
- database: somedb.sometable
- user: joe

salt.states.mysql_grants.absent(name, grant=None, database=None, user=None, host='localhost',
grant_option=False, escape=True, **connection_args)

Ensure that the grant is absent

name e name (key) of the grant to add

grant e grant priv_type (i.e. select,insert,update OR all privileges)

database e database priv_level (i.e. db.tbl OR db.*)

user e user to apply the grant to

host e network/host that the grant should apply to

salt.states.mysql_grants.present(name, grant=None, database=None, user=None,
host='localhost', grant_option=False, escape=True, re-
voke_first=False, ssl_option=False, **connection_args)

Ensure that the grant is present with the specified properties

name e name (key) of the grant to add

grant e grant priv_type (i.e. select,insert,update OR all privileges)

database e database priv_level (ie. db.tbl OR db.*)

user e user to apply the grant to

host e network/host that the grant should apply to

grant_option Adds the WITH GRANT OPTION to the defined grant. Default is False

escape Defines if the database value gets escaped or not. Default is True

revoke_first By default, MySQL will not do anything if you issue a command to grant privileges that are more
restrictive than what's already in place. is effectively means that you cannot downgrade permissions
without first revoking permissions applied to a db.table/user pair first.

To have Salt forcibly revoke perms before applying a new grant, enable the `revoke_first options.

WARNING: is will remove permissions for a database before aempting to apply new permissions.
ere is no guarantee that new permissions will be applied correctly which can leave your database
security in an unknown and potentially dangerous state. Use with caution!

Default is False

ssl_option Adds the specified ssl options for the connecting user as requirements for this grant. Value is a list
of single-element dicts corresponding to the list of ssl options to use.

Possible key/value pairings for the dicts in the value:

1178 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

- SSL: True
- X509: True
- SUBJECT: <subject>
- ISSUER: <issuer>
- CIPHER: <cipher>

e non-boolean ssl options take a string as their values, which should be an appropriate value as spec-
ified by the MySQL documentation for these options.

Default is False (no ssl options will be used)

22.27.68 salt.states.mysql_query

Execution of MySQL queries

New in version 2014.7.0.

depends

• MySQLdb Python module

configuration See salt.modules.mysql for setup instructions.

e mysql_query module is used to execute queries on MySQL databases. Its output may be stored in a file or in a
grain.

query_id:
mysql_query.run

- database: my_database
- query: "SELECT * FROM table;"
- output: "/tmp/query_id.txt"

salt.states.mysql_query.run(name, database, query, output=None, grain=None, key=None, over-
write=True, **connection_args)

Execute an arbitrary query on the specified database

name Used only as an ID

database e name of the database to execute the query on

query e query to execute

output grain: output in a grain other: the file to store results None: output to the result comment (default)

grain: grain to store the output (need output=grain)

key: the specified grain will be treated as a dictionnary, the result of this state will be stored under the specified
key.

overwrite: e file or grain will be overwrien if it already exists (default)

22.27.69 salt.states.mysql_user

Management of MySQL users

depends

• MySQLdb Python module

22.27. Full list of builtin state modules 1179

Salt Documentation, Release 2014.7.6

configuration See salt.modules.mysql for setup instructions.

frank:
mysql_user.present:

- host: localhost
- password: bobcat

New in version 0.16.2: Authentication overrides have been added.

eMySQL authentication information specified in theminion config file can be overidden in states using the follow-
ing arguments: connection_host, connection_port, connection_user, connection_pass, con-
nection_db, connection_unix_socket, connection_default_file and connection_charset.

frank:
mysql_user.present:

- host: localhost
- password: "bob@cat"
- connection_user: someuser
- connection_pass: somepass
- connection_charset: utf8
- saltenv:

- LC_ALL: "en_US.utf8"

salt.states.mysql_user.absent(name, host='localhost', **connection_args)
Ensure that the named user is absent

name e name of the user to remove

salt.states.mysql_user.present(name, host='localhost', password=None, password_hash=None, al-
low_passwordless=False, unix_socket=False, **connection_args)

Ensure that the named user is present with the specified properties. A passwordless user can be configured
by omiing password and password_hash, and seing allow_passwordless to True.

name e name of the user to manage

host Host for which this user/password combo applies

password e password to use for this user. Will take precedence over the password_hash option if both
are specified.

password_hash e password in hashed form. Be sure to quote the password because YAML doesn't like the
*. A password hash can be obtained from the mysql command-line client like so:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+
1 row in set (0.00 sec)

allow_passwordless If True, then password and password_hash can be omied to permit a password-
less login.

New in version 0.16.2.

unix_soet If True and allow_passwordless is True, the unix_socket auth plugin will be used.

1180 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.27.70 salt.states.network

Configuration of network interfaces

e network module is used to create and manage network seings, interfaces can be set as either managed or
ignored. By default all interfaces are ignored unless specified.

Note: Prior to version 2014.1.0, only RedHat-based systems (RHEL, CentOS, Scientific Linux, etc.) are supported.
Support for Debian/Ubuntu is new in 2014.1.0 and should be considered experimental.

Other platforms are not yet supported.

system:
network.system:

- enabled: True
- hostname: server1.example.com
- gateway: 192.168.0.1
- gatewaydev: eth0
- nozeroconf: True
- nisdomain: example.com
- require_reboot: True

eth0:
network.managed:

- enabled: True
- type: eth
- proto: none
- ipaddr: 10.1.0.1
- netmask: 255.255.255.0
- dns:

- 8.8.8.8
- 8.8.4.4

routes:
network.routes:

- name: eth0
- routes:

- name: secure_network
ipaddr: 10.2.0.0
netmask: 255.255.255.0
gateway: 10.1.0.3

- name: HQ_network
ipaddr: 10.100.0.0
netmask: 255.255.0.0
gateway: 10.1.0.10

eth2:
network.managed:

- enabled: True
- type: slave
- master: bond0

eth3:
network.managed:

- enabled: True
- type: slave
- master: bond0

22.27. Full list of builtin state modules 1181

Salt Documentation, Release 2014.7.6

eth4:
network.managed:

- enabled: True
- type: eth
- proto: dhcp
- bridge: br0

bond0:
network.managed:

- type: bond
- ipaddr: 10.1.0.1
- netmask: 255.255.255.0
- mode: active-backup
- proto: static
- dns:

- 8.8.8.8
- 8.8.4.4

- ipv6:
- enabled: False
- slaves: eth2 eth3
- require:

- network: eth2
- network: eth3

- miimon: 100
- arp_interval: 250
- downdelay: 200
- lacp_rate: fast
- max_bonds: 1
- updelay: 0
- use_carrier: on
- xmit_hash_policy: layer2
- mtu: 9000
- autoneg: on
- speed: 1000
- duplex: full
- rx: on
- tx: off
- sg: on
- tso: off
- ufo: off
- gso: off
- gro: off
- lro: off

bond0.2:
network.managed:

- type: vlan
- ipaddr: 10.1.0.2
- use:

- network: bond0
- require:

- network: bond0

bond0.3:
network.managed:

- type: vlan
- ipaddr: 10.1.0.3
- use:

1182 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

- network: bond0
- require:

- network: bond0

bond0.10:
network.managed:

- type: vlan
- ipaddr: 10.1.0.4
- use:

- network: bond0
- require:

- network: bond0

bond0.12:
network.managed:

- type: vlan
- ipaddr: 10.1.0.5
- use:

- network: bond0
- require:

- network: bond0
br0:

network.managed:
- enabled: True
- type: bridge
- proto: dhcp
- bridge: br0
- delay: 0
- ports: eth4
- bypassfirewall: True
- use:

- network: eth4
- require:

- network: eth4

Note: When managing bridged interfaces on a Debian or Ubuntu based system, the ports argument is required. Red
Hat systems will ignore the argument.

salt.states.network.managed(name, type, enabled=True, **kwargs)
Ensure that the named interface is configured properly.

name e name of the interface to manage

type Type of interface and configuration.

enabled Designates the state of this interface.

kwargs e IP parameters for this interface.

salt.states.network.routes(name, **kwargs)
Manage network interface static routes.

name Interface name to apply the route to.

kwargs Named routes

salt.states.network.system(name, **kwargs)
Ensure that global network seings are configured properly.

name Custom name to represent this configuration change.

22.27. Full list of builtin state modules 1183

Salt Documentation, Release 2014.7.6

kwargs e global parameters for the system.

22.27.71 salt.states.nables

Management of nables

is is an nables-specific module designed to manage Linux firewalls. It is expected that this state module, and
other system-specific firewall states, may at some point be deprecated in favor of a more generic firewall state.

httpd:
nftables.append:

- table: filter
- chain: input
- jump: accept
- match: state
- connstate: new
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
nftables.append:

- table: filter
- family: ipv6
- chain: INPUT
- jump: ACCEPT
- match: state
- connstate: NEW
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
nftables.insert:

- position: 1
- table: filter
- chain: INPUT
- jump: ACCEPT
- match: state
- connstate: NEW
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
nftables.insert:

- position: 1
- table: filter
- family: ipv6
- chain: INPUT
- jump: ACCEPT
- match: state
- connstate: NEW

1184 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
nftables.delete:

- table: filter
- chain: INPUT
- jump: ACCEPT
- match: state
- connstate: NEW
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
nftables.delete:

- position: 1
- table: filter
- chain: INPUT
- jump: ACCEPT
- match: state
- connstate: NEW
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

httpd:
nftables.delete:

- table: filter
- family: ipv6
- chain: INPUT
- jump: ACCEPT
- match: state
- connstate: NEW
- dport: 80
- proto: tcp
- sport: 1025:65535
- save: True

salt.states.nftables.append(name, family='ipv4', **kwargs)
New in version 0.17.0.

Append a rule to a chain

name A user-defined name to call this rule by in another part of a state or formula. is should not be an
actual rule.

family Network family, ipv4 or ipv6.

All other arguments are passed in with the same name as the long option that would normally be used for
nables, with one exception: --state is specified as connstate instead of state (not to be confused with ctstate).

salt.states.nftables.chain_absent(name, table='filter', family='ipv4')
New in version 2014.7.0.

Verify the chain is absent.

22.27. Full list of builtin state modules 1185

Salt Documentation, Release 2014.7.6

family Networking family, either ipv4 or ipv6

salt.states.nftables.chain_present(name, table='filter', table_type=None, hook=None, prior-
ity=None, family='ipv4')

New in version 2014.7.0.

Verify the chain is exist.

name A user-defined chain name.

table e table to own the chain.

family Networking family, either ipv4 or ipv6

salt.states.nftables.delete(name, family='ipv4', **kwargs)
New in version 2014.7.0.

Delete a rule to a chain

name A user-defined name to call this rule by in another part of a state or formula. is should not be an
actual rule.

family Networking family, either ipv4 or ipv6

All other arguments are passed in with the same name as the long option that would normally be used for
nables, with one exception: --state is specified as connstate instead of state (not to be confused with ctstate).

salt.states.nftables.flush(name, family='ipv4', **kwargs)
New in version 2014.7.0.

Flush current nables state

family Networking family, either ipv4 or ipv6

salt.states.nftables.insert(name, family='ipv4', **kwargs)
New in version 2014.7.0.

Insert a rule into a chain

name A user-defined name to call this rule by in another part of a state or formula. is should not be an
actual rule.

family Networking family, either ipv4 or ipv6

All other arguments are passed in with the same name as the long option that would normally be used for
nables, with one exception: --state is specified as connstate instead of state (not to be confused with ctstate).

22.27.72 salt.states.npm

Installation of NPM Packages

ese states manage the installed packages for node.js using the Node Package Manager (npm). Note that npm must
be installed for these states to be available, so npm states should include a requisite to a pkg.installed state for the
package which provides npm (simply npm in most cases). Example:

npm:
pkg.installed

yaml:
npm.installed:

- require:
- pkg: npm

1186 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.states.npm.bootstrap(name, runas=None, user=None)
Bootstraps a node.js application.

will execute npm install --json on the specified directory

runas e user to run NPM with

Deprecated since version 0.17.0.

user e user to run NPM with

New in version 0.17.0.

salt.states.npm.installed(name, pkgs=None, dir=None, runas=None, user=None,
force_reinstall=False, registry=None, env=None)

Verify that the given package is installed and is at the correct version (if specified).

coffee-script:
npm.installed:

- user: someuser

coffee-script@1.0.1:
npm.installed: []

name e package to install

Changed in version 2014.7.2: is parameter is no longer lowercased by salt so that case-sensitive NPM
package names will work.

pkgs A list of packages to install with a single npm invocation; specifying this argument will ignore the name
argument

New in version 2014.7.0.

dir e target directory in which to install the package, or None for global installation

runas e user to run NPM with

Deprecated since version 0.17.0.

user e user to run NPM with

New in version 0.17.0.

registry e NPM registry from which to install the package

New in version 2014.7.0.

env A list of environment variables to be set prior to execution. e format is the same as the cmd.run.
state function.

New in version 2014.7.0.

force_reinstall Install the package even if it is already installed

salt.states.npm.removed(name, dir=None, runas=None, user=None)
Verify that the given package is not installed.

dir e target directory in which to install the package, or None for global installation

runas e user to run NPM with

Deprecated since version 0.17.0.

22.27. Full list of builtin state modules 1187

Salt Documentation, Release 2014.7.6

user e user to run NPM with

New in version 0.17.0.

22.27.73 salt.states.ntp

Management of NTP servers

New in version 2014.1.0.

is state is used to manage NTP servers. Currently only Windows is supported.

win_ntp:
ntp.managed:

- servers:
- pool.ntp.org
- us.pool.ntp.org

salt.states.ntp.managed(name, servers=None)
Manage NTP servers

servers A list of NTP servers

22.27.74 salt.states.openstack_config

Manage OpenStack configuration file seings.

maintainer Jeffrey C. Ollie <jeff@ocjtech.us>

maturity new

depends

platform linux

salt.states.openstack_config.absent(name, filename, section, parameter=None)
Ensure a value is not set in an OpenStack configuration file.

filename e full path to the configuration file

section e section in which the parameter will be set

parameter (optional) e parameter to change. If the parameter is not supplied, the name will be used as the
parameter.

salt.states.openstack_config.present(name, filename, section, value, parameter=None)
Ensure a value is set in an OpenStack configuration file.

filename e full path to the configuration file

section e section in which the parameter will be set

parameter (optional) e parameter to change. If the parameter is not supplied, the name will be used as the
parameter.

value e value to set

1188 Chapter 22. Reference

mailto:jeff@ocjtech.us

Salt Documentation, Release 2014.7.6

22.27.75 salt.states.pagerduty

Create an Event in PagerDuty

New in version 2014.1.0.

is state is useful for creating events on the PagerDuty service during state runs.

server-warning-message:
pagerduty.create_event:

- name: 'This is a server warning message'
- details: 'This is a much more detailed message'
- service_key: 9abcd123456789efabcde362783cdbaf
- profile: my-pagerduty-account

salt.states.pagerduty.create_event(name, details, service_key, profile)
Create an event on the PagerDuty service

server-warning-message:
pagerduty.create_event:

- name: 'This is a server warning message'
- details: 'This is a much more detailed message'
- service_key: 9abcd123456789efabcde362783cdbaf
- profile: my-pagerduty-account

e following parameters are required:

name is is a short description of the event.

details is can be a more detailed description of the event.

service_key is key can be found by using pagerduty.list_services.

profile is refers to the configuration profile to use to connect to the PagerDuty service.

22.27.76 salt.states.pecl

Installation of PHP Extensions Using pecl

ese statesmanage the installed pecl extensions. Note that php-pearmust be installed for these states to be available,
so pecl states should include a requisite to a pkg.installed state for the package which provides pecl (php-pear in
most cases). Example:

php-pear:
pkg.installed

mongo:
pecl.installed:

- require:
- pkg: php-pear

salt.states.pecl.installed(name, version=None, defaults=False, force=False, pre-
ferred_state='stable')

New in version 0.17.0.

Make sure that a pecl extension is installed.

name e pecl extension name to install

22.27. Full list of builtin state modules 1189

Salt Documentation, Release 2014.7.6

version e pecl extension version to install. is option may be ignored to install the latest stable version.

defaults Use default answers for extensions such as pecl_hp which ask questions before installation. With-
out this option, the pecl.installed state will hang indefinitely when trying to install these extensions.

force Whether to force the installed version or not

preferred_state e pecl extension state to install

salt.states.pecl.removed(name)
Make sure that a pecl extension is not installed.

name e pecl extension name to uninstall

22.27.77 salt.states.pip_state

Installation of Python Packages Using pip

ese states manage system installed python packages. Note that pipmust be installed for these states to be available,
so pip states should include a requisite to a pkg.installed state for the package which provides pip (python-pip in
most cases). Example:

python-pip:
pkg.installed

virtualenvwrapper:
pip.installed:

- require:
- pkg: python-pip

salt.states.pip_state.installed(name, pip_bin=None, requirements=None, env=None,
bin_env=None, use_wheel=False, no_use_wheel=False,
log=None, proxy=None, timeout=None, repo=None, ed-
itable=None, find_links=None, index_url=None, ex-
tra_index_url=None, no_index=False, mirrors=None,
build=None, target=None, download=None, down-
load_cache=None, source=None, upgrade=False,
force_reinstall=False, ignore_installed=False, ex-
ists_action=None, no_deps=False, no_install=False,
no_download=False, install_options=None,
global_options=None, user=None, runas=None, no_chown=False,
cwd=None, activate=False, pre_releases=False, cert=None,
allow_all_external=False, allow_external=None, al-
low_unverified=None, process_dependency_links=False)

Make sure the package is installed

name ename of the python package to install. You can also specify version numbers here using the standard
operators ==, >=, <=. If requirements is given, this parameter will be ignored.

Example:

django:
pip.installed:

- name: django >= 1.6, <= 1.7
- require:

- pkg: python-pip

is will install the latest Django version greater than 1.6 but less than 1.7.

1190 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

requirements Path to a pip requirements file. If the path begins with salt:// the file will be transferred from
the master file server.

user e user under which to run pip

use_wheel [False] Prefer wheel archives (requires pip>=1.4)

no_use_wheel [False] Force to not use wheel archives (requires pip>=1.4)

log Log file where a complete (maximum verbosity) record will be kept

proxy Specify a proxy in the form user:passwd@proxy.server:port. Note that the user:password@ is optional
and required only if you are behind an authenticated proxy. If you provide user@proxy.server:port then
you will be prompted for a password.

timeout Set the socket timeout (default 15 seconds)

editable install something editable (i.e. git+hps://github.com/worldcompany/djangoembed.git#egg=djangoembed)

find_links URL to look for packages at

index_url Base URL of Python Package Index

extra_index_url Extra URLs of package indexes to use in addition to index_url

no_index Ignore package index

mirrors Specific mirror URL(s) to query (automatically adds --use-mirrors)

build Unpack packages into build dir

target Install packages into target dir

download Download packages into download instead of installing them

download_cae Cache downloaded packages in download_cache dir

source Check out editable packages into source dir

upgrade Upgrade all packages to the newest available version

force_reinstall When upgrading, reinstall all packages even if they are already up-to-date.

ignore_installed Ignore the installed packages (reinstalling instead)

exists_action Default action when a path already exists: (s)witch, (i)gnore, (w)ipe, (b)ackup

no_deps Ignore package dependencies

no_install Download and unpack all packages, but don't actually install them

no_own When user is given, do not aempt to copy and chown a requirements file

cwd Current working directory to run pip from

activate Activates the virtual environment, if given via bin_env, before running install.

Deprecated since version 2014.7.2: If bin_env is given, pip will already be sourced from that virualenv,
making activate effectively a noop.

pre_releases Include pre-releases in the available versions

cert Provide a path to an alternate CA bundle

allow_all_external Allow the installation of all externally hosted files

allow_external Allow the installation of externally hosted files (comma separated list)

allow_unverified Allow the installation of insecure and unverifiable files (comma separated list)

22.27. Full list of builtin state modules 1191

Salt Documentation, Release 2014.7.6

process_dependency_links Enable the processing of dependency links

bin_env [None] Absolute path to a virtual environment directory or absolute path to a pip executable. e
example below assumes a virtual environment has been created at /foo/.virtualenvs/bar.

Example:

django:
pip.installed:

- name: django >= 1.6, <= 1.7
- bin_env: /foo/.virtualenvs/bar
- require:

- pkg: python-pip

Or

Example:

django:
pip.installed:

- name: django >= 1.6, <= 1.7
- bin_env: /foo/.virtualenvs/bar/bin/pip
- require:

- pkg: python-pip

Attention

e following arguments are deprecated, do not use.

pip_bin [None] Deprecated, use bin_env

env [None] Deprecated, use bin_env

Changed in version 0.17.0: use_wheel option added.

install_options

Extra arguments to be supplied to the setup.py install command. If you are using an option with
a directory path, be sure to use absolute path.

Example:

django:
pip.installed:

- name: django
- install_options:

- --prefix=/blah
- require:

- pkg: python-pip

global_options Extra global options to be supplied to the setup.py call before the install command.

New in version 2014.1.3.

Attention

As of Salt 0.17.0 the pip state needs an importable pip module. is usually means having the system's pip
package installed or running Salt from an active virtualenv.

1192 Chapter 22. Reference

http://www.virtualenv.org/en/latest/

Salt Documentation, Release 2014.7.6

e reason for this requirement is because pip already does a prey good job parsing its own requirements.
It makes no sense for Salt to do pip requirements parsing and validation before passing them to the pip
library. It's functionality duplication and it's more error prone.

salt.states.pip_state.removed(name, requirements=None, bin_env=None, log=None, proxy=None,
timeout=None, user=None, runas=None, cwd=None)

Make sure that a package is not installed.

name e name of the package to uninstall

user e user under which to run pip

bin_env [None] the pip executable or virtualenenv to use

22.27.78 salt.states.pkg

Installation of packages using OS package managers such as yum or apt-get

Salt can manage soware packages via the pkg state module, packages can be set up to be installed, latest, removed
and purged. Package management declarations are typically rather simple:

vim:
pkg.installed

A more involved example involves pulling from a custom repository. Note that the pkgrepo has a require_in clause.
is is necessary and can not be replaced by a require clause in the pkg.

base:
pkgrepo.managed:

- humanname: Logstash PPA
- name: ppa:wolfnet/logstash
- dist: precise
- file: /etc/apt/sources.list.d/logstash.list
- keyid: 28B04E4A
- keyserver: keyserver.ubuntu.com
- require_in:

- pkg: logstash

logstash:
pkg.installed

salt.states.pkg.installed(name, version=None, refresh=None, fromrepo=None, skip_verify=False,
skip_suggestions=False, pkgs=None, sources=None, allow_updates=False,
pkg_verify=False, normalize=True, **kwargs)

Ensure that the package is installed, and that it is the correct version (if specified).

name e name of the package to be installed. is parameter is ignored if either ``pkgs'' or ``sources'' is
used. Additionally, please note that this option can only be used to install packages from a soware
repository. To install a package file manually, use the ``sources'' option detailed below.

fromrepo Specify a repository from which to install

Note: Distros which use APT (Debian, Ubuntu, etc.) do not have a concept of repositories, in the same
way as YUM-based distros do. When a source is added, it is assigned to a given release. Consider the
following source configuration:

22.27. Full list of builtin state modules 1193

Salt Documentation, Release 2014.7.6

deb http://ppa.launchpad.net/saltstack/salt/ubuntu precise main

e packages provided by this source would be made available via the precise release, therefore
fromrepo would need to be set to precise for Salt to install the package from this source.

Having multiple sources in the same release may result in the default install candidate being newer than
what is desired. If this is the case, the desired version must be specified using the version parameter.

If the pkgs parameter is being used to install multiple packages in the same state, then instead of
using version, use the method of version specification described in theMultiple Paage Installation
Options section below.

Running the shell command apt-cache policy pkgname on a minion can help elucidate the APT
configuration and aid in properly configuring states:

root@saltmaster:~# salt ubuntu01 cmd.run 'apt-cache policy ffmpeg'
ubuntu01:

ffmpeg:
Installed: (none)
Candidate: 7:0.10.11-1~precise1
Version table:

7:0.10.11-1~precise1 0
500 http://ppa.launchpad.net/jon-severinsson/ffmpeg/ubuntu/ precise/main amd64 Packages

4:0.8.10-0ubuntu0.12.04.1 0
500 http://us.archive.ubuntu.com/ubuntu/ precise-updates/main amd64 Packages
500 http://security.ubuntu.com/ubuntu/ precise-security/main amd64 Packages

4:0.8.1-0ubuntu1 0
500 http://us.archive.ubuntu.com/ubuntu/ precise/main amd64 Packages

e release is located directly aer the source's URL.e actual release name is the part before the slash,
so to install version 4:0.8.10-0ubuntu0.12.04.1 either precise-updates or precise-security
could be used for the fromrepo value.

skip_verify Skip the GPG verification check for the package to be installed

skip_suggestions Force strict package naming. Disables lookup of package alternatives.

New in version 2014.1.1.

version Install a specific version of a package. is option is ignored if either ``pkgs'' or ``sources'' is used.
Currently, this option is supported for the following pkg providers: apt, ebuild, pacman, yumpkg,
and zypper. e version number includes the release designation where applicable, to allow Salt to
target a specific release of a given version. When in doubt, using the pkg.latest_version function
for an uninstalled package will tell you the version available.

salt myminion pkg.latest_version httpd
myminion:

2.2.15-30.el6.centos

Also, while this function is not yet implemented for all pkg frontends, pkg.list_repo_pkgs will
show all versions available in the various repositories for a given package, irrespective of whether or
not it is installed.

salt myminion pkg.list_repo_pkgs httpd
myminion:

base:

_

1194 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

httpd:
2.2.15-29.el6.centos

updates:
|_

httpd:

2.2.15-30.el6.centos

e version strings returned by either of these functions can be used as version specifiers in pkg states.

refresh Update the repo database of available packages prior to installing the requested package.

hold Force the package to be held at the current installed version. Currently works with YUM & APT based
systems.

New in version 2014.7.0.

allow_updates Allow the package to be updated outside Salt's control (e.g. auto updates on Windows). is
means a package on the Minion can have a newer version than the latest available in the repository
without enforcing a re-installation of the package.

New in version 2014.7.0.

Example:

httpd:
pkg.installed:

- fromrepo: mycustomrepo
- skip_verify: True
- skip_suggestions: True
- version: 2.0.6~ubuntu3
- refresh: True
- hold: False

pkg_verify New in version 2014.7.0.

For requested packages that are already installed and would not be targeted for upgrade or downgrade,
use pkg.verify to determine if any of the files installed by the package have been altered. If files have
been altered, the reinstall option of pkg.install is used to force a reinstall. Types to ignore can be passed
to pkg.verify (see example below). Currently, this option is supported for the following pkg providers:
yumpkg.

Examples:

httpd:
pkg.installed:

- version: 2.2.15-30.el6.centos
- pkg_verify: True

mypkgs:
pkg.installed:

- pkgs:
- foo
- bar: 1.2.3-4
- baz

- pkg_verify:
- ignore_types: [config,doc]

22.27. Full list of builtin state modules 1195

Salt Documentation, Release 2014.7.6

normalize Normalize the package name by removing the architecture. Default is True. is is useful for
poorly created packages which might include the architecture as an actual part of the name such as
kernel modules which match a specific kernel version.

New in version 2014.7.0.

Example:

gpfs.gplbin-2.6.32-279.31.1.el6.x86_64:
pkg.installed:

- normalize: False

Multiple Paage Installation Options: (not supported in Windows or pkgng)

pkgs A list of packages to install from a soware repository. All packages listed under pkgs will be installed
via a single command.

Example:

mypkgs:
pkg.installed:

- pkgs:
- foo
- bar
- baz

- hold: True

NOTE: For apt, ebuild, pacman, yumpkg, and zypper, version numbers can be specified in the pkgs
argument. For example:

mypkgs:
pkg.installed:

- pkgs:
- foo
- bar: 1.2.3-4
- baz

Additionally, ebuild, pacman and zypper support the <, <=, >=, and > operators for more control over
what versions will be installed. For example:

mypkgs:
pkg.installed:

- pkgs:
- foo
- bar: '>=1.2.3-4'
- baz

NOTE:When using comparison operators, the expression must be enclosed in quotes to avoid a YAML render
error.

With ebuild is also possible to specify a use flag list and/or if the given packages should be in pack-
age.accept_keywords file and/or the overlay from which you want the package to be installed. For example:

mypkgs:
pkg.installed:

- pkgs:
- foo: '~'
- bar: '~>=1.2:slot::overlay[use,-otheruse]'
- baz

1196 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

names A list of packages to install from a soware repository. Each package will be installed individually by
the package manager.

Warning: Unlike pkgs, the names parameter cannot specify a version. In addition, it makes a
separate call to the package management frontend to install each package, whereas pkgs makes
just a single call. It is therefore recommended to use pkgs instead of names to install multiple
packages, both for the additional features and the performance improvement that it brings.

sources A list of packages to install, alongwith the source URI or local path fromwhich to install each package.
In the example below, foo, bar, baz, etc. refer to the name of the package, as it would appear in the
output of the pkg.version or pkg.list_pkgs salt CLI commands.

mypkgs:
pkg.installed:

- sources:
- foo: salt://rpms/foo.rpm
- bar: http://somesite.org/bar.rpm
- baz: ftp://someothersite.org/baz.rpm
- qux: /minion/path/to/qux.rpm

salt.states.pkg.latest(name, refresh=None, fromrepo=None, skip_verify=False, pkgs=None,
**kwargs)

Ensure that the named package is installed and the latest available package. If the package can be updated,
this state function will update the package. Generally it is beer for the installed function to be used, as
latest will update the package whenever a new package is available.

name e name of the package to maintain at the latest available version. is parameter is ignored if ``pkgs''
is used.

fromrepo Specify a repository from which to install

skip_verify Skip the GPG verification check for the package to be installed

Multiple Package Installation Options:

(Not yet supported for: Windows, FreeBSD, OpenBSD, MacOS, and Solaris pkgutil)

pkgs A list of packages to maintain at the latest available version.

mypkgs:
pkg.latest:

- pkgs:
- foo
- bar
- baz

salt.states.pkg.mod_aggregate(low, chunks, running)
e mod_aggregate function which looks up all packages in the available low chunks and merges them into a
single pkgs ref in the present low data

salt.states.pkg.purged(name, pkgs=None, **kwargs)
Verify that a package is not installed, calling pkg.purge if necessary to purge the package. All configuration
files are also removed.

name e name of the package to be purged.

Multiple Package Options:

pkgs A list of packages to purge. Must be passed as a python list. e name parameter will be ignored if this
option is passed.

22.27. Full list of builtin state modules 1197

Salt Documentation, Release 2014.7.6

New in version 0.16.0.

salt.states.pkg.removed(name, pkgs=None, **kwargs)
Verify that a package is not installed, calling pkg.remove if necessary to remove the package.

name e name of the package to be removed.

Multiple Package Options:

pkgs A list of packages to remove. Must be passed as a python list. e name parameter will be ignored if
this option is passed.

New in version 0.16.0.

salt.states.pkg.uptodate(name, refresh=False)
New in version 2014.7.0.

Verify that the system is completely up to date.

name e name has no functional value and is only used as a tracking reference

refresh refresh the package database before checking for new upgrades

22.27.79 salt.states.pkgng

Manage package remote repo using FreeBSD pkgng

Salt can manage the URL pkgng pulls packages from. ATM the state and module are small so use cases are typically
rather simple:

pkgng_clients:
pkgng.update_packaging_site:

- name: "http://192.168.0.2"

salt.states.pkgng.update_packaging_site(name)

22.27.80 salt.states.pkgrepo

Management of APT/YUM package repos

Package repositories for APT-based and YUM-based distros can be managed with these states. Here is some example
SLS:

base:
pkgrepo.managed:

- humanname: CentOS-$releasever - Base
- mirrorlist: http://mirrorlist.centos.org/?release=$releasever&arch=$basearch&repo=os
- comments:

- '#http://mirror.centos.org/centos/$releasever/os/$basearch/'
- gpgcheck: 1
- gpgkey: file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-6

base:
pkgrepo.managed:

- humanname: Logstash PPA
- name: deb http://ppa.launchpad.net/wolfnet/logstash/ubuntu precise main

1198 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

- dist: precise
- file: /etc/apt/sources.list.d/logstash.list
- keyid: 28B04E4A
- keyserver: keyserver.ubuntu.com
- require_in:

- pkg: logstash

pkg.latest:
- name: logstash
- refresh: True

base:
pkgrepo.managed:

- ppa: wolfnet/logstash
pkg.latest:

- name: logstash
- refresh: True

Note: On Ubuntu systems, the python-software-properties package should be installed for beer support
of PPA repositories. To check if this package is installed, run dpkg -l python-software-properties.

Also, some Ubuntu releases have a bug in their python-software-properties package, a missing depen-
dency on pycurl, so python-pycurl will need to be manually installed if it is not present once python-
software-properties is installed.

On Ubuntu & Debian systems, the `python-apt package is required to be installed. To check if this package is
installed, run dpkg -l python-software-properties. python-apt will need to be manually installed
if it is not present.

salt.states.pkgrepo.absent(name, **kwargs)
is function deletes the specified repo on the system, if it exists. It is essentially a wrapper around
pkg.del_repo.

name e name of the package repo, as it would be referred to when running the regular package manager
commands.

ppa On Ubuntu, you can take advantage of Personal Package Archives on Launchpad simply by specifying
the user and archive name.

logstash-ppa:
pkgrepo.absent:

- ppa: wolfnet/logstash

ppa_auth For Ubuntu PPAs there can be private PPAs that require authentication to access. For these PPAs the
username/password can be specified. is is required for matching if the name format uses the ``ppa:''
specifier and is private (requires username/password to access, which is encoded in the URI).

logstash-ppa:
pkgrepo.absent:

- ppa: wolfnet/logstash
- ppa_auth: username:password

salt.states.pkgrepo.managed(name, **kwargs)
is function manages the configuration on a system that points to the repositories for the system's package
manager.

22.27. Full list of builtin state modules 1199

https://bugs.launchpad.net/ubuntu/+source/software-properties/+bug/1249080

Salt Documentation, Release 2014.7.6

name e name of the package repo, as it would be referred to when running the regular package manager
commands.

For yum-based systems, take note of the following configuration values:

humanname On yum-based systems, this is stored as the ``name'' value in the .repo file in /etc/yum.repos.d/.
On yum-based systems, this is required.

baseurl On yum-based systems, baseurl refers to a direct URL to be used for this yum repo. One of baseurl or
mirrorlist is required.

mirrorlist a URL which contains a collection of baseurls to choose from. On yum-based systems. One of
baseurl or mirrorlist is required.

comments Sometimes you want to supply additional information, but not as enabled configuration. Anything
supplied for this list will be saved in the repo configuration with a comment marker (#) in front.

Additional configuration values, such as gpgkey or gpgcheck, are used verbatim to update the options for the
yum repo in question.

For apt-based systems, take note of the following configuration values:

ppa On Ubuntu, you can take advantage of Personal Package Archives on Launchpad simply by specifying
the user and archive name. e keyid will be queried from launchpad and everything else is set auto-
matically. You can override any of the below seings by simply seing them as you would normally.
For example:

logstash-ppa:
pkgrepo.managed:

- ppa: wolfnet/logstash

ppa_auth For Ubuntu PPAs there can be private PPAs that require authentication to access. For these PPAs
the username/password can be passed as an HTTP Basic style username/password combination.

logstash-ppa:
pkgrepo.managed:

- ppa: wolfnet/logstash
- ppa_auth: username:password

name On apt-based systems this must be the complete entry as it would be seen in the sources.list file. is
can have a limited subset of components (i.e. `main') which can be added/modified with the ``comps''
option.

precise-repo:
pkgrepo.managed:

- name: deb http://us.archive.ubuntu.com/ubuntu precise main

disabled Toggles whether or not the repo is used for resolving dependencies and/or installing packages.

enabled Enables the repository, even if the repository has been disabled, in order for the respective package
requiring the repository can be found and installed.

comps On apt-based systems, comps dictate the types of packages to be installed from the repository (e.g.
main, nonfree, …). For purposes of this, comps should be a comma-separated list.

file e filename for the .list that the repository is configured in. It is important to include the full-path AND
make sure it is in a directory that APT will look in when handling packages

dist is dictates the release of the distro the packages should be built for. (e.g. unstable)

keyid e KeyID of the GPG key to install. is option also requires the `keyserver' option to be set.

1200 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

keyserver is is the name of the keyserver to retrieve gpg keys from. e keyid option must also be set for
this option to work.

key_url URL to retrieve a GPG key from.

consolidate If set to true, this will consolidate all sources definitions to the sources.list file, cleanup the now
unused files, consolidate components (e.g. main) for the same URI, type, and architecture to a single line,
and finally remove comments from the sources.list file. e consolidate will run every time the state is
processed. e option only needs to be set on one repo managed by salt to take effect.

refresh_db If set to false this will skip refreshing the apt package database on debian based systems.

require_in Set this to a list of pkg.installed or pkg.latest to trigger the running of apt-get update prior to
aempting to install these packages. Seing a require in the pkg will not work for this.

22.27.81 salt.states.portage_config

Management of Portage package configuration on Gentoo

A state module to manage Portage configuration on Gentoo

salt:
portage_config.flags:

- use:
- openssl

salt.states.portage_config.flags(name, use=None, accept_keywords=None, env=None, li-
cense=None, properties=None, unmask=False, mask=False)

Enforce the given flags on the given package or DEPEND atom. Please be warned that, in most cases, you
need to rebuild the affected packages in order to apply the changes.

name e name of the package or his DEPEND atom

use A list of use flags

accept_keywords A list of keywords to accept. ``~ARCH'' means current host arch, and will be translated in
a line without keywords

env A list of environment files

license A list of accepted licenses

properties A list of additional properties

unmask A boolean to unmask the package

mask A boolean to mask the package

22.27.82 salt.states.ports

Manage soware from FreeBSD ports

New in version 2014.1.0.

Note: It may be helpful to use a higher timeout when running a ports.installed state, since compiling the
port may exceed Salt's timeout.

salt -t 1200 '*' state.highstate

22.27. Full list of builtin state modules 1201

Salt Documentation, Release 2014.7.6

salt.states.ports.installed(name, options=None)
Verify that the desired port is installed, and that it was compiled with the desired options.

options Make sure that the desired non-default options are set

Warning: Any build options not passed here assume the default values for the port, and are not just
differences from the existing cached options from a previous make config.

Example usage:

security/nmap:
ports.installed:

- options:
- IPV6: off

22.27.83 salt.states.postgres_database

Management of PostgreSQL databases

e postgres_database module is used to create andmanage Postgres databases. Databases can be set as either absent
or present

frank:
postgres_database.present

salt.states.postgres_database.absent(name, runas=None, user=None, maintenance_db=None,
db_password=None, db_host=None, db_port=None,
db_user=None)

Ensure that the named database is absent

name e name of the database to remove

db_user database username if different from config or defaul

db_password user password if any password for a specified user

db_host Database host if different from config or default

db_port Database port if different from config or default

runas System user all operations should be performed on behalf of

Deprecated since version 0.17.0.

user System user all operations should be performed on behalf of

New in version 0.17.0.

salt.states.postgres_database.present(name, tablespace=None, encoding=None,
lc_collate=None, lc_ctype=None, owner=None,
template=None, runas=None, user=None, mainte-
nance_db=None, db_password=None, db_host=None,
db_port=None, db_user=None)

Ensure that the named database is present with the specified properties. For more information about all of
these options see man createdb(1)

name e name of the database to manage

1202 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

tablespace Default tablespace for the database

encoding e character encoding scheme to be used in this database

lc_collate e LC_COLLATE seing to be used in this database

lc_ctype e LC_CTYPE seing to be used in this database

owner e username of the database owner

template e template database from which to build this database

runas System user all operations should be performed on behalf of

Deprecated since version 0.17.0.

user System user all operations should be performed on behalf of

db_user database username if different from config or default

db_password user password if any password for a specified user

db_host Database host if different from config or default

db_port Database port if different from config or default

New in version 0.17.0.

22.27.84 salt.states.postgres_extension

Management of PostgreSQL extensions (e.g.: postgis)

e postgres_extensions module is used to create and manage Postgres extensions.

adminpack:
postgres_extension.present

salt.states.postgres_extension.absent(name, if_exists=None, restrict=None, cas-
cade=None, user=None, maintenance_db=None,
db_password=None, db_host=None, db_port=None,
db_user=None)

Ensure that the named extension is absent

name Extension name of the extension to remove

cascade Drop on cascade

if_exists Add if exist slug

restrict Add restrict slug

maintenance_db Database to act on

user System user all operations should be performed on behalf of

db_user database username if different from config or default

db_password user password if any password for a specified user

db_host Database host if different from config or default

db_port Database port if different from config or default

22.27. Full list of builtin state modules 1203

Salt Documentation, Release 2014.7.6

salt.states.postgres_extension.present(name, if_not_exists=None, schema=None,
ext_version=None, from_version=None, user=None,
maintenance_db=None, db_password=None,
db_host=None, db_port=None, db_user=None)

Ensure that the named extension is present with the specified privileges

name e name of the extension to manage

if_not_exists Add a if_not_exists switch to the ddl statement

sema Schema to install the extension into

from_version Old extension version if already installed

ext_version version to install

user System user all operations should be performed on behalf of

maintenance_db Database to act on

db_user database username if different from config or default

db_password user password if any password for a specified user

db_host Database host if different from config or default

db_port Database port if different from config or default

22.27.85 salt.states.postgres_group

Management of PostgreSQL groups (roles)

e postgres_group module is used to create and manage Postgres groups.

frank:
postgres_group.present

salt.states.postgres_group.absent(name, runas=None, user=None, maintenance_db=None,
db_password=None, db_host=None, db_port=None,
db_user=None)

Ensure that the named group is absent

name e groupname of the group to remove

runas System user all operations should be performed on behalf of

Deprecated since version 0.17.0.

user System user all operations should be performed on behalf of

New in version 0.17.0.

db_user database username if different from config or defaul

db_password user password if any password for a specified user

db_host Database host if different from config or default

db_port Database port if different from config or default

1204 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

salt.states.postgres_group.present(name, createdb=None, createroles=None, createuser=None,
encrypted=None, superuser=None, inherit=None, lo-
gin=None, replication=None, password=None, re-
fresh_password=None, groups=None, runas=None,
user=None, maintenance_db=None, db_password=None,
db_host=None, db_port=None, db_user=None)

Ensure that the named group is present with the specified privileges Please note that the user/group notion
in postgresql is just abstract, we have roles, where users can be seens as roles with the LOGIN privilege and
groups the others.

name e name of the group to manage

createdb Is the group allowed to create databases?

createroles Is the group allowed to create other roles/users

createuser Alias to create roles, and history problem, in pgsql normally createuser == superuser

encrypted Should the password be encrypted in the system catalog?

login Should the group have login perm

inherit Should the group inherit permissions

superuser Should the new group be a ``superuser''

replication Should the new group be allowed to initiate streaming replication

password e Group's password It can be either a plain string or a md5 postgresql hashed password:

'md5{MD5OF({password}{role}}'

If encrypted is None or True, the password will be automatically encrypted to the previous format if it
is not already done.

refresh_password Password refresh flag

Boolean aribute to specify whether to password comparison check should be performed.

If refresh_password is None or False, the passwordwill be automatically updatedwithout extra password
change check.

is behaviour allows to execute in environments without superuser access available, e.g. Amazon RDS
for PostgreSQL

groups A string of comma separated groups the group should be in

runas System user all operations should be performed on behalf of

Deprecated since version 0.17.0.

user System user all operations should be performed on behalf of

New in version 0.17.0.

db_user database username if different from config or defaul

db_password user password if any password for a specified user

db_host Database host if different from config or default

db_port Database port if different from config or default

22.27. Full list of builtin state modules 1205

Salt Documentation, Release 2014.7.6

22.27.86 salt.states.postgres_user

Management of PostgreSQL users (roles)

e postgres_users module is used to create and manage Postgres users.

frank:
postgres_user.present

salt.states.postgres_user.absent(name, runas=None, user=None, maintenance_db=None,
db_password=None, db_host=None, db_port=None,
db_user=None)

Ensure that the named user is absent

name e username of the user to remove

runas System user all operations should be performed on behalf of

Deprecated since version 0.17.0.

user System user all operations should be performed on behalf of

New in version 0.17.0.

db_user database username if different from config or default

db_password user password if any password for a specified user

db_host Database host if different from config or default

db_port Database port if different from config or default

salt.states.postgres_user.present(name, createdb=None, createroles=None, createuser=None,
encrypted=None, superuser=None, replication=None,
inherit=None, login=None, password=None, re-
fresh_password=None, groups=None, runas=None,
user=None, maintenance_db=None, db_password=None,
db_host=None, db_port=None, db_user=None)

Ensure that the named user is present with the specified privileges Please note that the user/group notion
in postgresql is just abstract, we have roles, where users can be seens as roles with the LOGIN privilege and
groups the others.

name e name of the user to manage

createdb Is the user allowed to create databases?

createroles Is the user allowed to create other users?

createuser Alias to create roles

encrypted Should the password be encrypted in the system catalog?

login Should the group have login perm

inherit Should the group inherit permissions

superuser Should the new user be a ``superuser''

replication Should the new user be allowed to initiate streaming replication

password e user's password It can be either a plain string or a md5 postgresql hashed password:

'md5{MD5OF({password}{role}}'

1206 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

If encrypted is None or True, the password will be automatically encrypted to the previous format if it
is not already done.

refresh_password Password refresh flag

Boolean aribute to specify whether to password comparison check should be performed.

If refresh_password is None or False, the passwordwill be automatically updatedwithout extra password
change check.

is behaviour allows to execute in environments without superuser access available, e.g. Amazon RDS
for PostgreSQL

groups A string of comma separated groups the user should be in

runas System user all operations should be performed on behalf of

Deprecated since version 0.17.0.

user System user all operations should be performed on behalf of

New in version 0.17.0.

db_user database username if different from config or default

db_password user password if any password for a specified user

db_host Database host if different from config or default

db_port Database port if different from config or default

22.27.87 salt.states.powerpath

Powerpath configuration support

Allows configuration of EMC Powerpath. Currently only addition/deletion of licenses is supported.

key:
powerpath.license_present: []

salt.states.powerpath.license_absent(name)
Ensures that the specified PowerPath license key is absent on the host.

name e licnese key to ensure is absent

salt.states.powerpath.license_present(name)
Ensures that the specified PowerPath license key is present on the host.

name e licnese key to ensure is present

22.27.88 salt.states.process

Process Management

Ensure a process matching a given paern is absent.

httpd-absent:
process.absent:

- name: apache2

22.27. Full list of builtin state modules 1207

Salt Documentation, Release 2014.7.6

salt.states.process.absent(name, user=None, signal=None)
Ensures that the named command is not running.

name e paern to match.

user e user process belongs

signal Signal to send to the process(es).

22.27.89 salt.states.pyenv

Managing python installations with pyenv

is module is used to install and manage python installations with pyenv. Different versions of python can be
installed, and uninstalled. pyenv will be installed automatically the first time it is needed and can be updated later.
is module will not automatically install packages which pyenv will need to compile the versions of python.

If pyenv is run as the root user then it will be installed to /usr/local/pyenv, otherwise it will be installed to the
users ~/.pyenv directory. To make pyenv available in the shell you may need to add the pyenv/shims and pyenv/bin
directories to the users PATH. If you are installing as root and want other users to be able to access pyenv then you
will need to add pyenv_ROOT to their environment.

is is how a state configuration could look like:

pyenv-deps:
pkg.installed:

- pkgs:
- make
- build-essential
- libssl-dev
- zlib1g-dev
- libbz2-dev
- libreadline-dev
- libsqlite3-dev
- wget
- curl
- llvm

python-2.6:
pyenv.absent:

- require:
- pkg: pyenv-deps

python-2.7.6:
pyenv.installed:

- default: True
- require:

- pkg: pyenv-deps

salt.states.pyenv.absent(name, runas=None, user=None)
Verify that the specified python is not installed with pyenv. pyenv is installed if necessary.

name e version of python to uninstall

runas: None e user to run pyenv as.

Deprecated since version 0.17.0.

user: None e user to run pyenv as.

1208 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

New in version 0.17.0.

New in version 0.16.0.

salt.states.pyenv.install_pyenv(name, user=None)
Install pyenv if not installed. Allows you to require pyenv be installed prior to installing the plugins. Useful
if you want to install pyenv plugins via the git or file modules and need them installed before installing any
rubies.

Use the pyenv.root configuration option to set the path for pyenv if you want a system wide install that is not
in a user home dir.

user: None e user to run pyenv as.

salt.states.pyenv.installed(name, default=False, runas=None, user=None)
Verify that the specified python is installed with pyenv. pyenv is installed if necessary.

name e version of python to install

default [False] Whether to make this python the default.

runas: None e user to run pyenv as.

Deprecated since version 0.17.0.

user: None e user to run pyenv as.

New in version 0.17.0.

New in version 0.16.0.

22.27.90 salt.states.quota

Management of POSIX otas

e quota can be managed for the system:

/:
quota.mode:

mode: off
quotatype: user

salt.states.quota.mode(name, mode, quotatype)
Set the quota for the system

name e filesystem to set the quota mode on

mode Whether the quota system is on or off

quotatype Must be user or group

22.27.91 salt.states.rabbitmq_cluster

Manage RabbitMQ Clusters

Example:

22.27. Full list of builtin state modules 1209

Salt Documentation, Release 2014.7.6

rabbit@rabbit.example.com:
rabbitmq_cluster.join:

- user: rabbit
- host: rabbit.example.com

salt.states.rabbitmq_cluster.join(name, host, user='rabbit', runas=None)
Ensure the RabbitMQ plugin is enabled.

name Irrelevant, not used (recommended: user@host)

user e user to join the cluster as (default: rabbit)

host e cluster host to join to

runas e user to run the rabbitmq-plugin command as

22.27.92 salt.states.rabbitmq_plugin

Manage RabbitMQ Plugins

New in version 2014.1.0.

Example:

some_plugin:
rabbitmq_plugin.enabled: []

salt.states.rabbitmq_plugin.disabled(name, runas=None)
Ensure the RabbitMQ plugin is enabled.

name e name of the plugin

runas e user to run the rabbitmq-plugin command as

salt.states.rabbitmq_plugin.enabled(name, runas=None)
Ensure the RabbitMQ plugin is enabled.

name e name of the plugin

runas e user to run the rabbitmq-plugin command as

22.27.93 salt.states.rabbitmq_policy

Manage RabbitMQ Policies

maintainer Benn Eichhorn <benn@getlocalmeasure.com>

maturity new

platform all

Example:

rabbit_policy:
rabbitmq_policy.present:

- name: HA
- pattern: '.*'
- definition: '{"ha-mode": "all"}'

1210 Chapter 22. Reference

mailto:user@host
mailto:benn@getlocalmeasure.com

Salt Documentation, Release 2014.7.6

salt.states.rabbitmq_policy.absent(name, vhost='/', runas=None)
Ensure the named policy is absent

Reference: hp://www.rabbitmq.com/ha.html

name e name of the policy to remove

runas Name of the user to run the command as

salt.states.rabbitmq_policy.present(name, paern, definition, priority=0, vhost='/',
runas=None)

Ensure the RabbitMQ policy exists.

Reference: hp://www.rabbitmq.com/ha.html

name Policy name

pattern A regex of queues to apply the policy to

definition A json dict describing the policy

priority Priority (defaults to 0)

vhost Virtual host to apply to (defaults to `/')

runas Name of the user to run the command as

22.27.94 salt.states.rabbitmq_user

Manage RabbitMQ Users

Example:

rabbit_user:
rabbitmq_user.present:

- password: password
- force: True
- tags: administrator
- perms:

- '/':
- '.*'
- '.*'
- '.*'

- runas: rabbitmq

salt.states.rabbitmq_user.absent(name, runas=None)
Ensure the named user is absent

name e name of the user to remove

runas User to run the command

salt.states.rabbitmq_user.present(name, password=None, force=False, tags=None, perms=(),
runas=None)

Ensure the RabbitMQ user exists.

name User name

password User's password, if one needs to be set

force If user exists, forcibly change the password

tags Optionally set user tags for user

22.27. Full list of builtin state modules 1211

http://www.rabbitmq.com/ha.html
http://www.rabbitmq.com/ha.html

Salt Documentation, Release 2014.7.6

perms A list of dicts with vhost keys and 3-tuple values

runas Name of the user to run the command

22.27.95 salt.states.rabbitmq_vhost

Manage RabbitMQ Virtual Hosts

Example:

virtual_host:
rabbitmq_vhost.present:

- user: rabbit_user
- conf: .*
- write: .*
- read: .*

salt.states.rabbitmq_vhost.absent(name, runas=None)
Ensure the RabbitMQ Virtual Host is absent

name Name of the Virtual Host to remove

runas User to run the command

Deprecated since version Beryllium.

salt.states.rabbitmq_vhost.present(name, user=None, owner=None, conf=None, write=None,
read=None, runas=None)

Ensure the RabbitMQ VHost exists.

name VHost name

user Initial user permission to set on the VHost, if present

Deprecated since version Beryllium.

owner Initial owner permission to set on the VHost, if present

conf Initial conf string to apply to the VHost and user. Defaults to .*

write Initial write permissions to apply to the VHost and user. Defaults to .*

read Initial read permissions to apply to the VHost and user. Defaults to .*

runas Name of the user to run the command

Deprecated since version Beryllium.

22.27.96 salt.states.rbenv

Managing Ruby installations with rbenv

is module is used to install and manage ruby installations with rbenv. Different versions of ruby can be installed,
and uninstalled. Rbenv will be installed automatically the first time it is needed and can be updated later. is
module will not automatically install packages which rbenv will need to compile the versions of ruby.

If rbenv is run as the root user then it will be installed to /usr/local/rbenv, otherwise it will be installed to the
users ~/.rbenv directory. To make rbenv available in the shell you may need to add the rbenv/shims and rbenv/bin
directories to the users PATH. If you are installing as root and want other users to be able to access rbenv then you
will need to add RBENV_ROOT to their environment.

1212 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

is is how a state configuration could look like:

rbenv-deps:
pkg.installed:

- pkgs:
- bash
- git
- openssl
- gmake
- curl

ruby-1.9.3-p392:
rbenv.absent:

- require:
- pkg: rbenv-deps

ruby-1.9.3-p429:
rbenv.installed:

- default: True
- require:

- pkg: rbenv-deps

salt.states.rbenv.absent(name, runas=None, user=None)
Verify that the specified ruby is not installed with rbenv. Rbenv is installed if necessary.

name e version of ruby to uninstall

runas: None e user to run rbenv as.

Deprecated since version 0.17.0.

user: None e user to run rbenv as.

New in version 0.17.0.

New in version 0.16.0.

salt.states.rbenv.install_rbenv(name, user=None)
Install rbenv if not installed. Allows you to require rbenv be installed prior to installing the plugins. Useful
if you want to install rbenv plugins via the git or file modules and need them installed before installing any
rubies.

Use the rbenv.root configuration option to set the path for rbenv if you want a system wide install that is not
in a user home dir.

user: None e user to run rbenv as.

salt.states.rbenv.installed(name, default=False, runas=None, user=None)
Verify that the specified ruby is installed with rbenv. Rbenv is installed if necessary.

name e version of ruby to install

default [False] Whether to make this ruby the default.

runas: None e user to run rbenv as.

Deprecated since version 0.17.0.

user: None e user to run rbenv as.

New in version 0.17.0.

New in version 0.16.0.

22.27. Full list of builtin state modules 1213

Salt Documentation, Release 2014.7.6

22.27.97 salt.states.rdp

Manage RDP Service on Windows servers

salt.states.rdp.disabled(name)
Disable the RDP service

salt.states.rdp.enabled(name)
Enable the RDP service and make sure access to the RDP port is allowed in the firewall configuration

22.27.98 salt.states.redismod

Management of Redis server

New in version 2014.7.0.

depends

• redis Python module

configuration See salt.modules.redis for setup instructions.

key_in_redis:
redis.string:

- value: string data

e redis server information specified in the minion config file can be overidden in states using the following argu-
ments: host, post, db, password.

key_in_redis:
redis.string:

- value: string data
- host: localhost
- port: 6379
- db: 0
- password: somuchkittycat

salt.states.redismod.absent(name, keys=None, **connection_args)
Ensure key absent from redis

name Key to ensure absent from redis

keys list of keys to ensure absent, name will be ignored if this is used

salt.states.redismod.string(name, value, expire=None, expireat=None, **connection_args)
Ensure that the key exists in redis with the value specified

name Redis key to manage

value Data to persist in key

expire Sets time to live for key in seconds

expireat Sets expiration time for key via UNIX timestamp, overrides expire

1214 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.27.99 salt.states.reg

Manage the registry on Windows

salt.states.reg.absent(name)
Remove a registry key

Example:

'HKEY_CURRENT_USER\SOFTWARE\Salt\version':
reg.absent

salt.states.reg.present(name, value, vtype='REG_DWORD', reflection=True)
Set a registry entry

Optionally set reflection to False to disable reflection. reflection has no effect on a 32-bit OS.

In the example below, this will prevent Windows from silently creating the key in:
HKEY_CURRENT_USER\SOFTWARE\Wow6432Node\Salt\version

Example:

HKEY_CURRENT_USER\SOFTWARE\Salt\version:
reg.present:

- value: 0.15.3
- vtype: REG_SZ
- reflection: False

22.27.100 salt.states.rvm

Managing Ruby installations and gemsets with Ruby Version Manager (RVM)

is module is used to install and manage ruby installations and gemsets with RVM, the Ruby Version Manager.
Different versions of ruby can be installed and gemsets created. RVM itself will be installed automatically if it's not
present. is module will not automatically install packages that RVM depends on or ones that are needed to build
ruby. If you want to run RVM as an unprivileged user (recommended) you will have to create this user yourself.
is is how a state configuration could look like:

rvm:
group.present: []
user.present:

- gid: rvm
- home: /home/rvm
- require:

- group: rvm

rvm-deps:
pkg.installed:

- pkgs:
- bash
- coreutils
- gzip
- bzip2
- gawk
- sed
- curl
- git-core
- subversion

22.27. Full list of builtin state modules 1215

Salt Documentation, Release 2014.7.6

mri-deps:
pkg.installed:

- pkgs:
- build-essential
- openssl
- libreadline6
- libreadline6-dev
- curl
- git-core
- zlib1g
- zlib1g-dev
- libssl-dev
- libyaml-dev
- libsqlite3-0
- libsqlite3-dev
- sqlite3
- libxml2-dev
- libxslt1-dev
- autoconf
- libc6-dev
- libncurses5-dev
- automake
- libtool
- bison
- subversion
- ruby

jruby-deps:
pkg.installed:

- pkgs:
- curl
- g++
- openjdk-6-jre-headless

ruby-1.9.2:
rvm.installed:

- default: True
- user: rvm
- require:

- pkg: rvm-deps
- pkg: mri-deps
- user: rvm

jruby:
rvm.installed:

- user: rvm
- require:

- pkg: rvm-deps
- pkg: jruby-deps
- user: rvm

jgemset:
rvm.gemset_present:

- ruby: jruby
- user: rvm
- require:

- rvm: jruby

1216 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

mygemset:
rvm.gemset_present:

- ruby: ruby-1.9.2
- user: rvm
- require:

- rvm: ruby-1.9.2

salt.states.rvm.gemset_present(name, ruby='default', runas=None, user=None)
Verify that the gemset is present.

name e name of the gemset.

ruby: default e ruby version this gemset belongs to.

runas: None e user to run rvm as.

Deprecated since version 0.17.0.

user: None e user to run rvm as.

New in version 0.17.0.

salt.states.rvm.installed(name, default=False, runas=None, user=None)
Verify that the specified ruby is installed with RVM. RVM is installed when necessary.

name e version of ruby to install

default [False] Whether to make this ruby the default.

runas: None e user to run rvm as.

Deprecated since version 0.17.0.

user: None e user to run rvm as.

New in version 0.17.0.

22.27.101 salt.states.saltmod

Control the Salt command interface

is state is intended for use from the Salt Master. It provides access to sending commands down to minions as well
as access to executing master-side modules. ese state functions wrap Salt's Python API .

See also:

More Orchestrate documentation

• Full Orchestrate Tutorial

• The Orchestrate runner

salt.states.saltmod.function(name, tgt, ssh=False, tgt_type=None, expr_form=None, ret='`,
expect_minions=False, fail_minions=None, fail_function=None,
arg=None, kwarg=None, timeout=None)

Execute a single module function on a remote minion via salt or salt-ssh

name e name of the function to run, aka cmd.run or pkg.install

tgt e target specification, aka `*' for all minions

tgt_type | expr_form e target type, defaults to glob

arg e list of arguments to pass into the function

22.27. Full list of builtin state modules 1217

Salt Documentation, Release 2014.7.6

kwarg e list of keyword arguments to pass into the function

ret Optionally set a single or a list of returners to use

expect_minions An optional boolean for failing if some minions do not respond

fail_minions An optional list of targeted minions where failure is an option

fail_function An optional string that points to a salt module that returns True or False based on the returned
data dict for individual minions

ssh Set to True to use the ssh client instaed of the standard salt client

salt.states.saltmod.runner(name, **kwargs)
Execute a runner module on the master

New in version 2014.7.

name e name of the function to run

kwargs Any keyword arguments to pass to the runner function

salt.states.saltmod.state(name, tgt, ssh=False, tgt_type=None, expr_form=None, ret='`, high-
state=None, sls=None, top=None, env=None, test=False, pillar=None, ex-
pect_minions=False, fail_minions=None, allow_fail=0, concurrent=False,
timeout=None)

Invoke a state run on a given target

name An arbitrary name used to track the state execution

tgt e target specification for the state run.

tgt_type | expr_form e target type to resolve, defaults to glob

ret Optionally set a single or a list of returners to use

highstate Defaults to None, if set to True the target systems will ignore any sls references specified in the sls
option and call state.highstate on the targeted minions

top Should be the name of a top file. If set state.top is called with this top file instead of state.sls.

sls A group of sls files to execute. is can be defined as a single string containing a single sls file, or a list of
sls files

test Pass test=true through to the state function

pillar Pass the pillar kwarg through to the state function

saltenv e default salt environment to pull sls files from

ssh Set to True to use the ssh client instaed of the standard salt client

roster In the event of using salt-ssh, a roster system can be set

expect_minions An optional boolean for failing if some minions do not respond

fail_minions An optional list of targeted minions where failure is an option

allow_fail Pass in the number of minions to allow for failure before seing the result of the execution to False

concurrent Allow multiple state runs to occur at once.

WARNING: is flag is potentially dangerous. It is designed for use when multiple state runs can safely
be run at the same Do not use this flag for performance optimization.

Examples:

Run a list of sls files via state.sls on target minions:

1218 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

webservers:
salt.state:

- tgt: 'web*'
- sls:

- apache
- django
- core

- saltenv: prod

Run a full state.highstate on target mininons.

databases:
salt.state:

- tgt: role:database
- tgt_type: grain
- highstate: True

salt.states.saltmod.wait_for_event(name, id_list, event_id='id', timeout=300)
Watch Salt's event bus and block until a condition is met

New in version 2014.7.

name An event tag to watch for; supports Reactor-style globbing.

id_list A list of event identifiers to watch for -- usually the minion ID. Each time an event tag is matched
the event data is inspected for event_id, if found it is removed from id_list. When id_list is
empty this function returns success.

event_id [id] e name of a key in the event data. Default is id for the minion ID, another common value is
name for use with orchestrating salt-cloud events.

timeout [300] e maximum time in seconds to wait before failing.

e following example blocks until all the listed minions complete a restart and reconnect to the Salt master:

reboot_all_minions:
salt.function:

- name: system.reboot
- tgt: '*'

wait_for_reboots:
salt.wait_for_event:

- name: salt/minion/*/start
- id_list:

- jerry
- stuart
- dave
- phil
- kevin
- mike

- require:
- salt: reboot_all_minions

salt.states.saltmod.wheel(name, **kwargs)
Execute a wheel module on the master

New in version 2014.7.

name e name of the function to run

kwargs Any keyword arguments to pass to the wheel function

22.27. Full list of builtin state modules 1219

Salt Documentation, Release 2014.7.6

accept_minion_key:
salt.wheel:

- name: key.accept
- match: frank

22.27.102 salt.states.schedule

Management of the Salt scheduler

job3:
schedule.present:

- function: test.ping
- seconds: 3600
- splay: 10

This will schedule the command: test.ping every 3600 seconds
(every hour) splaying the time between 0 and 10 seconds

job2:
schedule.present:

- function: test.ping
- seconds: 15
- splay:

- start: 10
- end: 20

This will schedule the command: test.ping every 3600 seconds
(every hour) splaying the time between 10 and 20 seconds

job1:
schedule.present:

- function: state.sls
- job_args:

- httpd
- job_kwargs:

test: True
- when:

- Monday 5:00pm
- Tuesday 3:00pm
- Wednesday 5:00pm
- Thursday 3:00pm
- Friday 5:00pm

This will schedule the command: state.sls httpd test=True at 5pm on Monday,
Wednesday and Friday, and 3pm on Tuesday and Thursday.

job1:
schedule.present:

- function: state.sls
- job_args:

- httpd
- job_kwargs:

test: True
- cron: '*/5 * * * *'

Scheduled jobs can also be specified using the format used by cron. This will

1220 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

schedule the command: state.sls httpd test=True to run every 5 minutes. Requires
that python-croniter is installed.

salt.states.schedule.absent(name, **kwargs)
Ensure a job is absent from the schedule

name e unique name that is given to the scheduled job.

salt.states.schedule.present(name, **kwargs)
Ensure a job is present in the schedule

name e unique name that is given to the scheduled job.

seconds e scheduled job will be executed aer the specified number of seconds have passed.

minutes e scheduled job will be executed aer the specified number of minutes have passed.

hours e scheduled job will be executed aer the specified number of hours have passed.

days e scheduled job will be executed aer the specified number of days have passed.

when is will schedule the job at the specified time(s). e when parameter must be a single value or a
dictionary with the date string(s) using the dateutil format.

cron is will schedule the job at the specified time(s) using the crontab format.

function e function that should be executed by the scheduled job.

job_args e arguments that will be used by the scheduled job.

job_kwargs e keyword arguments that will be used by the scheduled job.

maxrunning Ensure that there are no more than N copies of a particular job running.

jid_include Include the job into the job cache.

splay e amount of time in seconds to splay a scheduled job. Can be specified as a single value in seconds
or as a dictionary range with `start' and `end' values.

range is will schedule the command within the range specified. e range parameter must be a dictionary
with the date strings using the dateutil format.

22.27.103 salt.states.selinux

Management of SELinux rules

If SELinux is available for the running system, the mode can be managed and booleans can be set.

enforcing:
selinux.mode

samba_create_home_dirs:
selinux.boolean:

- value: True
- persist: True

Note: Use of these states require that the selinux execution module is available.

salt.states.selinux.boolean(name, value, persist=False)
Set up an SELinux boolean

22.27. Full list of builtin state modules 1221

Salt Documentation, Release 2014.7.6

name e name of the boolean to set

value e value to set on the boolean

persist Defaults to False, set persist to true to make the boolean apply on a reboot

salt.states.selinux.mode(name)
Verifies the mode SELinux is running in, can be set to enforcing or permissive

name e mode to run SELinux in, permissive or enforcing

22.27.104 salt.states.serverdensity_device

Monitor Server with Server Density

New in version 2014.7.0.

Server Density Is a hosted monitoring service.

Warning: is state module is beta. It might be changed later to include more or less automation.

Note: is state module requires a pillar for authentication with Server Density:

serverdensity:
api_token: "b97da80a41c4f61bff05975ee51eb1aa"
account_url: "https://your-account.serverdensity.io"

Note: Although Server Density allows duplicate device names in its database, this module will raise an exception if
you try monitoring devices with the same name.

Example:

'server_name':
serverdensity_device.monitored

salt.states.serverdensity_device.monitored(name, group=None, salt_name=True,
salt_params=True, **params)

Device is monitored with Server Density.

name Device name in Server Density.

salt_name If True (default), takes the name from the id grain. If False, the provided name is used.

group Group name under with device will appear in Server Density dashboard. Default - None.

salt_params If True (default), needed config parameters will be sourced from grains and from sta-
tus.all_status.

params Add parameters that you want to appear in the Server Density dashboard. Will overwrite the
salt_params parameters. For more info, see the API docs.

Usage example:

'server_name':
serverdensity_device.monitored

1222 Chapter 22. Reference

https://www.serverdensity.com/
https://apidocs.serverdensity.com/Inventory/Devices/Creating

Salt Documentation, Release 2014.7.6

'server_name':
serverdensity_device.monitored:

- group: web-servers

'my_special_server':
serverdensity_device.monitored:

- salt_name: False
- group: web-servers
- cpuCores: 2
- os: CentOS

22.27.105 salt.states.service

Starting or restarting of services and daemons

Services are defined as system daemons typically started with system init or rc scripts, services can be defined as
running or dead.

httpd:
service.running: []

e service can also be set to be started at runtime via the enable option:

openvpn:
service.running:

- enable: True

By default if a service is triggered to refresh due to a watch statement the service is by default restarted. If the desired
behavior is to reload the service, then set the reload value to True:

redis:
service.running:

- enable: True
- reload: True
- watch:

- pkg: redis

Note: More details regarding watch can be found in the Requisites documentation.

salt.states.service.dead(name, enable=None, sig=None, **kwargs)
Ensure that the named service is dead by stopping the service if it is running

name e name of the init or rc script used to manage the service

enable Set the service to be enabled at boot time, True sets the service to be enabled, False sets the named
service to be disabled. e default is None, which does not enable or disable anything.

sig e string to search for when looking for the service process with ps

salt.states.service.disabled(name, **kwargs)
Verify that the service is disabled on boot, only use this state if you don't want to manage the running process,
remember that if you want to disable a service to use the enable: False option for the running or dead function.

name e name of the init or rc script used to manage the service

22.27. Full list of builtin state modules 1223

Salt Documentation, Release 2014.7.6

salt.states.service.enabled(name, **kwargs)
Verify that the service is enabled on boot, only use this state if you don't want to manage the running process,
remember that if you want to enable a running service to use the enable: True option for the running or dead
function.

name e name of the init or rc script used to manage the service

salt.states.service.mod_watch(name, sfun=None, sig=None, reload=False, full_restart=False,
force=False, **kwargs)

e service watcher, called to invoke the watch command.

name e name of the init or rc script used to manage the service

sfun e original function which triggered the mod_watch call (service.running, for example).

sig e string to search for when looking for the service process with ps

salt.states.service.running(name, enable=None, sig=None, **kwargs)
Verify that the service is running

name e name of the init or rc script used to manage the service

enable Set the service to be enabled at boot time, True sets the service to be enabled, False sets the named
service to be disabled. e default is None, which does not enable or disable anything.

sig e string to search for when looking for the service process with ps

22.27.106 salt.states.smtp

Sending Messages via SMTP

New in version 2014.7.0.

is state is useful for firing messages during state runs, using the XMPP protocol

server-warning-message:
smtp.send_msg:

- name: 'This is a server warning message'
- profile: my-smtp-account
- recipient: admins@example.com

salt.states.smtp.send_msg(name, recipient, subject, sender, profile, use_ssl='True')
Send a message via SMTP

server-warning-message:
smtp.send_msg:

- name: 'This is a server warning message'
- profile: my-smtp-account
- subject: 'Message from Salt'
- recipient: admin@example.com
- sender: admin@example.com
- use_ssl: True

name e message to send via SMTP

1224 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.27.107 salt.states.ssh_auth

Control of entries in SSH authorized_key files

e information stored in a user's SSH authorized key file can be easily controlled via the ssh_auth state. Defaults
can be set by the enc, options, and comment keys. ese defaults can be overridden by including them in the name.

Since the YAML specification limits the length of simple keys to 1024 characters, and since SSH keys are oen longer
than that, you may have to use a YAML `explicit key', as demonstrated in the second example below.

AAAAB3NzaC1kc3MAAACBAL0sQ9fJ5bYTEyY==:
ssh_auth.present:

- user: root
- enc: ssh-dss

? AAAAB3NzaC1kc3MAAACBAL0sQ9fJ5bYTEyY==...
:

ssh_auth.present:
- user: root
- enc: ssh-dss

thatch:
ssh_auth.present:

- user: root
- source: salt://ssh_keys/thatch.id_rsa.pub

sshkeys:
ssh_auth.present:

- user: root
- enc: ssh-rsa
- options:

- option1="value1"
- option2="value2 flag2"

- comment: myuser
- names:

- AAAAB3NzaC1kc3MAAACBAL0sQ9fJ5bYTEyY==
- ssh-dss AAAAB3NzaCL0sQ9fJ5bYTEyY== user@domain
- option3="value3" ssh-dss AAAAB3NzaC1kcQ9J5bYTEyY== other@testdomain
- AAAAB3NzaC1kcQ9fJFF435bYTEyY== newcomment

salt.states.ssh_auth.absent(name, user, enc='ssh-rsa', comment='`, options=None, con-
fig='.ssh/authorized_keys')

Verifies that the specified SSH key is absent

name e SSH key to manage

user e user who owns the SSH authorized keys file to modify

enc Defines what type of key is being used; can be ed25519, ecdsa, ssh-rsa or ssh-dss

comment e comment to be placed with the SSH public key

options e options passed to the key, pass a list object

config e location of the authorized keys file relative to the user's home directory, defaults to
''.ssh/authorized_keys''

salt.states.ssh_auth.present(name, user, enc='ssh-rsa', comment='`, source='`, options=None, con-
fig='.ssh/authorized_keys', **kwargs)

Verifies that the specified SSH key is present for the specified user

22.27. Full list of builtin state modules 1225

Salt Documentation, Release 2014.7.6

name e SSH key to manage

user e user who owns the SSH authorized keys file to modify

enc Defines what type of key is being used; can be ed25519, ecdsa, ssh-rsa or ssh-dss

comment e comment to be placed with the SSH public key

source e source file for the key(s). Can contain any number of public keys, in standard ``authorized_keys''
format. If this is set, comment, enc, and options will be ignored.

Note: e source file must contain keys in the format <enc> <key> <comment>. If you have generated
a keypair using PuTTYgen, then you will need to do the following to retrieve an OpenSSH-compatible public
key.

1.In PuTTYgen, click Load, and select the private key file (not the public key), and click Open.

2.Copy the public key from the box labeled Public key for pasting into OpenSSH autho-
rized_keys file.

3.Paste it into a new file.

options e options passed to the key, pass a list object

config e location of the authorized keys file relative to the user's home directory, defaults to
''.ssh/authorized_keys''

22.27.108 salt.states.ssh_known_hosts

Control of SSH known_hosts entries

Manage the information stored in the known_hosts files.

github.com:
ssh_known_hosts:

- present
- user: root
- fingerprint: 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48

example.com:
ssh_known_hosts:

- absent
- user: root

salt.states.ssh_known_hosts.absent(name, user=None, config=None)
Verifies that the specified host is not known by the given user

name e host name

user e user who owns the ssh authorized keys file to modify

config e location of the authorized keys file relative to the user's home directory, defaults to
''.ssh/known_hosts''. If no user is specified, defaults to ``/etc/ssh/ssh_known_hosts''. If present, must
be an absolute path when a user is not specified.

salt.states.ssh_known_hosts.present(name, user=None, fingerprint=None,
key=None, port=None, enc=None, config=None,
hash_hostname=True)

Verifies that the specified host is known by the specified user

1226 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Onmany systems, specifically those runningwith openssh 4 or older, the enc optionmust be set, only openssh
5 and above can detect the key type.

name e name of the remote host (e.g. ``github.com'')

user e user who owns the ssh authorized keys file to modify

enc Defines what type of key is being used, can be ed25519, ecdsa ssh-rsa or ssh-dss

fingerprint e fingerprint of the key which must be presented in the known_hosts file

port optional parameter, denoting the port of the remote host, which will be used in case, if the public key
will be requested from it. By default the port 22 is used.

config e location of the authorized keys file relative to the user's home directory, defaults to
''.ssh/known_hosts''. If no user is specified, defaults to ``/etc/ssh/ssh_known_hosts''. If present, must
be an absolute path when a user is not specified.

hash_hostname [True] Hash all hostnames and addresses in the output.

22.27.109 salt.states.stateconf

Stateconf System

e stateconf system is intended for use only with the stateconf renderer. is State module presents the set function.
is function does not execute any functionality, but is used to interact with the stateconf renderer.

salt.states.stateconf.context(name, **kwargs)
No-op state to support state config via the stateconf renderer.

salt.states.stateconf.set(name, **kwargs)
No-op state to support state config via the stateconf renderer.

22.27.110 salt.states.status

Minion status monitoring

Maps to the status execution module.

salt.states.status.loadavg(name, maximum=None, minimum=None)
Return the current load average for the specified minion. Available values for name are 1-min, 5-min and
15-min. minimum and maximum values should be passed in as strings.

22.27.111 salt.states.supervisord

Interaction with the Supervisor daemon

wsgi_server:
supervisord.running:

- require:
- pkg: supervisor

- watch:
- file: /etc/nginx/sites-enabled/wsgi_server.conf

salt.states.supervisord.dead(name, user=None, runas=None, conf_file=None, bin_env=None)
Ensure the named service is dead (not running).

22.27. Full list of builtin state modules 1227

Salt Documentation, Release 2014.7.6

name Service name as defined in the supervisor configuration file

runas Name of the user to run the supervisorctl command

Deprecated since version 0.17.0.

user Name of the user to run the supervisorctl command

New in version 0.17.0.

conf_file path to supervisorctl config file

bin_env path to supervisorctl bin or path to virtualenv with supervisor installed

salt.states.supervisord.mod_watch(name, restart=True, update=False, user=None, runas=None,
conf_file=None, bin_env=None, **kwargs)

salt.states.supervisord.running(name, restart=False, update=False, user=None, runas=None,
conf_file=None, bin_env=None)

Ensure the named service is running.

name Service name as defined in the supervisor configuration file

restart Whether to force a restart

update Whether to update the supervisor configuration.

runas Name of the user to run the supervisorctl command

Deprecated since version 0.17.0.

user Name of the user to run the supervisorctl command

New in version 0.17.0.

conf_file path to supervisorctl config file

bin_env path to supervisorctl bin or path to virtualenv with supervisor installed

22.27.112 salt.states.svn

Manage SVN repositories

Manage repository checkouts via the svn vcs system:

http://unladen-swallow.googlecode.com/svn/trunk/:
svn.latest:

- target: /tmp/swallow

salt.states.svn.dirty(name, target, user=None, username=None, password=None, ig-
nore_unversioned=False)

Determine if the working directory has been changed.

salt.states.svn.export(name, target=None, rev=None, user=None, username=None, password=None,
force=False, overwrite=False, externals=True, trust=False)

Export a file or directory from an SVN repository

name Address and path to the file or directory to be exported.

target Name of the target directory where the checkout will put the working directory

rev [None] e name revision number to checkout. Enable ``force'' if the directory already exists.

user [None] Name of the user performing repository management operations

1228 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

username [None] e user to access the name repository with. e svn default is the current user

password Connect to the Subversion server with this password

New in version 0.17.0.

force [False] Continue if conflicts are encountered

overwrite [False] Overwrite existing target

externals [True] Change to False to not checkout or update externals

trust [False] Automatically trust the remote server. SVN's --trust-server-cert

salt.states.svn.latest(name, target=None, rev=None, user=None, username=None, password=None,
force=False, externals=True, trust=False)

Checkout or update the working directory to the latest revision from the remote repository.

name Address of the name repository as passed to ``svn checkout''

target Name of the target directory where the checkout will put the working directory

rev [None] e name revision number to checkout. Enable ``force'' if the directory already exists.

user [None] Name of the user performing repository management operations

username [None] e user to access the name repository with. e svn default is the current user

password Connect to the Subversion server with this password

New in version 0.17.0.

force [False] Continue if conflicts are encountered

externals [True] Change to False to not checkout or update externals

trust [False] Automatically trust the remote server. SVN's --trust-server-cert

22.27.113 salt.states.sysctl

Configuration of the Linux kernel using sysctl

Control the kernel sysctl system.

vm.swappiness:
sysctl.present:

- value: 20

salt.states.sysctl.present(name, value, config=None)
Ensure that the named sysctl value is set in memory and persisted to the named configuration file. e default
sysctl configuration file is /etc/sysctl.conf

name e name of the sysctl value to edit

value e sysctl value to apply

config e location of the sysctl configuration file. If not specified, the proper location will be detected based
on platform.

22.27. Full list of builtin state modules 1229

Salt Documentation, Release 2014.7.6

22.27.114 salt.states.test

Test States

Provide test case states that enable easy testing of things to do with state calls, e.g. running, calling, logging,
output filtering etc.

always-passes:
test.succeed_without_changes:

- name: foo

always-fails:
test.fail_without_changes:

- name: foo

always-changes-and-succeeds:
test.succeed_with_changes:

- name: foo

always-changes-and-fails:
test.fail_with_changes:

- name: foo

my-custom-combo:
test.configurable_test_state:

- name: foo
- changes: True
- result: False
- comment: bar.baz

salt.states.test.configurable_test_state(name, changes=True, result=True, comment='`)
A configurable test state which determines its output based on the inputs.

New in version 2014.7.0.

name: A unique string.

anges: Do we return anything in the changes field? Accepts True, False, and `Random' Default is True

result: Do we return successfully or not? Accepts True, False, and `Random' Default is True

comment: String to fill the comment field with. Default is `'

salt.states.test.fail_with_changes(name)
Returns failure and changes is not empty.

New in version 2014.7.0.

name: A unique string.

salt.states.test.fail_without_changes(name)
Returns failure.

New in version 2014.7.0.

name: A unique string.

salt.states.test.mod_watch(name, sfun=None, **kwargs)
` Call this function via a watch statement

New in version 2014.7.0.

1230 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

Any parameters in the state return dictionary can be customized by adding the keywords result, comment,
and changes.

this_state_will_return_changes:
test.succeed_with_changes

this_state_will_NOT_return_changes:
test.succeed_without_changes

this_state_is_watching_another_state:
test.succeed_without_changes:

- comment: 'This is a custom comment'
- watch:

- test: this_state_will_return_changes
- test: this_state_will_NOT_return_changes

this_state_is_also_watching_another_state:
test.succeed_without_changes:

- watch:
- test: this_state_will_NOT_return_changes

salt.states.test.succeed_with_changes(name)
Returns successful and changes is not empty

New in version 2014.7.0.

name: A unique string.

salt.states.test.succeed_without_changes(name)
Returns successful.

New in version 2014.7.0.

name A unique string.

22.27.115 salt.states.timezone

Management of timezones

e timezone can be managed for the system:

America/Denver:
timezone.system

e system and the hardware clock are not necessarily set to the same time. By default, the hardware clock is set to
localtime, meaning it is set to the same time as the system clock. If utc is set to True, then the hardware clock will
be set to UTC, and the system clock will be an offset of that.

America/Denver:
timezone.system:

- utc: True

eUbuntu community documentation contains an explanation of this seing, as it applies to systems that dual-boot
with Windows. is is explained in greater detail here.

salt.states.timezone.system(name, utc=True)
Set the timezone for the system.

22.27. Full list of builtin state modules 1231

https://help.ubuntu.com/community/UbuntuTime#Multiple_Boot_Systems_Time_Conflicts

Salt Documentation, Release 2014.7.6

name e name of the timezone to use (e.g.: America/Denver)

utc Whether or not to set the hardware clock to UTC (default is True)

22.27.116 salt.states.tomcat

is state uses the manager webapp to manage Apache tomcat webapps is state requires the manager webapp to
be enabled

e following grains/pillar should be set:

tomcat-manager:user: admin user name
tomcat-manager:passwd: password

and also configure a user in the conf/tomcat-users.xml file:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>

<role rolename="manager-script"/>
<user username="tomcat" password="tomcat" roles="manager-script"/>

</tomcat-users>

Notes:

• Not supported multiple version on the same context path

• More information about tomcat manager: hp://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html

• if you use only this module for deployments you might want to restrict access to the manager so its
only accessible via localhost for more info: hp://tomcat.apache.org/tomcat-7.0-doc/manager-
howto.html#Configuring_Manager_Application_Access

• Tested on:

JVM Vendor: Sun Microsystems Inc.

JVM Version: 1.6.0_43-b01

OS Aritecture: amd64

OS Name: Linux

OS Version: 2.6.32-358.el6.x86_64

Tomcat Version: Apache Tomcat/7.0.37

salt.states.tomcat.mod_watch(name, url='hp://localhost:8080/manager', timeout=180)
e tomcat watcher function. When called it will reload the webapp in question

salt.states.tomcat.undeployed(name, url='hp://localhost:8080/manager', timeout=180)
Enforce that the WAR will be un-deployed from the server

name the context path to deploy

url [hp://localhost:8080/manager] the URL of the server manager webapp

timeout [180] timeout for HTTP request to the tomcat manager

Example:

1232 Chapter 22. Reference

http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html#Configuring_Manager_Application_Access
http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html#Configuring_Manager_Application_Access
http://localhost:8080/manager

Salt Documentation, Release 2014.7.6

jenkins:
tomcat.undeployed:

- name: /ran
- require:

- service: application-service

salt.states.tomcat.wait(name, url='hp://localhost:8080/manager', timeout=180)
Wait for the tomcat manager to load

Notice that if tomcat is not running we won't wait for it start and the state will fail. is state can be required
in the tomcat.war_deployed state to make sure tomcat is running and that the manager is running as well and
ready for deployment

url [hp://localhost:8080/manager] the URL of the server manager webapp

timeout [180] timeout for HTTP request to the tomcat manager

Example:

tomcat-service:
service.running:

- name: tomcat
- enable: True

wait-for-tomcatmanager:
tomcat.wait:

- timeout: 300
- require:

- service: tomcat-service

jenkins:
tomcat.war_deployed:

- name: /ran
- war: salt://jenkins-1.2.4.war
- require:

- tomcat: wait-for-tomcatmanager

salt.states.tomcat.war_deployed(name, war, force=False, url='hp://localhost:8080/manager',
timeout=180, temp_war_location=None)

Enforce that the WAR will be deployed and started in the context path it will make use of WAR versions

for more info: hp://tomcat.apache.org/tomcat-7.0-doc/config/context.html#Naming

name the context path to deploy

war absolute path to WAR file (should be accessible by the user running tomcat) or a path supported by the
salt.modules.cp.get_url function

force force deploy even if version strings are the same, False by default.

url [hp://localhost:8080/manager] the URL of the server manager webapp

timeout [180] timeout for HTTP request to the tomcat manager

temp_war_location [None] use another location to temporarily copy to war file by default the system's temp
directory is used

Example:

jenkins:
tomcat.war_deployed:

- name: /ran

22.27. Full list of builtin state modules 1233

http://localhost:8080/manager
http://tomcat.apache.org/tomcat-7.0-doc/config/context.html#Naming
http://localhost:8080/manager

Salt Documentation, Release 2014.7.6

- war: salt://jenkins-1.2.4.war
- require:

- service: application-service

22.27.117 salt.states.user

Management of user accounts

e user module is used to create and manage user seings, users can be set as either absent or present

fred:
user.present:

- fullname: Fred Jones
- shell: /bin/zsh
- home: /home/fred
- uid: 4000
- gid: 4000
- groups:

- wheel
- storage
- games

testuser:
user.absent

salt.states.user.absent(name, purge=False, force=False)
Ensure that the named user is absent

name e name of the user to remove

purge Set purge to delete all of the user's files as well as the user

force If the user is logged in the absent state will fail, set the force option to True to remove the user even if
they are logged in. Not supported in FreeBSD and Solaris.

salt.states.user.present(name, uid=None, gid=None, gid_from_name=False, groups=None, op-
tional_groups=None, remove_groups=True, home=None, createhome=True,
password=None, enforce_password=True, empty_password=False,
shell=None, unique=True, system=False, fullname=None, roomnum-
ber=None, workphone=None, homephone=None, date=None, min-
days=None, maxdays=None, inactdays=None, warndays=None, ex-
pire=None)

Ensure that the named user is present with the specified properties

name e name of the user to manage

uid e user id to assign, if le empty then the next available user id will be assigned

gid e default group id

gid_from_name If True, the default group id will be set to the id of the group with the same name as the user.

groups A list of groups to assign the user to, pass a list object. If a group specified here does not exist on the
minion, the state will fail. If set to the empty list, the user will be removed from all groups except the
default group.

optional_groups A list of groups to assign the user to, pass a list object. If a group specified here does not
exist on the minion, the state will silently ignore it.

1234 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

NOTE: If the same group is specified in both ``groups'' and ``optional_groups'', then it will be assumed to be
required and not optional.

remove_groups Remove groups that the user is a member of that weren't specified in the state, True by default

home e custom login directory of user. Uses default value of underlying system if not set. Notice that this
directory does not have to exists. is also the location of the home directory to create if createhome is
set to True.

createhome If True, the home directory will be created if it doesn't exist. Please note that directories leading
up to the home directory will NOT be created.

password A password hash to set for the user. is field is only supported on Linux, FreeBSD, NetBSD,
OpenBSD, and Solaris.

Changed in version 0.16.0: BSD support added.

enforce_password Set to False to keep the password from being changed if it has already been set and the
password hash differs from what is specified in the ``password'' field. is option will be ignored if
``password'' is not specified.

empty_password Set to True to enable no password-less login for user

shell e login shell, defaults to the system default shell

unique Require a unique UID, True by default

system Choose UID in the range of FIRST_SYSTEM_UID and LAST_SYSTEM_UID.

User comment field (GECOS) support (currently Linux, FreeBSD, and MacOS only):

e below values should be specified as strings to avoid ambiguities when the values are loaded. (Especially
the phone and room number fields which are likely to contain numeric data)

fullname e user's full name

roomnumber e user's room number (not supported in MacOS)

workphone e user's work phone number (not supported in MacOS)

homephone e user's home phone number (not supported in MacOS)

Changed in version 2014.7.0: Shadow aribute support added.

Shadow aributes support (currently Linux only):

e below values should be specified as integers.

date Date of last change of password, represented in days since epoch (January 1, 1970).

mindays e minimum number of days between password changes.

maxdays e maximum number of days between password changes.

inactdays e number of days aer a password expires before an account is locked.

warndays Number of days prior to maxdays to warn users.

expire Date that account expires, represented in days since epoch (January 1, 1970).

22.27. Full list of builtin state modules 1235

Salt Documentation, Release 2014.7.6

22.27.118 salt.states.virtualenv

Setup of Python virtualenv sandboxes

salt.states.virtualenv_mod.managed(name, venv_bin=None, requirements=None,
system_site_packages=False, distribute=False,
use_wheel=False, clear=False, python=None, ex-
tra_search_dir=None, never_download=None,
prompt=None, user=None, runas=None, no_chown=False,
cwd=None, index_url=None, extra_index_url=None,
pre_releases=False, no_deps=False, pip_exists_action=None,
proxy=None)

Create a virtualenv and optionally manage it with pip

name Path to the virtualenv

requirements Path to a pip requirements file. If the path begins with salt:// the file will be transferred
from the master file server.

cwd Path to the working directory where ``pip install'' is executed.

use_wheel [False] Prefer wheel archives (requires pip>=1.4)

no_deps: False Pass --no-deps to pip.

pip_exists_action: None Default action of pip when a path already exists: (s)witch, (i)gnore, (w)ipe, (b)ackup

proxy: None Proxy address which is passed to ``pip install''

Also accepts any kwargs that the virtualenv module will.

/var/www/myvirtualenv.com:
virtualenv.managed:

- system_site_packages: False
- requirements: salt://REQUIREMENTS.txt

22.27.119 salt.states.win_dns_client

Module for configuring DNS Client on Windows systems

salt.states.win_dns_client.dns_dhcp(name, interface='Local Area Connection')
Configure the DNS server list from DHCP Server

salt.states.win_dns_client.dns_exists(name, servers=None, interface='Local Area Connec-
tion')

Configure the DNS server list in the specified interface

Example:

config_dns_servers:
win_dns_client.dns_exists:

- servers:
- 8.8.8.8
- 8.8.8.9

salt.states.win_dns_client.primary_suffix(name, suffix=None, updates=False)
New in version 2014.7.0.

Configure the global primary DNS suffix of a DHCP client.

1236 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

suffix [None] e suffix which is advertised for this client when acquiring a DHCP lease When none is set,
the explicitly configured DNS suffix will be removed.

updates [False] Allow syncing the DNS suffix with the AD domain when the client's AD domain membership
changes

primary_dns_suffix:
win_dns_client.primary_suffix:

- suffix: sub.domain.tld
- updates: True

22.27.120 salt.states.win_firewall

State for configuring Windows Firewall

salt.states.win_firewall.add_rule(name, localport, protocol='tcp', action='allow', dir='in')
Add a new firewall rule (Windows only)

salt.states.win_firewall.disabled(name)
Disable all the firewall profiles (Windows only)

22.27.121 salt.states.win_network

Configuration of network interfaces on Windows hosts

New in version 2014.1.0.

is module provides the network state(s) on Windows hosts. DNS servers, IP addresses and default gateways can
currently be managed.

Below is an example of the configuration for an interface that uses DHCP for both DNS servers and IP addresses:

Local Area Connection #2:
network.managed:

- dns_proto: dhcp
- ip_proto: dhcp

Note: Both the dns_proto and ip_proto arguments are required.

Static DNS and IP addresses can be configured like so:

Local Area Connection #2:
network.managed:

- dns_proto: static
- dns_servers:

- 8.8.8.8
- 8.8.4.4

- ip_proto: static
- ip_addrs:

- 10.2.3.4/24

Note: IP addresses are specified using the format <ip-address>/<subnet-length>. Salt provides a conve-
nience function called ip.get_subnet_length to calculate the subnet length from a netmask.

22.27. Full list of builtin state modules 1237

Salt Documentation, Release 2014.7.6

Optionally, if you are seing a static IP address, you can also specify the default gateway using the gateway
parameter:

Local Area Connection #2:
network.managed:

- dns_proto: static
- dns_servers:

- 8.8.8.8
- 8.8.4.4

- ip_proto: static
- ip_addrs:

- 10.2.3.4/24
- gateway: 10.2.3.1

salt.states.win_network.managed(name, dns_proto=None, dns_servers=None, ip_proto=None,
ip_addrs=None, gateway=None, enabled=True, **kwargs)

Ensure that the named interface is configured properly.

name e name of the interface to manage

dns_proto [None] Set to static and use the dns_servers parameter to provide a list of DNS name-
servers. set to dhcp to use DHCP to get the DNS servers.

dns_servers [None] A list of static DNS servers.

ip_proto [None] Set to static and use the ip_addrs and (optionally) gateway parameters to provide a
list of static IP addresses and the default gateway. Set to dhcp to use DHCP.

ip_addrs [None] A list of static IP addresses.

gateway [None] A list of static IP addresses.

enabled [True] Set to False to ensure that this interface is disabled.

22.27.122 salt.states.win_path

Manage the Windows System PATH

salt.states.win_path.absent(name)
Remove the directory from the SYSTEM path

index: where the directory should be placed in the PATH (default: 0)

Example:

'C:\sysinternals':
win_path.absent

salt.states.win_path.exists(name, index=None)
Add the directory to the system PATH at index location

index: where the directory should be placed in the PATH (default: None) [Note: Providing no index will
append directory to PATH and will not enforce its location within the PATH.]

Example:

'C:\python27':
win_path.exists

'C:\sysinternals':

1238 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

win_path.exists:
index: 0

22.27.123 salt.states.win_servermanager

Manage Windows features via the ServerManager powershell module

salt.states.win_servermanager.installed(name, recurse=False, force=False)
Install the windows feature

name: short name of the feature (the right column in win_servermanager.list_available)

recurse: install all sub-features as well

force: if the feature is installed but on of its sub-features are not installed set this to True to force the instal-
lation of the sub-features

Note: Some features requires reboot aer un/installation, if so until the server is restarted Other features can
not be installed !

22.27.124 salt.states.win_system

Management of Windows system information

New in version 2014.1.0.

is state is used to manage system information such as the computer name and description.

ERIK-WORKSTATION:
system.computer_name: []

This is Erik's computer, don't touch!:
system.computer_desc: []

salt.states.win_system.computer_desc(name)
Manage the computer's description field

name e desired computer description

salt.states.win_system.computer_name(name)
Manage the computer's name

name e desired computer name

22.27.125 salt.states.win_update

Management of the windows update agent

New in version 2014.7.0.

Set windows updates to run by category. Default behavior is to install all updates that do not require user interaction
to complete.

Optionally set category to a category of your choosing to only install certain updates. default is all available
updates.

In the example below, will install all Security and Critical Updates, and download but not install standard updates.

22.27. Full list of builtin state modules 1239

Salt Documentation, Release 2014.7.6

Example:

updates:
win_update.installed:

- categories:
- 'Critical Updates'
- 'Security Updates'

win_update.downloaded:
- categories:

- 'Updates'

You can also specify a number of features about the update to have a fine grain approach to specific types of updates.
ese are the following features/states of updates available for configuring:

• UI - User interaction required, skipped by default

• downloaded - Already downloaded, skipped by default (downloading)

• present - Present on computer, included by default (installing)

• installed - Already installed, skipped by default

• reboot - Reboot required, included by default

• hidden - skip those updates that have been hidden.

• soware - Soware updates, included by default

• driver - driver updates, skipped by default

is example installs all driver updates that don't require a reboot: Example:

gryffindor:
win_update.installed:

- includes:
- driver: True
- software: False
- reboot: False

class salt.states.win_update.PyWinUpdater(categories=None, skipUI=True, skipDown-
loaded=True, skipInstalled=True, skipReboot=False,
skipPresent=True, sowareUpdates=True, driverUp-
dates=False, skipHidden=True)

AutoSearch()

Download()

GetAvailableCategories()

GetCategories()

GetDownloadResults()

GetInstallationResults()

Install()

Search(searchString)

SetCategories(categories)

SetInclude(include, state)

1240 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

SetIncludes(includes)

salt.states.win_update.downloaded(name, categories=None, includes=None, retries=10)
Cache updates for later install.

name If categories is le empty, it will be assumed that you are passing the category option through the
name. ese are separate because you can only have one name, but can have multiple categories.

categories e list of categories to be downloaded. ese are simply strings in the update's information, so
there is no enumeration of the categories available. Known categories include:

• Updates

• Windows 7

• Critical Updates

• Security Updates

• Update Rollups

includes A list of features of the updates to cull by. Available features include:

• UI - User interaction required, skipped by default

• downloaded - Already downloaded, skipped by default (downloading)

• present - Present on computer, included by default (installing)

• installed - Already installed, skipped by default

• reboot - Reboot required, included by default

• hidden - Kkip those updates that have been hidden.

• soware - Soware updates, included by default

• driver - Driver updates, skipped by default

retries Number of retries to make before giving up. is is total, not per step.

salt.states.win_update.installed(name, categories=None, includes=None, retries=10)
Install specified windows updates.

name If categories is le empty, it will be assumed that you are passing the category option through the
name. ese are separate because you can only have one name, but can have multiple categories.

categories e list of categories to be downloaded. ese are simply strings in the update's information, so
there is no enumeration of the categories available. Known categories include:

• Updates

• Windows 7

• Critical Updates

• Security Updates

• Update Rollups

includes A list of features of the updates to cull by. Available features include:

• UI - User interaction required, skipped by default

• downloaded - Already downloaded, skipped by default (downloading)

• present - Present on computer, included by default (installing)

• installed - Already installed, skipped by default

22.27. Full list of builtin state modules 1241

Salt Documentation, Release 2014.7.6

• reboot - Reboot required, included by default

• hidden - Kkip those updates that have been hidden.

• soware - Soware updates, included by default

• driver - Driver updates, skipped by default

retries Number of retries to make before giving up. is is total, not per step.

22.27.126 salt.states.winrepo

Manage Windows Package Repository

salt.states.winrepo.genrepo(name, force=False, allow_empty=False)
Refresh the winrepo.p file of the repository (salt-run winrepo.genrepo)

if force is True no checks will be made and the repository will be generated if allow_empty is True then the
state will not return an error if there are 0 packages

Example:

winrepo:
winrepo.genrepo

22.27.127 salt.states.xmpp

Sending Messages over XMPP

New in version 2014.1.0.

is state is useful for firing messages during state runs, using the XMPP protocol

server-warning-message:
xmpp.send_msg:

- name: 'This is a server warning message'
- profile: my-xmpp-account
- recipient: admins@xmpp.example.com/salt

salt.states.xmpp.send_msg(name, recipient, profile)
Send a message to an XMPP user

server-warning-message:
xmpp.send_msg:

- name: 'This is a server warning message'
- profile: my-xmpp-account
- recipient: admins@xmpp.example.com/salt

name e message to send to the XMPP user

22.27.128 salt.states.zcbuildout

Management of zc.buildout

ismodule is inspired fromminitage's buildoutmaker (hps://github.com/minitage/minitage/blob/master/src/minitage/core/makers/buildout.py)

1242 Chapter 22. Reference

https://github.com/minitage/minitage/blob/master/src/minitage/core/makers/buildout.py

Salt Documentation, Release 2014.7.6

New in version Boron.

Note: is state module is beta; the API is subject to change and no promise as to performance or functionality is
yet present

Available Functions

• built

installed1
buildout.installed:

- name: /path/to/buildout

installed2
buildout.installed:

- name: /path/to/buildout
- parts:

- a
- b

- python: /path/to/pythonpath/bin/python
- unless: /bin/test_something_installed
- onlyif: /bin/test_else_installed

salt.states.zcbuildout.installed(name, config='buildout.cfg', quiet=False, parts=None,
runas=None, user=None, env=(), buildout_ver=None,
test_release=False, distribute=None, new_st=None, of-
fline=False, newest=False, python='/usr/bin/python2.7',
debug=False, verbose=False, unless=None, onlyif=None,
use_vt=False, loglevel='debug')

Install buildout in a specific directory

It is a thin wrapper to modules.buildout.buildout

name directory to execute in

quiet

do not output console & logs

config buildout config to use (default: buildout.cfg)

parts specific buildout parts to run

runas user used to run buildout as

Deprecated since version 2014.1.4.

user user used to run buildout as

New in version 2014.1.4.

env environment variables to set when running

buildout_ver force a specific buildout version (1 | 2)

test_release buildout accept test release

new_st Forcing use of setuptools >= 0.7

distribute use distribute over setuptools if possible

offline does buildout run offline

22.27. Full list of builtin state modules 1243

Salt Documentation, Release 2014.7.6

python python to use

debug run buildout with -D debug flag

onlyif Only execute cmd if statement on the host return 0

unless Do not execute cmd if statement on the host return 0

newest run buildout in newest mode

verbose run buildout in verbose mode (-vvvvv)

use_vt Use the new salt VT to stream output [experimental]

loglevel loglevel for buildout commands

22.27.129 salt.states.zk_concurrency

Control concurrency of steps within state execution using zookeeper

is module allows you to ``wrap'' a state's execution with concurrency control. is is useful to protect against
all hosts executing highstate simultaneously if your services don't all HUP restart. e common way of protecting
against this is to run in batch mode, but that doesn't protect from another person running the same batch command
(and thereby having 2x the number of nodes deploying at once).

is module will bock while acquiring a slot, meaning that however the command gets called it will coordinate with
zookeeper to ensure that no more than max_concurrency steps are executing with a single path.

acquire_lock:
zk_concurrency.lock:

- zk_hosts: 'zookeeper:2181'
- path: /trafficserver
- max_concurrency: 4
- prereq:

- service: trafficserver

trafficserver:
service.running:

- watch:
- file: /etc/trafficserver/records.config

/etc/trafficserver/records.config:
file.managed:

- source: salt://records.config

release_lock:
zk_concurrency.unlock:

- path: /trafficserver
- require:

- service: trafficserver

is example would allow the file state to change, but would limit the concurrency of the trafficserver service restart
to 4.

salt.states.zk_concurrency.lock(zk_hosts, path, max_concurrency, timeout=None,
ephemeral_lease=False)

Block state execution until you are able to get the lock (or hit the timeout)

salt.states.zk_concurrency.unlock(path)
Remove lease from semaphore

1244 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.28 Execution Modules

Salt execution modules are the functions called by the salt command.

Note: Salt execution modules are different from state modules and cannot be called directly within state files. You
must use the module state module to call execution modules within state runs.

See also:

Full list of builtin modules

Salt ships with many modules that cover a wide variety of tasks.

22.28.1 Modules Are Easy to Write!

Writing Salt execution modules is straightforward.

A Salt execution modules is a Python or Cython module placed in a directory called _modules/ within the
file_roots as specified by the master config file. By default this is /srv/salt/_modules on Linux systems.

Modules placed in _modules/ will be synced to the minions when any of the following Salt functions are called:

• state.highstate

• saltutil.sync_modules

• saltutil.sync_all

Note that a module's default name is its filename (i.e. foo.py becomes module foo), but that its name can be
overridden by using a __virtual__ function.

If a Salt module has errors and cannot be imported, the Salt minion will continue to load without issue and the
module with errors will simply be omied.

If adding a Cython module the file must be named <modulename>.pyx so that the loader knows that the module
needs to be imported as a Cython module. e compilation of the Cython module is automatic and happens when
the minion starts, so only the *.pyx file is required.

22.28.2 Cross-Calling Modules

All of the Salt execution modules are available to each other and modules can call functions available in other
execution modules.

e variable __salt__ is packed into the modules aer they are loaded into the Salt minion.

e __salt__ variable is a Python dictionary containing all of the Salt functions. Dictionary keys are strings
representing the names of the modules and the values are the functions themselves.

Salt modules can be cross-called by accessing the value in the __salt__ dict:

def foo(bar):
return __salt__['cmd.run'](bar)

is code will call the run function in the cmd and pass the argument bar to it.

22.28. Execution Modules 1245

http://cython.org/
http://docs.python.org/2/library/stdtypes.html#typesmapping

Salt Documentation, Release 2014.7.6

22.28.3 Preloaded Execution Module Data

When interacting with executionmodules oen it is nice to be able to read information dynamically about theminion
or to load in configuration parameters for a module.

Salt allows for different types of data to be loaded into the modules by the minion.

Grains Data

e values detected by the Salt Grains on the minion are available in a dict named __grains__ and can be accessed
from within callable objects in the Python modules.

To see the contents of the grains dictionary for a given system in your deployment run the grains.items()
function:

salt 'hostname' grains.items --output=pprint

Any value in a grains dictionary can be accessed as any other Python dictionary. For example, the grain rep-
resenting the minion ID is stored in the id key and from an execution module, the value would be stored in
__grains__['id'].

Module Configuration

Since parameters for configuring amodule may be desired, Salt allows for configuration information from theminion
configuration file to be passed to execution modules.

Since the minion configuration file is a YAML document, arbitrary configuration data can be passed in the minion
config that is read by the modules. It is therefore strongly recommended that the values passed in the configuration
file match the module name. A value intended for the test execution module should be named test.<value>.

e test execution module contains usage of the module configuration and the default configuration file for the min-
ion contains the information and format used to pass data to themodules. salt.modules.test, conf/minion.

22.28.4 Printout Configuration

Since execution module functions can return different data, and the way the data is printed can greatly change the
presentation, Salt has a printout configuration.

When writing a module the __outputter__ dictionary can be declared in the module. e __outputter__
dictionary contains a mapping of function name to Salt Outpuer.

__outputter__ = {
'run': 'txt'
}

is will ensure that the text outpuer is used.

22.28.5 Virtual Modules

Sometimes an execution module should be presented in a generic way. A good example of this can be found in
the package manager modules. e package manager changes from one operating system to another, but the Salt
execution module that interfaces with the package manager can be presented in a generic way.

1246 Chapter 22. Reference

http://docs.python.org/2/library/stdtypes.html#typesmapping

Salt Documentation, Release 2014.7.6

e Salt modules for package managers all contain a __virtual__ function which is called to define what systems
the module should be loaded on.

e __virtual__ function is used to return either a string or False. If False is returned then the module is not
loaded, if a string is returned then the module is loaded with the name of the string.

is means that the package manager modules can be presented as the pkg module regardless of what the actual
module is named.

e package manager modules are the best example of using the __virtual__ function. Some examples:

• pacman.py

• yumpkg.py

• aptpkg.py

Note: Modules which return a string from __virtual__ that is already used by a module that ships with Salt
will _override_ the stock module.

22.28.6 Documentation

Salt execution modules are documented. e sys.doc() function will return the documentation for all available
modules:

salt '*' sys.doc

e sys.doc function simply prints out the docstrings found in the modules; when writing Salt execution modules,
please follow the formaing conventions for docstrings as they appear in the other modules.

Adding Documentation to Salt Modules

It is strongly suggested that all Salt modules have documentation added.

To add documentation add a Python docstring to the function.

def spam(eggs):
'''
A function to make some spam with eggs!

CLI Example::

salt '*' test.spam eggs
'''
return eggs

Now when the sys.doc call is executed the docstring will be cleanly returned to the calling terminal.

Documentation added to execution modules in docstrings will automatically be added to the online web-based doc-
umentation.

Add Execution Module Metadata

When writing a Python docstring for an execution module, add information about the module using the following
field lists:

22.28. Execution Modules 1247

http://docs.python.org/2/library/stdtypes.html#typesseq
http://docs.python.org/3/library/constants.html#False
https://github.com/saltstack/salt/blob/develop/salt/modules/pacman.py
https://github.com/saltstack/salt/blob/develop/salt/modules/yumpkg.py
https://github.com/saltstack/salt/blob/develop/salt/modules/aptpkg.py
http://docs.python.org/2/glossary.html#term-docstring

Salt Documentation, Release 2014.7.6

:maintainer: Thomas Hatch <thatch@saltstack.com, Seth House <shouse@saltstack.com>
:maturity: new
:depends: python-mysqldb
:platform: all

e maintainer field is a comma-delimited list of developers who help maintain this module.

e maturity field indicates the level of quality and testing for this module. Standard labels will be determined.

e depends field is a comma-delimited list of modules that this module depends on.

e platform field is a comma-delimited list of platforms that this module is known to run on.

22.28.7 Private Functions

In Salt, Python callable objects contained within an execution module are made available to the Salt minion for use.
e only exception to this rule is a callable object with a name starting with an underscore _.

Objects Loaded Into the Salt Minion

def foo(bar):
return bar

class baz:
def __init__(self, quo):

pass

Objects NOT Loaded into the Salt Minion

def _foobar(baz): # Preceded with an _
return baz

cheese = {} # Not a callable Python object

Note: Some callable names also end with an underscore _, to avoid keyword clashes with Python keywords. When
using execution modules, or state modules, with these in them the trailing underscore should be omied.

22.28.8 Useful Decorators for Modules

Depends Decorator

When writing execution modules there are many times where some of the module will work on all hosts but some
functions have an external dependency, such as a service that needs to be installed or a binary that needs to be
present on the system.

Instead of trying to wrap much of the code in large try/except blocks, a decorator can be used.

If the dependencies passed to the decorator don't exist, then the salt minion will remove those functions from the
module on that host.

1248 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

If a ``fallback_function'' is defined, it will replace the function instead of removing it

import logging

from salt.utils.decorators import depends

log = logging.getLogger(__name__)

try:
import dependency_that_sometimes_exists

except ImportError as e:
log.trace('Failed to import dependency_that_sometimes_exists: {0}'.format(e))

@depends('dependency_that_sometimes_exists')
def foo():

'''
Function with a dependency on the "dependency_that_sometimes_exists" module,
if the "dependency_that_sometimes_exists" is missing this function will not exist
'''
return True

def _fallback():
'''
Fallback function for the depends decorator to replace a function with
'''
return '"dependency_that_sometimes_exists" needs to be installed for this function to exist'

@depends('dependency_that_sometimes_exists', fallback_function=_fallback)
def foo():

'''
Function with a dependency on the "dependency_that_sometimes_exists" module.
If the "dependency_that_sometimes_exists" is missing this function will be
replaced with "_fallback"
'''
return True

22.29 Master Tops

Salt includes a number of built-in subsystems to generate top file data, they are listed listed at Full list of builtin
master tops modules.

e source for the built-in Saltmaster tops can be found here: hps://github.com/saltstack/salt/blob/develop/salt/tops

22.30 Full list of builtin master tops modules

cobbler Cobbler Tops
ext_nodes External Nodes Classifier
mongo Read tops data from a mongodb collection
reclass_adapter Read tops data from a reclass database

22.30. Full list of builtin master tops modules 1249

https://github.com/saltstack/salt/blob/develop/salt/tops

Salt Documentation, Release 2014.7.6

22.30.1 salt.tops.cobbler

Cobbler Tops

Cobbler Tops is a master tops subsystem used to look up mapping information from Cobbler via its API. e same
cobbler.* parameters are used for both the Cobbler tops and Cobbler pillar modules.

master_tops:
cobbler: {}

cobbler.url: https://example.com/cobbler_api #default is http://localhost/cobbler_api
cobbler.user: username # default is no username
cobbler.password: password # default is no password

Module Documentation

salt.tops.cobbler.top(**kwargs)
Look up top data in Cobbler for a minion.

22.30.2 salt.tops.ext_nodes

External Nodes Classifier

e External Nodes Classifier is a master tops subsystem that retrieves mapping information from major configura-
tion management systems. One of the most common external nodes classifiers system is provided by Cobbler and is
called cobbler-ext-nodes.

e cobbler-ext-nodes command can be used with this configuration:

master_tops:
ext_nodes: cobbler-ext-nodes

It is noteworthy that the Salt system does not directly ingest the data sent from the cobbler-ext-nodes com-
mand, but converts the data into information that is used by a Salt top file.

Any command can replace the call to `cobbler-ext-nodes' above, but currently the data must be formaed in the
same way that the standard `cobbler-ext-nodes' does.

See (admiedly degenerate and probably not complete) example:

classes:
- basepackages
- database

e above essentially is the same as a top.sls containing the following:

base:
'*':

- basepackages
- database

salt.tops.ext_nodes.top(**kwargs)
Run the command configured

1250 Chapter 22. Reference

Salt Documentation, Release 2014.7.6

22.30.3 salt.tops.mongo

Read tops data from a mongodb collection

is module will load tops data from a mongo collection. It uses the node's id for lookups.

Salt Master Mongo Configuration

e module shares the same base mongo connection variables as salt.returners.mongo_return. ese
variables go in your master config file.

• mongo.db - e mongo database to connect to. Defaults to 'salt'.

• mongo.host - e mongo host to connect to. Supports replica sets by specifying all hosts in the set, comma-
delimited. Defaults to 'salt'.

• mongo.port - e port that the mongo database is running on. Defaults to 27017.

• mongo.user -e username for connecting to mongo. Only required if you are using mongo authentication.
Defaults to ''.

• mongo.password - e password for connecting to mongo. Only required if you are using mongo authen-
tication. Defaults to ''.

Configuring the Mongo Tops Subsystem

master_tops:
mongo:

collection: tops
id_field: _id
re_replace: ""
re_pattern: \.example\.com
states_field: states
environment_field: environment

Module Documentation

salt.tops.mongo.top(**kwargs)
Connect to a mongo database and read per-node tops data.

Parameters:

• collection: e mongodb collection to read data from. Defaults to 'tops'.

• id_field: e field in the collection that represents an individual minion id. Defaults to '_id'.

• re_paern: If your naming convention in the collection is shorter than the minion id, you can use
this to trim the name. re_paern will be used to match the name, and re_replace will be used to
replace it. Backrefs are supported as they are in the Python standard library. If None, no mangling
of the name will be performed - the collection will be searched with the entire minion id. Defaults
to None.

• re_replace: Use as the replacement value in node ids matched with re_paern. Defaults to `'. Feel
free to use backreferences here.

• states_field: e name of the field providing a list of states.

• environment_field: e name of the field providing the environment. Defaults to environment.

22.30. Full list of builtin master tops modules 1251

Salt Documentation, Release 2014.7.6

22.30.4 salt.tops.reclass_adapter

Read tops data from a reclass database

is master_tops plugin provides access to the reclass database, such that state information (top data) are retrieved
from reclass.

You can find more information about reclass at hp://reclass.pantsfullofunix.net.

To use the plugin, add it to the master_tops list in the Salt master config and tell reclass by way of a few options
how and where to find the inventory:

master_tops:
reclass:

storage_type: yaml_fs
inventory_base_uri: /srv/salt

is would cause reclass to read the inventory from YAML files in /srv/salt/nodes and
/srv/salt/classes.

If you are also using reclass as ext_pillar plugin, and you want to avoid having to specify the same information
for both, use YAML anchors (take note of the differing data types for ext_pillar and master_tops):

reclass: &reclass
storage_type: yaml_fs
inventory_base_uri: /srv/salt
reclass_source_path: ~/code/reclass

ext_pillar:
- reclass: *reclass

master_tops:
reclass: *reclass

If you want to run reclass from source, rather than installing it, you can either let the master know via the PYTHON-
PATH environment variable, or by seing the configuration option, like in the example above.

salt.tops.reclass_adapter.top(**kwargs)
ery reclass for the top data (states of the minions).

22.31 Full list of builtin wheel modules

config Manage the master configuration file
error Error generator to enable integration testing of salt wheel error handling
file_roots Read in files from the file_root and save files to the file root
key Wheel system wrapper for key system
pillar_roots e pillar_roots wheel module is used to manage files under the pillar roots directories on the master server.

22.31.1 salt.wheel.config

Manage the master configuration file

salt.wheel.config.apply(key, value)
Set a single key

1252 Chapter 22. Reference

http://reclass.pantsfullofunix.net

Salt Documentation, Release 2014.7.6

Note: is will strip comments from your config file

salt.wheel.config.values()
Return the raw values of the config file

22.31.2 salt.wheel.error

Error generator to enable integration testing of salt wheel error handling

salt.wheel.error.error(name=None, message='`)
If name is None en return empty dict

Otherwise raise an exception with __name__ from name, message from message

CLI Example:

salt-wheel error
salt-wheel error.error name="Exception" message="This is an error."

22.31.3 salt.wheel.file_roots

Read in files from the file_root and save files to the file root

salt.wheel.file_roots.find(path, saltenv='base', env=None)
Return a dict of the files located with the given path and environment

salt.wheel.file_roots.list_env(saltenv='base', env=None)
Return all of the file paths found in an environment

salt.wheel.file_roots.list_roots()
Return all of the files names in all available environments

salt.wheel.file_roots.read(path, saltenv='base', env=None)
Read the contents of a text file, if the file is binary then

salt.wheel.file_roots.write(data, path, saltenv='base', index=0, env=None)
Write the named file, by default the first file found is wrien, but the index of the file can be specified to write
to a lower priority file root

22.31.4 salt.wheel.key

Wheel system wrapper for key system

salt.wheel.key.accept(match)
Accept keys based on a glob match

salt.wheel.key.delete(match)
Delete keys based on a glob match

salt.wheel.key.finger(match)
Return the matching key fingerprints

salt.wheel.key.gen(id_=None, keysize=2048)
Generate a key pair. No keys are stored on the master, a keypair is returned as a dict containing pub and priv
keys

22.31. Full list of builtin wheel modules 1253

Salt Documentation, Release 2014.7.6

salt.wheel.key.gen_accept(id_, keysize=2048, force=False)
Generate a key pair then accept the public key. is function returns the key pair in a dict, only the public key
is preserved on the master.

salt.wheel.key.key_str(match)
Return the key strings

salt.wheel.key.list_(match)
List all the keys under a named status

salt.wheel.key.list_all()
List all the keys

salt.wheel.key.reject(match)
Delete keys based on a glob match

22.31.5 salt.wheel.pillar_roots

e pillar_roots wheel module is used to manage files under the pillar roots directories on the master server.

salt.wheel.pillar_roots.find(path, saltenv='base', env=None)
Return a dict of the files located with the given path and environment

salt.wheel.pillar_roots.list_env(saltenv='base', env=None)
Return all of the file paths found in an environment

salt.wheel.pillar_roots.list_roots()
Return all of the files names in all available environments

salt.wheel.pillar_roots.read(path, saltenv='base', env=None)
Read the contents of a text file, if the file is binary then

salt.wheel.pillar_roots.write(data, path, saltenv='base', index=0, env=None)
Write the named file, by default the first file found is wrien, but the index of the file can be specified to write
to a lower priority file root

1254 Chapter 22. Reference

CHAPTER 23

Salt Best Practices

Salt's extreme flexibility leads to many questions concerning the structure of configuration files.

is document exists to clarify these points through examples and code.

23.1 General rules

1. Modularity and clarity should be emphasized whenever possible.

2. Create clear relations between pillars and states.

3. Use variables when it makes sense but don't overuse them.

4. Store sensitive data in pillar.

5. Don't use grains for matching in your pillar top file for any sensitive pillars.

23.2 Structuring States and Formulas

When structuring Salt States and Formulas it is important to begin with the directory structure. A proper directory
structure clearly defines the functionality of each state to the user via visual inspection of the state's name.

Reviewing the MySQL Salt Formula it is clear to see the benefits to the end-user when reviewing a sample of the
available states:

/srv/salt/mysql/files/
/srv/salt/mysql/client.sls
/srv/salt/mysql/map.jinja
/srv/salt/mysql/python.sls
/srv/salt/mysql/server.sls

is directory structure would lead to these states being referenced in a top file in the following way:

base:
'web*':

- mysql.client
- mysql.python

'db*':
- mysql.server

1255

https://github.com/saltstack-formulas/mysql-formula

Salt Documentation, Release 2014.7.6

is clear definition ensures that the user is properly informed of what each state will do.

Another example comes from the vim-formula:

/srv/salt/vim/files/
/srv/salt/vim/absent.sls
/srv/salt/vim/init.sls
/srv/salt/vim/map.jinja
/srv/salt/vim/nerdtree.sls
/srv/salt/vim/pyflakes.sls
/srv/salt/vim/salt.sls

Once again viewing how this would look in a top file:

/srv/salt/top.sls:

base:
'web*':

- vim
- vim.nerdtree
- vim.pyflakes
- vim.salt

'db*':
- vim.absent

e usage of a clear top-level directory as well as properly named states reduces the overall complexity and leads a
user to both understand what will be included at a glance and where it is located.

In addition Formulas should be used as oen as possible.

Note: Formulas repositories on the saltstack-formulas GitHub organization should not be pointed to directly from
systems that automatically fetch new updates such as GitFS or similar tooling. Instead formulas repositories should
be forked on GitHub or cloned locally, where unintended, automatic changes will not take place.

23.3 Structuring Pillar Files

Pillars are used to store secure and insecure data pertaining to minions. When designing the structure of the
/srv/pillar directory, the pillars contained within should once again be focused on clear and concise data which
users can easily review, modify and understand.

e /srv/pillar/ directory is primarily controlled by top.sls. It should be noted that the pillar top.sls is
not used as a location to declare variables and their values. e top.sls is used as a way to include other pillar
files and organize the way they are matched based on environments or grains.

An example top.sls may be as simple as the following:

/srv/pillar/top.sls:

base:
'*':

- packages

Or much more complicated, using a variety of matchers:

/srv/pillar/top.sls:

1256 Chapter 23. Salt Best Practices

https://github.com/saltstack-formulas/vim-formula

Salt Documentation, Release 2014.7.6

base:
'*':

- apache
dev:

'os:Debian':
- match: grain
- vim

test:
'* and not G@os: Debian':

- match: compound
- emacs

It is clear to see through these examples how the top file provides users with power but when used incorrectly it can
lead to confusing configurations. is is why it is important to understand that the top file for pillar is not used for
variable definitions.

Each SLS file within the /srv/pillar/ directory should correspond to the states which it matches.

is would mean that the apache pillar file should contain data relevant to Apache. Structuring files in this way
once again ensures modularity, and creates a consistent understanding throughout our Salt environment. Users can
expect that pillar variables found in an Apache state will live inside of an Apache pillar:

/srv/salt/pillar/apache.sls:

apache:
lookup:

name: httpd
config:

tmpl: /etc/httpd/httpd.conf

While this pillar file is simple, it shows how a pillar file explicitly relates to the state it is associated with.

23.4 Variable Flexibility

Salt allows users to define variables in SLS files. When creating a state variables should provide users with as much
flexibility as possible. is means that variables should be clearly defined and easy to manipulate, and that sane
defaults should exist in the event a variable is not properly defined. Looking at several examples shows how these
different items can lead to extensive flexibility.

Although it is possible to set variables locally, this is generally not preferred:

/srv/salt/apache/conf.sls:

{% set name = 'httpd' %}
{% set tmpl = 'salt://apache/files/httpd.conf' %}

include:
- apache

apache_conf:
file.managed:

- name: {{ name }}
- source: {{ tmpl }}
- template: jinja
- user: root

23.4. Variable Flexibility 1257

Salt Documentation, Release 2014.7.6

- watch_in:
- service: apache

When generating this information it can be easily transitioned to the pillar where data can be overwrien, modified,
and applied to multiple states, or locations within a single state:

/srv/pillar/apache.sls:

apache:
lookup:

name: httpd
config:

tmpl: salt://apache/files/httpd.conf

/srv/salt/apache/conf.sls:

include:
- apache

apache_conf:
file.managed:

- name: {{ salt['pillar.get']('apache:lookup:name') }}
- source: {{ salt['pillar.get']('apache:lookup:config:tmpl') }}
- template: jinja
- user: root
- watch_in:

- service: apache

is flexibility provides users with a centralized location to modify variables, which is extremely important as an
environment grows.

23.5 Modularity Within States

Ensuring that states are modular is one of the key concepts to understand within Salt. When creating a state a
user must consider how many times the state could be re-used, and what it relies on to operate. Below are several
examples which will iteratively explain how a user can go from a state which is not very modular to one that is:

/srv/salt/apache/init.sls:

httpd:
pkg.installed: []
service.running:

- enable: True

/etc/httpd/httpd.conf:
file.managed:

- source: salt://apache/files/httpd.conf
- template: jinja
- watch_in:

- service: httpd

e example above is probably the worst-case scenario when writing a state. ere is a clear lack of focus by naming
both the pkg/service, and managed file directly as the state ID. is would lead to changing multiple requires within
this state, as well as others that may depend upon the state.

1258 Chapter 23. Salt Best Practices

Salt Documentation, Release 2014.7.6

Imagine if a require was used for the httpd package in another state, and then suddenly it's a custom package.
Now changes need to be made in multiple locations which increases the complexity and leads to a more error prone
configuration.

ere is also the issue of having the configuration file located in the init, as a user would be unable to simply install
the service and use the default conf file.

Our second revision begins to address the referencing by using - name, as opposed to direct ID references:

/srv/salt/apache/init.sls:

apache:
pkg.installed:

- name: httpd
service.running:

- name: httpd
- enable: True

apache_conf:
file.managed:

- name: /etc/httpd/httpd.conf
- source: salt://apache/files/httpd.conf
- template: jinja
- watch_in:

- service: apache

e above init file is beer than our original, yet it has several issues which lead to a lack of modularity. e first
of these problems is the usage of static values for items such as the name of the service, the name of the managed
file, and the source of the managed file. When these items are hard coded they become difficult to modify and the
opportunity to make mistakes arises. It also leads to multiple edits that need to occur when changing these items
(imagine if there were dozens of these occurrences throughout the state!). ere is also still the concern of the
configuration file data living in the same state as the service and package.

In the next example steps will be taken to begin addressing these issues. Starting with the addition of a map.jinja
file (as noted in the Formula documentation), and modification of static values:

/srv/salt/apache/map.jinja:

{% set apache = salt['grains.filter_by']({
'Debian': {

'server': 'apache2',
'service': 'apache2',
'conf': '/etc/apache2/apache.conf',

},
'RedHat': {

'server': 'httpd',
'service': 'httpd',
'conf': '/etc/httpd/httpd.conf',

},
}, merge=salt['pillar.get']('apache:lookup')) %}

/srv/pillar/apache.sls:

apache:
lookup:

config:
tmpl: salt://apache/files/httpd.conf

23.5. Modularity Within States 1259

Salt Documentation, Release 2014.7.6

/srv/salt/apache/init.sls:

{% from "apache/map.jinja" import apache with context %}

apache:
pkg.installed:

- name: {{ apache.server }}
service.running:

- name: {{ apache.service }}
- enable: True

apache_conf:
file.managed:

- name: {{ apache.conf }}
- source: {{ salt['pillar.get']('apache:lookup:config:tmpl') }}
- template: jinja
- user: root
- watch_in:

- service: apache

e changes to this state now allow us to easily identify the location of the variables, as well as ensuring they are
flexible and easy to modify. While this takes another step in the right direction, it is not yet complete. Suppose the
user did not want to use the provided conf file, or even their own configuration file, but the default apache conf.
With the current state setup this is not possible. To aain this level of modularity this state will need to be broken
into two states.

/srv/salt/apache/map.jinja:

{% set apache = salt['grains.filter_by']({
'Debian': {

'server': 'apache2',
'service': 'apache2',
'conf': '/etc/apache2/apache.conf',

},
'RedHat': {

'server': 'httpd',
'service': 'httpd',
'conf': '/etc/httpd/httpd.conf',

},
}, merge=salt['pillar.get']('apache:lookup')) %}

/srv/pillar/apache.sls:

apache:
lookup:

config:
tmpl: salt://apache/files/httpd.conf

/srv/salt/apache/init.sls:

{% from "apache/map.jinja" import apache with context %}

apache:
pkg.installed:

- name: {{ apache.server }}
service.running:

1260 Chapter 23. Salt Best Practices

Salt Documentation, Release 2014.7.6

- name: {{ apache.service }}
- enable: True

/srv/salt/apache/conf.sls:

{% from "apache/map.jinja" import apache with context %}

include:
- apache

apache_conf:
file.managed:

- name: {{ apache.conf }}
- source: {{ salt['pillar.get']('apache:lookup:config:tmpl') }}
- template: jinja
- user: root
- watch_in:

- service: apache

is new structure now allows users to choose whether they only wish to install the default Apache, or if they
wish, overwrite the default package, service, configuration file location, or the configuration file itself. In addition
to this the data has been broken between multiple files allowing for users to identify where they need to change the
associated data.

23.6 Storing Secure Data

Secure data refers to any information that you would not wish to share with anyone accessing a server. is could
include data such as passwords, keys, or other information.

As all data within a state is accessible by EVERY server that is connected it is important to store secure data within
pillar. is will ensure that only those servers which require this secure data have access to it. In this example a use
can go from an insecure configuration to one which is only accessible by the appropriate hosts:

/srv/salt/mysql/testerdb.sls:

testdb:
mysql_database.present::

- name: testerdb

/srv/salt/mysql/user.sls:

include:
- mysql.testerdb

testdb_user:
mysql_user.present:

- name: frank
- password: "test3rdb"
- host: localhost
- require:

- sls: mysql.testerdb

Many users would review this state and see that the password is there in plain text, which is quite problematic. It
results in several issues which may not be immediately visible.

23.6. Storing Secure Data 1261

Salt Documentation, Release 2014.7.6

e first of these issues is clear to most users -- the password being visible in this state. is means that any minion
will have a copy of this, and therefore the password which is a major security concern as minions may not be locked
down as tightly as the master server.

e other issue that can be encountered is access by users on the master. If everyone has access to the states (or
their repository), then they are able to review this password. Keeping your password data accessible by only a few
users is critical for both security and peace of mind.

ere is also the issue of portability. When a state is configured this way it results in multiple changes needing to
be made. is was discussed in the sections above but it is a critical idea to drive home. If states are not portable it
may result in more work later!

Fixing this issue is relatively simple, the content just needs to be moved to the associated pillar:

/srv/pillar/mysql.sls:

mysql:
lookup:

name: testerdb
password: test3rdb
user: frank
host: localhost

/srv/salt/mysql/testerdb.sls:

testdb:
mysql_database.present:

- name: {{ salt['pillar.get']('mysql:lookup:name') }}

/srv/salt/mysql/user.sls:

include:
- mysql.testerdb

testdb_user:
mysql_user.present:

- name: {{ salt['pillar.get']('mysql:lookup:user') }}
- password: {{ salt['pillar.get']('mysql:lookup:password') }}
- host: {{ salt['pillar.get']('mysql:lookup:host') }}
- require:

- sls: mysql.testerdb

Now that the database details have been moved to the associated pillar file, only machines which are targeted via
pillar will have access to these details. Access to users who should not be able to review these details can also be
prevented while ensuring that they are still able to write states which take advantage of this information.

1262 Chapter 23. Salt Best Practices

CHAPTER 24

Troubleshooting

e intent of the troubleshooting section is to introduce solutions to a number of common issues encountered by
users and the tools that are available to aid in developing States and Salt code.

24.1 Troubleshooting the Salt Master

If your Salt master is having issues such as minions not returning data, slow execution times, or a variety of other
issues the Salt master troubleshooting page contains details on troubleshooting the most common
issues encountered.

24.2 Troubleshooting the Salt Minion

In the event that your Salt minion is having issues a variety of solutions and suggestions are available at the Salt
minion troubleshooting page.

24.3 Running in the Foreground

A great deal of information is available via the debug logging system, if you are having issues with minions connect-
ing or not starting run the minion and/or master in the foreground:

salt-master -l debug
salt-minion -l debug

Anyone wanting to run Salt daemons via a process supervisor such as monit, runit, or supervisord, should omit the
-d argument to the daemons and run them in the foreground.

24.4 What Ports do the Master and Minion Need Open?

No ports need to be opened up on eachminion. For themaster, TCP ports 4505 and 4506 need to be open. If you've put
both your Salt master and minion in debug mode and don't see an acknowledgment that your minion has connected,
it could very well be a firewall.

You can check port connectivity from the minion with the nc command:

1263

http://mmonit.com/monit/
http://smarden.org/runit/
http://supervisord.org/

Salt Documentation, Release 2014.7.6

nc -v -z salt.master.ip 4505
nc -v -z salt.master.ip 4506

ere is also a firewall configuration document that might help as well.

If you've enabled the right TCP ports on your operating system or Linux distribution's firewall and still aren't seeing
connections, check that no additional access control system such as SELinux or AppArmor is blocking Salt.

24.5 Using salt-call

e salt-call command was originally developed for aiding in the development of new Salt modules. Since
then, many applications have been developed for running any Salt module locally on a minion. ese range
from the original intent of salt-call, development assistance, to gathering more verbose output from calls like
state.highstate.

When creating your state tree, it is generally recommended to invoke state.highstate with salt-call.
is displays far more information about the highstate execution than calling it remotely. For even more verbosity,
increase the loglevel with the same argument as salt-minion:

salt-call -l debug state.highstate

e main difference between using salt and using salt-call is that salt-call is run from the minion, and
it only runs the selected function on that minion. By contrast, salt is run from the master, and requires you to
specify the minions on which to run the command using salt's targeting system.

24.6 Too many open files

e salt-master needs at least 2 sockets per host that connects to it, one for the Publisher and one for response port.
us, large installations may, upon scaling up the number of minions accessing a given master, encounter:

12:45:29,289 [salt.master][INFO] Starting Salt worker process 38
Too many open files
sock != -1 (tcp_listener.cpp:335)

e solution to this would be to check the number of files allowed to be opened by the user running salt-master (root
by default):

[root@salt-master ~]# ulimit -n
1024

And modify that value to be at least equal to the number of minions x 2. is seing can be changed in limits.conf
as the nofile value(s), and activated upon new a login of the specified user.

So, an environment with 1800 minions, would need 1800 x 2 = 3600 as a minimum.

24.7 Salt Master Stops Responding

ere are known bugs with ZeroMQ versions less than 2.1.11 which can cause the Salt master to not respond
properly. If you're running a ZeroMQ version greater than or equal to 2.1.9, you can work around the bug by

1264 Chapter 24. Troubleshooting

https://en.wikipedia.org/wiki/Security-Enhanced_Linux
http://wiki.apparmor.net/index.php/Main_Page

Salt Documentation, Release 2014.7.6

seing the sysctls net.core.rmem_max and net.core.wmem_max to 16777216. Next, set the third field in
net.ipv4.tcp_rmem and net.ipv4.tcp_wmem to at least 16777216.

You can do it manually with something like:

echo 16777216 > /proc/sys/net/core/rmem_max
echo 16777216 > /proc/sys/net/core/wmem_max
echo "4096 87380 16777216" > /proc/sys/net/ipv4/tcp_rmem
echo "4096 87380 16777216" > /proc/sys/net/ipv4/tcp_wmem

Or with the following Salt state:

1 net.core.rmem_max:
2 sysctl:
3 - present
4 - value: 16777216
5

6 net.core.wmem_max:
7 sysctl:
8 - present
9 - value: 16777216

10

11 net.ipv4.tcp_rmem:
12 sysctl:
13 - present
14 - value: 4096 87380 16777216
15

16 net.ipv4.tcp_wmem:
17 sysctl:
18 - present
19 - value: 4096 87380 16777216

24.8 Salt and SELinux

Currently there are no SELinux policies for Salt. For themost part Salt runs without issue when SELinux is running in
Enforcing mode. is is because when the minion executes as a daemon the type context is changed to initrc_t.
e problemwith SELinux arises when using salt-call or running theminion in the foreground, since the type context
stays unconfined_t.

is problem is generally manifest in the rpm install scripts when using the pkg module. Until a full SELinux Policy
is available for Salt the solution to this issue is to set the execution context of salt-call and salt-minion to
rpm_exec_t:

CentOS 5 and RHEL 5:
chcon -t system_u:system_r:rpm_exec_t:s0 /usr/bin/salt-minion
chcon -t system_u:system_r:rpm_exec_t:s0 /usr/bin/salt-call

CentOS 6 and RHEL 6:
chcon system_u:object_r:rpm_exec_t:s0 /usr/bin/salt-minion
chcon system_u:object_r:rpm_exec_t:s0 /usr/bin/salt-call

is works well, because the rpm_exec_t context has very broad control over other types.

24.8. Salt and SELinux 1265

Salt Documentation, Release 2014.7.6

24.9 Red Hat Enterprise Linux 5

Salt requires Python 2.6 or 2.7. Red Hat Enterprise Linux 5 and its variants come with Python 2.4 installed by default.
When installing on RHEL 5 from the EPEL repository this is handled for you. But, if you run Salt from git, be advised
that its dependencies need to be installed from EPEL and that Salt needs to be run with the python26 executable.

24.10 Common YAML Gotchas

An extensive list of YAML idiosyncrasies has been compiled.

24.11 Live Python Debug Output

If the minion or master seems to be unresponsive, a SIGUSR1 can be passed to the processes to display where in the
code they are running. If encountering a situation like this, this debug information can be invaluable. First make
sure the master of minion are running in the foreground:

salt-master -l debug
salt-minion -l debug

en pass the signal to the master or minion when it seems to be unresponsive:

killall -SIGUSR1 salt-master
killall -SIGUSR1 salt-minion

Also under BSD and Mac OS X in addition to SIGUSR1 signal, debug subroutine set up for SIGINFO which has an
advantage of being sent by Ctrl+T shortcut.

When filing an issue or sending questions to the mailing list for a problem with an unresponsive daemon this infor-
mation can be invaluable.

24.12 Salt 0.16.x minions cannot communicate with a 0.17.x master

As of release 0.17.1 you can no longer run different versions of Salt on your Master and Minion servers. is is due to
a protocol change for security purposes. e Salt team will continue to aempt to ensure versions are as backwards
compatible as possible.

24.13 Debugging the Master and Minion

A list of common master and minion troubleshooting steps provide a starting point for resolving issues you may
encounter.

1266 Chapter 24. Troubleshooting

http://fedoraproject.org/wiki/EPEL

CHAPTER 25

Developing Salt

25.1 Overview

In its most typical use, Salt is a soware application in which clients, called ``minions'' can be commanded and
controlled from a central command server called a ``master''.

Commands are normally issued to the minions (via the master) by calling a a client script simply called, `salt'.

Salt features a pluggable transport system to issue commands from a master to minions. e default transport is
ZeroMQ.

25.2 Salt Client

25.2.1 Overview

e salt client is run on the same machine as the Salt Master and communicates with the salt-master to issue com-
mands and to receive the results and display them to the user.

e primary abstraction for the salt client is called `LocalClient'.

When LocalClient wants to publish a command to minions, it connects to the master by issuing a request to the
master's ReqServer (TCP: 4506)

e LocalClient system listens to responses for its requests by listening to the master event bus publisher (mas-
ter_event_pub.ipc).

25.3 Salt Master

25.3.1 Overview

e salt-master deamon runs on the designated Salt master and performs functions such as authenticating minions,
sending and receiving requests from connected minions and sending and receiving requests and replies to the `salt'
CLI.

1267

Salt Documentation, Release 2014.7.6

25.3.2 Moving Pieces

When a Salt master starts up, a number of processes are started, all of which are called `salt-master' in a process-list
but have various role categories.

Among those categories are:

• Publisher

• EventPublisher

• MWorker

25.3.3 Publisher

e Publisher process is responsible for sending commands over the designated transport to connected minions. e
Publisher is bound to the following:

• TCP: port 4505

• IPC: publish_pull.ipc

Each salt minion establishes a connection to the master Publisher.

25.3.4 EventPublisher

e EventPublisher publishes events onto the event bus. It is bound to the following:

• IPC: master_event_pull.ipc

• IPC: master_event_pub.ipc

25.3.5 MWorker

Worker processes manage the back-end operations for the Salt Master.

e number of workers is equivilient to the number of `worker_threads' specified in the master configuration and
is always at least one.

Workers are bound to the following:

• IPC: workers.ipc

25.3.6 ReqServer

e Salt request server takes requests and distributes them to available MWorker processes for processing. It also
receives replies back from minions.

e ReqServer is bound to the following:

• TCP: 4506

• IPC: workers.ipc

Each salt minion establishes a connection to the master ReqServer.

1268 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

25.3.7 Job Flow

e Salt master works by always publishing commands to all connected minions and the minions decide if the
command is meant for them by checking themselves against the command target.

e typical lifecycle of a salt job from the perspective of the master might be as follows:

1. A command is issued on the CLI. For example, `salt my_minion test.ping'.

2) e `salt' command uses LocalClient to generate a request to the salt master by connecting to the ReqServer on
TCP:4506 and issuing the job.

3) e salt-master ReqServer sees the request and passes it to an available MWorker over workers.ipc.

4) A worker picks up the request and handles it. First, it checks to ensure that the requested user has permissions to
issue the command. en, it sends the publish command to all connected minions. For the curious, this happens in
ClearFuncs.publish().

5) e worker announces on the master event bus that it is about to publish a job to conneceted minions. is
happens by placing the event on the master event bus (master_event_pull.ipc) where the EventPublisher picks it up
and distributes it to all connected event listeners on master_event_pub.ipc.

6) e message to the minions is encrypted and sent to the Publisher via IPC on publish_pull.ipc.

7) Connected minions have a TCP session established with the Publisher on TCP port 4505 where they await com-
mands. When the Publisher receives the job over publish_pull, it sends the jobs across the wire to the minions for
processing.

8) Aer the minions receive the request, they decrypt it and perform any requested work, if they determine that they
are targeted to do so.

9) When the minion is ready to respond, it publishes the result of its job back to the master by sending the encrypted
result back to the master on TCP 4506 where it is again picked up by the ReqServer and forwarded to an available
MWorker for processing. (Again, this happens by passing this message across workers.ipc to an available worker.)

10) When the MWorker receives the job it decrypts it and fires an event onto the master event bus (mas-
ter_event_pull.ipc). (Again for the curious, this happens in AESFuncs._return().

11) e EventPublisher sees this event and re-publishes it on the bus to all connected listeners of the master event
bus (on master_event_pub.ipc). is is where the LocalClient has been waiting, listening to the event bus for minion
replies. It gathers the job and stores the result.

12) When all targeted minions have replied or the timeout has been exceeded, the salt client displays the results of
the job to the user on the CLI.

25.4 Salt Minion

25.4.1 Overview

e salt-minion is a single process that sits on machines to be managed by Salt. It can either operate as a stand-alone
daemon which accepts commands locally via `salt-call' or it can connect back to a master and receive commands
remotely.

When starting up, salt minions connect _back_ to a master defined in the minion config file. e connect to two
ports on the master:

• TCP: 4505 is is the connection to the master Publisher. It is on this port that the minion receives jobs from
the master.

25.4. Salt Minion 1269

Salt Documentation, Release 2014.7.6

• TCP: 4506 is is the connection to the master ReqServer. It is on this port that the minion sends job results
back to the master.

25.4.2 Event System

Similar to the master, a salt-minion has its own event system that operates over IPC by default. e min-
ion event system operates on a push/pull system with IPC files at minion_event_<unique_id>_pub.ipc and min-
ion_event_<unique_id>_pull.ipc.

e astute reader might ask why have an event bus at all with a single-process daemon. e answer is that the salt-
minion may fork other processes as required to do the work without blocking the main salt-minion process and this
necessitates a mechanism by which those processes can communicate with each other. Secondarily, this provides a
bus by which any user with sufficient permissions can read or write to the bus as a common interface with the salt
minion.

25.4.3 Job Flow

When a salt minion starts up, it aempts to connect to the Publisher and the ReqServer on the salt master. It then
aempts to authenticate and once the minion has successfully authenticated, it simply listens for jobs.

Jobs normally come either come from the `salt-call' script run by a local user on the salt minion or they can come
directly from a master.

25.4.4 Master Job Flow

1) A master publishes a job that is received by a minion as outlined by the master's job flow above.

2) e minion is polling its receive socket that's connected to the master Publisher (TCP 4505 on master). When it
detects an incoming message, it picks it up from the socket and decrypts it.

3) A new minion process or thread is created and provided with the contents of the decrypted message. e
_thread_return() method is provided with the contents of the received message.

4) e new minion thread is created. e _thread_return() function starts up and actually calls out to the requested
function contained in the job.

5. e requested function runs and returns a result. [Still in thread.]

6) e result of the function that's run is encrypted and returned to the master's ReqServer (TCP 4506 on master).
[Still in thread.]

7) read exits. Because the main thread was only blocked for the time that it took to initialize the worker thread,
many other requests could have been received and processed during this time.

25.5 A Note on ClearFuncs vs. AESFuncs

A common source of confusion is deteremining when messages are passed in the clear and when they are passed
using encryption. ere are two rules governing this behaviour:

1) ClearFuncs is used for intra-master communication and during the initial authentication handshake between a
minion and master during the key exhange.

2. AESFuncs is used everywhere else.

1270 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

25.6 Contributing

ere is a great need for contributions to Salt and patches are welcome! e goal here is to make contributions clear,
make sure there is a trail for where the code has come from, and most importantly, to give credit where credit is due!

ere are a number of ways to contribute to Salt development.

For details on how to contribute documentation improvements please review Writing Salt Documentation.

25.6.1 Sending a GitHub pull request

Sending pull requests on GitHub is the preferred method for receiving contributions. e workflow advice below
mirrors GitHub's own guide and is well worth reading.

1. Fork the saltstack/salt repository on GitHub.

2. Make a local clone of your fork.

3. Create a new branch in your clone.

A branch should have one purpose. For example, ``Fix bug X,'' or ``Add feature Y.'' Multiple pull requests
should be opened for unrelated changes.

Choose a name for your branch that describes its purpose.

git checkout -b fixed-broken-thing

4. Make edits and changes locally.

5. Commit changes to this new branch.

Edit the necessary files in your Salt clone and remember to add them to your commit. Write a descriptive
commit message.

git add path/to/file1
git add path/to/file2
git commit -m "Fixed X in file1 and file2"

If you get stuck there are many introductory Git resources on help.github.com.

6. Push your locally-commied changes to your GitHub fork.

git push --set-upstream origin fixed-broken-thing

7. Go to your fork on the GitHub website & find your branch.

GitHub automatically displays a buon with the text ``Compare & pull request'' for recently pushed branches.

Otherwise click on the ``Branches'' tab at the top of your fork. A buon with the text ``New pull request'' will
be beside each branch.

8. Open a new pull request.

(a) Click one of the pull request buons from the previous step. GitHub will present a form and show a
comparison of the changes in your pull request.

(b) Write a descriptive comment, include links to any project issues related to the pull request.

(c) Click ``Create pull request''.

9. e Salt repo managers will be notified of your pull request.

If a reviewer asks for changes:

25.6. Contributing 1271

https://github.com/saltstack/salt

Salt Documentation, Release 2014.7.6

(a) Make the changes in your local clone on the same local branch.

(b) Push the branch to GitHub using the same command as before.

(c) e new commits will be reflected in the pull request automatically.

(d) Feel free to add a comment to the discussion.

Note: Jenkins
Whenever you make a pull request against the main Salt repository your changes will be tested on a variety of
operating systems and configurations. On average these tests take 30 minutes to run and once they are complete a
PASS/FAIL message will be added to your pull request. is message contains a link to hp://jenkins.saltstack.com
where you can review the test results. is message will also generate an email which will be sent to the email
address associated with your GitHub account informing you of these results. It should be noted that a test failure
does not necessarily mean there is an issue in the associated pull request as the entire development branch is tested.

25.6.2 Which Salt branch?

GitHub will open pull requests against Salt's main branch named develop by default. Most contributors can keep
the default options. is section is for advanced contributors.

Each pull request should address a single concern, as mentioned in the section above. For example, ``Fix bug X,'' or
``Add feature Y.'' And a pull request should be opened against the branch that corresponds to that concern.

The current release branch

e current release branch is the most recent stable release. Pull requests containing bug fixes should be made
against the release branch.

e branch name will be a date-based name such as 2014.7.

Bug fixes are made on this branch so that minor releases can be cut from this branch without introducing surprises
and new features. is approach maximizes stability.

e Salt development team will ``merge-forward'' any fixes made on the release branch to the develop branch
once the pull request has been accepted. is keeps the fix in isolation on the release branch and also keeps the
develop branch up-to-date.

Note: Closing GitHub issues from commits
is ``merge-forward'' strategy requires that the magic keywords to close a GitHub issue appear in the commit
message text directly. Only including the text in a pull request will not close the issue.

GitHub will close the referenced issue once the commit containing the magic text is merged into the default branch
(develop). Any magic text input only into the pull request description will not be seen at the Git-level when those
commits are merged-forward. In other words, only the commits are merged-forward and not the pull request.

The develop branch

e develop branch is unstable and bleeding-edge. Pull requests containing feature additions or non-bug-fix
changes should be made against the develop branch.

e Salt development teamwill back-port bug fixesmade to develop to the current release branch if the contributor
cannot create the pull request against that branch.

1272 Chapter 25. Developing Salt

http://jenkins.saltstack.com

Salt Documentation, Release 2014.7.6

25.6.3 Keeping Salt Forks in Sync

Salt is advancing quickly. It is therefore critical to pull upstream changes from upstream into your fork on a regular
basis. Nothing is worse than puing hard work into a pull request only to see bunches of merge conflicts because it
has diverged too far from upstream.

See also:

GitHub Fork a Repo Guide

e following assumes origin is the name of your fork and upstream is the name of the main saltstack/salt
repository.

1. View existing remotes.

git remote -v

2. Add the upstream remote.

For ssh github
git remote add upstream git@github.com:saltstack/salt.git

For https github
git remote add upstream https://github.com/saltstack/salt.git

3. Pull upstream changes into your clone.

git fetch upstream

4. Update your copy of the develop branch.

git checkout develop
git merge --ff-only upstream/develop

If Git complains that a fast-forward merge is not possible, you have local commits.

• Run git pull --rebase origin develop to rebase your changes on top of the upstream
changes.

• Or, run git branch <branch-name> to create a new branch with your commits. You will then
need to reset your develop branch before updating it with the changes from upstream.

If Git complains that local files will be overwrien, you have changes to files in your working directory. Run
git status to see the files in question.

5. Update your fork.

git push origin develop

6. Repeat the previous two steps for any other branches you work with, such as the current release branch.

25.6.4 Posting patches to the mailing list

Patches will also be accepted by email. Format patches using git format-patch and send them to the salt-users mailing
list. e contributor will then get credit for the patch, and the Salt community will have an archive of the patch and
a place for discussion.

25.6. Contributing 1273

https://help.github.com/articles/fork-a-repo
https://github.com/saltstack/salt
https://www.kernel.org/pub/software/scm/git/docs/git-format-patch.html
https://groups.google.com/forum/#!forum/salt-users

Salt Documentation, Release 2014.7.6

25.6.5 Backporting Pull Requests

If a bug is fixed on develop and the bug is also present on a currently-supported release branch it will need to be
back-ported to all applicable branches.

Note: Most Salt contributors can skip these instructions
ese instructions do not need to be read in order to contribute to the Salt project! e SaltStack team will back-port
fixes on behalf of contributors in order to keep the contribution process easy.

ese instructions are intended for frequent Salt contributors, advanced Git users, SaltStack employees, or indepen-
dent souls who wish to back-port changes themselves.

It is oen easiest to fix a bug on the oldest supported release branch and then merge that branch forward into
develop (as described earlier in this document). When that is not possible the fix must be back-ported, or copied,
into any other affected branches.

ese steps assume a pull request #1234 has been merged into develop. And upstream is the name of the
remote pointing to the main Salt repo.

1. Identify the oldest supported release branch that is affected by the bug.

2. Create a new branch for the back-port by reusing the same branch from the original pull request.

Name the branch bp-<NNNN> and use the number of the original pull request.

git fetch upstream refs/pull/1234/head:bp-1234
git checkout bp-1234

3. Find the parent commit of the original pull request.

e parent commit of the original pull request must be known in order to rebase onto a release branch. e
easiest way to find this is on GitHub.

Open the original pull request on GitHub and find the first commit in the list of commits. Select and copy the
SHA for that commit. e parent of that commit can be specified by appending ~1 to the end.

4. Rebase the new branch on top of the release branch.

• <release-branch> is the branch identified in step #1.

• <orig-base> is the SHA identified in step #3 -- don't forget to add ~1 to the end!

git rebase --onto <release-branch> <orig-base> bp-1234

Note, release branches prior to 2014.7 will not be able to make use of rebase and must use cherry-picking
instead.

5. Push the back-port branch to GitHub and open a new pull request.

Opening a pull request for the back-port allows for the test suite and normal code-review process.

git push -u origin bp-1234

25.7 Deprecating Code

Salt should remain backwards compatible, though sometimes, this backwards compatibility needs to be broken be-
cause a specific feature and/or solution is no longer necessary or required. At first one might think, let me change
this code, it seems that it's not used anywhere else so it should be safe to remove. en, once there's a new release,

1274 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

users complain about functionality which was removed and they where using it, etc. is should, at all costs, be
avoided, and, in these cases, that specific code should be deprecated.

Depending on the complexity and usage of a specific piece of code, the deprecation time frame should be properly
evaluated. As an example, a deprecationwarningwhich is shown for 2major releases, for example 0.17.0 and 2014.1.0,
gives users enough time to stop using the deprecated code and adapt to the new one.

For example, if you're deprecating the usage of a keyword argument to a function, that specific keyword argument
should remain in place for the full deprecation time frame and if that keyword argument is used, a deprecation
warning should be shown to the user.

To help in this deprecation task, salt provides salt.utils.warn_until. e idea behind this helper function
is to show the deprecation warning until salt reaches the provided version. Once that provided version is equaled
salt.utils.warn_until will raise a RuntimeError making salt stop its execution. is stoppage is un-
pleasant and will remind the developer that the deprecation limit has been reached and that the code can then be
safely removed.

Consider the following example:

def some_function(bar=False, foo=None):
if foo is not None:

salt.utils.warn_until(
(0, 18),
'The \'foo\' argument has been deprecated and its '
'functionality removed, as such, its usage is no longer '
'required.'

)

Consider that the current salt release is 0.16.0. Whenever foo is passed a value different from None that warning
will be shown to the user. is will happen in versions 0.16.2 to 2014.1.0, aer which a RuntimeError will
be raised making us aware that the deprecated code should now be removed.

25.8 Dunder Dictionaries

Salt provides several special ``dunder'' dictionaries as a convenience for Salt development. ese include__opts__,
__context__, __salt__, and others. is document will describe each dictionary and detail where they exist
and what information and/or functionality they provide.

25.8.1 __opts__

Available in

• All loader modules

e __opts__ dictionary contains all of the options passed in the configuration file for the master or minion.

Note: In many places in salt, instead of pulling raw data from the __opts__ dict, configuration data should be pulled
from the salt get functions such as config.get, aka - __salt__['config.get'](`foo:bar') e get functions also allow for
dict traversal via the : delimiter. Consider using get functions whenever using __opts__ or __pillar__ and __grains__
(when using grains for configuration data)

e configuration file data made available in the __opts__ dictionary is the configuration data relative to the
running daemon. If the modules are loaded and executed by the master, then the master configuration data is

25.8. Dunder Dictionaries 1275

http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/exceptions.html#RuntimeError

Salt Documentation, Release 2014.7.6

available, if the modules are executed by the minion, then the minion configuration is available. Any additional
information passed into the respective configuration files is made available

25.8.2 __salt__

Available in

• Execution Modules

• State Modules

• Returners

__salt__ contains the execution module functions. is allows for all functions to be called as they have been set
up by the salt loader.

__salt__['cmd.run']('fdisk -l')
__salt__['network.ip_addrs']()

25.8.3 __grains__

Available in

• Execution Modules

• State Modules

• Returners

• External Pillar

e __grains__ dictionary contains the grains data generated by the minion that is currently being worked with.
In execution modules, state modules and returners this is the grains of the minion running the calls, when generating
the external pillar the __grains__ is the grains data from the minion that the pillar is being generated for.

25.8.4 __pillar__

Available in

• Execution Modules

• State Modules

• Returners

e __pillar__ dictionary contains the pillar for the respective minion.

25.8.5 __context__

__context__ exists in state modules and execution modules.

During a state run the __context__ dictionary persists across all states that are run and then is destroyed when
the state ends.

1276 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

When running an execution module __context__ persists across all module executions until the modules are
refreshed; such as when saltutils.sync_all or state.highstate are executed.

A great place to see how to use __context__ is in the cp.py module in salt/modules/cp.py. e fileclient authen-
ticates with the master when it is instantiated and then is used to copy files to the minion. Rather than create a new
fileclient for each file that is to be copied down, one instance of the fileclient is instantiated in the __context__
dictionary and is reused for each file. Here is an example from salt/modules/cp.py:

if not 'cp.fileclient' in __context__:
__context__['cp.fileclient'] = salt.fileclient.get_file_client(__opts__)

Note: Because __context__ may or may not have been destroyed, always be sure to check for the existence of the
key in __context__ and generate the key before using it.

25.9 External Pillars

Salt provides a mechanism for generating pillar data by calling external pillar interfaces. is document will describe
an outline of an ext_pillar module.

25.9.1 Location

Salt expects to find your ext_pillar module in the same location where it looks for other python modules. If
the extension_modules option in your Salt master configuration is set, Salt will look for a pillar directory
under there and load all the modules it finds. Otherwise, it will look in your Python site-packages salt/pillar
directory.

25.9.2 Configuration

e external pillars that are called when a minion refreshes its pillars is controlled by the ext_pillar option in
the Salt master configuration. You can pass a single argument, a list of arguments or a dictionary of arguments to
your pillar:

ext_pillar:
- example_a: some argument
- example_b:

- argumentA
- argumentB

- example_c:
keyA: valueA
keyB: valueB

25.9.3 The Module

25.9.4 Imports and Logging

Import modules your external pillar module needs. You should first include generic modules that come with stock
Python:

25.9. External Pillars 1277

Salt Documentation, Release 2014.7.6

import logging

And then start logging. is is an idiomatic way of seing up logging in Salt:

log = logging.getLogger(__name__)

Finally, load modules that are specific to what you are doing. You should catch import errors and set a flag that the
__virtual__ function can use later.

try:
import weird_thing
EXAMPLE_A_LOADED = True

except ImportError:
EXAMPLE_A_LOADED = False

25.9.5 Options

If you define an__opts__ dictionary, it will bemerged into the__opts__ dictionary handed to theext_pillar
function later. is is a good place to put default configuration items. e convention is to name things module-
name.option.

__opts__ = { 'example_a.someconfig': 137 }

25.9.6 Initialization

If you define an __init__ function, it will be called with the following signature:

def __init__(__opts__):
Do init work here

Note: e __init__ function is ran every time a particular minion causes the external pillar to be called, so don't
put heavy initialization code here. e __init__ functionality is a side-effect of the Salt loader, so it may not be
as useful in pillars as it is in other Salt items.

25.9.7 __virtual__

If you define a __virtual__ function, you can control whether or not this module is visible. If it returns False
then Salt ignores this module. If it returns a string, then that string will be how Salt identifies this external pillar
in its ext_pillar configuration. If you're not renaming the module, simply return True in the __virtual__
function, which is the same as if this function did not exist, then, the name Salt's ext_pillar will use to identify
this module is its conventional name in Python.

is is useful to write modules that can be installed on all Salt masters, but will only be visible if a particular piece
of soware your module requires is installed.

This external pillar will be known as `example_a`
def __virtual__():

if EXAMPLE_A_LOADED:

1278 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

return True
return False

This external pillar will be known as `something_else`
__virtualname__ = 'something_else'

def __virtual__():
if EXAMPLE_A_LOADED:

return __virtualname__
return False

25.9.8 ext_pillar

is is where the real work of an external pillar is done. If this module is active and has a function called
ext_pillar, whenever a minion updates its pillar this function is called.

How it is called depends on how it is configured in the Salt master configuration. e first argument is always
the current pillar dictionary, this contains pillar items that have already been added, starting with the data from
pillar_roots, and then from any already-ran external pillars.

Using our example above:

ext_pillar(id, pillar, 'some argument') # example_a
ext_pillar(id, pillar, 'argumentA', 'argumentB') # example_b
ext_pillar(id, pillar, keyA='valueA', keyB='valueB' }) # example_c

In the example_a case, pillar will contain the items from the pillar_roots, in example_b pillar will
contain that plus the items added by example_a, and in example_c pillar will contain that plus the items
added by example_b. In all three cases, id will contain the ID of the minion making the pillar request.

is function should return a dictionary, the contents of which are merged in with all of the other pillars and returned
to the minion. Note: this function is called once for each minion that fetches its pillar data.

def ext_pillar(minion_id, pillar, *args, **kwargs):

my_pillar = {}

Do stuff

return my_pillar

You shouldn't just add items to pillar and return that, since that will cause Salt to merge data that already exists.
Rather, just return the items you are adding or changing. You could, however, use pillar in your module to make
some decision based on pillar data that already exists.

is function has access to some useful globals:

__opts__ A dictionary of mostly Salt configuration options. If you had an __opts__ dictionary de-
fined in your module, those values will be included.

__salt__ A dictionary of Salt module functions, useful so you don't have to duplicate functions that
already exist. E.g. __salt__['cmd.run']('ls -l') Note, runs on the master

__grains__ A dictionary of the grains of the minion making this pillar call.

25.9. External Pillars 1279

Salt Documentation, Release 2014.7.6

25.9.9 Example configuration

As an example, if you wanted to add external pillar via the cmd_json external pillar, add something like this to
your master config:

ext_pillar:
- cmd_json: 'echo {\"arg\":\"value\"}'

25.9.10 Reminder

Just as with traditional pillars, external pillars must be refreshed in order for minions to see any fresh data:

salt '*' saltutil.refresh_pillar

25.10 Installing Salt for development

Clone the repository using:

git clone https://github.com/saltstack/salt

Note: tags
Just cloning the repository is enough to work with Salt and make contributions. However, fetching additional tags
from git is required to have Salt report the correct version for itself. To do this, first add the git repository as an
upstream source:

git remote add upstream https://github.com/saltstack/salt

Fetching tags is done with the git `fetch' utility:

git fetch --tags upstream

Create a new virtualenv:

virtualenv /path/to/your/virtualenv

On Arch Linux, where Python 3 is the default installation of Python, use the virtualenv2 command instead of
virtualenv.

Note: Using system Python modules in the virtualenv
To use already-installed python modules in virtualenv (instead of having pip download and compile new ones), run
virtualenv --system-site-packages Using this method eliminates the requirement to install the salt
dependencies again, although it does assume that the listed modules are all installed in the system PYTHONPATH
at the time of virtualenv creation.

Activate the virtualenv:

1280 Chapter 25. Developing Salt

https://pypi.python.org/pypi/virtualenv

Salt Documentation, Release 2014.7.6

source /path/to/your/virtualenv/bin/activate

Install Salt (and dependencies) into the virtualenv:

pip install M2Crypto # Don't install on Debian/Ubuntu (see below)
pip install pyzmq PyYAML pycrypto msgpack-python jinja2 psutil
pip install -e ./salt # the path to the salt git clone from above

Note: Installing M2Crypto
swig and libssl-dev are required to build M2Crypto. To fix the error command 'swig' failed with
exit status 1 while installing M2Crypto, try installing it with the following command:

env SWIG_FEATURES="-cpperraswarn -includeall -D__`uname -m`__ -I/usr/include/openssl" pip install M2Crypto

Debian and Ubuntu systems have modified openssl libraries and mandate that a patched version of M2Crypto be
installed. is means that M2Crypto needs to be installed via apt:

apt-get install python-m2crypto

is also means that pulling in the M2Crypto installed using apt requires using --system-site-packages
when creating the virtualenv.

If you're using a platform other than Debian or Ubuntu, and you are installing M2Crypto via pip instead of a system
package, then you will also need the gcc compiler.

Note: Installing psutil
Python header files are required to build this module, otherwise the pip install will fail. If your distribution sep-
arates binaries and headers into separate packages, make sure that you have the headers installed. In most Linux
distributions which split the headers into their own package, this can be done by installing the python-dev or
python-devel package. For other platforms, the package will likely be similarly named.

Note: Installing dependencies on OS X.
You can install needed dependencies on OS X using homebrew or macports. See OS X Installation

Warning: Installing on RedHat-based Distros
If installing from pip (or from source using setup.py install), be advised that the yum-utils package is
needed for Salt to manage packages on RedHat-based systems.

25.10.1 Running a self-contained development version

During development it is easiest to be able to run the Salt master and minion that are installed in the virtualenv you
created above, and also to have all the configuration, log, and cache files contained in the virtualenv as well.

Copy the master and minion config files into your virtualenv:

mkdir -p /path/to/your/virtualenv/etc/salt
cp ./salt/conf/master /path/to/your/virtualenv/etc/salt/master
cp ./salt/conf/minion /path/to/your/virtualenv/etc/salt/minion

25.10. Installing Salt for development 1281

Salt Documentation, Release 2014.7.6

Edit the master config file:

1. Uncomment and change the user: root value to your own user.

2. Uncomment and change the root_dir: / value to point to /path/to/your/virtualenv.

3. If you are running version 0.11.1 or older, uncomment and change the pidfile: /var/run/salt-
master.pid value to point to /path/to/your/virtualenv/salt-master.pid.

4. If you are also running a non-development version of Salt you will have to change the publish_port and
ret_port values as well.

Edit the minion config file:

1. Repeat the edits you made in the master config for the user and root_dir values as well as any port
changes.

2. If you are running version 0.11.1 or older, uncomment and change the pidfile: /var/run/salt-
minion.pid value to point to /path/to/your/virtualenv/salt-minion.pid.

3. Uncomment and change the master: salt value to point at localhost.

4. Uncomment and change the id: value to something descriptive like ``saltdev''. is isn't strictly necessary
but it will serve as a reminder of which Salt installation you are working with.

5. If you changed the ret_port value in the master config because you are also running a non-development
version of Salt, then you will have to change the master_port value in the minion config to match.

Note: Using salt-call with a Standalone Minion

If you plan to run salt-call with this self-contained development environment in a masterless setup, you should
invoke salt-call with -c /path/to/your/virtualenv/etc/salt so that salt can find the minion config
file. Without the -c option, Salt finds its config files in /etc/salt.

Start the master and minion, accept the minion's key, and verify your local Salt installation is working:

cd /path/to/your/virtualenv
salt-master -c ./etc/salt -d
salt-minion -c ./etc/salt -d
salt-key -c ./etc/salt -L
salt-key -c ./etc/salt -A
salt -c ./etc/salt '*' test.ping

Running the master and minion in debug mode can be helpful when developing. To do this, add -l debug to the
calls to salt-master and salt-minion. If you would like to log to the console instead of to the log file, remove
the -d.

Once the minion starts, you may see an error like the following:

zmq.core.error.ZMQError: ipc path "/path/to/your/virtualenv/var/run/salt/minion/minion_event_7824dcbcfd7a8f6755939af70b96249f_pub.ipc" is longer than 107 characters (sizeof(sockaddr_un.sun_path)).

is means the the path to the socket the minion is using is too long. is is a system limitation, so the only
workaround is to reduce the length of this path. is can be done in a couple different ways:

1. Create your virtualenv in a path that is short enough.

2. Edit the sock_dir minion config variable and reduce its length. Remember that this path is relative to the
value you set in root_dir.

1282 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

NOTE:e socket path is limited to 107 characters on Solaris and Linux, and 103 characters on BSD-based systems.

Note: File descriptor limits
Ensure that the system open file limit is raised to at least 2047:

check your current limit
ulimit -n

raise the limit. persists only until reboot
use 'limit descriptors 2047' for c-shell
ulimit -n 2047

To set file descriptors on OSX, refer to the OS X Installation instructions.

25.10.2 Installing Salt from the Python Package Index

If you are installing using easy_install, you will need to define a USE_SETUPTOOLS environment variable,
otherwise dependencies will not be installed:

USE_SETUPTOOLS=1 easy_install salt

25.10.3 Editing and previewing the documentation

You need sphinx-build command to build the docs. In Debian/Ubuntu this is provided in the python-sphinx
package. Sphinx can also be installed to a virtualenv using pip:

pip install Sphinx

Change to salt documentation directory, then:

cd doc; make html

• is will build the HTML docs. Run make without any arguments to see the available make targets, which
include html, man, and text.

• e docs then are built within the docs/_build/ folder. To update the docs aer making changes, run make
again.

• e docs use reStructuredText for markup. See a live demo at hp://rst.ninjs.org/.

• e help information on each module or state is culled from the python code that runs for that piece. Find
them in salt/modules/ or salt/states/.

• To build the docs on Arch Linux, the python2-sphinx package is required. Additionally, it is necessary to tell
make where to find the proper sphinx-build binary, like so:

make SPHINXBUILD=sphinx-build2 html

• To build the docs on RHEL/CentOS 6, the python-sphinx10 package must be installed from EPEL, and the
following make command must be used:

25.10. Installing Salt for development 1283

http://sphinx-doc.org/rest.html
http://rst.ninjs.org/

Salt Documentation, Release 2014.7.6

make SPHINXBUILD=sphinx-1.0-build html

Once you've updated the documentation, you can run the following command to launch a simple Python HTTP
server to see your changes:

cd _build/html; python -m SimpleHTTPServer

25.10.4 Running unit and integration tests

Run the test suite with following command:

./setup.py test

See here for more information regarding the test suite.

25.11 Logging Internals

TODO

25.12 Modular Systems

When first working with Salt, it is not always clear where all of the modular components are and what they do. Salt
comes loaded with more modular systems than many users are aware of, making Salt very easy to extend in many
places.

e most commonly used modular systems are execution modules and states. But the modular systems extend well
beyond the more easily exposed components and are oen added to Salt to make the complete system more flexible.

25.12.1 Execution Modules

Execution modules make up the core of the functionality used by Salt to interact with client systems. e execution
modules create the core system management library used by all Salt systems, including states, which interact with
minion systems.

Execution modules are completely open ended in their execution. ey can be used to do anything required on a
minion, from installing packages to detecting information about the system. e only restraint in execution modules
is that the defined functions always return a JSON serializable object.

For a list of all built in execution modules, click here

For information on writing execution modules, see this page.

25.12.2 State Modules

State modules are used to define the state interfaces used by Salt States. ese modules are restrictive in that they
must follow a number of rules to function properly.

Note: State modules define the available routines in sls files. If calling an execution module directly is desired, take

1284 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

a look at the module state.

25.12.3 Auth

e auth module system allows for external authentication routines to be easily added into Salt. e auth function
needs to be implemented to satisfy the requirements of an auth module. Use the pam module as an example.

25.12.4 Fileserver

e fileserver module system is used to create fileserver backends used by the Salt Master. ese modules need to
implement the functions used in the fileserver subsystem. Use the gitfs module as an example.

25.12.5 Grains

Grain modules define extra routines to populate grains data. All defined public functions will be executed and MUST
return a Python dict object. e dict keys will be added to the grains made available to the minion.

25.12.6 Output

e output modules supply the outpuer system with routines to display data in the terminal. ese modules are
very simple and only require the output function to execute. e default system outpuer is the nested module.

25.12.7 Pillar

Used to define optional external pillar systems. e pillar generated via the filesystem pillar is passed into external
pillars. is is commonly used as a bridge to database data for pillar, but is also the backend to the libvirt state used
to generate and sign libvirt certificates on the fly.

25.12.8 Renderers

Renderers are the system used to render sls files into salt highdata for the state compiler. ey can be as simple as
the py renderer and as complex as stateconf and pydsl.

25.12.9 Returners

Returners are used to send data from minions to external sources, commonly databases. A full returner will imple-
ment all routines to be supported as an external job cache. Use the redis returner as an example.

25.12.10 Runners

Runners are purely master-side execution sequences. ese range from simple reporting to orchestration engines
like the overstate.

25.12.11 Tops

Tops modules are used to convert external data sources into top file data for the state system.

25.12. Modular Systems 1285

Salt Documentation, Release 2014.7.6

25.12.12 Wheel

e wheel system is used to manage master side management routines. ese routines are primarily intended for
the API to enable master configuration.

25.13 Package Providers

is page contains guidelines for writing package providers.

25.13.1 Package Functions

One of the most important features of Salt is package management. ere is no shortage of package managers, so in
the interest of providing a consistent experience in pkg states, there are certain functions that should be present in a
package provider. Note that these are subject to change as new features are added or existing features are enhanced.

list_pkgs

is function should declare an empty dict, and then add packages to it by calling pkg_resource.add_pkg, like
so:

__salt__['pkg_resource.add_pkg'](ret, name, version)

e last thing that should be done before returning is to execute pkg_resource.sort_pkglist. is function
does not presently do anything to the return dict, but will be used in future versions of Salt.

__salt__['pkg_resource.sort_pkglist'](ret)

list_pkgs returns a dictionary of installed packages, with the keys being the package names and the values being
the version installed. Example return data:

{'foo': '1.2.3-4',
'bar': '5.6.7-8'}

latest_version

Accepts an arbitrary number of arguments. Each argument is a package name. e return value for a package will
be an empty string if the package is not found or if the package is up-to-date. e only case in which a non-empty
string is returned is if the package is available for new installation (i.e. not already installed) or if there is an upgrade
available.

If only one argument was passed, this function return a string, otherwise a dict of name/version pairs is returned.

is function must also accept **kwargs, in order to receive the fromrepo and repo keyword arguments from
pkg states. Where supported, these arguments should be used to find the install/upgrade candidate in the specified
repository. e fromrepo kwarg takes precedence overrepo, so if both of those kwargs are present, the repository
specified in fromrepo should be used. However, if repo is used instead of fromrepo, it should still work, to
preserve backwards compatibility with older versions of Salt.

1286 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

version

Like latest_version, accepts an arbitrary number of arguments and returns a string if a single package name
was passed, or a dict of name/value pairs if more than one was passed. e only difference is that the return values
are the currently-installed versions of whatever packages are passed. If the package is not installed, an empty string
is returned for that package.

upgrade_available

Deprecated and destined to be removed. For now, should just do the following:

return __salt__['pkg.latest_version'](name) != ''

install

e following arguments are required and should default to None:

1. name (for single-package pkg states)

2. pkgs (for multiple-package pkg states)

3. sources (for binary package file installation)

e first thing that this function should do is call pkg_resource.parse_targets (see below). is function
will convert the SLS input into a more easily parsed data structure. pkg_resource.parse_targetsmay need
to be modified to support your new package provider, as it does things like parsing package metadata which cannot
be done for every package management system.

pkg_params, pkg_type = __salt__['pkg_resource.parse_targets'](name,
pkgs,
sources)

Two values will be returned to the install function. e first of them will be a dictionary. e keys of this dictionary
will be package names, though the values will differ depending on what kind of installation is being done:

• If name was provided (and pkgs was not), then there will be a single key in the dictionary, and its value will
be None. Once the data has been returned, if the version keyword argument was provided, then it should
replace the None value in the dictionary.

• If pkgs was provided, then name is ignored, and the dictionary will contain one entry for each package in the
pkgs list. e values in the dictionary will be None if a version was not specified for the package, and the
desired version if specified. See the Multiple Paage Installation Options section of the pkg.installed
state for more info.

• If sources was provided, then name is ignored, and the dictionary values will be the path/URI for the package.

e second return value will be a string with two possible values: repository or file. e install function can
use this value (if necessary) to build the proper command to install the targeted package(s).

Both before and aer the installing the target(s), you should run list_pkgs to obtain a list of the installed packages.
You should then return the output of salt.utils.compare_dicts()

return salt.utils.compare_dicts(old, new)

25.13. Package Providers 1287

Salt Documentation, Release 2014.7.6

remove

Removes the passed package and return a list of the packages removed.

25.13.2 Package Repo Functions

ere are some functions provided bypkgwhich are specific to package repositories, and not to packages themselves.
Whenwriting modules for new package managers, these functions should be made available as stated below, in order
to provide compatibility with the pkgrepo state.

All repo functions should accept a basedir option, which defines which directory repository configuration should be
found in. e default for this is dictated by the repo manager that is being used, and rarely needs to be changed.

basedir = '/etc/yum.repos.d'
__salt__['pkg.list_repos'](basedir)

list_repos

Lists the repositories that are currently configured on this system.

__salt__['pkg.list_repos']()

Returns a dictionary, in the following format:

{'reponame': 'config_key_1': 'config value 1',
'config_key_2': 'config value 2',
'config_key_3': ['list item 1 (when appropriate)',

'list item 2 (when appropriate)]}

get_repo

Displays all local configuration for a specific repository.

__salt__['pkg.get_repo'](repo='myrepo')

e information is formaed in much the same way as list_repos, but is specific to only one repo.

{'config_key_1': 'config value 1',
'config_key_2': 'config value 2',
'config_key_3': ['list item 1 (when appropriate)',

'list item 2 (when appropriate)]}

del_repo

Removes the local configuration for a specific repository. Requires a repo argument, which must match the locally
configured name. is function returns a string, which informs the user as to whether or not the operation was a
success.

1288 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

__salt__['pkg.del_repo'](repo='myrepo')

mod_repo

Modify the local configuration for one or more option for a configured repo. is is also the way to create new
repository configuration on the local system; if a repo is specified which does not yet exist, it will be created.

e options specified for this function are specific to the system; please refer to the documentation for your specific
repo manager for specifics.

__salt__['pkg.mod_repo'](repo='myrepo', url='http://myurl.com/repo')

25.13.3 Low-Package Functions

In general, the standard package functions as describes above will meet your needs. ese functions use the system's
native repomanager (for instance, yum or the apt tools). Inmost cases, the repomanager is actually separate from the
package manager. For instance, yum is usually a front-end for rpm, and apt is usually a front-end for dpkg. When
possible, the package functions that use those package managers directly should do so through the low package
functions.

It is normal and sane for pkg to make calls to lowpkgs, but lowpkgmust never make calls to pkg. is is affects
functions which are required by both pkg and lowpkg, but the technique in pkg is more performant than what
is available to lowpkg. When this is the case, the lowpkg function that requires that technique must still use the
lowpkg version.

list_pkgs

Returns a dict of packages installed, including the package name and version. Can accept a list of packages; if none
are specified, then all installed packages will be listed.

installed = __salt__['lowpkg.list_pkgs']('foo', 'bar')

Example output:

{'foo': '1.2.3-4',
'bar': '5.6.7-8'}

verify

Many (but not all) package management systems provide a way to verify that the files installed by the package
manager have or have not changed. is function accepts a list of packages; if none are specified, all packages will
be included.

installed = __salt__['lowpkg.verify']('httpd')

Example output:

25.13. Package Providers 1289

Salt Documentation, Release 2014.7.6

{'/etc/httpd/conf/httpd.conf': {'mismatch': ['size', 'md5sum', 'mtime'],
'type': 'config'}}

file_list

Lists all of the files installed by all packages specified. If not packages are specified, then all files for all known
packages are returned.

installed = __salt__['lowpkg.file_list']('httpd', 'apache')

is function does not return which files belong to which packages; all files are returned as one giant list (hence the
file_list function name. However, is information is still returned inside of a dict, so that it can provide any errors
to the user in a sane manner.

{'errors': ['package apache is not installed'],
'files': ['/etc/httpd',

'/etc/httpd/conf',
'/etc/httpd/conf.d',
'...SNIP...']}

file_dict

Lists all of the files installed by all packages specified. If not packages are specified, then all files for all known
packages are returned.

installed = __salt__['lowpkg.file_dict']('httpd', 'apache', 'kernel')

Unlike file_list, this function will break down which files belong to which packages. It will also return errors in the
same manner as file_list.

{'errors': ['package apache is not installed'],
'packages': {'httpd': ['/etc/httpd',

'/etc/httpd/conf',
'...SNIP...'],

'kernel': ['/boot/.vmlinuz-2.6.32-279.el6.x86_64.hmac',
'/boot/System.map-2.6.32-279.el6.x86_64',
'...SNIP...']}}

25.14 Community Projects That Use Salt

Below is a list of repositories that show real world Salt applications that you can use to get started. Please note that
these projects do not adhere to any standards and express a wide variety of ideas and opinions on how an action can
be completed with Salt.

hps://github.com/terminalmage/djangocon2013-sls

hps://github.com/jesusaurus/hpcs-salt-state

hps://github.com/gravyboat/hungryadmin-sls

1290 Chapter 25. Developing Salt

https://github.com/terminalmage/djangocon2013-sls
https://github.com/jesusaurus/hpcs-salt-state
https://github.com/gravyboat/hungryadmin-sls

Salt Documentation, Release 2014.7.6

hps://github.com/wunki/django-salted

25.15 Salt Topology

Salt is based on a powerful, asynchronous, network topology using ZeroMQ. Many ZeroMQ systems are in place to
enable communication. e central idea is to have the fastest communication possible.

25.15.1 Servers

e Salt Master runs 2 network services. First is the ZeroMQ PUB system. is service by default runs on port 4505
and can be configured via the publish_port option in the master configuration.

Second is the ZeroMQ REP system. is is a separate interface used for all bi-directional communication with
minions. By default this system binds to port 4506 and can be configured via the ret_port option in the master.

25.15.2 PUB/SUB

e commands sent out via the salt client are broadcast out to the minions via ZeroMQ PUB/SUB. is is done by
allowing the minions to maintain a connection back to the Salt Master and then all connections are informed to
download the command data at once. e command data is kept extremely small (usually less than 1K) so it is not a
burden on the network.

25.15.3 Return

e PUB/SUB system is a one way communication, so once a publish is sent out the PUB interface on the master
has no further communication with the minion. e minion, aer running the command, then sends the command's
return data back to the master via the ret_port.

25.16 Translating Documentation

If you wish to help translate the Salt documentation to your language, please head over to the Transifex website and
signup for an account.

Once registered, head over to the Salt Translation Project, and either click on Request Language if you can't find
yours, or, select the language for which you wish to contribute and click Join Team.

Transifex provides some useful reading resources on their support domain, namely, some useful articles directed to
translators.

25.16.1 Building A Localized Version of the Documentation

While you're working on your translation on Transifex, you might want to have a look at how it's rendering.

Install The Transifex Client

To interact with the Transifex web service you will need to install the transifex-client:

25.15. Salt Topology 1291

https://github.com/wunki/django-salted
https://www.transifex.com
https://www.transifex.com/signup/
https://www.transifex.com/projects/p/salt/
https://www.transifex.com
http://support.transifex.com/
http://support.transifex.com/customer/portal/topics/414107-translators/articles
http://support.transifex.com/customer/portal/topics/414107-translators/articles
https://www.transifex.com
https://www.transifex.com
https://github.com/transifex/transifex-client

Salt Documentation, Release 2014.7.6

pip install transifex-client

Configure The Transifex Client

Once installed, you will need to set it up on your computer. We created a script to help you with that:

.scripts/setup-transifex-config

Download Remote Translations

ere's a lile script which simplifies the download process of the translations(which isn't that complicated in the
first place). So, let's assume you're translating pt_PT, Portuguese(Portugal). To download the translations, execute
from the doc/ directory of your Salt checkout:

make download-translations SPHINXLANG=pt_PT

To download pt_PT, Portuguese(Portugal) and nl, Dutch, you can use the helper script directly:

.scripts/download-translation-catalog pt_PT nl

Build Localized Documentation

Aer the download process finishes, which might take a while, the next step is to build a localized version of the
documentation. Following the pt_PT example above:

make html SPHINXLANG=pt_PT

View Localized Documentation

Open your browser, point it to the local documentation path and check the localized output you've just build.

25.17 Running The Tests

ere are requirements, in addition to Salt's requirements, which need to be installed in order to run the test suite.
Install one of the lines below, depending on the relevant Python version:

pip install -r dev_requirements_python26.txt
pip install -r dev_requirements_python27.txt

Note: In Salt 0.17, testing libraries were migrated into their own repo. To install them:

pip install git+https://github.com/saltstack/salt-testing.git#egg=SaltTesting

Failure to install SaltTesting will result in import errors similar to the following:

1292 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

ImportError: No module named salttesting

Once all require requirements are set, use tests/runtests.py to run all of the tests included in Salt's test suite.
For more information, see --help.

An alternative way of invoking the test suite is available in setup.py:

./setup.py test

Instead of running the entire test suite, there are several ways to run only specific groups of tests or individual tests:

• Run unit tests only: ./tests/runtests.py --unit-tests

• Run unit and integration tests for states: ./tests/runtests.py --state

• Run integration tests for an individual module: ./tests/runtests.py -n integra-
tion.modules.virt

• Run unit tests for an individual module: ./tests/runtests.py -n unit.modules.virt_test

• Run an individual test by using the class and test name (this example is for the
test_default_kvm_profile test in the

integration.module.virt): ./tests/runtests.py -n ingtegra-
tion.module.virt.VirtTest.test_default_kvm_profile

25.17.1 Running Unit Tests Without Integration Test Daemons

Since the unit tests do not require a master or minion to execute, it is oen useful to be able to run unit tests
individually, or as a whole group, without having to start up the integration testing daemons. Starting up the master,
minion, and syndic daemons takes a lot of time before the tests can even start running and is unnecessary to run
unit tests. To run unit tests without invoking the integration test daemons, simple remove the /tests portion of
the runtests.py command:

./runtests.py --unit

All of the other options to run individual tests, entire classes of tests, or entire test modules still apply.

25.17.2 Running Destructive Integration Tests

Salt is used to change the seings and behavior of systems. In order to effectively test Salt's functionality, some
integration tests are wrien to make actual changes to the underlying system. ese tests are referred to as ``de-
structive tests''. Some examples of destructive tests are changes may be testing the addition of a user or installing
packages. By default, destructive tests are disabled and will be skipped.

Generally, destructive tests should clean up aer themselves by aempting to restore the system to its original state.
For instance, if a new user is created during a test, the user should be deleted aer the related test(s) have completed.
However, no guarantees are made that test clean-up will complete successfully. erefore, running destructive tests
should be done with caution.

Note: Running destructive tests will change the underlying system. Use caution when running destructive tests.

To run tests marked as destructive, set the --run-destructive flag:

25.17. Running The Tests 1293

Salt Documentation, Release 2014.7.6

./tests/runtests.py --run-destructive

25.17.3 Running Cloud Provider Tests

Salt's testing suite also includes integration tests to assess the successful creation and deletion of cloud instances
using Salt-Cloud for providers supported by Salt-Cloud.

e cloud provider tests are off by default and run on sample configuration files provided in
tests/integration/files/conf/cloud.providers.d/. In order to run the cloud provider tests, valid
credentials, which differ per provider, must be supplied. Each credential item that must be supplied is indicated by
an empty string value and should be edited by the user before running the tests. For example, DigitalOcean requires
a client key and an api key to operate. erefore, the default cloud provider configuration file for DigitalOcean
looks like this:

digitalocean-config:
provider: digital_ocean
client_key: ''
api_key: ''
location: New York 1

As indicated by the empty string values, the client_key and the api_key must be provided:

digitalocean-config:
provider: digital_ocean
client_key: wFGEwgregeqw3435gDger
api_key: GDE43t43REGTrkilg43934t34qT43t4dgegerGEgg
location: New York 1

Note: When providing credential information in cloud provider configuration files, do not include the single quotes.

Once all of the valid credentials for the cloud provider have been supplied, the cloud provider tests can be run by
seing the --cloud-provider-tests flag:

./tests/runtests.py --cloud-provider-tests

25.17.4 Running The Tests In A Docker Container

e test suite can be executed under a docker container using the --docked option flag. e docker container
must be properly configured on the system invoking the tests and the container must have access to the internet.

Here's a simple usage example:

tests/runtests.py --docked=ubuntu-12.04 -v

e full docker container repository can also be provided:

tests/runtests.py --docked=salttest/ubuntu-12.04 -v

1294 Chapter 25. Developing Salt

https://www.docker.io/
https://www.docker.io/
https://www.docker.io/

Salt Documentation, Release 2014.7.6

e SaltStack team is creating some containers which will have the necessary dependencies pre-installed. Running
the test suite on a container allows destructive tests to run without making changes to the main system. It also
enables the test suite to run under a different distribution than the one the main system is currently using.

e current list of test suite images is on Salt's docker repository.

Custom docker containers can be provided by submiing a pull request against Salt's docker Salt test containers
repository.

25.18 Automated Test Runs

SaltStackmaintains a Jenkins server to allow for the execution of tests across supported platforms. e tests executed
from Salt's Jenkins server create fresh virtual machines for each test run, then execute destructive tests on the new,
clean virtual machine.

When a pull request is submied to Salt's repository on GitHub, Jenkins runs Salt's test suite on a couple of virtual
machines to gauge the pull request's viability to merge into Salt's develop branch. If these initial tests pass, the pull
request can then merged into Salt's develop branch by one of Salt's core developers, pending their discretion. If the
initial tests fail, core developers may request changes to the pull request. If the failure is unrelated to the changes in
question, core developers may merge the pull request despite the initial failure.

Once the pull request is merged into Salt's develop branch, a new set of Jenkins virtual machines will begin executing
the test suite. e develop branch tests have many more virtual machines to provide more comprehensive results.

ere are a few other groups of virtual machines that Jenkins tests against, including past and current release
branches. For a full list of currently running test environments, go to hp://jenkins.saltstack.com.

25.18.1 Using Salt-Cloud on Jenkins

For testing Salt on Jenkins, SaltStack uses Salt-Cloud to spin up virtual machines. e script using Salt-Cloud to
accomplish this is open source and can be found here: hps://github.com/saltstack/salt/blob/develop/tests/jenkins.py

25.19 Writing Tests

Salt uses a test platform to verify functionality of components in a simple way. Two testing systems exist to enable
testing salt functions in somewhat real environments. e two subsystems available are integration tests and unit
tests.

Salt uses the python standard library uniest2 system for testing.

25.19.1 Naming Conventions

Any function in either integration test files or unit test files that is doing the actual testing, such as functions con-
taining assertions, must start with test_:

def test_user_present(self):

When functions in test files are not prepended with test_, the function acts as a normal, helper function and is
not run as a test by the test suite.

25.18. Automated Test Runs 1295

https://index.docker.io/u/salttest/
https://www.docker.io/
https://github.com/saltstack/docker-containers
http://jenkins.saltstack.com
https://github.com/saltstack/salt/blob/develop/tests/jenkins.py

Salt Documentation, Release 2014.7.6

25.19.2 Integration Tests

e integration tests start up a number of salt daemons to test functionality in a live environment. ese daemons
include 2 salt masters, 1 syndic, and 2 minions. is allows the syndic interface to be tested and master/minion
communication to be verified. All of the integration tests are executed as live salt commands sent through the
started daemons.

Integration tests are particularly good at testing modules, states and shell commands.

• Writing integration tests

25.19.3 Unit Tests

Direct unit tests are also available. ese tests are good for testing internal functions.

• Writing unit tests

Integration Tests

e Salt integration tests comewith a number of classes andmethods which allow for components to be easily tested.
ese classes are generally inherited from and provide specific methods for hooking into the running integration
test environment created by the integration tests.

It is noteworthy that since integration tests validate against a running environment that they are generally the
preferred means to write tests.

e integration system is all located under tests/integration in the Salt source tree. Each directory within
tests/integration corresponds to a directory in Salt's tree structure. For example, the integration tests
for the test.py Salt module that is located in salt/modules should also be named test.py and reside in
tests/integration/modules.

Adding New Directories

If the corresponding Salt directory does not exist within tests/integration, the new directory must be created
along with the appropriate test file to maintain Salt's testing directory structure.

In order for Salt's test suite to recognize tests within the newly created directory, options to run the new integration
tests must be added to tests/runtests.py. Examples of the necessary options that must be added can be
found here: hps://github.com/saltstack/salt/blob/develop/tests/runtests.py. e functions that need to be edited
are setup_additional_options, validate_options, and run_integration_tests.

Integration Classes

e integration classes are located in tests/integration/__init__.py and can be extended therein. ere
are three classes available to extend:

ModuleCase Used to define executions run via the master to minions and to call single modules and states.

e available methods are as follows:

run_function: Run a single salt function and condition the return down to match the behavior of the raw function
call. is will run the command and only return the results from a single minion to verify.

state_result: Return the result data from a single state return

1296 Chapter 25. Developing Salt

https://github.com/saltstack/salt/blob/develop/tests/runtests.py

Salt Documentation, Release 2014.7.6

run_state: Run the state.single command and return the state return structure

SyndicCase Used to execute remote commands via a syndic, only used to verify the capabilities of the Syndic.

e available methods are as follows:

run_function: Run a single salt function and condition the return down to match the behavior of the raw function
call. is will run the command and only return the results from a single minion to verify.

ShellCase Shell out to the scripts which ship with Salt.

e available methods are as follows:

run_script: Execute a salt script with the given argument string

run_salt: Execute the salt command, pass in the argument string as it would be passed on the command line.

run_run: Execute the salt-run command, pass in the argument string as it would be passed on the command line.

run_run_plus: Execute Salt run and the salt run function and return the data from each in a dict

run_key: Execute the salt-key command, pass in the argument string as it would be passed on the command line.

run_cp: Execute salt-cp, pass in the argument string as it would be passed on the command line.

run_call: Execute salt-call, pass in the argument string as it would be passed on the command line.

Examples

Module Example viaModuleCase Class Import the integrationmodule, this module is already added to the python
path by the test execution. Inherit from the integration.ModuleCase class.

Now the workhorse method run_function can be used to test a module:

import os
import integration

class TestModuleTest(integration.ModuleCase):
'''
Validate the test module
'''
def test_ping(self):

'''
test.ping
'''
self.assertTrue(self.run_function('test.ping'))

def test_echo(self):
'''
test.echo
'''
self.assertEqual(self.run_function('test.echo', ['text']), 'text')

Shell Example via ShellCase Validating the shell commands can be done via shell tests:

25.19. Writing Tests 1297

Salt Documentation, Release 2014.7.6

import sys
import shutil
import tempfile

import integration

class KeyTest(integration.ShellCase):
'''
Test salt-key script
'''

_call_binary_ = 'salt-key'

def test_list(self):
'''
test salt-key -L
'''
data = self.run_key('-L')
expect = [

'Unaccepted Keys:',
'Accepted Keys:',
'minion',
'sub_minion',
'Rejected:', '']

self.assertEqual(data, expect)

is example verifies that thesalt-key command executes and returns as expected bymaking use of therun_key
method.

Integration Test Files

Since using Salt largely involves configuring states, editing files, and changing system data, the integration test suite
contains a directory named files to aid in testing functions that require files. Various Salt integration tests use
these example files to test against instead of altering system files and data.

Each directory within tests/integration/files contain files that accomplish different tasks, based on the
needs of the integration tests using those files. For example, tests/integration/files/ssh is used to boot-
strap the test runner for salt-ssh testing, while tests/integration/files/pillar contains files storing
data needed to test various pillar functions.

e tests/integration/files directory also includes an integration state tree. e integration state tree can
be found at tests/integration/files/file/base.

e following example demonstrates how integration files can be used with ModuleCase to test states:

import os
import shutil
import integration

HFILE = os.path.join(integration.TMP, 'hosts')

class HostTest(integration.ModuleCase):
'''
Validate the host state
'''

1298 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

def setUp(self):
shutil.copyfile(os.path.join(integration.FILES, 'hosts'), HFILE)
super(HostTest, self).setUp()

def tearDown(self):
if os.path.exists(HFILE):

os.remove(HFILE)
super(HostTest, self).tearDown()

def test_present(self):
'''
host.present
'''
name = 'spam.bacon'
ip = '10.10.10.10'
ret = self.run_state('host.present', name=name, ip=ip)
result = self.state_result(ret)
self.assertTrue(result)
with open(HFILE) as fp_:

output = fp_.read()
self.assertIn('{0}\t\t{1}'.format(ip, name), output)

To access the integration files, a variable named integration.FILES points to the
tests/integration/files directory. is is where the referenced host.present sls file resides.

In addition to the static files in the integration state tree, the location integration.TMP can also be used to store
temporary files that the test system will clean up when the execution finishes.

Destructive vs Non-Destructive Tests

Since Salt is used to change the seings and behavior of systems, one testing approach is to run tests that make actual
changes to the underlying system. is is where the concept of destructive integration tests comes into play. Tests
can be wrien to alter the system they are running on. is capability is what fills in the gap needed to properly test
aspects of system management like package installation.

Any test that changes the underlying system in any way, such as creating or deleting users, installing packages,
or changing permissions should include the @destructive decorator to signal system changes and should be
wrien with care. System changes executed within a destructive test should also be restored once the related tests
have completed. For example, if a new user is created to test a module, the same user should be removed aer the
test is completed to maintain system integrity.

To write a destructive test, import and use the destructiveTest decorator for the test method:

import integration
from salttesting.helpers import destructiveTest

class DestructiveExampleModuleTest(integration.ModuleCase):
'''
Demonstrate a destructive test
'''

@destructiveTest
@skipIf(os.geteuid() != 0, 'you must be root to run this test')
def test_user_not_present(self):

'''
This is a DESTRUCTIVE TEST it creates a new user on the minion.

25.19. Writing Tests 1299

Salt Documentation, Release 2014.7.6

And then destroys that user.
'''
ret = self.run_state('user.present', name='salt_test')
self.assertSaltTrueReturn(ret)
ret = self.run_state('user.absent', name='salt_test')
self.assertSaltTrueReturn(ret)

Cloud Provider Tests

Cloud provider integration tests are used to assess Salt-Cloud`s ability to create and destroy cloud instances for
various supported cloud providers. Cloud provider tests inherit from the ShellCase Integration Class.

Any new cloud provider test files should be added to the tests/integration/cloud/providers/ direc-
tory. Each cloud provider test file also requires a sample cloud profile and cloud provider configuration file in the
integration test file directory located at tests/integration/files/conf/cloud.*.d/.

e following is an example of the default profile configuration file for Digital Ocean, located at:
tests/integration/files/conf/cloud.profiles.d/digital_ocean.conf:

digitalocean-test:
provider: digitalocean-config
image: Ubuntu 14.04 x64
size: 512MB

Each cloud provider requires different configuration credentials. erefore, sensitive information such as API keys
or passwords should be omied from the cloud provider configuration file and replaced with an empty string. e
necessary credentials can be provided by the user by editing the provider configuration file before running the tests.

e following is an example of the default provider configuration file for Digital Ocean, located at:
tests/integration/files/conf/cloud.providers.d/digital_ocean.conf:

digitalocean-config:
provider: digital_ocean
client_key: ''
api_key: ''
location: New York 1

In addition to providing the necessary cloud profile and provider files in the integration test suite file structure,
appropriate checks for if the configuration files exist and contain valid information are also required in the test
class's setUp function:

class LinodeTest(integration.ShellCase):
'''
Integration tests for the Linode cloud provider in Salt-Cloud
'''

def setUp(self):
'''
Sets up the test requirements
'''
super(LinodeTest, self).setUp()

check if appropriate cloud provider and profile files are present
profile_str = 'linode-config:'
provider = 'linode'

1300 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

providers = self.run_cloud('--list-providers')
if profile_str not in providers:

self.skipTest(
'Configuration file for {0} was not found. Check {0}.conf files '
'in tests/integration/files/conf/cloud.*.d/ to run these tests.'
.format(provider)

)

check if apikey and password are present
path = os.path.join(integration.FILES,

'conf',
'cloud.providers.d',
provider + '.conf')

config = cloud_providers_config(path)
api = config['linode-config']['linode']['apikey']
password = config['linode-config']['linode']['password']
if api == '' or password == '':

self.skipTest(
'An api key and password must be provided to run these tests. Check '
'tests/integration/files/conf/cloud.providers.d/{0}.conf'.format(

provider
)

)

Repeatedly creating and destroying instances on cloud providers can be costly. erefore, cloud provider tests are
off by default and do not run automatically. To run the cloud provider tests, the --cloud-provider-tests
flag must be provided:

./tests/runtests.py --cloud-provider-tests

Since cloud provider tests do not run automatically, all provider tests must be preceded with the @expensiveTest
decorator. e expensive test decorator is necessary because it signals to the test suite that the --cloud-
provider-tests flag is required to run the cloud provider tests.

To write a cloud provider test, import and use the expensiveTest decorator for the test function:

from salttesting.helpers import expensiveTest

@expensiveTest
def test_instance(self):

'''
Test creating an instance on Linode
'''
name = 'linode-testing'

create the instance
instance = self.run_cloud('-p linode-test {0}'.format(name))
str = ' {0}'.format(name)

check if instance with salt installed returned as expected
try:

self.assertIn(str, instance)
except AssertionError:

self.run_cloud('-d {0} --assume-yes'.format(name))
raise

delete the instance

25.19. Writing Tests 1301

Salt Documentation, Release 2014.7.6

delete = self.run_cloud('-d {0} --assume-yes'.format(name))
str = ' True'
try:

self.assertIn(str, delete)
except AssertionError:

raise

Writing Unit Tests

Introduction

Like many soware projects, Salt has two broad-based testing approaches -- integration testing and unit testing.
While integration testing focuses on the interaction between components in a sandboxed environment, unit testing
focuses on the singular implementation of individual functions.

Preparing to Write a Unit Test

is guide assumes you've followed the directions for seing up salt testing.

Unit tests should be wrien to the following specifications:

• All the tests for a specific module at salt/…/<module>.py need to be contained in a file called
tests/unit/…/<module>_test.py, e.g. the tests for salt/modules/fib.py need to be contained in a file called
tests/unit/modules/fib_test.py.

• e tests within tests/unit/modules/fib_test.py file must be member functions of a class which subclasses
salesting.Testcase

• Each external resource used in the code to be tested, such as function calls, external data either globally avail-
able or passed in through the function arguments, file data, etc. needs to be mocked.

• Each raise and return statement of the code to be tested needs to be separately and independently tested.

• Test functions should contain only one test and contain all necessary mock data and mock code for that test.

• Test functions should be named test_<fcn>_<test-name> where <fcn> is the name of the function being tested
and <test-name> describes which raise or return within the function is being tested and whether that raise or
return statement is considered a success or a failure condition.

Most commonly, the following imports are necessary to create a unit test:

Import Salt Testing libs
from salttesting import skipIf, TestCase
from salttesting.helpers import ensure_in_syspath

If you need mock support to your tests, please also import:

from salttesting.mock import NO_MOCK, NO_MOCK_REASON, MagicMock, patch, call

A Simple Example

Let's assume that we're testing a very basic function in an imaginary Salt execution module. Given a module called
fib.py that has a function called `calculate(num_of_results)', which given a `num_of_results', produces a list of
sequential Fibonacci numbers of that length.

1302 Chapter 25. Developing Salt

http://docs.saltstack.com/topics/installation/index.html

Salt Documentation, Release 2014.7.6

A unit test to test this function might be commonly placed in a file called
tests/unit/modules/fib_test.py. e convention is to place unit tests for Salt execution modules
in test/unit/modules/ and to name the tests module suffixed with _test.py.

Tests are grouped around test cases, which are logically grouped sets of tests against a piece of functionality in the
tested soware. Test cases are created as Python classes in the unit test module. To return to our example, here's
how we might write the skeleton for testing fib.py:

Import Salt Testing libs
from salttesting import TestCase

Import Salt execution module to test
from salt.modules import fib

Create test case class and inherit from Salt's customized TestCase
class FibTestCase(TestCase):

'''
This class contains a set of functions that test salt.modules.fib.
'''

def test_fib(self):
'''
To create a unit test, we should prefix the name with `test_' so
that it's recognized by the test runner.
'''
fib_five = (0, 1, 1, 2, 3)
self.assertEqual(fib.calculate(5), fib_five)

At this point, the test can now be run, either individually or as a part of a full run of the test runner. To ease
development, a single test can be executed:

tests/runtests.py -n unit.modules.fib_test

is will produce output indicating the success or failure of the tests in given test case. For more detailed results,
one can also include a flag to increase verbosity:

tests/runtests.py -n unit.modules.fib_test -v

To review the results of a particular run, take a note of the log location given in the output for each test:

Logging tests on /var/folders/nl/d809xbq577l3qrbj3ymtpbq80000gn/T/salt-runtests.log

Evaluating Truth

A longer discussion on the types of assertions one can make can be found by reading Python's documentation on
unit testing.

Tests Using Mock Objects

In many cases, the very purpose of a Salt module is to interact with some external system, whether it be to control
a database, manipulate files on a filesystem or many other examples. In these varied cases, it's necessary to design
a unit test which can test the function whilst replacing functions which might actually call out to external systems.

25.19. Writing Tests 1303

http://docs.python.org/2/library/unittest.html#unittest.TestCase
http://docs.python.org/2/library/unittest.html#unittest.TestCase

Salt Documentation, Release 2014.7.6

One might think of this as ``blocking the exits'' for code under tests and redirecting the calls to external systems
with our own code which produces known results during the duration of the test.

To achieve this behavior, Salt makes heavy use of the MagicMock package.

To understand how one might integrate Mock into writing a unit test for Salt, let's imagine a scenario in which
we're testing an execution module that's designed to operate on a database. Furthermore, let's imagine two separate
methods, here presented in pseduo-code in an imaginary execution module called `db.py.

def create_user(username):
qry = 'CREATE USER {0}'.format(username)
execute_query(qry)

def execute_query(qry):
Connect to a database and actually do the query...

Here, let's imagine that we want to create a unit test for the create_user function. In doing so, we want to avoid any
calls out to an external system and so while we are running our unit tests, we want to replace the actual interaction
with a database with a function that can capture the parameters sent to it and return pre-defined values. erefore,
our task is clear -- to write a unit test which tests the functionality of create_user while also replacing `execute_query'
with a mocked function.

To begin, we set up the skeleton of our class much like we did before, but with additional imports for MagicMock:

Import Salt Testing libs
from salttesting import TestCase

Import Salt execution module to test
from salt.modules import db

NEW! -- Import Mock libraries
from salttesting.mock import NO_MOCK, NO_MOCK_REASON, MagicMock, patch, call

Create test case class and inherit from Salt's customized TestCase

Skip this test case if we don't have access to mock!
@skipIf(NO_MOCK, NO_MOCK_REASON)
class DbTestCase(TestCase):

def test_create_user(self):
First, we replace 'execute_query' with our own mock function
db.execute_query = MagicMock()

Now that the exits are blocked, we can run the function under test.

db.create_user('testuser')

We could now query our mock object to see which calls were made
to it.
print db.execute_query.mock_calls

'''
We want to test to ensure that the correct query was formed. This
is a contrived example, just designed to illustrate the concepts at
hand.

We're going to first construct a call() object that represents the
way we expect our mocked execute_query() function to have been
called. Then, we'll examine the list of calls that were actually

1304 Chapter 25. Developing Salt

http://www.voidspace.org.uk/python/mock/index.html

Salt Documentation, Release 2014.7.6

made to to execute_function().

By comparing our expected call to execute_query() with
create_user()'s call to execute_query(), we can determine the
success or failure of our unit test.
'''

expected_call = call('CREATE USER testuser')

Do the comparison! Will assert False if execute_query() was not
called with the given call

db.execute_query.assert_has_calls(expected_call)

Modifying __salt__ In Place

At times, it becomes necessary to make modifications to a module's view of functions in its own __salt__ dictio-
nary. Luckily, this process is quite easy.

Below is an example that uses MagicMock's patch functionality to insert a function into __salt__ that's actually
a MagicMock instance.

def show_patch(self):
with patch.dict(my_module.__salt__,

{'function.to_replace': MagicMock()}:
From this scope, carry on with testing, with a modified __salt__!

A More Complete Example

Consider the following function from salt/modules/linux_sysctl.py.

def get(name):
'''
Return a single sysctl parameter for this minion

CLI Example:

.. code-block:: bash

salt '*' sysctl.get net.ipv4.ip_forward
'''
cmd = 'sysctl -n {0}'.format(name)
out = __salt__['cmd.run'](cmd)
return out

is function is very simple, comprising only four source lines of code and having only one return statement, so we
know only one test is needed. ere are also two inputs to the function, the name function argument and the call
to __salt__['cmd.run'](), both of which need to be appropriately mocked. Mocking a function parameter
is straightforward, whereas mocking a function call will require, in this case, the use of MagicMock. For added
isolation, we will also redefine the __salt__ dictionary such that it only contains 'cmd.run'.

25.19. Writing Tests 1305

Salt Documentation, Release 2014.7.6

Import Salt Libs
from salt.modules import linux_sysctl

Import Salt Testing Libs
from salttesting import skipIf, TestCase
from salttesting.helpers import ensure_in_syspath
from salttesting.mock import (

MagicMock,
patch,
NO_MOCK,
NO_MOCK_REASON

)

ensure_in_syspath('../../')

Globals
linux_sysctl.__salt__ = {}

@skipIf(NO_MOCK, NO_MOCK_REASON)
class LinuxSysctlTestCase(TestCase):

'''
TestCase for salt.modules.linux_sysctl module
'''

def test_get(self):
'''
Tests the return of get function
'''
mock_cmd = MagicMock(return_value=1)
with patch.dict(linux_sysctl.__salt__, {'cmd.run': mock_cmd}):

self.assertEqual(linux_sysctl.get('net.ipv4.ip_forward'), 1)

if __name__ == '__main__':
from integration import run_tests
run_tests(LinuxSysctlTestCase, needs_daemon=False)

Since get() has only one raise or return statement and that statement is a success condition, the test func-
tion is simply named test_get(). As described, the single function call parameter, name is mocked with
net.ipv4.ip_forward and __salt__['cmd.run'] is replaced by a MagicMock function object. We are
only interested in the return value of __salt__['cmd.run'], which MagicMock allows to be specified via
return_value=1. Finally, the test itself tests for equality between the return value of get() and the ex-
pected return of 1. is assertion is expected to succeed because get() will determine its return value from
__salt__['cmd.run'], which we have mocked to return 1.

A Complex Example

Now consider the assign() function from the same salt/modules/linux_sysctl.py source file.

def assign(name, value):
'''
Assign a single sysctl parameter for this minion

CLI Example:

1306 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

.. code-block:: bash

salt '*' sysctl.assign net.ipv4.ip_forward 1
'''
value = str(value)
sysctl_file = '/proc/sys/{0}'.format(name.replace('.', '/'))
if not os.path.exists(sysctl_file):

raise CommandExecutionError('sysctl {0} does not exist'.format(name))

ret = {}
cmd = 'sysctl -w {0}="{1}"'.format(name, value)
data = __salt__['cmd.run_all'](cmd)
out = data['stdout']
err = data['stderr']

Example:
sysctl -w net.ipv4.tcp_rmem="4096 87380 16777216"
net.ipv4.tcp_rmem = 4096 87380 16777216
regex = re.compile(r'^{0}\s+=\s+{1}$'.format(re.escape(name),

re.escape(value)))

if not regex.match(out) or 'Invalid argument' in str(err):
if data['retcode'] != 0 and err:

error = err
else:

error = out
raise CommandExecutionError('sysctl -w failed: {0}'.format(error))

new_name, new_value = out.split(' = ', 1)
ret[new_name] = new_value
return ret

is function contains two raise statements and one return statement, so we know that we will need (at least) three
tests. It has two function arguments and many references to non-builtin functions. In the tests below you will see
that MagicMock's patch() method may be used as a context manager or as a decorator.

ere are three test functions, one for each raise and return statement in the source function. Each function is self-
contained and contains all and only the mocks and data needed to test the raise or return statement it is concerned
with.

Import Salt Libs
from salt.modules import linux_sysctl
from salt.exceptions import CommandExecutionError

Import Salt Testing Libs
from salttesting import skipIf, TestCase
from salttesting.helpers import ensure_in_syspath
from salttesting.mock import (

MagicMock,
patch,
NO_MOCK,
NO_MOCK_REASON

)

ensure_in_syspath('../../')

Globals
linux_sysctl.__salt__ = {}

25.19. Writing Tests 1307

Salt Documentation, Release 2014.7.6

@skipIf(NO_MOCK, NO_MOCK_REASON)
class LinuxSysctlTestCase(TestCase):

'''
TestCase for salt.modules.linux_sysctl module
'''

@patch('os.path.exists', MagicMock(return_value=False))
def test_assign_proc_sys_failed(self):

'''
Tests if /proc/sys/<kernel-subsystem> exists or not
'''
cmd = {'pid': 1337, 'retcode': 0, 'stderr': '',

'stdout': 'net.ipv4.ip_forward = 1'}
mock_cmd = MagicMock(return_value=cmd)
with patch.dict(linux_sysctl.__salt__, {'cmd.run_all': mock_cmd}):

self.assertRaises(CommandExecutionError,
linux_sysctl.assign,
'net.ipv4.ip_forward', 1)

@patch('os.path.exists', MagicMock(return_value=True))
def test_assign_cmd_failed(self):

'''
Tests if the assignment was successful or not
'''
cmd = {'pid': 1337, 'retcode': 0, 'stderr':

'sysctl: setting key "net.ipv4.ip_forward": Invalid argument',
'stdout': 'net.ipv4.ip_forward = backward'}

mock_cmd = MagicMock(return_value=cmd)
with patch.dict(linux_sysctl.__salt__, {'cmd.run_all': mock_cmd}):

self.assertRaises(CommandExecutionError,
linux_sysctl.assign,
'net.ipv4.ip_forward', 'backward')

@patch('os.path.exists', MagicMock(return_value=True))
def test_assign_success(self):

'''
Tests the return of successful assign function
'''
cmd = {'pid': 1337, 'retcode': 0, 'stderr': '',

'stdout': 'net.ipv4.ip_forward = 1'}
ret = {'net.ipv4.ip_forward': '1'}
mock_cmd = MagicMock(return_value=cmd)
with patch.dict(linux_sysctl.__salt__, {'cmd.run_all': mock_cmd}):

self.assertEqual(linux_sysctl.assign(
'net.ipv4.ip_forward', 1), ret)

if __name__ == '__main__':
from integration import run_tests
run_tests(LinuxSysctlTestCase, needs_daemon=False)

25.20 raet

RAET # Reliable Asynchronous Event Transport Protocol

1308 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

25.20.1 Protocol

Layering:

OSI Layers

7: Application: Format: Data (Stack to Application interface buffering etc) 6: Presentation: Format: Data (Encrypt-
Decrypt convert to machine independent format) 5: Session: Format: Data (Interhost communications. Authenti-
cation. Groups) 4: Transport: Format: Segments (Reliable delivery of Message, Transactions, Segmentation, Error
checking) 3: Network: Format: Packets/Datagrams (Addressing Routing) 2: Link: Format: Frames (Reliable per
frame communications connection, Media access controller) 1: Physical: Bits (Transceiver communication connec-
tion not reliable)

Link is hidden from Raet Network is IP host address and Udp Port Transport is Raet transactions, service kind, tail
error checking, Could include header signing as part of transport reliable delivery serialization of header Session
is session id key exchange for signing. Grouping is Road (like 852 channel) Presentation is Encrypt Decrypt body
Serialize Deserialize Body Application is body data dictionary

Header signing spans both the Transport and Session layers.

25.20.2 Header

JSON Header (Tradeoff some processing speed for extensibility, ease of use, readability)

Body initially JSON but support for ``packed'' binary body

25.20.3 Packet

Header ASCII Safe JSON Header termination: Empty line given by double pair of carriage return linefeed /r/n/r/n
10 13 10 13 ADAD 1010 1101 1010 1101

In json carriage return and newline characters cannot appear in a json encoded string unless they are escaped with
backslash, so the 4 byte combination is illegal in valid json that does not have multi-byte unicode characters.

ese means the header must be ascii safe so no multibyte utf-8 strings allowed in header.

Following Header Terminator is variable length signature block. is is binary and the length is provided in the
header.

Following the signature block is the packet body or data. is may either be JSON or packed binary. e format is
given in the json header

Finally is an optional tail block for error checking or encryption details

25.20.4 Header Fields

In UDP header

sh = source host sp = source port dh = destination host dp = destination port

In RAET Header

hk = header kind hl = header length

vn = version number

sd = Source Device ID dd = Destination Device ID cf = Corresponder Flag mf = Multicast Flag

si = Session ID ti = Transaction ID

25.20. raet 1309

Salt Documentation, Release 2014.7.6

sk = Service Kind pk = Packet Kind bf = Burst Flag (Send all Segments or Ordered packets without interleaved acks)

oi = Order Index dt = DateTime Stamp

sn = Segment Number sc = Segment Count

pf = Pending Segment Flag af = All Flag (Resent all Segments not just one)

nk = Auth header kind nl = Auth header length

bk = body kind bl = body length

tk = tail kind tl = tail length

fg = flags paed (Flags) Default `00' hex string 2 byte Hex string with bits (0, 0, af, pf, 0, bf, mf, c) Zeros are TBD
flags

25.20.5 Session Bootstrap

Minion sends packet with SID of Zero with public key of minions Public Private Key pair Master acks packet with
SID of Zero to let minion know it received the request

Some time later Master sends packet with SID of zero that accepts the Minion

Minion

25.20.6 Session

Session is important for security. Want one session opened and then multiple transactions within session.

Session ID SID sid

GUID hash to guarantee uniqueness since no guarantee of nonvolatile storage or require file storage to keep last
session ID used.

25.20.7 Service Types or Modular Services

Four Service Types

1. One or more maybe (unacknowledged repeat) maybe means no guarantee

2. Exactly one at most (a with retries) (duplicate detection idempotent) at most means fixed number of re-
tries has finite probability of failing B1) finite retries B2) infinite retries with exponential back-off up to
a maximum delay

3. Exactly one of sequence at most (sequence numbered) Receiver requests retry of missing packet with same
B1 or B2 retry type

4. End to End (Application layer Request Response) is is two B sub transactions

Initially unicast messaging Eventually support for Multicast

e use case for C) is to fragment large packets as once a UDP packet exceeds the frame size its reliability goes way
down So its more reliable to fragment large packets.

Beer approach might be to have more modularity. Services Levels

1. Maybe one or more

(a) Fire and forget no transaction either side

(b) Repeat, no a, no dupdet repeat counter send side, no transaction on receive side

1310 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

(c) Repeat, no A, dupdet repeat counter send side, dup detection transaction receive side

2. More or Less Once

(a) retry finite, a no dupdet retry timer send side, finite number of retires ack receive side no
dupdet

3. At most Once

(a) retry finite, a, dupdet retry timer send side, finite number of retires ack receive side dupdet

4. Exactly once

(a) a retry retry timer send side, ack and duplicate detection receive side Infinite retries with expo-
nential backoff

5. Sequential sequence number

(a) reorder escrow

(b) Segmented packets

6. request response to application layer

Service Features

1. repeats

2. ack retry transaction id

3. sequence number duplicate detection out of order detection sequencing

4. rep-req

Always include transaction id since multiple transactions on same port So get duplicate detection for free if keep
transaction alive but if use

A) Maybe one or more B1) At Least One B2) Exactly One C) One of sequence D) End to End

A) Sender creates transaction id for number of repeats but receiver does not keep transaction alive

B1) Sender creates transaction id keeps it for retries. Receiver keeps it to send ack then kills so retry could be
duplicate not detected

B2) Sender creates transaction id keeps for retries Receiver keeps tid for acks on any retires so no duplicates.

C) Sender creates TID and Sequence Number. Receiver checks for out of order sequence and can request retry.

D) Application layer sends response. So question is dowe keep transaction open or have response be new transaction.
No because then we need a rep-req ID so might as well use the same transaction id. Just keep alive until get response.

Lile advantage to B1 vs B2 not having duplicates.

So 4 service types

1. Maybe one or more (unacknowledged repeat)

2. Exactly One (At most one) (ack with retry) (duplicate detection idempotent)

3. One of Sequence (sequence numbered)

4. End to End

Also multicast or unicast

Modular Transaction Table

25.20. raet 1311

Salt Documentation, Release 2014.7.6

Sender Side: Transaction ID plus transaction source sender or receiver generated transaction id Repeat Counter
Retry Timer Retry Counter (finite retries) Redo Timer (infinite redos with exponential backo) Sequence num-
ber without acks (look for resend requests) Sequence with ack (wait for ack before sending next in sequence)
Segmentation

Receiver Side: Nothing just accept packet Acknowledge (can delete transaction aer acknowledge) No duplicate de-
tection Transaction timeout (keep transaction until timeout) Duplicate detection save transaction id duplicate
detection timeout Request resend of missing packet in sequence Sequence reordering with escrow timeout
wait escrow before requesting resend Unsegmentation (request resends of missing segment)

25.21 SaltStack Git Policy

e SaltStack team follows a git policy to maintain stability and consistency with the repository.

e git policy has been developed to encourage contributions and make contributing to Salt as easy as possible. Code
contributors to SaltStack projects DO NOT NEED TO READ THIS DOCUMENT, because all contributions come into
SaltStack via a single gateway to make it as easy as possible for contributors to give us code.

e primary rule of git management in SaltStack is to make life easy on contributors and developers to send in code.
Simplicity is always a goal!

25.21.1 New Code Entry

All new SaltStack code is posted to the develop branch, which is the single point of entry. e only exception is
when a bugfix to develop cannot be cleanly merged into a release branch and the bugfix needs to be rewrien for
the release branch.

25.21.2 Release Branching

SaltStack maintains two types of releases, Feature Releases and Point Releases. A feature release is managed by
incrementing the first or second release point number, so 0.10.5 -> 0.11.0 signifies a feature release and 0.11.0 ->
0.11.1 signifies a point release, also a hypothetical 0.42.7 -> 1.0.0 would also signify a feature release.

Feature Release Branching

Each feature release is maintained in a dedicated git branch derived from the last applicable release commit on
develop. All file changes relevant to the feature release will be completed in the develop branch prior to the creation
of the feature release branch. e feature release branch will be named aer the relevant numbers to the feature
release, which constitute the first two numbers. is means that the release branch for the 0.11.0 series is named
0.11.

A feature release branch is created with the following command:

git checkout -b 0.11 # From the develop branch
git push origin 0.11

Point Releases

Each point release is derived from its parent release branch. Constructing point releases is a critical aspect of Salt
development and is managed by members of the core development team. Point releases comprise bug and security

1312 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

fixes which are cherry picked from develop onto the aforementioned release branch. At the time when a core
developer accepts a pull request a determination needs to be made if the commits in the pull request need to be
backported to the release branch. Some simple criteria are used to make this determination:

• Is this commit fixing a bug? Backport

• Does this commit change or add new features in any way? Don't backport

• Is this a PEP8 or code cleanup commit? Don't backport

• Does this commit fix a security issue? Backport

Determining when a point release is going to be made is up to the project leader (omas Hatch). Generally point
releases are made every 1-2 weeks or if there is a security fix they can be made sooner.

e point release is only designated by tagging the commit on the release branch with release number using the
existing convention (version 0.11.1 is tagged with v0.11.1). From the tag point a new source tarball is generated and
published to PyPI, and a release announcement is made.

25.22 Salt Conventions

25.22.1 Writing Salt Documentation

Salt's documentation is built using the Sphinx documentation system. It can be build in a large variety of output
formats including HTML, PDF, ePub, and manpage.

All the documentation is contained in the main Salt repository. Speaking broadly, most of the narrative docu-
mentation is contained within the hps://github.com/saltstack/salt/blob/develop/doc subdirectory and most of the
reference and API documentation is wrien inline with Salt's Python code and extracted using a Sphinx extension.

Style

e Salt project recommends the IEEE style guide as a general reference for writing guidelines. ose guidelines are
not strictly enforced but rather serve as an excellent resource for technical writing questions. e NCBI style guide
is another very approachable resource.

Point-of-view

Use third-person perspective and avoid ``I'', ``we'', ``you'' forms of address. Identify the addressee specifically e.g.,
``users should'', ``the compiler does'', etc.

Active voice

Use active voice and present-tense. Avoid filler words.

Title capitalization

Document titles and section titles within a page should follow normal sentence capitalization rules. Words that are
capitalized as part of a regular sentence should be capitalized in a title and otherwise le as lowercase. Punctuation
can be omied unless it aids the intent of the title (e.g., exclamation points or question marks).

For example:

25.22. Salt Conventions 1313

http://sphinx-doc.org/
https://github.com/saltstack/salt/blob/develop/doc
https://development.standards.ieee.org/myproject/Public/mytools/draft/styleman.pdf
http://www.ncbi.nlm.nih.gov/books/NBK993/

Salt Documentation, Release 2014.7.6

This is a main heading
======================

Paragraph.

This is an exciting sub-heading!

Paragraph.

Documenting modules

Documentation for Salt's various module types is inline in the code. During the documentation build process it is
extracted and formaed into the final HTML, PDF, etc format.

Inline documentation

Python has special multi-line strings called docstrings as the first element in a function or class. ese strings allow
documentation to live alongside the code and can contain special formaing. For example:

def myfunction(value):
'''
Upper-case the given value

Usage:

.. code-block:: python

val = 'a string'
new_val = myfunction(val)
print(new_val) # 'A STRING'

:param value: a string
:return: a copy of ``value`` that has been upper-cased
'''
return value.upper()

Specify a release for additions or changes

New functions or changes to existing functions should include a marker that denotes what Salt release will be af-
fected. For example:

def myfunction(value):
'''
Upper-case the given value

.. versionadded:: 2014.7.0

<...snip...>
'''
return value.upper()

1314 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

For changes to a function:

def myfunction(value, strip=False):
'''
Upper-case the given value

.. versionchanged:: Boron
Added a flag to also strip whitespace from the string.

<...snip...>
'''
if strip:

return value.upper().strip()
return value.upper()

Adding module documentation to the index

Each module type has an index listing all modules of that type. For example: Full list of builtin execution modules, Full
list of builtin state modules, Full list of builtin renderer modules. New modules must be added to the index manually.

1. Edit the file for the module type: execution modules, state modules, renderer modules, etc.

2. Add the new module to the alphebetized list.

3. Build the documentation which will generate an .rst file for the new module in the same directory as the
index.rst.

4. Commit the changes to index.rst and the new .rst file and send a pull request.

Cross-references

e Sphinx documentation system contains a wide variety of cross-referencing capabilities.

Glossary entries

Link to glossary entries using the term role. A cross-reference should be added the first time a Salt-specific term is
used in a document.

A common way to encapsulate master-side functionality is by writing a
custom :term:`Runner Function`. Custom Runner Functions are easy to write.

Index entries

Sphinx automatically generates many kind of index entries but it is occasionally useful to manually add items to the
index.

One method is to use the index directive above the document or section that should appear in the index.

.. index:: ! Event, event bus, event system
see: Reactor; Event

25.22. Salt Conventions 1315

https://github.com/saltstack/salt/blob/develop/doc/ref/modules/all/index.rst
https://github.com/saltstack/salt/blob/develop/doc/ref/states/all/index.rst
https://github.com/saltstack/salt/blob/develop/doc/ref/renderers/all/index.rst
http://docs.python.org/3/glossary.html#glossary
http://sphinx-doc.org/markup/inline.html#role-term
http://sphinx-doc.org/markup/misc.html#directive-index

Salt Documentation, Release 2014.7.6

Another method is to use the index role inline with the text that should appear in the index. e index entry is
created and the target text is le otherwise intact.

Information about the :index:`Salt Reactor`

Paragraph.

Documents and sections

Each document should contain a unique top-level label of the form:

.. _my-page:

My page
=======

Paragraph.

Unique labels can be linked using the ref role. is allows cross-references to survive document renames or move-
ment.

For more information see :ref:`my-page`.

Note, the :doc: role should not be used to link documents together.

Modules

Cross-references to Salt modules can be added using Sphinx's Python domain roles. For example, to create a link to
the test.ping function:

A useful execution module to test active communication with a minion is the
:py:func:`test.ping <salt.modules.test.ping>` function.

Salt modules can be referenced as well:

The :py:mod:`test module <salt.modules.test>` contains many useful
functions for inspecting an active Salt connection.

e same syntax works for all modules types:

One of the workhorse state module functions in Salt is the
:py:func:`file.managed <salt.states.file.managed>` function.

1316 Chapter 25. Developing Salt

http://sphinx-doc.org/markup/misc.html#role-index
http://sphinx-doc.org/markup/inline.html#role-ref

Salt Documentation, Release 2014.7.6

Seings

Individual seings in the Salt Master or Salt Minion configuration files are cross-referenced using two custom roles,
conf_master and conf_minion.

The :conf_minion:`minion ID <id>` setting is a unique identifier for a
single minion.

Building the documentation

1. Install Sphinx using a system package manager or pip. e package name is oen of the form python-
sphinx. ere are no other dependencies.

2. Build the documentation using the provided Makefile or .bat file on Windows.

cd /path/to/salt/doc
make html

3. e generated documentation will be wrien to the doc/_build/<format> directory.

4. A useful method of viewing the HTML documentation locally is the start Python's built-in HTTP server:

cd /path/to/salt/doc/_build/html
python -m SimpleHTTPServer

en pull up the documentation in a web browser at hp://localhost:8000/.

25.22.2 Salt Formulas

Formulas are pre-wrien Salt States. ey are as open-ended as Salt States themselves and can be used for tasks such
as installing a package, configuring and starting a service, seing up users or permissions, and many other common
tasks.

All official Salt Formulas are found as separate Git repositories in the ``saltstack-formulas'' organization on GitHub:

hps://github.com/saltstack-formulas

As a simple example, to install the popular Apache web server (using the normal defaults for the underlying distro)
simply include the apache-formula from a top file:

base:
'web*':

- apache

Installation

Each Salt Formula is an individual Git repository designed as a drop-in addition to an existing Salt State tree. For-
mulas can be installed in the following ways.

25.22. Salt Conventions 1317

http://localhost:8000/
https://github.com/saltstack-formulas
https://github.com/saltstack-formulas/apache-formula

Salt Documentation, Release 2014.7.6

Adding a Formula as a GitFS remote

One design goal of Salt's GitFS fileserver backend was to facilitate reusable States. GitFS is a quick and natural way
to use Formulas.

1. Install and configure GitFS.

2. Add one or more Formula repository URLs as remotes in the gitfs_remotes list in the Salt Master config-
uration file:

gitfs_remotes:
- https://github.com/saltstack-formulas/apache-formula
- https://github.com/saltstack-formulas/memcached-formula

We strongly recommend forking a formula repository into your own GitHub account to avoid unexpected
changes to your infrastructure.

Many Salt Formulas are highly active repositories so pull new changes with care. Plus any additions you make
to your fork can be easily sent back upstream with a quick pull request!

3. Restart the Salt master.

Adding a Formula directory manually

Formulas are simply directories that can be copied onto the local file system by using Git to clone the repository or
by downloading and expanding a tarball or zip file of the repository. e directory structure is designed to work
with file_roots in the Salt master configuration.

1. Clone or download the repository into a directory:

mkdir -p /srv/formulas
cd /srv/formulas
git clone https://github.com/saltstack-formulas/apache-formula.git

or

mkdir -p /srv/formulas
cd /srv/formulas
wget https://github.com/saltstack-formulas/apache-formula/archive/master.tar.gz
tar xf apache-formula-master.tar.gz

2. Add the new directory to file_roots:

file_roots:
- /srv/salt
- /srv/formulas/apache-formula

3. Restart the Salt Master.

Usage

Each Formula is intended to be immediately usable with sane defaults without any additional configuration. Many
formulas are also configurable by including data in Pillar; see the pillar.example file in each Formula repository
for available options.

1318 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

Including a Formula in an existing State tree

Formula may be included in an existing sls file. is is oen useful when a state you are writing needs to require
or extend a state defined in the formula.

Here is an example of a state that uses the epel-formula in a require declaration which directs Salt to not install
the python26 package until aer the EPEL repository has also been installed:

include:
- epel

python26:
pkg.installed:

- require:
- pkg: epel

Including a Formula from a Top File

Some Formula perform completely standalone installations that are not referenced from other state files. It is usually
cleanest to include these Formula directly from a Top File.

For example the easiest way to set up an OpenStack deployment on a single machine is to include the openstack-
standalone-formula directly from a top.sls file:

base:
'myopenstackmaster':

- openstack

ickly deploying OpenStack across several dedicated machines could also be done directly from a Top File and may
look something like this:

base:
'controller':

- openstack.horizon
- openstack.keystone

'hyper-*':
- openstack.nova
- openstack.glance

'storage-*':
- openstack.swift

Configuring Formula using Pillar

Salt Formulas are designed to work out of the box with no additional configuration. However, many Formula support
additional configuration and customization through Pillar . Examples of available options can be found in a file named
pillar.example in the root directory of each Formula repository.

Using Formula with your own states

Remember that Formula are regular Salt States and can be used with all Salt's normal state mechanisms. Formula
can be required from other States with require declarations, they can be modified using extend, they can made to
watch other states with e _in versions of requisites.

25.22. Salt Conventions 1319

https://github.com/saltstack-formulas/epel-formula
https://github.com/saltstack-formulas/openstack-standalone-formula
https://github.com/saltstack-formulas/openstack-standalone-formula

Salt Documentation, Release 2014.7.6

e following example uses the stock apache-formula alongside a custom state to create a vhost on a Debian/Ubuntu
system and to reload the Apache service whenever the vhost is changed.

Include the stock, upstream apache formula.
include:

- apache

Use the watch_in requisite to cause the apache service state to reload
apache whenever the my-example-com-vhost state changes.
my-example-com-vhost:

file:
- managed
- name: /etc/apache2/sites-available/my-example-com
- watch_in:

- service: apache

Don't be shy to read through the source for each Formula!

Reporting problems & making additions

Each Formula is a separate repository on GitHub. If you encounter a bug with a Formula please file an issue in the
respective repository! Send fixes and additions as a pull request. Add tips and tricks to the repository wiki.

Writing Formulas

Each Formula is a separate repository in the saltstack-formulas organization on GitHub.

Note: Get involved creating new Formulas
e best way to create new Formula repositories for now is to create a repository in your own account on GitHub
and notify a SaltStack employee when it is ready. We will add you to the contributors team on the saltstack-formulas
organization and help you transfer the repository over. Ping a SaltStack employee on IRC (#salt on Freenode) or
send an email to the salt-users mailing list.

ere are a lot of repositories in that organization! Teammembers canmanagewhich repositories they are subscribed
to on GitHub's watching page: hps://github.com/watching.

Style

Maintainability, readability, and reusability are all marks of a good Salt sls file. is section contains several sugges-
tions and examples.

Deploy the stable master branch unless version overridden by passing
Pillar at the CLI or via the Reactor.

deploy_myapp:
git.latest:

- name: git@github.com/myco/myapp.git
- version: {{ salt.pillar.get('myapp:version', 'master') }}

1320 Chapter 25. Developing Salt

https://github.com/saltstack-formulas/apache-formula
https://github.com/saltstack-formulas
https://github.com/saltstack-formulas
https://groups.google.com/forum/#!forum/salt-users
https://github.com/watching

Salt Documentation, Release 2014.7.6

Use a descriptive State ID e ID of a state is used as a unique identifier that may be referenced via other states
in requisites. It must be unique across the whole state tree (it is a key in a dictionary, aer all).

In addition a state ID should be descriptive and serve as a high-level hint of what it will do, or manage, or change.
For example, deploy_webapp, or apache, or reload_firewall.

Use module.function notation So-called ``short-declaration'' notation is preferred for referencing state mod-
ules and state functions. It provides a consistent paern of module.function shared between Salt States, the
Reactor, Overstate, Salt Mine, the Scheduler, as well as with the CLI.

Do
apache:

pkg.installed:
- name: httpd

Don't
apache:

pkg:
- installed
- name: httpd

Salt's state compiler will transform ``short-decs'' into the longer formatwhen compiling the human-friendly highstate
structure into the machine-friendly lowstate structure.

Specify the name parameter Use a unique and permanent identifier for the state ID and reserve name for data
with variability.

e name declaration is a required parameter for all state functions. e state ID will implicitly be used as name if
it is not explicitly set in the state.

In many state functions the name parameter is used for data that varies such as OS-specific package names, OS-
specific file system paths, repository addresses, etc. Any time the ID of a state changes all references to that ID must
also be changed. Use a permanent ID when writing a state the first time to future-proof that state and allow for
easier refactors down the road.

Comment state files YAML allows comments at varying indentation levels. It is a good practice to comment state
files. Use vertical whitespace to visually separate different concepts or actions.

Start with a high-level description of the current sls file.
Explain the scope of what it will do or manage.

Comment individual states as necessary.
update_a_config_file:

Provide details on why an unusual choice was made. For example:
#
This template is fetched from a third-party and does not fit our
company norm of using Jinja. This must be processed using Mako.
file.managed:

- name: /path/to/file.cfg
- source: salt://path/to/file.cfg.template
- template: mako

Provide a description or explanation that did not fit within the state
ID. For example:
#

25.22. Salt Conventions 1321

Salt Documentation, Release 2014.7.6

Update the application's last-deployed timestamp.
This is a workaround until Bob configures Jenkins to automate RPM
builds of the app.
cmd.run:

FIXME: Joe needs this to run on Windows by next quarter. Switch these
from shell commands to Salt's file.managed and file.replace state
modules.
- name: |

touch /path/to/file_last_updated
sed -e 's/foo/bar/g' /path/to/file_environment

- onchanges:
- file: a_config_file

Be careful to use Jinja comments for commenting Jinja code and YAML comments for commenting YAML code.

BAD EXAMPLE
The Jinja in this YAML comment is still executed!
{% set apache_is_installed = 'apache' in salt.pkg.list_pkgs() %}

GOOD EXAMPLE
The Jinja in this Jinja comment will not be executed.
{# {% set apache_is_installed = 'apache' in salt.pkg.list_pkgs() %} #}

Easy on the Jinja!

Jinja templating provides vast flexibility and power when building Salt sls files. It can also create an unmaintainable
tangle of logic and data. Speaking broadly, Jinja is best used when kept apart from the states (as much as is possible).

Below are guidelines and examples of how Jinja can be used effectively.

Know the evaluation and execution order High-level knowledge of how Salt states are compiled and run is useful
when writing states.

e default renderer seing in Salt is Jinja piped to YAML. Each is a separate step. Each step is not aware of
the previous or following step. Jinja is not YAML aware, YAML is not Jinja aware; they cannot share variables or
interact.

• Whatever the Jinja step produces must be valid YAML.

• Whatever the YAML step produces must be a valid highstate data structure. (is is also true of the final step
for any of the alternate renderers in Salt.)

• Highstate can be thought of as a human-friendly data structure; easy to write and easy to read.

• Salt's state compiler validates the highstate and compiles it to low state.

• Low state can be thought of as a machine-friendly data structure. It is a list of dictionaries that each map
directly to a function call.

• Salt's state system finally starts and executes on each ``chunk'' in the low state. Remember that requisites are
evaluated at runtime.

• e return for each function call is added to the ``running'' dictionary which is the final output at the end of
the state run.

e full evaluation and execution order:

1322 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

Jinja -> YAML -> Highstate -> low state -> execution

Avoidanging the underlying system with Jinja Avoid calling commands from Jinja that change the underlying
system. Commands run via Jinja do not respect Salt's dry-run mode (test=True)! is is usually in conflict with
the idempotent nature of Salt states unless the command being run is also idempotent.

Inspect the local system A common use for Jinja in Salt states is to gather information about the underlying system.
e grains dictionary available in the Jinja context is a great example of common data points that Salt itself has
already gathered. Less common values are oen found by running commands. For example:

{% set is_selinux_enabled = salt.cmd.run('sestatus') == '1' %}

is is usually best done with a variable assignment in order to separate the data from the state that will make use
of the data.

Gather external data One of the most common uses for Jinja is to pull external data into the state file. External
data can come from anywhere like API calls or database queries, but it most commonly comes from flat files on the
file system or Pillar data from the Salt Master. For example:

{% set some_data = salt.pillar.get('some_data', {'sane default': True}) %}

{# or #}

{% load_json 'path/to/file.json' as some_data %}

{# or #}

{% load_text 'path/to/ssh_key.pub' as ssh_pub_key %}

{# or #}

{% from 'path/to/other_file.jinja' import some_data with context %}

is is usually best done with a variable assignment in order to separate the data from the state that will make use
of the data.

Light conditionals and looping Jinja is extremely powerful for programatically generating Salt states. It is also
easy to overuse. As a rule of thumb, if it is hard to read it will be hard to maintain!

Separate Jinja control-flow statements from the states as much as is possible to create readable states. Limit Jinja
within states to simple variable lookups.

Below is a simple example of a readable loop:

{% for user in salt.pillar.get('list_of_users', []) %}

{# Ensure unique state IDs when looping. #}
{{ user.name }}-{{ loop.index }}:

user.present:
- name: {{ user.name }}
- shell: {{ user.shell }}

25.22. Salt Conventions 1323

Salt Documentation, Release 2014.7.6

{% endfor %}

Avoid puing a Jinja conditionals within Salt states where possible. Readability suffers and the correct YAML inden-
tation is difficult to see in the surrounding visual noise. Parameterization (discussed below) and variables are both
useful techniques to avoid this. For example:

{# ---- Bad example ---- #}

apache:
pkg.installed:

{% if grains.os_family == 'RedHat' %}
- name: httpd
{% elif grains.os_family == 'Debian' %}
- name: apache2
{% endif %}

{# ---- Better example ---- #}

{% if grains.os_family == 'RedHat' %}
{% set name = 'httpd' %}
{% elif grains.os_family == 'Debian' %}
{% set name = 'apache2' %}
{% endif %}

apache:
pkg.installed:

- name: {{ name }}

{# ---- Good example ---- #}

{% set name = {
'RedHat': 'httpd',
'Debian': 'apache2',

}.get(grains.os_family) %}

apache:
pkg.installed:

- name: {{ name }}

Dictionaries are useful to effectively ``namespace'' a collection of variables. is is useful with parameterization
(discussed below). Dictionaries are also easily combined and merged. And they can be directly serialized into YAML
which is oen easier than trying to create valid YAML through templating. For example:

{# ---- Bad example ---- #}

haproxy_conf:
file.managed:

- name: /etc/haproxy/haproxy.cfg
- template: jinja
{% if 'external_loadbalancer' in grains.roles %}
- source: salt://haproxy/external_haproxy.cfg
{% elif 'internal_loadbalancer' in grains.roles %}
- source: salt://haproxy/internal_haproxy.cfg
{% endif %}
- context:

{% if 'external_loadbalancer' in grains.roles %}

1324 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

ssl_termination: True
{% elif 'internal_loadbalancer' in grains.roles %}
ssl_termination: False
{% endif %}

{# ---- Better example ---- #}

{% load_yaml as haproxy_defaults %}
common_settings:

bind_port: 80

internal_loadbalancer:
source: salt://haproxy/internal_haproxy.cfg
settings:

bind_port: 8080
ssl_termination: False

external_loadbalancer:
source: salt://haproxy/external_haproxy.cfg
settings:

ssl_termination: True
{% endload %}

{% if 'external_loadbalancer' in grains.roles %}
{% set haproxy = haproxy_defaults['external_loadbalancer'] %}
{% elif 'internal_loadbalancer' in grains.roles %}
{% set haproxy = haproxy_defaults['internal_loadbalancer'] %}
{% endif %}

{% do haproxy.settings.update(haproxy_defaults.common_settings) %}

haproxy_conf:
file.managed:

- name: /etc/haproxy/haproxy.cfg
- template: jinja
- source: {{ haproxy.source }}
- context: {{ haproxy.settings | yaml() }}

ere is still room for improvement in the above example. For example, extracting into an external file or replacing
the if-elif conditional with a function call to filter the correct data more succinctly. However, the state itself is simple
and legible, the data is separate and also simple and legible. And those suggested improvements can be made at some
future date without altering the state at all!

Avoid heavy logic and programming Jinja is not Python. It was made by Python programmers and shares many
semantics and some syntax but it does not allow for abitrary Python function calls or Python imports. Jinja is a fast
and efficient templating language but the syntax can be verbose and visually noisy.

Once Jinja use within an sls file becomes slightly complicated -- long chains of if-elif-elif-else statements, nested
conditionals, complicated dictionary merges, wanting to use sets -- instead consider using a different Salt renderer,
such as the Python renderer. As a rule of thumb, if it is hard to read it will be hard to maintain -- switch to a format
that is easier to read.

Using alternate renderers is very simple to do using Salt's ``she-bang'' syntax at the top of the file. e Python
renderer must simply return the correct highstate data structure. e following example is a state tree of two sls files,
one simple and one complicated.

/srv/salt/top.sls:

25.22. Salt Conventions 1325

Salt Documentation, Release 2014.7.6

base:
'*':

- common_configuration
- roles_configuration

/srv/salt/common_configuration.sls:

common_users:
user.present:

- names: [larry, curly, moe]

/srv/salt/roles_configuration:

#!py
def run():

list_of_roles = set()

This example has the minion id in the form 'web-03-dev'.
Easily access the grains dictionary:
try:

app, instance_number, environment = __grains__['id'].split('-')
instance_number = int(instance_number)

except ValueError:
app, instance_number, environment = ['Unknown', 0, 'dev']

list_of_roles.add(app)

if app == 'web' and environment == 'dev':
list_of_roles.add('primary')
list_of_roles.add('secondary')

elif app == 'web' and environment == 'staging':
if instance_number == 0:

list_of_roles.add('primary')
else:

list_of_roles.add('secondary')

Easily cross-call Salt execution modules:
if __salt__['myutils.query_valid_ec2_instance']():

list_of_roles.add('is_ec2_instance')

return {
'set_roles_grains': {

'grains.present': [
{'name': 'roles'},
{'value': list(list_of_roles)},

],
},

}

Jinja Macros In Salt sls files Jinja macros are useful for one thing and one thing only: creating mini templates that
can be reused and rendered on demand. Do not fall into the trap of thinking of macros as functions; Jinja is not
Python (see above).

Macros are useful for creating reusable, parameterized states. For example:

1326 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

{% macro user_state(state_id, user_name, shell='/bin/bash', groups=[]) %}
{{ state_id }}:

user.present:
- name: {{ user_name }}
- shell: {{ shell }}
- groups: {{ groups | json() }}

{% endmacro %}

{% for user_info in salt.pillar.get('my_users', []) %}
{{ user_state('user_number_' ~ loop.index, **user_info) }}
{% endfor %}

Macros are also useful for creating one-off ``serializers'' that can accept a data structure and write that out as a
domain-specific configuration file. For example, the following macro could be used to write a php.ini config file:

/srv/salt/php.sls:

php_ini:
file.managed:

- name: /etc/php.ini
- source: salt://php.ini.tmpl
- template: jinja
- context:

php_ini_settings: {{ salt.pillar.get('php_ini', {}) | json() }}

/srv/pillar/php.sls:

PHP:
engine: 'On'
short_open_tag: 'Off'
error_reporting: 'E_ALL & ~E_DEPRECATED & ~E_STRICT'

/srv/salt/php.ini.tmpl:

{% macro php_ini_serializer(data) %}
{% for section_name, name_val_pairs in data.items() %}
[{{ section }}]
{% for name, val in name_val_pairs.items() %}
{{ name }} = "{{ val }}"
{% endfor %}
{% endfor %}
{% endmacro %}

; File managed by Salt at <{{ source }}>.
; Your changes will be overwritten.

{{ php_ini_serializer(php_ini_settings) }}

Abstracting static defaults into a lookup table

Separate data that a state uses from the state itself to increases the flexibility and reusability of a state.

An obvious and common example of this is platform-specific package names and file system paths. Another example
is sane defaults for an application, or common seings within a company or organization. Organizing such data as a

25.22. Salt Conventions 1327

Salt Documentation, Release 2014.7.6

dictionary (aka hash map, lookup table, associative array) oen provides a lightweight namespacing and allows for
quick and easy lookups. In addition, using a dictionary allows for easily merging and overriding static values within
a lookup table with dynamic values fetched from Pillar.

A strong convention in Salt Formulas is to place platform-specific data, such as package names and file system paths,
into a file named map.jinja that is placed alongside the state files.

e following is an example from the MySQL Formula. e grains.filter_by function performs a lookup on
that table using the os_family grain (by default).

e result is that the mysql variable is assigned to a subset of the lookup table for the current platform. is allows
states to reference, for example, the name of a package without worrying about the underlying OS. e syntax for
referencing a value is a normal dictionary lookup in Jinja, such as {{ mysql['service'] }} or the shorthand
{{ mysql.service }}.

map.jinja:

{% set mysql = salt['grains.filter_by']({
'Debian': {

'server': 'mysql-server',
'client': 'mysql-client',
'service': 'mysql',
'config': '/etc/mysql/my.cnf',
'python': 'python-mysqldb',

},
'RedHat': {

'server': 'mysql-server',
'client': 'mysql',
'service': 'mysqld',
'config': '/etc/my.cnf',
'python': 'MySQL-python',

},
'Gentoo': {

'server': 'dev-db/mysql',
'mysql-client': 'dev-db/mysql',
'service': 'mysql',
'config': '/etc/mysql/my.cnf',
'python': 'dev-python/mysql-python',

},
}, merge=salt['pillar.get']('mysql:lookup')) %}

Values defined in the map file can be fetched for the current platform in any state file using the following syntax:

{% from "mysql/map.jinja" import mysql with context %}

mysql-server:
pkg.installed:

- name: {{ mysql.server }}
service.running:

- name: {{ mysql.service }}

Overriding values in the lookup table Allow static values within lookup tables to be overridden. is is a simple
paern which once again increases flexibility and reusability for state files.

e merge argument in filter_by specifies the location of a dictionary in Pillar that can be used to override
values returned from the lookup table. If the value exists in Pillar it will take precedence.

1328 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

is is useful when soware or configuration files is installed to non-standard locations or on unsupported platforms.
For example, the following Pillar would replace the config value from the call above.

mysql:
lookup:

config: /usr/local/etc/mysql/my.cnf

e filter_by function performs a simple dictionary lookup but also allows for fetching data from Pillar and
overriding data stored in the lookup table. at same workflow can be easily performed without using filter_by;
other dictionaries besides data from Pillar can also be used.

{% set lookup_table = {...} %}
{% do lookup_table.update(salt.pillar.get('my:custom:data')) %}

When to use lookup tables e map.jinja file is only a convention within Salt Formulas. is greater paern
is useful for a wide variety of data in a wide variety of workflows. is paern is not limited to pulling data from a
single file or data source. is paern is useful in States, Pillar, the Reactor, and Overstate as well.

Working with a data structure instead of, say, a config file allows the data to be cobbled together from multiple
sources (local files, remote Pillar, database queries, etc), combined, overridden, and searched.

Below are a few examples of what lookup tables may be useful for and how they may be used and represented.

Platform-specific information An obvious paern and one used heavily in Salt Formulas is extracting platform-
specific information such as package names and file system paths in a file named map.jinja. e paern is
explained in detail above.

Sane defaults Application seings can be a good fit for this paern. Store default seings along with the states
themselves and keep overrides and sensitive seings in Pillar. Combine both into a single dictionary and then write
the application config or seings file.

e example below stores most of the Apache Tomcat server.xml file alongside the Tomcat states and then allows
values to be updated or augmented via Pillar. (is example uses the BadgerFish format for transforming JSON to
XML.)

/srv/salt/tomcat/defaults.yaml:

Server:
'@port': '8005'
'@shutdown': SHUTDOWN
GlobalNamingResources:

Resource:
'@auth': Container
'@description': User database that can be updated and saved
'@factory': org.apache.catalina.users.MemoryUserDatabaseFactory
'@name': UserDatabase
'@pathname': conf/tomcat-users.xml
'@type': org.apache.catalina.UserDatabase

<...snip...>

/srv/pillar/tomcat.sls:

25.22. Salt Conventions 1329

Salt Documentation, Release 2014.7.6

appX:
server_xml_overrides:

Server:
Service:

'@name': Catalina
Connector:

'@port': '8009'
'@protocol': AJP/1.3
'@redirectPort': '8443'
<...snip...>

/srv/salt/tomcat/server_xml.sls:

{% load_yaml 'tomcat/defaults.yaml' as server_xml_defaults %}
{% set server_xml_final_values = salt.pillar.get(

'appX:server_xml_overrides',
default=server_xml_defaults,
merge=True)

%}

appX_server_xml:
file.serialize:

- name: /etc/tomcat/server.xml
- dataset: {{ server_xml_final_values | json() }}
- formatter: xml_badgerfish

e file.serialize state can provide a shorthand for creating some files from data structures. ere are also
many examples within Salt Formulas of creating one-off ``serializers'' (oen as Jinja macros) that reformat a data
structure to a specific config file format. For example, `Nginx vhosts`__ or the `php.ini`__

__: hps://github.com/saltstack-formulas/nginx-formula/blob/5cad4512/nginx/ng/vhosts_config.sls __:
hps://github.com/saltstack-formulas/php-formula/blob/82e2cd3a/php/ng/files/php.ini

Environment specific information A single state can be reused when it is parameterized as described in the section
below, by separating the data the state will use from the state that performs the work. is can be the difference
between deploying Application X and Application Y, or the difference between production and development. For
example:

/srv/salt/app/deploy.sls:

{# Load the map file. #}
{% load_yaml 'app/defaults.yaml' as app_defaults %}

{# Extract the relevant subset for the app configured on the current
machine (configured via a grain in this example). #}

{% app = app_defaults.get(salt.grains.get('role') %}

{# Allow values from Pillar to (optionally) update values from the lookup
table. #}

{% do app_defaults.update(salt.pillar.get('myapp', {}) %}

deploy_application:
git.latest:

- name: {{ app.repo_url }}
- version: {{ app.version }}
- target: {{ app.deploy_dir }}

1330 Chapter 25. Developing Salt

https://github.com/saltstack-formulas/nginx-formula/blob/5cad4512/nginx/ng/vhosts_config.sls
https://github.com/saltstack-formulas/php-formula/blob/82e2cd3a/php/ng/files/php.ini

Salt Documentation, Release 2014.7.6

myco/myapp/deployed:
event.send:

- data:
version: {{ app.version }}

- onchanges:
- git: deploy_application

/srv/salt/app/defaults.yaml:

appX:
repo_url: git@github.com/myco/appX.git
target: /var/www/appX
version: master

appY:
repo_url: git@github.com/myco/appY.git
target: /var/www/appY
version: v1.2.3.4

Single-purpose SLS files

Each sls file in a Formula should strive to do a single thing. is increases the reusability of this file by keeping
unrelated tasks from geing coupled together.

As an example, the base Apache formula should only install the Apache hpd server and start the hpd service. is
is the basic, expected behavior when installing Apache. It should not perform additional changes such as set the
Apache configuration file or create vhosts.

If a formula is single-purpose as in the example above, other formulas, and also other states can include and use
that formula with Requisites and Other Global State Arguments without also including undesirable or unintended
side-effects.

e following is a best-practice example for a reusable Apache formula. (is skips platform-specific options for
brevity. See the full apache-formula for more.)

apache/init.sls
apache:

pkg.installed:
[...]

service.running:
[...]

apache/mod_wsgi.sls
include:

- apache

mod_wsgi:
pkg.installed:

[...]
- require:

- pkg: apache

apache/conf.sls
include:

- apache

25.22. Salt Conventions 1331

https://github.com/saltstack-formulas/apache-formula

Salt Documentation, Release 2014.7.6

apache_conf:
file.managed:

[...]
- watch_in:

- service: apache

To illustrate a bad example, say the above Apache formula installed Apache and also created a default vhost. e
mod_wsgi state would not be able to include the Apache formula to create that dependency tree without also in-
stalling the unneeded default vhost.

Formulas should be reusable. Avoid coupling unrelated actions together.

Parameterization

Parameterization is a key feature of Salt Formulas and also for Salt States. Parameterization allows a single Formula
to be reused across many operating systems; to be reused across production, development, or staging environments;
and to be reused by many people all with varying goals.

Writing states, specifying ordering and dependencies is the part that takes the longest to write and to test. Filling
those states out with data such as users or package names or file locations is the easy part. How many users, what
those users are named, or where the files live are all implementation details that should be parameterized. is
separation between a state and the data that populates a state creates a reusable formula.

In the example below the data that populates the state can come from anywhere -- it can be hard-coded at the top of
the state, it can come from an external file, it can come from Pillar, it can come from an execution function call, or it
can come from a database query. e state itself doesn't change regardless of where the data comes from. Production
data will vary from development data will vary from data from one company to another, however the state itself
stays the same.

{% set user_list = [
{'name': 'larry', 'shell': 'bash'},
{'name': 'curly', 'shell': 'bash'},
{'name': 'moe', 'shell': 'zsh'},

] %}

{# or #}

{% set user_list = salt['pillar.get']('user_list') %}

{# or #}

{% load_json "default_users.json" as user_list %}

{# or #}

{% set user_list = salt['acme_utils.get_user_list']() %}

{% for user in list_list %}
{{ user.name }}:

user.present:
- name: {{ user.name }}
- shell: {{ user.shell }}

{% endfor %}

1332 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

Configuration

Formulas should strive to use the defaults of the underlying platform, followed by defaults from the upstream project,
followed by sane defaults for the formula itself.

As an example, a formula to install Apache should not change the default Apache configuration file installed by the
OS package. However, the Apache formula should include a state to change or override the default configuration
file.

Pillar overrides

Pillar lookups must use the safe get() and must provide a default value. Create local variables using the Jinja set
construct to increase redability and to avoid potentially hundreds or thousands of function calls across a large state
tree.

{% from "apache/map.jinja" import apache with context %}
{% set settings = salt['pillar.get']('apache', {}) %}

mod_status:
file.managed:

- name: {{ apache.conf_dir }}
- source: {{ settings.get('mod_status_conf', 'salt://apache/mod_status.conf') }}
- template: {{ settings.get('template_engine', 'jinja') }}

Any default values used in the Formula must also be documented in the pillar.example file in the root of the
repository. Comments should be used liberally to explain the intent of each configuration value. In addition, users
should be able copy-and-paste the contents of this file into their own Pillar to make any desired changes.

Scripting

Remember that both State files and Pillar files can easily call out to Salt execution modules and have access to all the
system grains as well.

{% if '/storage' in salt['mount.active']() %}
/usr/local/etc/myfile.conf:

file:
- symlink
- target: /storage/myfile.conf

{% endif %}

Jinja macros to encapsulate logic or conditionals are discouraged in favor of writing custom execution modules in
Python.

Repository structure

A basic Formula repository should have the following layout:

foo-formula
|-- foo/
| |-- map.jinja
| |-- init.sls
| `-- bar.sls

25.22. Salt Conventions 1333

Salt Documentation, Release 2014.7.6

|-- CHANGELOG.rst
|-- LICENSE
|-- pillar.example
|-- README.rst
`-- VERSION

See also:

template-formula

e template-formula repository has a pre-built layout that serves as the basic structure for a new formula repository.
Just copy the files from there and edit them.

README.rst

e README should detail each available .sls file by explaining what it does, whether it has any dependencies
on other formulas, whether it has a target platform, and any other installation or usage instructions or tips.

A sample skeleton for the README.rst file:

===
foo
===

Install and configure the FOO service.

.. note::

See the full `Salt Formulas installation and usage instructions
<http://docs.saltstack.com/topics/conventions/formulas.html>`_.

Available states
================

.. contents::
:local:

``foo``

Install the ``foo`` package and enable the service.

``foo.bar``

Install the ``bar`` package.

CHANGELOG.rst

e CHANGELOG.rst file should detail the individual versions, their release date and a set of bullet points for each
version highlighting the overall changes in a given version of the formula.

A sample skeleton for the CHANGELOG.rst file:

CHANGELOG.rst:

1334 Chapter 25. Developing Salt

https://github.com/saltstack-formulas/template-formula
https://github.com/saltstack-formulas/template-formula

Salt Documentation, Release 2014.7.6

foo formula
===========

0.0.2 (2013-01-01)

- Re-organized formula file layout
- Fixed filename used for upstart logger template
- Allow for pillar message to have default if none specified

Versioning

Formula are versioned according to Semantic Versioning, hp://semver.org/.

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner, and

3. PATCH version when you make backwards-compatible bug fixes.

Additional labels for pre-release and build metadata are available as extensions to the MA-
JOR.MINOR.PATCH format.

Formula versions are tracked using Git tags as well as the VERSION file in the formula repository. e VERSION
file should contain the currently released version of the particular formula.

Testing Formulas

A smoke-test for invalid Jinja, invalid YAML, or an invalid Salt state structure can be performed by with the
state.show_sls function:

salt '*' state.show_sls apache

Salt Formulas can then be tested by running each .sls file via state.sls and checking the output for the success
or failure of each state in the Formula. is should be done for each supported platform.

25.22.3 SaltStack Packaging Guide

Since Salt provides a powerful toolkit for systemmanagement and automation, the package can be spit into a number
of sub-tools. While packaging Salt as a single package containing all components is perfectly acceptable, the split
packages should follow this convention.

Patching Salt For Distributions

e occasion may arise where Salt source and default configurations may need to be patched. It is preferable if Salt
is only patched to include platform specific additions or to fix release time bugs. It is preferable that configuration
seings and operations remain in the default state, as changes here lowers the user experience for users moving
across distributions.

In the event where a packager finds a need to change the default configuration it is advised to add the files to the
master.d or minion.d directories.

25.22. Salt Conventions 1335

http://semver.org/

Salt Documentation, Release 2014.7.6

Source Files

Release packages should always be built from the source tarball distributed via pypi. Release packages shouldNEVER
use a git checkout as the source for distribution.

Single Package

Shipping Salt as a single package, where the minion, master and all tools are together is perfectly acceptable and
practiced by distributions such as FreeBSD.

Split Package

Salt Should always be split in a standard way, with standard dependencies, this lowers cross distribution confusion
about what components are going to be shipped with specific packages. ese packages can be defined from the Salt
Source as of Salt 2014.1.0:

Salt Common

e salt-common or salt package should contain the files provided by the salt python package, or all files distributed
from the salt/ directory in the source distribution packages. e documentation contained under the doc/ di-
rectory can be a part of this package but spliing out a doc package is preferred. Since salt-call is the entry point to
utilize the libs and is useful for all salt packages it is included in the salt-common package.

Name

• salt OR salt-common

Files

• salt/*

• man/salt.7

• scripts/salt-call

• tests/*

• man/salt-call.1

Depends

• Python 2.6-2.7

• PyYAML

• Jinja2

Salt Master

e salt-master package contains the applicable scripts, relatedman pages and init information for the given platform.

1336 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

Name

• salt-master

Files

• scripts/salt-master

• scripts/salt

• scripts/salt-run

• scripts/salt-key

• scripts/salt-cp

• pkg/<master init data>

• man/salt.1

• man/salt-master.1

• man/salt-run.1

• man/salt-key.1

• man/salt-cp.1

• conf/master

Depends

• Salt Common

• ZeroMQ >= 3.2

• PyZMQ >= 2.10

• PyCrypto

• M2Crypto

• Python MessagePack (Messagepack C lib, or msgpack-pure)

Salt Syndic

e Salt Syndic package can be rolled completely into the Salt Master package. Platforms which start services as
part of the package deployment need to maintain a separate salt-syndic package (primarily Debian based platforms).

e Syndic may optionally not depend on the anything more than the Salt Master since the master will bring in all
needed dependencies, but fall back to the platform specific packaging guidelines.

Name

• salt-syndic

25.22. Salt Conventions 1337

Salt Documentation, Release 2014.7.6

Files

• scripts/salt-syndic

• pkg/<syndic init data>

• man/salt-syndic.1

Depends

• Salt Common

• Salt Master

• ZeroMQ >= 3.2

• PyZMQ >= 2.10

• PyCrypto

• M2Crypto

• Python MessagePack (Messagepack C lib, or msgpack-pure)

Salt Minion

e Minion is a standalone package and should not be split beyond the salt-minion and salt-common packages.

Name

• salt-minion

Files

• scripts/salt-minion

• pkg/<minion init data>

• man/salt-minion.1

• conf/minion

Depends

• Salt Common

• ZeroMQ >= 3.2

• PyZMQ >= 2.10

• PyCrypto

• M2Crypto

• Python MessagePack (Messagepack C lib, or msgpack-pure)

Salt SSH

Since Salt SSH does not require the same dependencies as the minion and master, it should be split out.

1338 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

Name

• salt-ssh

Files

• scripts/salt-ssh

• man/salt-ssh.1

• conf/cloud*

Depends

• Salt Common

• Python MessagePack (Messagepack C lib, or msgpack-pure)

Salt Cloud

As of Salt 2014.1.0 Salt Cloud is included in the same repo as Salt. is can be split out into a separate package or it
can be included in the salt-master package.

Name

• salt-cloud

Files

• scripts/salt-cloud

• man/salt-cloud.1

Depends

• Salt Common

• apache libcloud >= 0.14.0

Salt Doc

e documentation package is very distribution optional. A completely split package will split out the documenta-
tion, but some platform conventions do not prefer this. If the documentation is not split out, it should be included
with the Salt Common package.

Name

• salt-doc

Files

• doc/*

25.22. Salt Conventions 1339

Salt Documentation, Release 2014.7.6

Optional Depends

• Salt Common

• Python Sphinx

• Make

25.22.4 Salt Release Process

e goal for Salt projects is to cut a new feature release every four to six weeks. is document outlines the process
for these releases, and the subsequent bug fix releases which follow.

Feature Release Process

When a new release is ready to be cut, the person responsible for cuing the release will follow the following steps
(wrien using the 0.16 release as an example):

1. All open issues on the release milestone should be moved to the next release milestone. (e.g. from the 0.16
milestone to the 0.17 milestone)

2. Release notes should be created documenting the major new features and bugfixes in the release.

3. Create an annotated tag with only the major and minor version numbers, preceded by the leer v. (e.g.
v0.16) is tag will reside on the develop branch.

4. Create a branch for the new release, using only the major and minor version numbers. (e.g. 0.16)

5. On this new branch, create an annotated tag for the first revision release, which is generally a release candidate.
It should be preceded by the leer v. (e.g. v0.16.0RC)

6. e release should be packaged from this annotated tag and uploaded to PyPI as well as the GitHub releases
page for this tag.

7. e packagers should be notified on the salt-packagers mailing list so they can create packages for all the
major operating systems. (note that release candidates should go in the testing repositories)

8. Aer the packagers have been given a few days to compile the packages, the release is announced on the
salt-users mailing list.

9. Log into RTD and add the new release there. (Have to do it manually)

Maintenance and Bugfix Releases

Once a release has been cut, regular cherry-picking sessions should begin to cherry-pick any bugfixes from the
develop branch to the release branch (e.g. 0.16). Once major bugs have been fixes and cherry-picked, a bugfix
release can be cut:

1. On the release branch (i.e. 0.16), create an annotated tag for the revision release. It should be preceded by
the leer v. (e.g. v0.16.2) Release candidates are unnecessary for bugfix releases.

2. e release should be packaged from this annotated tag and uploaded to PyPI.

3. e packagers should be notified on the salt-packagers mailing list so they can create packages for all the
major operating systems.

4. Aer the packagers have been given a few days to compile the packages, the release is announced on the
salt-users mailing list.

1340 Chapter 25. Developing Salt

https://groups.google.com/forum/#!forum/salt-packagers
https://groups.google.com/forum/#!forum/salt-users
https://groups.google.com/forum/#!forum/salt-packagers
https://groups.google.com/forum/#!forum/salt-users

Salt Documentation, Release 2014.7.6

Cherry-Picking Process for Bugfixes

Bugfixes should be made on the develop branch. If the bug also applies to the current release branch, then on the
pull request against develop, the user should mention @basepi and ask for the pull request to be cherry-picked.
If it is verified that the fix is a bugfix, then the Bugfix -- Cherry-Pick label will be applied to the pull request.
When those commits are cherry-picked, the label will be switched to the Bugfix -- [Done] Cherry-Pick
label. is allows easy recognition of which pull requests have been cherry-picked, and which are still pending to
be cherry-picked. All cherry-picked commits will be present in the next release.

Features will not be cherry-picked, and will be present in the next feature release.

25.22.5 Salt Coding Style

Salt is developed with a certain coding style, while the style is dominantly PEP 8 it is not completely PEP 8. It is also
noteworthy that a few development techniques are also employed which should be adhered to. In the end, the code
is made to be ``Salty''.

Most importantly though, we will accept code that violates the coding style and KINDLY ask the contributor to
fix it, or go ahead and fix the code on behalf of the contributor. Coding style is NEVER grounds to reject code
contributions, and is never grounds to talk down to another member of the community (ere are no grounds to
treat others without respect, especially people working to improve Salt)‼

Linting

Most Salt style conventions are codified in Salt's .pylintrc file. is file is found in the root of the Salt project
and can be passed as an argument to the pylint program as follows:

pylint --rcfile=/path/to/salt/.pylintrc salt/dir/to/lint

Strings

Salt follows a few rules when formaing strings:

Single otes

In Salt, all strings use single quotes unless there is a good reason not to. is means that docstrings use single quotes,
standard strings use single quotes etc.:

def foo():
'''
A function that does things
'''
name = 'A name'
return name

Formaing Strings

All strings which require formaing should use the .format string method:

25.22. Salt Conventions 1341

http://www.pylint.org

Salt Documentation, Release 2014.7.6

data = 'some text'
more = '{0} and then some'.format(data)

Make sure to use indices or identifiers in the format brackets, since empty brackets are not supported by python 2.6.

Please do NOT use printf formaing.

Docstring Conventions

Docstrings should always add a newline, docutils takes care of the new line and it makes the code cleaner and more
vertical:

GOOD:

def bar():
'''
Here lies a docstring with a newline after the quotes and is the salty
way to handle it! Vertical code is the way to go!
'''
return

BAD:

def baz():
'''This is not ok!'''
return

When adding a new function or state, where possible try to use a versionadded directive to denote when the
function or state was added.

def new_func(msg=''):
'''
.. versionadded:: 0.16.0

Prints what was passed to the function.

msg : None
The string to be printed.

'''
print msg

If you are uncertain what version should be used, either consult a core developer in IRC or bring this up when
opening your pull request and a core developer will add the proper version once your pull request has been merged.
Bugfixes will be available in a bugfix release (i.e. 0.17.1, the first bugfix release for 0.17.0), while new features are
held for feature releases, and this will affect what version number should be used in the versionadded directive.

Similar to the above, when an existing function or state is modified (for example, when an argument is added), then
under the explanation of that new argument a versionadded directive should be used to note the version in which
the new argument was added. If an argument's function changes significantly, the versionchanged directive can
be used to clarify this:

def new_func(msg='', signature=''):
'''
.. versionadded:: 0.16.0

1342 Chapter 25. Developing Salt

Salt Documentation, Release 2014.7.6

Prints what was passed to the function.

msg : None
The string to be printed. Will be prepended with 'Greetings! '.

.. versionchanged:: 0.17.1

signature : None
An optional signature.

.. versionadded 0.17.0
'''
print 'Greetings! {0}\n\n{1}'.format(msg, signature)

Dictionaries

Dictionaries should be initialized using {} instead of dict().

See here for an in-depth discussion of this topic.

Imports

Salt code prefers importing modules and not explicit functions. is is both a style and functional preference. e
functional preference originates around the fact that the module import system used by pluggable modules will
include callable objects (functions) that exist in the direct module namespace. is is not only messy, but may
unintentionally expose code python libs to the Salt interface and pose a security problem.

To say this more directly with an example, this is GOOD:

import os

def minion_path():
path = os.path.join(self.opts['cachedir'], 'minions')
return path

is on the other hand is DISCOURAGED:

from os.path import join

def minion_path():
path = join(self.opts['cachedir'], 'minions')
return path

e time when this is changed is for importing exceptions, generally directly importing exceptions is preferred:

is is a good way to import exceptions:

from salt.exceptions import CommandExecutionError

25.22. Salt Conventions 1343

http://doughellmann.com/2012/11/12/the-performance-impact-of-using-dict-instead-of-in-cpython-2-7-2.html

Salt Documentation, Release 2014.7.6

Absolute Imports

Although absolute imports seems like an awesome idea, please do not use it. Extra care would be necessary all over
salt's code in order for absolute imports to work as supposed. Believe it, it has been tried before and, as a tried
example, by renaming salt.modules.sysmod to salt.modules.sys, all other salt modules which needed
to import sys would have to also import absolute_import, which should be avoided.

Vertical is Beer

When writing Salt code, vertical code is generally preferred. is is not a hard rule but more of a guideline. As PEP
8 specifies, Salt code should not exceed 79 characters on a line, but it is preferred to separate code out into more
newlines in some cases for beer readability:

import os

os.chmod(
os.path.join(self.opts['sock_dir'],

'minion_event_pub.ipc'),
448
)

Where there are more line breaks, this is also apparent when constructing a function with many arguments, some-
thing very common in state functions for instance:

def managed(name,
source=None,
source_hash='',
user=None,
group=None,
mode=None,
template=None,
makedirs=False,
context=None,
replace=True,
defaults=None,
env=None,
backup='',
**kwargs):

Note: Making function and class definitions vertical is only required if the arguments are longer then 80 characters.
Otherwise, the formaing is optional and both are acceptable.

Line Length

For function definitions and function calls, Salt adheres to the PEP-8 specification of at most 80 characters per line.

Non function definitions or function calls, please adopt a so limit of 120 characters per line. If breaking the line
reduces the code readability, don't break it. Still, try to avoid passing that 120 characters limit and remember, vertical
is better… unless it isn't

1344 Chapter 25. Developing Salt

http://legacy.python.org/dev/peps/pep-0328/#rationale-for-absolute-imports
http://docs.python.org/2/library/sys.html#module-sys
http://docs.python.org/2/library/__future__.html#module-__future__

Salt Documentation, Release 2014.7.6

Indenting

Some confusion exists in the python world about indenting things like function calls, the above examples use 8
spaces when indenting comma-delimited constructs.

e confusion arises because the pep8 program INCORRECTLY flags this as wrong, where PEP 8, the document,
cites only using 4 spaces here as wrong, as it doesn't differentiate from a new indent level.

Right:

def managed(name,
source=None,
source_hash='',
user=None)

WRONG:

def managed(name,
source=None,
source_hash='',
user=None)

Lining up the indent is also correct:

def managed(name,
source=None,
source_hash='',
user=None)

is also applies to function calls and other hanging indents.

pep8 and Flake8 (and, by extension, the vim plugin Syntastic) will complain about the double indent for hanging
indents. is is a known conflict between pep8 (the script) and the actual PEP 8 standard. It is recommended that
this particular warning be ignored with the following lines in ~/.config/flake8:

[flake8]
ignore = E226,E241,E242,E126

Make sure your Flake8/pep8 are up to date. e first three errors are ignored by default and are present here to
keep the behavior the same. is will also work for pep8 without the Flake8 wrapper -- just replace all instances of
`flake8' with `pep8', including the filename.

Code Churn

Many pull requests have been submied that only churn code in the name of PEP 8. Code churn is a leading source
of bugs and is strongly discouraged. While style fixes are encouraged they should be isolated to a single file per
commit, and the changes should be legitimate, if there are any questions about whether a style change is legitimate
please reference this document and the official PEP 8 (hp://legacy.python.org/dev/peps/pep-0008/) document before
changing code. Many claims that a change is PEP 8 have been invalid, please double check before commiing fixes.

25.22. Salt Conventions 1345

https://github.com/jcrocholl/pep8/issues/167#issuecomment-15936564
http://legacy.python.org/dev/peps/pep-0008/

Salt Documentation, Release 2014.7.6

1346 Chapter 25. Developing Salt

CHAPTER 26

Release notes

See the version numbers page for more information about the version numbering scheme.

26.1 Latest Stable Release

26.1.1 Salt 2014.7.6 Release Notes

release 2015-05-18

Version 2014.7.6 is a bugfix release for 2014.7.0.

Changes:

• salt.runners.cloud.action() has changed the fun keyword argument to func. Please update any calls to this
function in the cloud runner.

is release is a security release. A minor issue was found, as cited below:

• CVE-2015-4017 -- Certificates are not verified when connecting to server in the Aliyun and Proxmox modules

Only users of the Aliyun or Proxmox cloud modules are at risk. e vulnerability does not exist in the latest 2015.5.0
release of Salt.

26.2 Previous Releases

26.2.1 Salt 2014.7.0 Release Notes - Codename Helium

is release is the largest Salt release ever, with more features and commits then any previous release of Salt. Ev-
erything from the new RAET transport to major updates in Salt Cloud and the merging of Salt API into the main
project.

Important: e Fedora/RHEL/CentOS salt-master package has been modified for this release. e following com-
ponents of Salt have been broken out and placed into their own packages:

• salt-syndic

• salt-cloud

• salt-ssh

1347

Salt Documentation, Release 2014.7.6

When the salt-master package is upgraded, these components will be removed, and they will need to be manually
installed.

Important: Compound/pillar matching have been temporarily disabled for the mine and publish modules for
this release due to the possibility of inferring pillar data using pillar glob matching. A proper fix is now in the 2014.7
branch and scheduled for the 2014.7.1 release, and compound matching and non-globbing pillar matching will be
re-enabled at that point.

Compound and pillar matching for normal salt commands are unaffected.

New Transport!

RAET Transport Option

is has been a HUGE amount of work, but the beta release of Salt with RAET is ready to go. RAET is a reliable
queuing transport system that has been developed in partnership with a number of large enterprises to give Salt an
alternative to ZeroMQ and a way to get Salt to scale well beyond tens of thousands of servers. Unlike ZeroMQ, RAET
is completely asynchronous in every aspect of its operation and has been developed using the flow programming
paradigm. is allows for many new capabilities to be added to Salt in the upcoming releases.

Please keep in mind that this is a beta release of RAET and we hope for bugs to be worked out, performance to be
beer realized and more in the Lithium release.

Simply stated, users running Salt with RAET should expect some hiccups as we hammer out the update. is is a
BETA release of Salt RAET.

For information about how to use Salt with RAET please see the tutorial.

Salt SSH Enhancements

Salt SSH has just entered a new league, with substantial updates and improvements to make salt-ssh more reliable
and easier then ever! From new features like the ansible roster and fileserver backends to the new pypi salt-ssh
installer to lowered deps and a swath of bugfixes, salt-ssh is basically reborn!

Install salt-ssh Using pip

Salt-ssh is now pip-installable!

hps://pypi.python.org/pypi/salt-ssh/

Pip will bring in all of the required deps, and while some deps are compiled, they all include pure python implemen-
tations, meaning that any compile errors which may be seen can be safely ignored.

pip install salt-ssh

Fileserver Backends

Salt-ssh can now use the salt fileserver backend system. is allows for the gitfs, hgfs, s3, and many more ways to
centrally store states to be easily used with salt-ssh. is also allows for a distributed team to easily use a centralized
source.

1348 Chapter 26. Release notes

https://pypi.python.org/pypi/salt-ssh/

Salt Documentation, Release 2014.7.6

Saltfile Support

e new saltfile system makes it easy to have a user specific custom extended configuration.

Ext Pillar

Salt-ssh can now use the external pillar system. Making it easier then ever to use salt-ssh with teams.

No More sshpass

anks to the enhancements in the salt vt system, salt-ssh no longer requires sshpass to send passwords to ssh. is
also makes the manipulation of ssh calls substantially more flexible, allowing for intercepting ssh calls in a much
more fluid way.

Pure Python Shim

e salt-ssh call originally used a shell script to discover what version of python to execute with and determine the
state of the ssh code deployment. is shell script has been replaced with a pure python version making it easy to
increase the capability of the code deployment without causing platform inconsistency issues with different shell
interpreters.

Custom Module Delivery

Custom modules are now seamlessly delivered. is makes the deployment of custom grains, states, execution
modules and returners a seamless process.

CP Module Support

Salt-ssh now makes simple file transfers easier then ever! e cp module allows for files to be conveniently sent
from the salt fileserver system down to systems.

More Thin Directory Options

Salt ssh functions by copying a subset of the salt code, or salt thin down to the target system. In the past this was
always transferred to /tmp/.salt and cached there for subsequent commands.

Now, salt thin can be sent to a random directory and removed when the call is complete with the -W option. e
new -W option still uses a static location but will clean up that location when finished.

e default salt thin location is now user defined, allowing multiple users to cleanly access the same systems.

State System Enhancements

New Imperative State Keyword ``Listen''

e new listen and listen_in keywords allow for completely imperative states by calling the mod_watch()
routine aer all states have run instead of re-ordering the states.

26.2. Previous Releases 1349

Salt Documentation, Release 2014.7.6

Mod Aggregate Runtime Manipulator

e new mod_aggregate system allows for the state system to rewrite the state data during execution. is
allows for state definitions to be aggregated dynamically at runtime.

e best example is found in the pkg state. If mod_aggregate is turned on, then when the first pkg state is
reached, the state system will scan all of the other running states for pkg states and take all other packages set for
install and install them all at once in the first pkg state.

ese runtime modifications make it easy to run groups of states together. In future versions, we hope to fill out the
mod_aggregate system to build in more and more optimizations.

For more documentation on mod_aggregate, see the documentation.

New Requisites: onchanges and onfail

e new onchanges and onchanges_in requisites make a state apply only if there are changes in the required
state. is is useful to execute post hooks aer changes occur on a system.

e other new requisites, onfail and onfail_in, allow for a state to run in reaction to the failure of another
state.

For more information about these new requisites, see the requisites documentation.

Global onlyif and unless

e onlyif and unless options can now be used for any state declaration.

Use names to expand and override values

e names declaration in Salt's state system can now override or add values to the expanded data structure. For
example:

my_users:
user.present:

- names:
- larry
- curly
- moe:

- shell: /bin/zsh
- groups:

- wheel
- shell: /bin/bash

Major Features

Scheduler Additions

e Salt scheduler system has received MAJOR enhancements, allowing for cron-like scheduling and much more
granular timing routines. See here for more info.

1350 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

Red Hat 7 Family Support

All the needed additions have been made to run Salt on RHEL 7 and derived OSes like CentOS and Scientific.

Fileserver Backends in salt-call

Fileserver backends like gitfs can now be used without a salt master! Just add the fileserver backend configuration
to the minion config and execute salt-call. is has been a much-requested feature and we are happy to finally bring
it to our users.

Amazon Execution Modules

An entire family of execution modules further enhancing Salt's Amazon Cloud support. ey include the following:

• Autoscale Groups (includes state support) -- related: Launch Control states

• Cloud Watch (includes state support)

• Elastic Cache (includes state support)

• Elastic Load Balancer (includes state support)

• IAM Identity and Access Management (includes state support)

• Route53 DNS (includes state support)

• Security Groups (includes state support)

• Simple Queue Service (includes state support)

LXC Runner Enhancements

BETAe Salt LXCmanagement system has received a number of enhancements which make running an LXC cloud
entirely from Salt an easy proposition.

Next Gen Docker Management

e Docker support in Salt has been increased at least ten fold. e Docker API is now completely exposed and Salt
ships with Docker data tracking systems which make automating Docker deployments very easy.

Peer System Performance Improvements

e peer system communication routines have been refined to make the peer system substantially faster.

SDB

Encryption at rest for configs

GPG Renderer

Encrypted pillar at rest

26.2. Previous Releases 1351

Salt Documentation, Release 2014.7.6

OpenStack Expansion

Lots of new OpenStack stuff

eues System

Ran change external queue systems into Salt events

Multi Master Failover Additions

Connecting to multiple masters is more dynamic then ever

Chef Execution Module

Managing Chef with Salt just got even easier!

salt-api Project Merge

e salt-api project has been merged into Salt core and is now available as part of the regular salt-master
package install. No API changes were made, the salt-api script and init scripts remain intact.

salt-api has always provided Yet Another Pluggable Interface to Salt (TM) in the form of ``netapi'' modules.
ese are modules that bind to a port and start a service. Like many of Salt's other module types, netapi modules
oen have library and configuration dependencies. See the documentation for each module for instructions.

See also:

e full list of netapi modules.

Synronous and Asynronous Execution of Runner and Wheel Modules salt.runner.RunnerClient
and salt.wheel.WheelClient have both gained complimentary cmd_sync and cmd_async methods al-
lowing for synchronous and asynchronous execution of any Runner or Wheel module function, all protected using
Salt's external authentication system. salt-api benefits from this addition as well.

rest_cherrypy Additions e rest_cherrypy netapi module provides the main REST API for Salt.

Web Hooks is release of course includes the Web Hook additions from the most recent salt-api release,
which allows external services to signal actions within a Salt infrastructure. External services such as Amazon SNS,
Travis-CI, or GitHub, as well as internal services that cannot or should not run a Salt minion daemon can be used as
first-class components in Salt's rich orchestration capabilities.

e raw HTTP request body is now available in the event data. is is sometimes required information for checking
an HMAC signature in order to verify a HTTP request. As an example, Amazon or GitHub requests are signed this
way.

1352 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

Generating and Accepting Minion Keys e :py:method:`/key <salt.netapi.rest_errypy.app.Keys.POST>` con-
venience URL generates a public and private key for a minion, automatically pre-accepts the public key on the Salt
Master, and returns both keys as a tarball for download.

is allows for easily bootstrapping the key on a newminion with a single HTTP call, such as with a Kickstart script,
all using regular shell tools.

curl -sS http://salt-api.example.com:8000/keys \
-d mid=jerry \
-d username=kickstart \
-d password=kickstart \
-d eauth=pam \
-o jerry-salt-keys.tar

Fileserver Backend Enhancements

All of the fileserver backends have been overhauled to be faster, lighter andmore reliable. eVCS backends (gitfs,
hgfs, and svnfs) have also received a lot of new features.

Additionally, most config parameters for the VCS backends can now be configured on a per-remote basis, allowing
for global config parameters to be overridden for a specific gitfs/hgfs/svnfs remote.

New gitfs Features

Pygit2 and Dulwi In addition to supporting GitPython, support for pygit2 (0.20.3 and newer) and dulwich have
been added. Provided a compatible version of pygit2 is installed, it will now be the default provider. e config
parameter gitfs_provider has been added to allow one to choose a specific provider for gitfs.

Mountpoints Prior to this release, to serve a file from gitfs at a salt fileserver URL of
salt://foo/bar/baz.txt, it was necessary to ensure that the parent directories existed in the reposi-
tory. A new config parameter gitfs_mountpoint allows gitfs remotes to be exposed starting at a user-defined
salt:// URL.

Environment Whitelisting/Blalisting By default, gitfs will expose all branches and tags as Salt fileserver en-
vironments. Two new config parameters, gitfs_env_whitelist and gitfs_env_blacklist, allow more
control over which branches and tags are exposed. More detailed information on how these two options work can
be found in the Gitfs Walkthrough.

Expanded Authentication Support As of pygit2 0.20.3, both hp(s) and SSH key authentication are supported, and
Salt now also supports both authentication methods when using pygit2. Keep in mind that pygit2 0.20.3 is not yet
available on many platforms, so those who had been using authenticated git repositories with a passphraseless key
should stick to GitPython if a new enough pygit2 is not yet available for the platform on which the master is running.

A full explanation of how to use authentication can be found in the Gitfs Walkthrough.

New hgfs Features

Mountpoints is feature works exactly like its gitfs counterpart. e new config parameter is called
hgfs_mountpoint.

26.2. Previous Releases 1353

https://github.com/libgit2/pygit2
https://www.samba.org/~jelmer/dulwich/
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2

Salt Documentation, Release 2014.7.6

Environment Whitelisting/Blalisting is feature works exactly like its gitfs counterpart. e new config pa-
rameters are called hgfs_env_whitelist and hgfs_env_blacklist.

New svnfs Features

Mountpoints is feature works exactly like its gitfs counterpart. e new config parameter is called
svnfs_mountpoint.

Environment Whitelisting/Blalisting is feature works exactly like its gitfs counterpart. e new config pa-
rameters are called svnfs_env_whitelist and svnfs_env_blacklist.

Configurable Trunk/Branes/Tags Paths Prior to this release, the paths where trunk, branches, and tags were
located could only be in directores named ``trunk'', ``branches'', and ``tags'' directly under the root of the repository.
ree new config parameters (svnfs_trunk, svnfs_branches, and svnfs_tags) allow SVN repositories
which are laid out differently to be used with svnfs.

New minionfs Features

Mountpoint is feature works exactly like its gitfs counterpart. e new config parameter is called min-
ionfs_mountpoint. e one major difference is that, as minionfs doesn't use multiple remotes (it just serves
up files pushed to the master using cp.push) there is no such thing as a per-remote configuration for min-
ionfs_mountpoint.

Changing the Saltenv from Whi Files are Served A new config parameter (minionfs_env) allows minionfs
files to be served from a Salt fileserver environment other than base.

Minion Whitelisting/Blalisting By default, minionfs will expose the pushed files from all minions. Two new
config parameters, minionfs_whitelist and minionfs_blacklist, allow minionfs to be restricted to
serve files from only the desired minions.

Pyobjects Renderer

Salt now ships with with the Pyobjects Renderer that allows for construction of States using pure Python
with an idiomatic object interface.

New Modules

In addition to the Amazon modules mentioned above, there are also several other new execution modules:

• Oracle

• Random

• Redis

• Amazon Simple Queue Service

• Block Device Management

• CoreOS etcd

1354 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

• Genesis

• InfluxDB

• Server Density

• Twilio Notifications

• Varnish

• ZNC IRC Bouncer

• SMTP

New Runners

• Map/Reduce Style

• Queue

New External Pillars

• CoreOS etcd

New Salt-Cloud Providers

• Aliyun ECS Cloud

• LXC Containers

• Proxmox (OpenVZ containers & KVM)

Salt Call Change

When used with a returner, salt-call now contacts a master if --local is not specicified.

Deprecations

salt.modules.virtualenv_mod

• Removed deprecated memoize function from salt/utils/__init__.py (deprecated)

• Removed deprecated no_site_packages argument from create function (deprecated)

• Removed deprecated check_dns argument from minion_config and apply_minion_config func-
tions (deprecated)

• Removed deprecated OutputOptionsWithTextMixIn class from salt/utils/parsers.py (depre-
cated)

• Removed the following deprecated functions from salt/modules/ps.py: - phys-
ical_memory_usage (deprecated) - virtual_memory_usage (deprecated) -
cached_physical_memory (deprecated) - physical_memory_buffers (deprecated)

• Removed deprecated cloud arguments fromcloud_config function insalt/config.py: -vm_config
(deprecated) - vm_config_path (deprecated)

26.2. Previous Releases 1355

Salt Documentation, Release 2014.7.6

• Removed deprecated libcloud_version function from salt/cloud/libcloudfuncs.py (depre-
cated)

• Removed deprecated CloudConfigMixIn class from salt/utils/parsers.py (deprecated)

26.2.2 Salt 2014.7.1 Release Notes

release 2015-01-12

Version 2014.7.1 is a bugfix release for 2014.7.0. e changes include:

• Fixed gitfs serving symlinks in file.recurse states (issue 17700)

• Fixed holding of multiple packages (YUM) when combined with version pinning (issue 18468)

• Fixed use of Jinja templates in masterless mode with non-roots fileserver backend (issue 17963)

• Re-enabled pillar and compound matching for mine and publish calls. Note that pillar globbing is still disabled
for those modes, for security reasons. (issue 17194)

• Fix for tty: True in salt-ssh (issue 16847)

• Fix for supervisord states when supervisor not installed to system python (issue 18044)

• Fix for logging when log_level='quiet' for cmd.run (issue 19479)

26.2.3 Salt 2014.7.2 Release Notes

release TBA

Version 2014.7.2 is a bugfix release for 2014.7.0. e changes include:

• Fix erroneous warnings for systemd service enabled check (issue 19606)

• Fix FreeBSD kernel module loading, listing, and persistence kmod (issue 197151, issue 19682)

• Allow case-sensitive npm package names in the npm state. is may break behavior for people expecting
the state to lowercase their npm package names for them. e npm modulewas never affected by mandatory
lowercasing. (issue 20329)

• Deprecate the activate parameter for pip.install for both the module and the state. If bin_env is
given and points to a virtualenv, there is no need to activate that virtualenv in a shell for pip to install to the
virtualenv.

• Fix a file-locking bug in gitfs (issue 18839)

26.2.4 Salt 2014.7.3 Release Notes

release TBA

Version 2014.7.3 is a bugfix release for 2014.7.0.

Changes:

• Multi-master minions mode no longer route fileclient operations asymetrically. is fixes the source of many
multi-master bugs where the minion would become unrepsonsive from one or more masters.

• Fix bug wherein network.iface could produce stack traces.

• net.arp will no longer be made available unless arp is installed on the system.

• Major performance improvements to Saltnado

1356 Chapter 26. Release notes

https://github.com/saltstack/salt/issues/17700
https://github.com/saltstack/salt/issues/18468
https://github.com/saltstack/salt/issues/17963
https://github.com/saltstack/salt/issues/17194
https://github.com/saltstack/salt/issues/16847
https://github.com/saltstack/salt/issues/18044
https://github.com/saltstack/salt/issues/19479
https://github.com/saltstack/salt/issues/19606
https://github.com/saltstack/salt/issues/197151
https://github.com/saltstack/salt/issues/19682
https://github.com/saltstack/salt/issues/20329
https://github.com/saltstack/salt/issues/18839

Salt Documentation, Release 2014.7.6

• Allow KVM module to operate under KVM itself or VMWare Fusion

• Various fixes to the Windows installation scripts

• Fix issue where the syndic would not correctly propogate loads to the master job cache.

• Improve error handling on invalid /etc/network/interfaces file in salt networking modules

• Fix bug where a reponse status was not checked for in fileclient.get_url

• Enable eauth when running salt in batch mode

• Increase timeout in Boto Route53 module

• Fix bugs with Salt's `tar' module option parsing

• Fix parsing of NTP servers on Windows

• Fix issue with blockdev tuning not reporting changes correctly

• Update to the latest Salt bootstrap script

• Update Linode salt-cloud driver to use either linode-python or apache-libcloud

• Fix for s3.query function to return correct headers

• Fix for s3.head returning None for files that exist

• Fix the disable function in win_service module so that the service is disabled correctly

• Fix race condition between master and minion when making a directory when both daemons are on the same
host

• Fix an issue where file.recurse would fail at the root of an svn repo when the repo has a mountpoint

• Fix an issue where file.recurse would fail at the root of an hgfs repo when the repo has a mountpoint

• Fix an issue where file.recurse would fail at the root of an gitfs repo when the repo has a mountpoint

• Add status.master capability for Windows.

• Various fixes to ssh_known_hosts

• Various fixes to states.network bonding for Debian

• e debian_ip.get_interfaces module no longer removes nameservers.

• Beer integration between grains.virtual and systemd-detect-virt and virt-what

• Fix traceback in sysctl.present state output

• Fix for issue where mount.mounted would fail when superopts were not a part of mount.active (ex-
tended=True). Also mount.mounted various fixes for Solaris and FreeBSD.

• Fix error where datetimes were not correctly safeguarded before being passed into msgpack.

• Fix file.replace regressions. If the paern is not found, and if dry run is False, and if backup is False, and if a
pre-existing file exists with extension .bak, then that backup file will be overwrien. is backup behavior is
a result of how fileinput works. Fixing it requires either passing through the file twice (the first time only to
search for content and set a flag), or rewriting file.replace so it doesn't use fileinput

• VCS filreserver fixes/optimizations

• Catch fileserver configuration errors on master start

• Raise errors on invalid gitfs configurations

• set_locale when locale file does not exist (Redhat family)

• Fix to correctly count active devices when created mdadm array with spares

26.2. Previous Releases 1357

Salt Documentation, Release 2014.7.6

• Fix to correctly target minions in batch mode

• Support ssh:// urls using the gitfs dulwhich backend

• New fileserver runner

• Fix various bugs with argument parsing to the publish module.

• Fix disk.usage for Synology OS

• Fix issue with tags occurring twice with docker.pulled

• Fix incorrect key error in SMTP returner

• Fix condition which would remount loopback filesystems on every state run

• Remove requsites from listens aer they are called in the state system

• Make system implementation of service.running aware of legacy service calls

• Fix issue where publish.publish would not handle duplicate responses gracefully.

• Accept Kali Linux for aptpkg salt execution module

• Fix bug where cmd.which could not handle a dirname as an argument

• Fix issue in ps.pgrep where exceptions were thrown on Windows.

Known issues:

• In multimaster mode, a minion may become temporarily unresponsive if modules or pillars are refreshed at
the same time that one or more masters are down. is can be worked around by seing `auth_timeout' and
`auth_tries' down to shorter periods.

26.2.5 Salt 2014.7.4 Release Notes

release TBA

Version 2014.7.4 is a bugfix release for 2014.7.0.

Changes:

• Multi-master minions mode no longer route fileclient operations asymetrically. is fixes the source of many
multi-master bugs where the minion would become unrepsonsive from one or more masters.

• Fix bug wherein network.iface could produce stack traces.

• net.arp will no longer be made available unless arp is installed on the system.

• Major performance improvements to Saltnado

• Allow KVM module to operate under KVM itself or VMWare Fusion

• Various fixes to the Windows installation scripts

• Fix issue where the syndic would not correctly propogate loads to the master job cache.

• Improve error handling on invalid /etc/network/interfaces file in salt networking modules

• Fix bug where a reponse status was not checked for in fileclient.get_url

• Enable eauth when running salt in batch mode

• Increase timeout in Boto Route53 module

• Fix bugs with Salt's `tar' module option parsing

• Fix parsing of NTP servers on Windows

1358 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

• Fix issue with blockdev tuning not reporting changes correctly

• Update to the latest Salt bootstrap script

• Update Linode salt-cloud driver to use either linode-python or apache-libcloud

• Fix for s3.query function to return correct headers

• Fix for s3.head returning None for files that exist

• Fix the disable function in win_service module so that the service is disabled correctly

• Fix race condition between master and minion when making a directory when both daemons are on the same
host

• Fix an issue where file.recurse would fail at the root of an svn repo when the repo has a mountpoint

• Fix an issue where file.recurse would fail at the root of an hgfs repo when the repo has a mountpoint

• Fix an issue where file.recurse would fail at the root of an gitfs repo when the repo has a mountpoint

• Add status.master capability for Windows.

• Various fixes to ssh_known_hosts

• Various fixes to states.network bonding for Debian

• e debian_ip.get_interfaces module no longer removes nameservers.

• Beer integration between grains.virtual and systemd-detect-virt and virt-what

• Fix traceback in sysctl.present state output

• Fix for issue where mount.mounted would fail when superopts were not a part of mount.active (ex-
tended=True). Also mount.mounted various fixes for Solaris and FreeBSD.

• Fix error where datetimes were not correctly safeguarded before being passed into msgpack.

• Fix file.replace regressions. If the paern is not found, and if dry run is False, and if backup is False, and if a
pre-existing file exists with extension .bak, then that backup file will be overwrien. is backup behavior is
a result of how fileinput works. Fixing it requires either passing through the file twice (the first time only to
search for content and set a flag), or rewriting file.replace so it doesn't use fileinput

• VCS filreserver fixes/optimizations

• Catch fileserver configuration errors on master start

• Raise errors on invalid gitfs configurations

• set_locale when locale file does not exist (Redhat family)

• Fix to correctly count active devices when created mdadm array with spares

• Fix to correctly target minions in batch mode

• Support ssh:// urls using the gitfs dulwhich backend

• New fileserver runner

• Fix various bugs with argument parsing to the publish module.

• Fix disk.usage for Synology OS

• Fix issue with tags occurring twice with docker.pulled

• Fix incorrect key error in SMTP returner

• Fix condition which would remount loopback filesystems on every state run

• Remove requsites from listens aer they are called in the state system

26.2. Previous Releases 1359

Salt Documentation, Release 2014.7.6

• Make system implementation of service.running aware of legacy service calls

• Fix issue where publish.publish would not handle duplicate responses gracefully.

• Accept Kali Linux for aptpkg salt execution module

• Fix bug where cmd.which could not handle a dirname as an argument

• Fix issue in ps.pgrep where exceptions were thrown on Windows.

Known issues:

• In multimaster mode, a minion may become temporarily unresponsive if modules or pillars are refreshed at
the same time that one or more masters are down. is can be worked around by seing `auth_timeout' and
`auth_tries' down to shorter periods.

• ere are known issues with batch mode operating on the incorrect number of minions. is bug can be
patched with the change in Pull Request #22464.

• e fun, state, and unless keywords are missing from the state internals, which can cause problems running
some states. is bug can be patched with the change in Pull Request #22365.

26.2.6 Salt 2014.7.5 Release Notes

release TBA

Version 2014.7.5 is a bugfix release for 2014.7.0.

Changes:

• Fixed a key error bug in salt-cloud

• Updated man pages to beer match documentation

• Fixed bug concerning high CPU usage with salt-ssh

• Fixed bugs with remounting cvfs and fuse filesystems

• Fixed bug with alowing requisite tracking of entire sls files

• Fixed bug with aptpkg.mod_repo returning OK even if apt-add-repository fails

• Increased frequency of ssh terminal output checking

• Fixed malformed locale string in localmod module

• Fixed checking of available version of package when accept_keywords were changed

• Fixed bug to make git.latest work with empty repositories

• Added **kwargs to service.mod_watch which removes warnings about enable and __reqs__ not being sup-
ported by the function

• Improved state comments to not grow so quickly on failed requisites

• Added force argument to service to trigger force_reload

• Fixed bug to andle pkgrepo keyids that have been converted to int

• Fixed module.portage_config bug with appending accept_keywords

• Fixed bug to correctly report disk usage on windows minion

• Added the ability to specify key prefix for S3 ext_pillar

• Fixed issues with batch mode operating on the incorrect number of minions

• Fixed a bug with the proxmox cloud provider stacktracing on disk definition

1360 Chapter 26. Release notes

https://github.com/saltstack/salt/pull/22464
https://github.com/saltstack/salt/pull/22365

Salt Documentation, Release 2014.7.6

• Fixed a bug with the changes dictionary in the file state

• Fixed the TCP keep alive seings to work beer with SREQ caching

• Fixed many bugs within the iptables state and module

• Fixed bug with states by adding fun, state, and unless to the state runtime internal keywords listing

• Added ability to eAuth against Active Directory

• Fixed some salt-ssh issues when running on Fedora 21

• Fixed grains.get_or_set_hash to work with multiple entries under same key

• Added beer explanations and more examples of how the Reactor calls functions to docs

• Fixed bug to not pass ex_config_drive to libcloud unless it's explicitly enabled

• Fixed bug with pip.install on windows

• Fixed bug where puppet.run always returns a 0 retcode

• Fixed race condition bug with minion scheduling via pillar

• Made efficiency improvements and bug fixes to the windows installer

• Updated environment variables to fix bug with pygit2 when running salt as non-root user

• Fixed cas behavior on data module -- data.cas was not saving changes

• Fixed GPG rendering error

• Fixed strace error in virt.query

• Fixed stacktrace when running chef-solo command

• Fixed possible bug wherein uncaught exceptions seem to make zmq3 tip over when threading is involved

• Fixed argument passing to the reactor

• Fixed glibc caching to prevent bug where salt-minion getaddrinfo in dns_check() never got updated name-
servers

Known issues:

• In multimaster mode, a minion may become temporarily unresponsive if modules or pillars are refreshed at
the same time that one or more masters are down. is can be worked around by seing `auth_timeout' and
`auth_tries' down to shorter periods.

26.2.7 Salt 2014.7.6 Release Notes

release 2015-05-18

Version 2014.7.6 is a bugfix release for 2014.7.0.

Changes:

• salt.runners.cloud.action() has changed the fun keyword argument to func. Please update any calls to this
function in the cloud runner.

is release is a security release. A minor issue was found, as cited below:

• CVE-2015-4017 -- Certificates are not verified when connecting to server in the Aliyun and Proxmox modules

Only users of the Aliyun or Proxmox cloud modules are at risk. e vulnerability does not exist in the latest 2015.5.0
release of Salt.

26.2. Previous Releases 1361

Salt Documentation, Release 2014.7.6

26.2.8 Salt 2014.1.0 Release Notes - Codename Hydrogen

Note: Due to a change in master to minion communication, 2014.1.0 minions are not compatible with older-version
masters. Please upgrade masters first. More info on backwards-compatibility policy here, under the ``Upgrading
Salt'' subheading.

Note: A change in the grammar in the state compiler makes module.run in requisites illegal syntax. Its use is
replaced simply with the word module. In other words you will need to change requisites like this:

require:
module.run: some_module_name

to:

require:
module: some_module_name

is is a breaking change. We apologize for the inconvenience, we needed to do this to remove some ambiguity in
parsing requisites.

release 2014-02-24

e 2014.1.0 release of Salt is a major release which not only increases stability but also brings new capabilities in
virtualization, cloud integration, and more. is release brings a great focus on the expansion of testing making
roughly double the coverage in the Salt tests, and comes with many new features.

2014.1.0 is the first release to follow the new date-based release naming system. See the version numbers page
for more details.

Major Features

Salt Cloud Merged into Salt

Salt Cloud is a tool for provisioning salted minions across various cloud providers. Prior to this release, Salt Cloud
was a separate project but this marks its full integration with the Salt distribution. A Geing Started guide and
additional documentation for Salt Cloud can be found here:

Google Compute Engine

Alongside Salt Cloud comes new support for the Google Compute Engine. Salt Stack can now deploy and control
GCE virtual machines and the application stacks that they run.

For more information on Salt Stack and GCE, please see this blog post.

Documentation for Salt and GCE can be found here.

Salt Virt

Salt Virt is a cloud controller that supports virtual machine deployment, inspection, migration and integration with
many aspects of Salt.

1362 Chapter 26. Release notes

http://googlecloudplatform.blogspot.com/2013/12/saltstack-for-google-compute-engine.html

Salt Documentation, Release 2014.7.6

Salt Virt has undergone a major overhaul with this release and now supports many more features and includes a
number of critical improvements.

Docker Integration

Salt now ships with states and an execution module to manage Docker containers.

Substantial Testing Expansion

Salt continues to increase its unit/regression test coverage. is release includes over 300 new tests.

BSD Package Management

BSD package management has been entirely rewrien. FreeBSD 9 and older now default to using pkg_add, while
FreeBSD 10 and newer will use pkgng. FreeBSD 9 can be forced to use pkgng, however, by specifying the following
option in the minion config file:

providers:
pkg: pkgng

In addition, support for installing soware from the ports tree has been added. See the documentation for the ports
state and execution module for more information.

Network Management for Debian/Ubuntu

Initial support for management of network interfaces on Debian-based distros has been added. See the documenta-
tion for the network state and the debian_ip for more information.

IPv6 Support for iptables State/Module

e iptablesstate andmodule nowhave IPv6 support. A new parameterfamily has been added to the states and
execution functions, to distinguish between IPv4 and IPv6. e default value for this parameter is ipv4, specifying
ipv6 will use ip6tables to manage firewall rules.

GitFS Improvements

Several performance improvements have been made to the Git fileserver backend. Additionally, file states
can now use any any SHA1 commit hash as a fileserver environment:

/etc/httpd/httpd.conf:
file.managed:

- source: salt://webserver/files/httpd.conf
- saltenv: 45af879

is applies to the functions in the cp module as well:

salt '*' cp.get_file salt://readme.txt /tmp/readme.txt saltenv=45af879

26.2. Previous Releases 1363

Salt Documentation, Release 2014.7.6

MinionFS

is new fileserver backend allows files which have been pushed from the minion to the master (using cp.push)
to be served up from the salt fileserver. e path for these files takes the following format:

salt://minion-id/path/to/file

minion-id is the id of the ``source'' minion, the one from which the files were pushed to the master.
/path/to/file is the full path of the file.

e MinionFS Walkthrough contains a more thorough example of how to use this backend.

saltenv

To distinguish between fileserver environments and execution functions which deal with environment variables, file-
server environments are now specified using the saltenv parameter. envwill continue to work, but is deprecated
and will be removed in a future release.

Grains Caching

A caching layer has been added to the Grains system, which can help speed up minion startup. Disabled by default,
it can be enabled by seing the minion config option grains_cache:

grains_cache: True

Seconds before grains cache is considered to be stale.
grains_cache_expiration: 300

If set to True, the grains loader will read from/write to a msgpack-serialized file containing the grains data.

Additional command-line parameters have been added to salt-call, mainly for testing purposes:

• --skip-grains will completely bypass the grains loader when salt-call is invoked.

• --refresh-grains-cache will force the grains loader to bypass the grains cache and refresh the grains,
writing a new grains cache file.

Improved Command Logging Control

When using the cmd module, either on the CLI or when developing Salt execution modules, a new keyword
argument output_loglevel allows for greater control over how (or even i) the command and its output are
logged. For example:

salt '*' cmd.run 'tail /var/log/messages' output_loglevel=debug

e package management modules (apt, yumpkg, etc.) have been updated to log the copious output generated
from these commands at loglevel debug.

Note: To keep a command from being logged, output_loglevel=quiet can be used.
Prior to this release, this could be done using quiet=True. is argument is still supported, but will be removed
in a future Salt release.

1364 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

PagerDuty Support

Initial support for firing events via PagerDuty has been added. See the documentation for the pagerdutymodule.

Virtual Terminal

Sometimes the subprocess module is not good enough, and, in fact, not even askpass is. is virtual terminal is still
in it's infant childhood, needs quite some love, and was originally created to replace askpass, but, while developing
it, it immediately proved that it could do so much more. It's currently used by salt-cloud when bootstrapping salt on
clouds which require the use of a password.

Proxy Minions

Initial basic support for Proxy Minions is in this release. Documentation can be found here.

Proxy minions are a developing feature in Salt that enables control of devices that cannot run a minion. Examples
include network gear like switches and routers that run a proprietary OS but offer an API, or ``dumb'' devices that
just don't have the horsepower or ability to handle a Python VM.

Proxy minions can be difficult to write, so a simple REST-based example proxy is included. A Python bole-based
webserver can be found at hps://github.com/cro/salt-proxy-rest as an endpoint for this proxy.

is is an ALPHA-quality feature. ere are a number of issues with it currently, mostly centering around process
control, logging, and inability to work in a masterless configuration.

Additional Bugfixes (Release Candidate Period)

Below are many of the fixes that were implemented in salt during the release candidate phase.

• Fix mount.mounted leaving conflicting entries in fstab (issue 7079)

• Fix mysql returner serialization to use json (issue 9590)

• Fix ZMQError: Operation cannot be accomplished in current state errors (issue 6306)

• Rbenv and ruby improvements

• Fix quoting issues with mysql port (issue 9568)

• Update mount module/state to support multiple swap partitions (issue 9520)

• Fix archive state to work with bsdtar

• Clarify logs for minion ID caching

• Add numeric revision support to git state (issue 9718)

• Update master_uri with master_ip (issue 9694)

• Add comment to Debian mod_repo (issue 9923)

• Fix potential undefined loop variable in rabbitmq state (issue 8703)

• Fix for salt-virt runner to delete key on VM deletion

• Fix for salt-run -d to limit results to specific runner or function (issue 9975)

• Add tracebacks to jinja renderer when applicable (issue 10010)

• Fix parsing in monit module (issue 10041)

26.2. Previous Releases 1365

http://www.pagerduty.com
https://github.com/cro/salt-proxy-rest
https://github.com/saltstack/salt/issues/7079
https://github.com/saltstack/salt/issues/9590
https://github.com/saltstack/salt/issues/6306
https://github.com/saltstack/salt/issues/9568
https://github.com/saltstack/salt/issues/9520
https://github.com/saltstack/salt/issues/9718
https://github.com/saltstack/salt/issues/9694
https://github.com/saltstack/salt/issues/9923
https://github.com/saltstack/salt/issues/8703
https://github.com/saltstack/salt/issues/9975
https://github.com/saltstack/salt/issues/10010
https://github.com/saltstack/salt/issues/10041

Salt Documentation, Release 2014.7.6

• Fix highstate output from syndic minions (issue 9732)

• iet logging when dealing with passwords/hashes (issue 10000)

• Fix for multiple remotes in git_pillar (issue 9932)

• Fix npm installed command (issue 10109)

• Add safeguards for utf8 errors in zcbuildout module

• Fix compound commands (issue 9746)

• Add systemd notification when master is started

• Many doc improvements

26.2.9 Salt 2014.1.1 Release Notes

release 2014-03-18

Version 2014.1.1 is a bugfix release for 2014.1.0. e changes include:

• Various doc fixes, including up-to-date Salt Cloud installation documentation.

• Renamed state.sls runner to state.orchestrate, to reduce confusion with the state.sls execution function

• Fix various bugs in the dig module (issue 10367)

• Add retry for query on certain EC2 status codes (issue 10154)

• Fix various bugs in mongodb_user state module (issue 10430)

• Fix permissions on ~/.salt_token (issue 10422)

• Add PyObjects support

• Fix launchctl module crash with missing files

• Fix saltutil.find_job for Windows (issue 10581)

• Fix OS detection for OpenSolaris (issue 10601)

• Fix broken salt-ssh key_deploy

• Add support for multiline cron comments (issue 10721)

• Fix timezone module for Arch (issue 10789)

• Fix symlink support for file.recurse (issue 10809)

• Fix multi-master bugs (issue 10732 and issue 10969)

• Fix file.patch to error when source file is unavailable (issue 10380)

• Fix pkg to handle packages set as purge in pkg.installed (issue 10719)

• Add zmqversion grain

• Fix highstate summary for masterless minions (issue 10945)

• Fix saltutil.find_job for 2014.1 masters talking to 0.17 minions (issue 11020)

• Fix file.recurse states with trailing slashes in source (issue 11002)

• Fix pkg states to allow pkgname.x86_64 (issue 7306)

• Make iptables states set a default table for flush (issue 11037)

• Added iptables --reject-with aer final iptables call in iptables states (issue:10757)

1366 Chapter 26. Release notes

https://github.com/saltstack/salt/issues/9732
https://github.com/saltstack/salt/issues/10000
https://github.com/saltstack/salt/issues/9932
https://github.com/saltstack/salt/issues/10109
https://github.com/saltstack/salt/issues/9746
https://github.com/saltstack/salt/issues/10367
https://github.com/saltstack/salt/issues/10154
https://github.com/saltstack/salt/issues/10430
https://github.com/saltstack/salt/issues/10422
https://github.com/saltstack/salt/issues/10581
https://github.com/saltstack/salt/issues/10601
https://github.com/saltstack/salt/issues/10721
https://github.com/saltstack/salt/issues/10789
https://github.com/saltstack/salt/issues/10809
https://github.com/saltstack/salt/issues/10732
https://github.com/saltstack/salt/issues/10969
https://github.com/saltstack/salt/issues/10380
https://github.com/saltstack/salt/issues/10719
https://github.com/saltstack/salt/issues/10945
https://github.com/saltstack/salt/issues/11020
https://github.com/saltstack/salt/issues/11002
https://github.com/saltstack/salt/issues/7306
https://github.com/saltstack/salt/issues/11037

Salt Documentation, Release 2014.7.6

• Fix improper passing of “family” in iptables states (issue 10774)

• Fix traceback in iptables.insert states (issue 10988)

• Fix zombie processes (issue 10867 and others)

• Fix batch mode to obey --return seings (issue 9146)

• Fix localclient issue that was causing batch mode breakage (issue 11094, issue 10470, and others)

• Multiple salt-ssh fixes

• FreeBSD: look in /usr/local/etc/salt for configuration by default, if installed using pip --editable.

• Add a skip_suggestions parameter to pkg.installed states which allows pre-flight check to be skipped
(issue 11106)

• Fixed tag-based gitfs fileserver environments regression (issue 10956)

• Yum: fix cache of available pkgs not cleared when repos are changed (issue 11001)

• Yum: fix for plugin-provided repositories (i.e. RHN/Spacewalk) (issue 11145)

• Fix regression in chocolatey.bootstrap (issue 10541)

• Fix fail on unknown target in jobs runner (issue 11151)

• Don’t log errors for commands which are expected to sometimes exit with non-zero exit status (issue 11154,
issue 11090)

• Fix test=True CLI override of config option (issue 10877)

• Log sysctl key listing at loglevel TRACE (issue 10931)

26.2.10 Salt 2014.1.10 Release Notes

release 2014-08-01

Note: Version 2014.1.9 contained a regression which caused inaccurate Salt version detection, and thus was never
packaged for general release. is version contains the version detection fix, but is otherwise identical to 2014.1.9.

Version 2014.1.10 is another bugfix release for 2014.1.0. Changes include:

• Ensure salt-ssh will not continue if permissions on a temporary directory are not correct.

• Use the bootstrap script distributed with Salt instead of relying on an external resource

• Remove unused testing code

• Ensure salt states are placed into the .salt directory in salt-ssh

• Use a randomized path for temporary files in a salt-cloud deployment

• Clean any stale directories to ensure a fresh copy of salt-ssh during a deployment

Salt 2014.1.10 fixes security issues documented by CVE-2014-3563: ``Insecure tmp-file creation in seed.py, salt-ssh,
and salt-cloud.'' Upgrading is recommended.

26.2.11 Salt 2014.1.11 Release Notes

release 2014-08-29

Version 2014.1.11 is another bugfix release for 2014.1.0. Changes include:

26.2. Previous Releases 1367

https://github.com/saltstack/salt/issues/10774
https://github.com/saltstack/salt/issues/10988
https://github.com/saltstack/salt/issues/10867
https://github.com/saltstack/salt/issues/9146
https://github.com/saltstack/salt/issues/11094
https://github.com/saltstack/salt/issues/10470
https://github.com/saltstack/salt/issues/11106
https://github.com/saltstack/salt/issues/10956
https://github.com/saltstack/salt/issues/11001
https://github.com/saltstack/salt/issues/11145
https://github.com/saltstack/salt/issues/10541
https://github.com/saltstack/salt/issues/11151
https://github.com/saltstack/salt/issues/11154
https://github.com/saltstack/salt/issues/11090
https://github.com/saltstack/salt/issues/10877
https://github.com/saltstack/salt/issues/10931

Salt Documentation, Release 2014.7.6

• Fix for minion_id with byte-order mark (BOM) (issue 12296)

• Fix runas deprecation in at module

• Fix trailing slash beavior for file.makedirs_ (issue 14019)

• Fix chocolatey path (issue 13870)

• Fix git_pillar infinite loop issues (issue 14671)

• Fix json outpuer null case

• Fix for minion error if one of multiple masters are down (issue 14099)

26.2.12 Salt 2014.1.12 Release Notes

release 2014-10-08

Version 2014.1.12 is another bugfix release for 2014.1.0. Changes include:

• Fix scp_file always failing (which broke salt-cloud) (issue 16437)

• Fix regression in pillar in masterless (issue 16210, issue 16416, issue 16428)

26.2.13 Salt 2014.1.13 Release Notes

release 2014-10-14

Version 2014.1.13 is another bugfix release for 2014.1.0. Changes include:

• Fix sftp_file by checking the exit status code of scp (which broke salt-cloud) (issue 16599)

26.2.14 Salt 2014.1.2 Release Notes

release 2014-04-15

Version 2014.1.2 is another bugfix release for 2014.1.0. e changes include:

• Fix username detection when su'ed to root on FreeBSD (issue 11628)

• Fix minionfs backend for file.recurse states

• Fix 32-bit packages of different arches than the CPU arch, on 32-bit RHEL/CentOS (issue 11822)

• Fix bug with specifying alternate home dir on user creation (FreeBSD) (issue 11790)

• Don’t reload site module on module refresh for MacOS

• Fix regression with running execution functions in Pillar SLS (issue 11453)

• Fix some modules missing from Windows installer

• Don’t log an error for yum commands that return nonzero exit status on non-failure (issue 11645)

• Fix bug in rabbitmq state (issue 8703)

• Fix missing ssh config options (issue 10604)

• Fix top.sls ordering (issue 10810 and issue 11691)

• Fix salt-key --list all (issue 10982)

• Fix win_servermanager install/remove function (issue 11038)

1368 Chapter 26. Release notes

https://github.com/saltstack/salt/issues/12296
https://github.com/saltstack/salt/issues/14019
https://github.com/saltstack/salt/issues/13870
https://github.com/saltstack/salt/issues/14671
https://github.com/saltstack/salt/issues/14099
https://github.com/saltstack/salt/issues/16437
https://github.com/saltstack/salt/issues/16210
https://github.com/saltstack/salt/issues/16416
https://github.com/saltstack/salt/issues/16428
https://github.com/saltstack/salt/issues/16599
https://github.com/saltstack/salt/issues/11628
https://github.com/saltstack/salt/issues/11822
https://github.com/saltstack/salt/issues/11790
https://github.com/saltstack/salt/issues/11453
https://github.com/saltstack/salt/issues/11645
https://github.com/saltstack/salt/issues/8703
https://github.com/saltstack/salt/issues/10604
https://github.com/saltstack/salt/issues/10810
https://github.com/saltstack/salt/issues/11691
https://github.com/saltstack/salt/issues/10982
https://github.com/saltstack/salt/issues/11038

Salt Documentation, Release 2014.7.6

• Fix interaction with tokens when running commands as root (issue 11223)

• Fix overstate bug with find_job and **kwargs (issue 10503)

• Fix saltenv for aptpkg.mod_repo from pkgrepo state

• Fix environment issue causing file caching problems (issue 11189)

• Fix bug in __parse_key in registry state (issue 11408)

• Add minion auth retry on rejection (issue 10763)

• Fix publish_session updating the encryption key (issue 11493)

• Fix for bad AssertionError raised by GitPython (issue 11473)

• Fix debian_ip to allow disabling and enabling networking on Ubuntu (issue 11164)

• Fix potential memory leak caused by saved (and unused) events (issue 11582)

• Fix exception handling in the MySQL module (issue 11616)

• Fix environment-related error (issue 11534)

• Include psutil on Windows

• Add file.replace and file.search to Windows (issue 11471)

• Add additional file module helpers to Windows (issue 11235)

• Add pid to netstat output on Windows (issue 10782)

• Fix Windows not caching new versions of installers in winrepo (issue 10597)

• Fix hardcoded md5 hashing

• Fix kwargs in salt-ssh (issue 11609)

• Fix file backup timestamps (issue 11745)

• Fix stacktrace on sys.doc with invalid eauth (issue 11293)

• Fix git.latest with test=True (issue 11595)

• Fix file.check_perms hardcoded follow_symlinks (issue 11387)

• Fix certain pkg states for RHEL5/Cent5 machines (issue 11719)

26.2.15 Salt 2014.1.3 Release Notes

release 2014-04-15

Version 2014.1.3 is another bugfix release for 2014.1.0. It was created as a hotfix for a regression found in 2014.1.2,
which was not distributed. e only change made was as follows:

• Fix regression that caused saltutil.find_job to fail, causing premature terminations of salt CLI com-
mands.

Changes in the not-distributed 2014.1.2, also included in 2014.1.3:

• Fix username detection when su'ed to root on FreeBSD (issue 11628)

• Fix minionfs backend for file.recurse states

• Fix 32-bit packages of different arches than the CPU arch, on 32-bit RHEL/CentOS (issue 11822)

• Fix bug with specifying alternate home dir on user creation (FreeBSD) (issue 11790)

• Don’t reload site module on module refresh for MacOS

26.2. Previous Releases 1369

https://github.com/saltstack/salt/issues/11223
https://github.com/saltstack/salt/issues/10503
https://github.com/saltstack/salt/issues/11189
https://github.com/saltstack/salt/issues/11408
https://github.com/saltstack/salt/issues/10763
https://github.com/saltstack/salt/issues/11493
https://github.com/saltstack/salt/issues/11473
https://github.com/saltstack/salt/issues/11164
https://github.com/saltstack/salt/issues/11582
https://github.com/saltstack/salt/issues/11616
https://github.com/saltstack/salt/issues/11534
https://github.com/saltstack/salt/issues/11471
https://github.com/saltstack/salt/issues/11235
https://github.com/saltstack/salt/issues/10782
https://github.com/saltstack/salt/issues/10597
https://github.com/saltstack/salt/issues/11609
https://github.com/saltstack/salt/issues/11745
https://github.com/saltstack/salt/issues/11293
https://github.com/saltstack/salt/issues/11595
https://github.com/saltstack/salt/issues/11387
https://github.com/saltstack/salt/issues/11719
https://github.com/saltstack/salt/issues/11628
https://github.com/saltstack/salt/issues/11822
https://github.com/saltstack/salt/issues/11790

Salt Documentation, Release 2014.7.6

• Fix regression with running execution functions in Pillar SLS (issue 11453)

• Fix some modules missing from Windows installer

• Don’t log an error for yum commands that return nonzero exit status on non-failure (issue 11645)

• Fix bug in rabbitmq state (issue 8703)

• Fix missing ssh config options (issue 10604)

• Fix top.sls ordering (issue 10810 and issue 11691)

• Fix salt-key --list all (issue 10982)

• Fix win_servermanager install/remove function (issue 11038)

• Fix interaction with tokens when running commands as root (issue 11223)

• Fix overstate bug with find_job and **kwargs (issue 10503)

• Fix saltenv for aptpkg.mod_repo from pkgrepo state

• Fix environment issue causing file caching problems (issue 11189)

• Fix bug in __parse_key in registry state (issue 11408)

• Add minion auth retry on rejection (issue 10763)

• Fix publish_session updating the encryption key (issue 11493)

• Fix for bad AssertionError raised by GitPython (issue 11473)

• Fix debian_ip to allow disabling and enabling networking on Ubuntu (issue 11164)

• Fix potential memory leak caused by saved (and unused) events (issue 11582)

• Fix exception handling in the MySQL module (issue 11616)

• Fix environment-related error (issue 11534)

• Include psutil on Windows

• Add file.replace and file.search to Windows (issue 11471)

• Add additional file module helpers to Windows (issue 11235)

• Add pid to netstat output on Windows (issue 10782)

• Fix Windows not caching new versions of installers in winrepo (issue 10597)

• Fix hardcoded md5 hashing

• Fix kwargs in salt-ssh (issue 11609)

• Fix file backup timestamps (issue 11745)

• Fix stacktrace on sys.doc with invalid eauth (issue 11293)

• Fix git.latest with test=True (issue 11595)

• Fix file.check_perms hardcoded follow_symlinks (issue 11387)

• Fix certain pkg states for RHEL5/Cent5 machines (issue 11719)

1370 Chapter 26. Release notes

https://github.com/saltstack/salt/issues/11453
https://github.com/saltstack/salt/issues/11645
https://github.com/saltstack/salt/issues/8703
https://github.com/saltstack/salt/issues/10604
https://github.com/saltstack/salt/issues/10810
https://github.com/saltstack/salt/issues/11691
https://github.com/saltstack/salt/issues/10982
https://github.com/saltstack/salt/issues/11038
https://github.com/saltstack/salt/issues/11223
https://github.com/saltstack/salt/issues/10503
https://github.com/saltstack/salt/issues/11189
https://github.com/saltstack/salt/issues/11408
https://github.com/saltstack/salt/issues/10763
https://github.com/saltstack/salt/issues/11493
https://github.com/saltstack/salt/issues/11473
https://github.com/saltstack/salt/issues/11164
https://github.com/saltstack/salt/issues/11582
https://github.com/saltstack/salt/issues/11616
https://github.com/saltstack/salt/issues/11534
https://github.com/saltstack/salt/issues/11471
https://github.com/saltstack/salt/issues/11235
https://github.com/saltstack/salt/issues/10782
https://github.com/saltstack/salt/issues/10597
https://github.com/saltstack/salt/issues/11609
https://github.com/saltstack/salt/issues/11745
https://github.com/saltstack/salt/issues/11293
https://github.com/saltstack/salt/issues/11595
https://github.com/saltstack/salt/issues/11387
https://github.com/saltstack/salt/issues/11719

Salt Documentation, Release 2014.7.6

26.2.16 Salt 2014.1.4 Release Notes

release 2014-05-05

Version 2014.1.4 is another bugfix release for 2014.1.0. Changes include:

• Fix setup.py dependency issue (issue 12031)

• Fix handling for IOErrors under certain circumstances (issue 11783 and issue 11853)

• Fix fatal exception when /proc/1/cgroup is not readable (issue 11619)

• Fix os grains for OpenSolaris (issue 11907)

• Fix lvs.zero module argument pass-through (issue 9001)

• Fix bug in debian_ip interaction with network.system state (issue 11164)

• Remove bad binary package verification code (issue 12177)

• Fix traceback in solaris package installation (issue 12237)

• Fix file.directory state symlink handling (issue 12209)

• Remove external_ip grain

• Fix file.managed makedirs issues (issue 10446)

• Fix hang on non-existent Windows drive leer for file module (issue 9880)

• Fix salt minion caching all users on the server (issue 9743)

• Add strime formaing for ps.boot_time (issue 12428)

26.2.17 Salt 2014.1.5 Release Notes

release 2014-06-11

Version 2014.1.5 is another bugfix release for 2014.1.0. Changes include:

• Add function for finding cached job on the minion

• Fix iptables save file location for Debian (issue 11730)

• Fix for minion caching jobs when master is down

• Bump default syndic_wait to 5 to fix syndic-related problems (issue 12262)

• Add OpenBSD, FreeBSD, and NetBSD support for network.netstat (issue 12121)

• Fix false positive error in logs for makeconf state (issue 9762)

• Fix for yum fromrepo package installs when repo is disabled by default (issue 12466)

• Fix for extra blank lines in file.blockreplace (issue 12422)

• Fix grain detection for OpenVZ guests (issue 11877)

• Fix get_dns_servers function for Windows win_dns_client

• Use system locale for ports package installations

• Use correct stop/restart procedure for Debian networking in debian_ip (issue 12614)

• Fix for cmd_iter/cmd_iter_no_block blocking issues (issue 12617)

• Fix traceback when syncing custom types (issue 12883)

26.2. Previous Releases 1371

https://github.com/saltstack/salt/issues/12031
https://github.com/saltstack/salt/issues/11783
https://github.com/saltstack/salt/issues/11853
https://github.com/saltstack/salt/issues/11619
https://github.com/saltstack/salt/issues/11907
https://github.com/saltstack/salt/issues/9001
https://github.com/saltstack/salt/issues/11164
https://github.com/saltstack/salt/issues/12177
https://github.com/saltstack/salt/issues/12237
https://github.com/saltstack/salt/issues/12209
https://github.com/saltstack/salt/issues/10446
https://github.com/saltstack/salt/issues/9880
https://github.com/saltstack/salt/issues/9743
https://github.com/saltstack/salt/issues/12428
https://github.com/saltstack/salt/issues/11730
https://github.com/saltstack/salt/issues/12262
https://github.com/saltstack/salt/issues/12121
https://github.com/saltstack/salt/issues/9762
https://github.com/saltstack/salt/issues/12466
https://github.com/saltstack/salt/issues/12422
https://github.com/saltstack/salt/issues/11877
https://github.com/saltstack/salt/issues/12614
https://github.com/saltstack/salt/issues/12617
https://github.com/saltstack/salt/issues/12883

Salt Documentation, Release 2014.7.6

• Fix cleaning directory symlinks in file.directory

• Add performance optimizations for saltutil.sync_all and state.highstate

• Fix possible error in saltutil.running

• Fix for kmod modules with dashes (issue 13239)

• Fix possible race condition for Windows minions in state module reloading (issue 12370)

• Fix bug with roster for passwd option that is loaded as a non-string object (issue 13249)

• Keep duplicate version numbers from showing up in pkg.list_pkgs output

• Fixes for Jinja renderer, timezone module/state (issue 12724)

• Fix timedatectl parsing for systemd>=210 (issue 12728)

• Fix saltenv being wrien to YUM repo config files (issue 12887)

• Removed the deprecated external nodes classifier (originally accessible by seing a value for external_nodes
in the master configuration file). Note that this functionality has been marked deprecated for some time and
was replaced by the more general master tops system.

• More robust escaping of ldap filter strings.

• Fix trailing slash in gitfs_root causing files not to be available (issue 13185)

26.2.18 Salt 2014.1.6 Release Notes

release 2014-07-08

Version 2014.1.6 is another bugfix release for 2014.1.0. Changes include:

• Fix extra iptables --help output (Sorry!) (issue 13648, issue 13507, issue 13527, issue 13607)

• Fix mount.active for Solaris

• Fix support for allow-hotplug statement in debian_ip network module

• Add sqlite3 to esky builds

• Fix jobs.active output (issue 9526)

• Fix the virtual grain for Xen (issue 13534)

• Fix eauth for batch mode (issue 9605)

• Fix force-related issues with tomcat support (issue 12889)

• Fix KeyError when cloud mapping

• Fix salt-minion restart loop in Windows (issue 12086)

• Fix detection of service virtual module on Fedora minions

• Fix traceback with missing ipv4 grain (issue 13838)

• Fix issue in roots backend with invalid data in mtime_map (issue 13836)

• Fix traceback in jobs.active (issue 11151)

• Fix master_tops and _ext_nodes issue (issue 13535, issue 13673)

1372 Chapter 26. Release notes

https://github.com/saltstack/salt/issues/13239
https://github.com/saltstack/salt/issues/12370
https://github.com/saltstack/salt/issues/13249
https://github.com/saltstack/salt/issues/12724
https://github.com/saltstack/salt/issues/12728
https://github.com/saltstack/salt/issues/12887
https://github.com/saltstack/salt/issues/13185
https://github.com/saltstack/salt/issues/13648
https://github.com/saltstack/salt/issues/13507
https://github.com/saltstack/salt/issues/13527
https://github.com/saltstack/salt/issues/13607
https://github.com/saltstack/salt/issues/9526
https://github.com/saltstack/salt/issues/13534
https://github.com/saltstack/salt/issues/9605
https://github.com/saltstack/salt/issues/12889
https://github.com/saltstack/salt/issues/12086
https://github.com/saltstack/salt/issues/13838
https://github.com/saltstack/salt/issues/13836
https://github.com/saltstack/salt/issues/11151
https://github.com/saltstack/salt/issues/13535
https://github.com/saltstack/salt/issues/13673

Salt Documentation, Release 2014.7.6

26.2.19 Salt 2014.1.7 Release Notes

release 2014-07-09

Version 2014.1.7 is another bugfix release for 2014.1.0. Changes include:

• Fix batch mode regression (issue 14046)

is release was a hotfix release for the regression listed abovewhichwas present in the 2014.1.6 release. e changes
included in 2014.1.6 are listed below:

• Fix extra iptables --help output (Sorry!) (issue 13648, issue 13507, issue 13527, issue 13607)

• Fix mount.active for Solaris

• Fix support for allow-hotplug statement in debian_ip network module

• Add sqlite3 to esky builds

• Fix jobs.active output (issue 9526)

• Fix the virtual grain for Xen (issue 13534)

• Fix eauth for batch mode (issue 9605)

• Fix force-related issues with tomcat support (issue 12889)

• Fix KeyError when cloud mapping

• Fix salt-minion restart loop in Windows (issue 12086)

• Fix detection of service virtual module on Fedora minions

• Fix traceback with missing ipv4 grain (issue 13838)

• Fix issue in roots backend with invalid data in mtime_map (issue 13836)

• Fix traceback in jobs.active (issue 11151)

• Fix master_tops and _ext_nodes issue (issue 13535, issue 13673)

26.2.20 Salt 2014.1.8 Release Notes

release 2014-07-30

Note: is release contained a regression which caused inaccurate Salt version detection, and thus was never
packaged for general release. Please use version 2014.1.10 instead.

Version 2014.1.8 is another bugfix release for 2014.1.0. Changes include:

• Ensure salt-ssh will not continue if permissions on a temporary directory are not correct.

• Use the bootstrap script distributed with Salt instead of relying on an external resource

• Remove unused testing code

• Ensure salt states are placed into the .salt directory in salt-ssh

• Use a randomized path for temporary files in a salt-cloud deployment

• Clean any stale directories to ensure a fresh copy of salt-ssh during a deployment

26.2. Previous Releases 1373

https://github.com/saltstack/salt/issues/14046
https://github.com/saltstack/salt/issues/13648
https://github.com/saltstack/salt/issues/13507
https://github.com/saltstack/salt/issues/13527
https://github.com/saltstack/salt/issues/13607
https://github.com/saltstack/salt/issues/9526
https://github.com/saltstack/salt/issues/13534
https://github.com/saltstack/salt/issues/9605
https://github.com/saltstack/salt/issues/12889
https://github.com/saltstack/salt/issues/12086
https://github.com/saltstack/salt/issues/13838
https://github.com/saltstack/salt/issues/13836
https://github.com/saltstack/salt/issues/11151
https://github.com/saltstack/salt/issues/13535
https://github.com/saltstack/salt/issues/13673

Salt Documentation, Release 2014.7.6

26.2.21 Salt 2014.1.9 Release Notes

release 2014-07-31

Note: is release contained a regression which caused inaccurate Salt version detection, and thus was never
packaged for general release. Please use version 2014.1.10 instead.

Note: Version 2014.1.8 contained a regression which caused inaccurate Salt version detection, and thus was never
packaged for general release. is version contains the version detection fix, but is otherwise identical to 2014.1.8.

Version 2014.1.9 is another bugfix release for 2014.1.0. Changes include:

• Ensure salt-ssh will not continue if permissions on a temporary directory are not correct.

• Use the bootstrap script distributed with Salt instead of relying on an external resource

• Remove unused testing code

• Ensure salt states are placed into the .salt directory in salt-ssh

• Use a randomized path for temporary files in a salt-cloud deployment

• Clean any stale directories to ensure a fresh copy of salt-ssh during a deployment

26.2.22 Salt 0.10.0 Release Notes

release 2012-06-16

0.10.0 has arrived! is release comeswithMANY bug fixes, and new capabilities which greatly enhance performance
and reliability. is release is primarily a bug fix release with many new tests and many repaired bugs. is release
also introduces a few new key features which were brought in primarily to repair bugs and some limitations found
in some of the components of the original architecture.

Major Features

Event System

e Salt Master now comes equipped with a new event system. is event system has replaced some of the back end
of the Salt client and offers the beginning of a system which will make plugging external applications into Salt. e
event system relies on a local ZeroMQ publish socket and other processes can connect to this socket and listen for
events. e new events can be easily managed via Salt's event library.

Unprivileged User Updates

Some enhancements have been added to Salt for running as a user other than root. ese new additions should make
switching the user that the Salt Master is running as very painless, simply change the user option in the master
configuration and restart the master, Salt will take care of all of the particulars for you.

Peer Runner Execution

Salt has long had the peer communication system used to allowminions to send commands via the salt master. 0.10.0
adds a new capability here, now the master can be configured to allow for minions to execute Salt runners via the
peer_run option in the salt master configuration.

1374 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

YAML Parsing Updates

In the past the YAML parser for sls files would return the incorrect numbers when the file mode was set with a
preceding 0. e YAML parser used in Salt has been modified to no longer convert these number into octal but to
keep them as the correct value so that sls files can be a lile cleaner to write.

State Call Data Files

It was requested that the minion keep a local cache of the most recent executed state run. is has been added and
now with state runs the data is stored in a msgpack file in the minion's cachedir.

Turning Off the Job Cache

A new option has been added to the master configuration file. In previous releases the Salt client would look over
the Salt job cache to read in the minion return data. With the addition of the event system the Salt client can now
watch for events directly from the master worker processes.

is means that the job cache is no longer a hard requirement. Keep in mind though, that turning off the job cache
means that historic job execution data cannot be retrieved.

Test Updates

Minion Swarms Are Faster

To continue our efforts with testing Salt's ability to scale the minionswarm script has been updated. e minion-
swarm can now start up minions much faster than it could before and comes with a new feature allowing modules
to be disabled, thus lowering the minion's footprint when making a swarm. ese new updates have allows us to
test

python minionswarm.py -m 20 --master salt-master

Many Fixes

To get a good idea for the number of bugfixes this release offers take a look at the closed tickets for 0.10.0, this is a
very substantial update:

hps://github.com/saltstack/salt/issues?milestone=12&state=closed

Master and Minion Stability Fixes

As Salt deployments grow newways to break Salt are discovered. 0.10.0 comes with a number of fixes for the minions
and master greatly improving Salt stability.

26.2.23 Salt 0.10.1 Release Notes

release 2012-06-19

26.2. Previous Releases 1375

https://github.com/saltstack/salt/issues?milestone=12&state=closed

Salt Documentation, Release 2014.7.6

26.2.24 Salt 0.10.2 Release Notes

release 2012-07-30

0.10.2 is out! is release comes with enhancements to the pillar interface, cleaner ways to access the salt-call
capabilities in the API, minion data caching and the event system has been added to salt minions.

ere have also been updates to the ZeroMQ functions, many more tests (thanks to sponsors, the code sprint and
many contributors) and a swath of bug fixes.

Major Features

Ext Pillar Modules

e ranks of available Salt modules directories sees a new member in 0.10.2. With the popularity of pillar a higher
demand has arisen for ext_pillar interfaces to be more like regular Salt module additions. Now ext_pillar inter-
faces can be added in the same way as other modules, just drop it into the pillar directory in the salt source.

Minion Events

In 0.10.0 an event system was added to the Salt master. 0.10.2 adds the event system to the minions as well. Now
event can be published on a local minion as well.

e minions can also send events back up to the master. is means that Salt is able to communicate individual
events from the minions back up to the Master which are not associated with command.

Minion Data Caching

When pillar was introduced the landscape for available data was greatly enhanced. e minion's began sending
grain data back to the master on a regular basis.

e new config option on the master called minion_data_cache instructs the Salt master to maintain a cache
of the minion's grains and pillar data in the cachedir. is option is turned off by default to avoid hiing the disk
more, but when enabled the cache is used to make grain matching from the salt command more powerful, since the
minions that will match can be predetermined.

Backup Files

By default all files replaced by the file.managed and file.recurse states we simply deleted. 0.10.2 adds a new option.
By seing the backup option to minion the files are backed up before they are replaced.

e backed up files are located in the cachedir under the file_backup directory. On a default system this will be at:
/var/cache/salt/file_backup

Configuration files

salt-master and salt-minion automatically load additional configuration files from master.d/*.conf
respective minion.d/*.conf where master.d/minion.d is a directory in the same directory as the main
configuration file.

1376 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

Salt Key Verification

A number of users complained that they had inadvertently deleted the wrong salt authentication keys. 0.10.2 now
displays what keys are going to be deleted and verifies that they are the keys that are intended for deletion.

Key auto-signing

If autosign_file is specified in the configuration file incoming keys will be compared to the list of keynames
in autosign_file. Regular expressions as well as globbing is supported.

e file must only be writable by the user otherwise the file will be ignored. To relax the permission and allow group
write access set the permissive_pki_access option.

Module changes

Improved OpenBSD support New modules for managing services and packages were provided by Joshua Elsasser
to further improve the support for OpenBSD.

Existing modules like the disk module were also improved to support OpenBSD.

SQL Modules e MySQL and PostgreSQL modules have both received a number of additions thanks to the work
of Avi Marcus and Roman Imankulov.

ZFS Support on FreeBSD A new ZFS module has been added by Kurtis Velarde for FreeBSD supporting various
ZFS operations like creating, extending or removing zpools.

Augeas A new Augeas module by Ulrich Dangel for editing and verifying config files.

Native Debian Service module e support for the Debian was further improved with an new service module for
Debian by Ahmad Khayyat supporting disable and enable.

Cassandra Cassandra support has been added by Adam Garside. Currently only status and diagnostic information
are supported.

Networking e networking support for RHEL has been improved and supports bonding support as well as zero-
conf configuration.

Monit Basic monit support by Kurtis Velarde to control services via monit.

nzbget Basic support for controlling nzbget by Joseph Hall

Bluetooth Baisc bluez support for managing and controlling Bluetooth devices. Supports scanning as well as
pairing/unpairing by Joseph Hall.

26.2. Previous Releases 1377

Salt Documentation, Release 2014.7.6

Test Updates

Consistency Testing

Another testing script has been added. A bug was found in pillar when many minions generated pillar data at the
same time. e new consist.py script is the tests directory was created to reproduce bugs where data should
always be consistent.

Many Fixes

To get a good idea for the number of bugfixes this release offers take a look at the closed tickets for 0.10.2, this is a
very substantial update:

hps://github.com/saltstack/salt/issues?milestone=24&page=1&state=closed

Master and Minion Stability Fixes

As Salt deployments grow newways to break Salt are discovered. 0.10.2 comes with a number of fixes for the minions
and master greatly improving Salt stability.

26.2.25 Salt 0.10.3 Release Notes

release 2012-09-30

e latest taste of Salt has come, this release has many fixes and feature additions. Modifications have been made to
make ZeroMQ connections more reliable, the beginning of the ACL system is in place, a new command line parsing
system has been added, dynamic module distribution has become more environment aware, the new master_finger
option and many more!

Major Features

ACL System

e new ACL system has been introduced. e ACL system allows for system users other than root to execute salt
commands. Users can be allowed to execute specific commands in the same way that minions are opened up to the
peer system.

e configuration value to open up the ACL system is called client_acl and is configured like so:

client_acl:
fred:

- test..*
- pkg.list_pkgs

Where fred is allowed access to functions in the test module and to the pkg.list_pkgs function.

1378 Chapter 26. Release notes

https://github.com/saltstack/salt/issues?milestone=24&page=1&state=closed

Salt Documentation, Release 2014.7.6

Master Finger Option

e master_finger option has been added to improve the security of minion provisioning. e master_finger option
allows for the fingerprint of the master public key to be set in the configuration file to double verify that the master
is valid. is option was added in response to a motivation to pre-authenticate the master when provisioning new
minions to help prevent man in the middle aacks in some situations.

Salt Key Fingerprint Generation

e ability to generate fingerprints of keys used by Salt has been added to salt-key. e new option finger accepts
the name of the key to generate and display a fingerprint for.

salt-key -F master

Will display the fingerprints for the master public and private keys.

Parsing System

Pedro Algavio, aka s0undt3ch, has added a substantial update to the command line parsing system that makes the
help message output much cleaner and easier to search through. Salt parsers now have --versions-report besides
usual --version info which you can provide when reporting any issues found.

Key Generation

We have reduced the requirements needed for salt-key to generate minion keys. You're no longer required to have
salt configured and it's common directories created just to generate keys. is might prove useful if you're batch
creating keys to pre-load on minions.

Startup States

A few configuration options have been added which allow for states to be run when the minion daemon starts. is
can be a great advantage when deploying with Salt because the minion can apply states right when it first runs. To
use startup states set the startup_states configuration option on the minion to highstate.

New Exclude Declaration

Some users have asked about adding the ability to ensure that other sls files or ids are excluded from a state run. e
exclude statement will delete all of the data loaded from the specified sls file or will delete the specified id:

exclude:
- sls: http
- id: /etc/vimrc

Max Open Files

While we're currently unable to properly handle ZeroMQ's abort signals when the max open files is reached, due to
the way that's handled on ZeroMQ's, we have minimized the chances of this happening without at least warning the
user.

26.2. Previous Releases 1379

Salt Documentation, Release 2014.7.6

More State Output Options

Some major changes have been made to the state output system. In the past state return data was printed in a very
verbose fashion and only states that failed or made changes were printed by default. Now two options can be passed
to the master and minion configuration files to change the behavior of the state output. State output can be set to
verbose (default) or non-verbose with the state_verbose option:

state_verbose: False

It is noteworthy that the state_verbose option used to be set to False by default but has been changed to True by
default in 0.10.3 due to many requests for the change.

Te next option to be aware of new and called state_output. is option allows for the state output to be set to
full (default) or terse.

e full output is the standard state output, but the new terse output will print only one line per state making the
output much easier to follow when executing a large state system.

state_output: terse

state.file.append Improvements

e salt state file.append() tries not to append existing text. Previously the matching check was being made line by
line. While this kind of check might be enough for most cases, if the text being appended was multi-line, the check
would not work properly. is issue is now properly handled, the match is done as a whole ignoring any white
space addition or removal except inside commas. For those thinking that, in order to properly match over multiple
lines, salt will load the whole file into memory, that's not true. For most cases this is not important but an erroneous
order to read a 4GB file, if not properly handled, like salt does, could make salt chew that amount of memory. Salt
has a buffered file reader which will keep in memory a maximum of 256KB and iterates over the file in chunks
of 32KB to test for the match, more than enough, if not, explain your usage on a ticket. With this change, also
salt.modules.file.contains(), salt.modules.file.contains_regex(), salt.modules.file.contains_glob() and salt.utils.find now
do the searching and/or matching using the buffered chunks approach explained above.

Two new keyword arguments were also added, makedirs and source. e first, makedirs will create the necessary
directories in order to append to the specified file, of course, it only applies if we're trying to append to a non-existing
file on a non-existing directory:

/tmp/salttest/file-append-makedirs:
file.append:

text: foo
makedirs: True

e second, source, allows one to append the contents of a file instead of specifying the text.

/tmp/salttest/file-append-source:

file.append:
- source: salt://testfile

1380 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

Security Fix

A timing vulnerability was uncovered in the code which decrypts the AES messages sent over the network. is has
been fixed and upgrading is strongly recommended.

26.2.26 Salt 0.10.4 Release Notes

release 2012-10-23

Salt 0.10.4 is a monumental release for the Salt team, with two newmodule systems, many additions to allow granular
access to Salt, improved platform support and much more.

is release is also exciting because we have been able to shorten the release cycle back to under a month. We are
working hard to keep up the aggressive pace and look forward to having releases happen more frequently!

is release also includes a serious security fix and all users are very strongly recommended to upgrade. As usual,
upgrade the master first, and then the minion to ensure that the process is smooth.

Major Features

External Authentication System

e new external authentication system allows for Salt to pass through authentication to any authentication system
to determine if a user has permission to execute a Salt command. e Unix PAM system is the first supported system
with more to come!

e external authentication system allows for specific users to be granted access to execute specific functions on
specific minions. Access is configured in the master configuration file, and uses the new access control system:

external_auth:
pam:

thatch:
- 'web*':

- test.*
- network.*

e configuration above allows the user thatch to execute functions in the test and network modules on minions
that match the web* target.

Access Control System

All Salt systems can now be configured to grant access to non-administrative users in a granular way. e old
configuration continues to work. Specific functions can be opened up to specific minions from specific users in the
case of external auth and client ACLs, and for specific minions in the case of the peer system.

Access controls are configured like this:

client_acl:
fred:

- web*:
- pkg.list_pkgs
- test.*
- apache.*

26.2. Previous Releases 1381

Salt Documentation, Release 2014.7.6

Target by Network

A newmatcher has been added to the system which allows for minions to be targeted by network. is newmatcher
can be called with the -S flag on the command line and is available in all places that the matcher system is available.
Using it is simple:

$ salt -S '192.168.1.0/24' test.ping
$ salt -S '192.168.1.100' test.ping

Nodegroup Nesting

Previously a nodegroup was limited by not being able to include another nodegroup, this restraint has been lied
and now nodegroups will be expanded within other nodegroups with the N@ classifier.

Salt Key Delete by Glob

e ability to delete minion keys by glob has been added to salt-key. To delete all minion keys whose minion
name starts with `web':

$ salt-key -d 'web*'

Master Tops System

e external_nodes system has been upgraded to allow for modular subsystems to be used to generate the top file
data for a highstate run.

e external_nodes option still works but will be deprecated in the future in favor of the new master_tops option.

Example of using master_tops:

master_tops:
ext_nodes: cobbler-external-nodes

Next Level Solaris Support

A lot of work has been put into improved Solaris support by Romeo eriault. Packaging modules (pkgadd/pkgrm
and pkgutil) and states, cron support and user and group management have all been added and improved upon.
ese additions along with SMF (Service Management Facility) service support and improved Solaris grain detection
in 0.10.3 add up to Salt becoming a great tool to manage Solaris servers with.

Security

A vulnerability in the security handshake was found and has been repaired, old minions should be able to connect
to a new master, so as usual, the master should be updated first and then the minions.

1382 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

Pillar Updates

e pillar communication has been updated to add some extra levels of verification so that the intended minion is
the only one allowed to gather the data. Once all minions and the master are updated to salt 0.10.4 please activate
pillar 2 by changing the pillar_version in the master config to 2. is will be set to 2 by default in a future release.

26.2.27 Salt 0.10.5 Release Notes

release 2012-11-15

Salt 0.10.5 is ready, and comes with some great new features. A few more interfaces have been modularized, like the
outpuer system. e job cache system has been made more powerful and can now store and retrieve jobs archived
in external databases. e returner system has been extended to allowminions to easily retrieve data from a returner
interface.

As usual, this is an exciting release, with many noteworthy additions!

Major Features

External Job Cache

e external job cache is a system which allows for a returner interface to also act as a job cache. is system is
intended to allow users to store job information in a central location for longer periods of time and to make the act
of looking up information from jobs executed on other minions easier.

Currently the external job cache is supported via the mongo and redis returners:

ext_job_cache: redis
redis.host: salt

Once the external job cache is turned on the new ret module can be used on theminions to retrieve return information
from the job cache. is can be a great way for minions to respond and react to other minions.

OpenStack Additions

OpenStack integration with Salt has been moving forward at a blistering pace. e new nova, glance and keystone
modules represent the beginning of ongoing OpenStack integration.

e Salt team has had many conversations with core OpenStack developers and is working on linking to OpenStack
in powerful new ways.

Wheel System

A newAPI was added to the Salt Master which allows the master to be managed via an external API.is new system
allows Salt API to easily hook into the Salt Master and manage configs, modify the state tree, manage the pillar and
more. e main motivation for the wheel system is to enable features needed in the upcoming web UI so users can
manage the master just as easily as they manage minions.

e wheel system has also been hooked into the external auth system. is allows specific users to have granular
access to manage components of the Salt Master.

26.2. Previous Releases 1383

Salt Documentation, Release 2014.7.6

Render Pipes

Jack Kuan has added a substantial new feature. e render pipes system allows Salt to treat the render system like
unix pipes. is new system enables sls files to be passed through specific render engines. While the default renderer
is still recommended, different engines can now be more easily merged. So to pipe the output of Mako used in YAML
use this shebang line:

#!mako|yaml

Salt Key Overhaul

e Salt Key system was originally developed as only a CLI interface, but as time went on it was pressed into
becoming a clumsy API. is release marks a complete overhaul of Salt Key. Salt Key has been rewrien to function
purely from an API and to use the outpuer system. e benefit here is that the outpuer system works much more
cleanly with Salt Key now, and the internals of Salt Key can be used much more cleanly.

Modular Outpuers

e outpuer system is now loaded in a modular way. is means that output systems can be more easily added by
dropping a python file down on the master that contains the function output.

Gzip from Fileserver

Gzip compression has been added as an option to the cp.get_file and cp.get_dir commands. is will make file
transfers more efficient and faster, especially over slower network links.

Unified Module Configuration

In past releases of Salt, the minions needed to be configured for certain modules to function. is was difficult
because it required pre-configuring the minions. 0.10.5 changes this by making all module configs on minions search
the master config file for values.

Now if a single database server is needed, then it can be defined in the master config and all minions will become
aware of the configuration value.

Salt Call Enhancements

e salt-call command has been updated in a few ways. Now, salt-call can take the --return option to
send the data to a returner. Also, salt-call now reports executions in the minion proc system, this allows the
master to be aware of the operation salt-call is running.

Death to pub_refresh and sub_timeout

e old configuration values pub_refresh and sub_timeout have been removed. ese options were in place to allevi-
ate problems found in earlier versions of ZeroMQ which have since been fixed. e continued use of these options
has proven to cause problems with message passing and have been completely removed.

1384 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

Git Revision Versions

When running Salt directly from git (for testing or development, of course) it has been difficult to know exactly
what code is being executed. e new versioning system will detect the git revision when building and how many
commits have been made since the last release. A release from git will look like this:

0.10.4-736-gec74d69

Svn Module Addition

Anthony Cornehl (twinshadow) contributed a module that adds Subversion support to Salt. is great addition helps
round out Salt's VCS support.

Noteworthy Changes

Arch Linux Defaults to Systemd

Arch Linux recently changed to use systemd by default and discontinued support for init scripts. Salt has followed
suit and defaults to systemd now for managing services in Arch.

Salt, Salt Cloud and Openstack

With the releases of Salt 0.10.5 and Salt Cloud 0.8.2, OpenStack becomes the first (non-OS) piece of soware to
include support both on the user level (with Salt Cloud) and the admin level (with Salt). We are excited to continue
to extend support of other platforms at this level.

26.2.28 Salt 0.11.0 Release Notes

release 2012-12-14

Salt 0.11.0 is here, with some highly sought aer and exciting features. ese features include the new overstate
system, the reactor system, a new state run scope component called __context__, the beginning of the search system
(still needs a great deal of work), multiple package states, the MySQL returner and a beer system to arbitrarily
reference outpuers.

It is also noteworthy that we are changing how we mark release numbers. For the life of the project we have been
pushing every release with features and fixes as point releases. We will now be releasing point releases for only bug
fixes on a more regular basis and major feature releases on a slightly less regular basis. is means that the next
release will be a bugfix only release with a version number of 0.11.1. e next feature release will be named 0.12.0
and will mark the end of life for the 0.11 series.

Major Features

OverState

e overstate system is a simple way to manage rolling state executions across many minions. e overstate allows
for a state to depend on the successful completion of another state.

26.2. Previous Releases 1385

Salt Documentation, Release 2014.7.6

Reactor System

e new reactor system allows for a reactive logic engine to be created which can respond to events within a salted
environment. e reactor system uses sls files to match events fired on the master with actions, enabling Salt to
react to problems in an infrastructure.

Your load-balanced group of webservers is under extra load? Spin up a new VM and add it to the group. Your
fileserver is filling up? Send a notification to your sysadmin on call. e possibilities are endless!

Module Context

A new component has been added to the module loader system. e module context is a data structure that can hold
objects for a given scope within the module.

is allows for components that are initialized to be stored in a persistent context which can greatly speed up ongoing
connections. Right now the best example can be found in the cp execution module.

Multiple Package Management

A long desired feature has been added to package management. By definition Salt States have always installed
packages one at a time. On most platforms this is not the fastest way to install packages. Erik Johnson, aka ter-
minalmage, has modified the package modules for many providers and added new capabilities to install groups of
packages. ese package groups can be defined as a list of packages available in repository servers:

python_pkgs:
pkg.installed:

- pkgs:
- python-mako
- whoosh
- python-git

or specify based on the location of specific packages:

python_pkgs:
pkg.installed:

- sources:
- python-mako: http://some-rpms.org/python-mako.rpm
- whoosh: salt://whoosh/whoosh.rpm
- python-git: ftp://companyserver.net/python-git.rpm

Search System

e bones to the search system have been added. is is a very basic interface that allows for search backends to
be added as search modules. e first supported search module is the whoosh search backend. Right now only the
basic paths for the search system are in place, making this very experimental. Further development will involve
improving the search routines and index routines for whoosh and other search backends.

e search system has been made to allow for searching through all of the state and pillar files, configuration files
and all return data from minion executions.

1386 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

Notable Changes

All previous versions of Salt have shared many directories between the master and minion. e default locations
for keys, cached data and sockets has been shared by master and minion. is has created serious problems with
running a master and a minion on the same systems. 0.11.0 changes the defaults to be separate directories. Salt
will also aempt to migrate all of the old key data into the correct new directories, but if it is not successful it may
need to be done manually. If your keys exhibit issues aer updating make sure that they have been moved from
/etc/salt/pki to /etc/salt/pki/{master,minion}.

e old setup will look like this:

/etc/salt/pki
|-- master.pem
|-- master.pub
|-- minions
| `-- ragnarok.saltstack.net
|-- minions_pre
|-- minion.pem
|-- minion.pub
|-- minion_master.pub
|-- minions_pre
`-- minions_rejected

With the accepted minion keys in /etc/salt/pki/minions, the new setup places the accepted minion keys in
/etc/salt/pki/master/minions.

/etc/salt/pki
|-- master
| |-- master.pem
| |-- master.pub
| |-- minions
| | `-- ragnarok.saltstack.net
| |-- minions_pre
| `-- minions_rejected
|-- minion
| |-- minion.pem
| |-- minion.pub
| `-- minion_master.pub

26.2.29 Salt 0.11.1 Release Notes

release 2012-12-19

26.2.30 Salt 0.12.0 Release Notes

release 2013-01-15

Another feature release of Salt is here! Some exciting additions are included with more ways to make salt modular
and even easier management of the salt file server.

26.2. Previous Releases 1387

Salt Documentation, Release 2014.7.6

Major Features

Modular Fileserver Backend

e new modular fileserver backend allows for any external system to be used as a salt file server. e main benefit
here is that it is now possible to tell the master to directly use a git remote location, or many git remote locations,
automatically mapping git branches and tags to salt environments.

Windows is First Class!

A new Salt Windows installer is now available! Much work has been put in to improve Windows support. With this
much easier method of geing Salt on your Windows machines, we hope even more development and progress will
occur. Please file bug reports on the Salt GitHub repo issue tracker so we can continue improving.

One thing that is missing on Windows that Salt uses extensively is a soware package manager and a soware
package repository. e Salt pkg state allows sys admins to install soware across their infrastructure and across
operating systems. Soware on Windows can now be managed in the same way. e SaltStack team built a package
manager that interfaceswith the standard Salt pkgmodule to allow for installing and removing soware onWindows.
In addition, a soware package repository has been built on top of the Salt fileserver. A small YAML file provides
the information necessary for the package manager to install and remove soware.

An interesting feature of the new Salt Windows soware package repository is that one or more remote git reposi-
tories can supplement the master's local repository. e repository can point to soware on the master's fileserver
or on an HTTP, HTTPS, or p server.

New Default Outpuer

Salt displays data to the terminal via the outpuer system. For a long time the default outpuer for Salt has been
the python prey print library. While this has been a generally reasonable outpuer, it did have many failings. e
new default outpuer is called ``nested'', it recursively scans return data structures and prints them out cleanly.

If the result of the new nested outpuer is not desired any other outpuer can be used via the --out option, or the
output option can be set in the master and minion configs to change the default outpuer.

Internal Scheduler

e internal Salt scheduler is a new capability which allows for functions to be executed at given intervals on the
minion, and for runners to be executed at given intervals on the master. e scheduler allows for sequences such as
executing state runs (locally on the minion or remotely via an overstate) or continually gathering system data to be
run at given intervals.

e configuration is simple, add the schedule option to the master or minion config and specify jobs to run, this in
the master config will execute the state.over runner every 60 minutes:

schedule:
overstate:

function: state.over
minutes: 60

is example for the minion configuration will execute a highstate every 30 minutes:

1388 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

schedule:
highstate:

function: state.highstate
minutes: 30

Optional DSL for SLS Formulas

Jack Kuan, our renderer expert, has created something that is astonishing. Salt, now comes with an optional Python
based DSL, this is a very powerful interface that makes writing SLS files in pure python easier than it was with the
raw py renderer. As usual this can be used with the renderer shebang line, so a single sls can be wrien with the
DSL if pure python power is needed while keeping other sls files simple with YAML.

Set Grains Remotely

A new execution function and state module have been added that allows for grains to be set on the minion. Now
grains can be set via a remote execution or via states. Use the grains.present state or the grains.setval execution
functions.

Gentoo Additions

Major additions to Gentoo specific components have been made. e encompasses executions modules and states
ranging from supporting the make.conf file to tools like layman.

26.2.31 Salt 0.12.1 Release Notes

release 2013-01-21

26.2.32 Salt 0.13.0 Release Notes

release 2013-02-12

e lucky number 13 has turned the corner! From CLI notifications when quiing a salt command, to substantial
improvements on Windows, Salt 0.13.0 has arrived!

Major Features

Improved file.recurse Performance

e file.recurse system has been deployed and used in a vast array of situations. Fixes to the file state and module
have led towards opening up new ways of running file.recurse to make it faster. Now the file.recurse state will
download fewer files and will run substantially faster.

Windows Improvements

Minion stability on Windows has improved. Many file operations, including file.recurse, have been fixed and im-
proved. e network module works beer, to include network.interfaces. Both 32bit and 64bit installers are now
available.

26.2. Previous Releases 1389

Salt Documentation, Release 2014.7.6

Nodegroup Targeting in Peer System

In the past, nodegroups were not available for targeting via the peer system. is has been fixed, allowing the new
nodegroup expr_form argument for the publish.publish function:

salt-call publish.publish group1 test.ping expr_form=nodegroup

Blacklist Additions

Additions allowing more granular blacklisting are available in 0.13.0. e ability to blacklist users and functions in
client_acl have been added, as well as the ability to exclude state formulas from the command line.

Command Line Pillar Embedding

Pillar data can now be embedded on the command line when calling state.sls and state.highstate. is
allows for on the fly changes or seings to pillar and makes parameterizing state formulas even easier. is is done
via the keyword argument:

salt '*' state.highstate pillar='{"cheese": "spam"}'

e above example will extend the existing pillar to hold the cheese key with a value of spam. If the cheese key
is already specified in the minion's pillar then it will be overwrien.

CLI Notifications

In the past hiing ctrl-C and quiing from the salt command would just drop to a shell prompt, this caused
confusion with users who expected the remote executions to also quit. Now a message is displayed showing what
command can be used to track the execution and what the job id is for the execution.

Version Specification in Multiple-Package States

Versions can now be specified within multiple-package pkg.installed states. An example can be found below:

mypkgs:
pkg.installed:

- pkgs:
- foo
- bar: 1.2.3-4
- baz

Noteworthy Changes

e configuration subsystem in Salt has been overhauled to make the opts dict used by Salt applications more
portable, the problem is that this is an incompatible change with salt-cloud, and salt-cloud will need to be updated
to the latest git to work with Salt 0.13.0. Salt Cloud 0.8.5 will also require Salt 0.13.0 or later to function.

e SaltStack team is sorry for the inconvenience here, we work hard to make sure these sorts of things do not
happen, but sometimes hard changes get in.

1390 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

26.2.33 Salt 0.13.1 Release Notes

release 2013-02-15

26.2.34 Salt 0.13.2 Release Notes

release 2013-03-13

26.2.35 Salt 0.13.3 Release Notes

release 2013-03-18

26.2.36 Salt 0.14.0 Release Notes

release 2013-03-23

Salt 0.14.0 is here! is release was held up primarily by PyCon, Scale and illness, but has arrived! 0.14.0 comes with
many new features and is breaking ground for Salt in the area of cloud management with the introduction of Salt
providing basic cloud controller functionality.

Major Features

Salt - As a Cloud Controller

is is the first primitive inroad to using Salt as a cloud controller is available in 0.14.0. Be advised that this is alpha,
only tested in a few very small environments.

e cloud controller is built using kvm and libvirt for the hypervisors. Hypervisors are autodetected as minions
and only need to have libvirt running and kvm installed to function. e features of the Salt cloud controller are as
follows:

• Basic vm discovery and reporting

• Creation of new virtual machines

• Seeding virtual machines with Salt via qemu-nbd or libguestfs

• Live migration (shared and non shared storage)

• Delete existing VMs

It is noteworthy that this feature is still Alpha, meaning that all rights are reserved to change the interface if needs
be in future releases!

Libvirt State

One of the problems with libvirt is management of certificates needed for live migration and cross communica-
tion between hypervisors. e new libvirt state makes the Salt Master hold a CA and manage the signing and
distribution of keys onto hypervisors, just add a call to the libvirt state in the sls formulas used to set up a hypervisor:

libvirt_keys:
libvirt.keys

26.2. Previous Releases 1391

Salt Documentation, Release 2014.7.6

New get Functions

An easier way to manage data has been introduced. e pillar, grains and config execution modules have been
extended with the new get function. is function works much in the same way as the get method in a python dict,
but with an enhancement, nested dict components can be extracted using a : delimiter.

If a structure like this is in pillar:

foo:
bar:

baz: quo

Extracting it from the raw pillar in an sls formula or file template is done this way:

{{ pillar['foo']['bar']['baz'] }}

Now with the new get function the data can be safely gathered and a default can be set allowing the template to fall
back if the value is not available:

{{ salt['pillar.get']('foo:bar:baz', 'qux') }}

is makes handling nested structures much easier, and defaults can be cleanly set. is new function is being used
extensively in the new formulae repository of salt sls formulas.

26.2.37 Salt 0.14.1 Release Notes

release 2013-04-13

26.2.38 Salt 0.15.0 Release Notes

release 2013-05-03

e many new features of Salt 0.15.0 have arrived! Salt 0.15.0 comes with many smaller features and a few larger
ones.

ese features range from beer debugging tools to the new Salt Mine system.

Major Features

The Salt Mine

First there was the peer system, allowing for commands to be executed from a minion to other minions to gather
data live. en there was the external job cache for storing and accessing long term data. Now the middle ground is
being filled in with the Salt Mine. e Salt Mine is a system used to execute functions on a regular basis on minions
and then store only the most recent data from the functions on the master, then the data is looked up via targets.

e mine caches data that is public to all minions, so when a minion posts data to the mine all other minions can
see it.

1392 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

IPV6 Support

0.13.0 saw the addition of initial IPV6 support but errors were encountered and it needed to be stripped out. is
time the code covers more cases and must be explicitly enabled. But the support is much more extensive than before.

Copy Files From Minions to the Master

Minions have long been able to copy files down from the master file server, but until now files could not be easily
copied from the minion up to the master.

A new function called cp.push can push files from the minions up to the master server. e uploaded files are
then cached on the master in the master cachedir for each minion.

Beer Template Debugging

Template errors have long been a burden when writing states and pillar. 0.15.0 will now send the compiled template
data to the debug log, this makes tracking down the intermient stage templates much easier. So running state.sls
or state.highstate with -l debug will now print out the rendered templates in the debug information.

State Event Firing

e state system is now more closely tied to the master's event bus. Now when a state fails the failure will be fired
on the master event bus so that the reactor can respond to it.

Major Syndic Updates

e Syndic system has been basically re-wrien. Now it runs in a completely asynchronous way and functions
primarily as an event broker. is means that the events fired on the syndic are now pushed up to the higher level
master instead of the old method used which waited for the client libraries to return.

is makes the syndic much more accurate and powerful, it also means that all events fired on the syndic master
make it up the pipe as well making a reactor on the higher level master able to react to minions further downstream.

Peer System Updates

e Peer System has been updated to run using the client libraries instead of firing directly over the publish bus.
is makes the peer system much more consistent and reliable.

Minion Key Revocation

In the past when a minion was decommissioned the key needed to be manually deleted on the master, but now a
function on the minion can be used to revoke the calling minion's key:

$ salt-call saltutil.revoke_auth

26.2. Previous Releases 1393

Salt Documentation, Release 2014.7.6

Function Return Codes

Functions can now be assigned numeric return codes to determine if the function executed successfully. While not
all functions have been given return codes, many have and it is an ongoing effort to fill out all functions that might
return a non-zero return code.

Functions in Overstate

e overstate system was originally created to just manage the execution of states, but with the addition of return
codes to functions, requisite logic can now be used with respect to the overstate. is means that an overstate stage
can now run single functions instead of just state executions.

Pillar Error Reporting

Previously if errors surfaced in pillar, then the pillar would consist of only an empty dict. Now all data that was
successfully rendered stays in pillar and the render error is also made available. If errors are found in the pillar,
states will refuse to run.

Using Cached State Data

Sometimes states are executed purely to maintain a specific state rather than to update states with new configs. is
is grounds for the new cached state system. By adding cache=True to a state call the state will not be generated fresh
from the master but the last state data to be generated will be used. If no previous state data is available then fresh
data will be generated.

Monitoring States

e new monitoring states system has been started. is is very young but allows for states to be used to configure
monitoring routines. So far only one monitoring state is available, the disk.status state. As more capabilities
are added to Salt UI the monitoring capabilities of Salt will continue to be expanded.

26.2.39 Salt 0.15.1 Release Notes

release 2013-05-08

e 0.15.1 release has been posted, this release includes fixes to a number of bugs in 0.15.1 and a three security
patches.

Security Updates

A number of security issues have been resolved via the 0.15.1 release.

Path Injection in Minion IDs

Salt masters did not properly validate the id of a connecting minion. is can lead to an aacker uploading files to
the master in arbitrary locations. In particular this can be used to bypass the manual validation of new unknown
minions. Exploiting this vulnerability does not require authentication.

is issue affects all known versions of Salt.

1394 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

is issue was reported by Ronald Volgers.

Pat e issue is fixed in Salt 0.15.1. Updated packages are available in the usual locations.

Specific commits:

hps://github.com/saltstack/salt/commit/5427b9438e452a5a8910d9128c6aa45d8fd5d3

hps://github.com/saltstack/salt/commit/7560908ee62351769c3cd43b03d74c1ca772cc52

hps://github.com/saltstack/salt/commit/e200b8a7ff53780124e08d2bdefde7587e52bfca

RSA Key Generation Fault

RSA key generation was done incorrectly, leading to very insecure keys. It is recommended to regenerate all RSA
keys.

is issue can be used to impersonate Salt masters or minions, or decrypt any transferred data.

is issue can only be exploited by aackers who are able to observe or modify traffic between Salt minions and the
legitimate Salt master.

A tool was included in 0.15.1 to assist in mass key regeneration, the manage.regen_keys runner.

is issue affects all known versions of Salt.

is issue was reported by Ronald Volgers.

Pat e issue is fixed in Salt 0.15.1. Updated packages are available in the usual locations.

Specific commits:

hps://github.com/saltstack/salt/commit/5dd304276ba5745ec21fc1e6686a0b28da29e6fc

Command Injection Via ext_pillar

Arbitrary shell commands could be executed on the master by an authenticated minion through options passed when
requesting a pillar.

Ext pillar options have been restricted to only allow safe external pillars to be called when prompted by the minion.

is issue affects Salt versions from 0.14.0 to 0.15.0.

is issue was reported by Ronald Volgers.

Pat e issue is fixed in Salt 0.15.1. Updated packages are available in the usual locations.

Specific commits:

hps://github.com/saltstack/salt/commit/43d8c16bd26159d827d1a945c83ac28159ec5865

26.2.40 Salt 0.15.2 Release Notes

release 2013-05-29

26.2. Previous Releases 1395

https://github.com/saltstack/salt/commit/5427b9438e452a5a8910d9128c6aafb45d8fd5d3
https://github.com/saltstack/salt/commit/7560908ee62351769c3cd43b03d74c1ca772cc52
https://github.com/saltstack/salt/commit/e200b8a7ff53780124e08d2bdefde7587e52bfca
https://github.com/saltstack/salt/commit/5dd304276ba5745ec21fc1e6686a0b28da29e6fc
https://github.com/saltstack/salt/commit/43d8c16bd26159d827d1a945c83ac28159ec5865

Salt Documentation, Release 2014.7.6

26.2.41 Salt 0.15.3 Release Notes

release 2013-06-01

26.2.42 Salt 0.16.0 Release Notes

release 2013-07-01

e 0.16.0 release is an exciting one, with new features in master redundancy, and a new, powerful requisite.

Major Features

Multi-Master

is new capability allows for a minion to be actively connected to multiple salt masters at the same time. is
allows for multiple masters to send out commands to minions and for minions to automatically reconnect to masters
that have gone down. A tutorial is available to help get started here:

Multi Master Tutorial

Prereq, the New Requisite

e new prereq requisite is very powerful! It allows for states to execute based on a state that is expected to make
changes in the future. is allows for a change on the system to be preempted by another execution. A good example
is needing to shut down a service before modifying files associated with it, allowing, for instance, a webserver to
be shut down allowing a load balancer to stop sending requests while server side code is updated. In this case, the
prereq will only run if changes are expected to happen in the prerequired state, and the prerequired state will always
run aer the prereq state and only if the prereq state succeeds.

Peer System Improvements

e peer system has been revamped to make it more reliable, faster, and like the rest of Salt, async. e peer calls
when an updated minion and master are used together will be much faster!

Relative Includes

e ability to include an sls relative to the defined sls has been added, the new syntax id documented here:

Includes

More State Output Options

e state_output option in the past only supported full and terse, 0.16.0 add the mixed and changes modes
further refining how states are sent to users' eyes.

1396 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

Improved Windows Support

Support for Salt on Windows continues to improve. Soware management on Windows has become more seamless
with Linux/UNIX/BSD soware management. Installed soware is now recognized by the short names defined in
the repository SLS. is makes it possible to run salt '*' pkg.version firefox and get back results from
Windows and non-Windows minions alike.

When templating files on Windows, Salt will now correctly use Windows appropriate line endings. is makes it
much easier to edit and consume files on Windows.

When using the cmd state the shell option now allows for specifying Windows Powershell as an alternate shell
to execute cmd.run and cmd.script. is opens up Salt to all the power of Windows Powershell and its advanced
Windows management capabilities.

Several fixes and optimizations were added for the Windows networking modules, especially when working with
IPv6.

A system module was added that makes it easy to restart and shutdown Windows minions.

e Salt Minion will now look for its config file in c:\salt\conf by default. is means that it's no longer
necessary to specify the -c option to specify the location of the config file when starting the Salt Minion onWindows
in a terminal.

Muliple Targets for pkg.removed, pkg.purged States

Both pkg.removed and pkg.purged now support the pkgs argument, which allow for multiple packages to
be targeted in a single state. is, as in pkg.installed, helps speed up these states by reducing the number of
times that the package management tools (apt, yum, etc.) need to be run.

Random Times in Cron States

e temporal parameters in cron.present states (minute, hour, etc.) can now be randomized by using random
instead of a specific value. For example, by using the random keyword in the minute parameter of a cron state,
the same cron job can be pushed to hundreds or thousands of hosts, and they would each use a randomly-generated
minute. is can be helpful when the cron job accesses a network resource, and it is not desirable for all hosts to run
the job concurrently.

/path/to/cron/script:
cron.present:

- user: root
- minute: random
- hour: 2

Since Salt assumes a value of * for unspecified temporal parameters, adding a parameter to the state and seing it
to random will change that value from * to a randomized numeric value. However, if that field in the cron entry
on the minion already contains a numeric value, then using the random keyword will not modify it.

Confirmation Prompt on Key Acceptance

When accepting new keys with salt-key -a minion-id or salt-key -A, there is now a prompt that will
show the affected keys and ask for confirmation before proceeding. is prompt can be bypassed using the -y or
--yes command line argument, as with other salt-key commands.

26.2. Previous Releases 1397

Salt Documentation, Release 2014.7.6

Support for Seing Password Hashes on BSD Minions

FreeBSD, NetBSD, and OpenBSD all now support seing passwords in user.present states.

26.2.43 Salt 0.16.1 Release Notes

release 2013-07-29

26.2.44 Salt 0.16.2 Release Notes

release 2013-08-01

Version 0.16.2 is a bugfix release for 0.16.0, and contains a number of fixes.

Windows

• Only allow Administrator's group and SYSTEM user access to C:\salt. is eliminates a race condition where a
non-admin user could modify a template or managed file before it is executed by the minion (which is running
as an elevated user), thus avoiding a potential escalation of privileges. (issue 6361)

Grains

• Fixed detection of virtual grain on OpenVZ hardware nodes

• Gracefully handle lsb_release data when it is enclosed in quotes

• LSB grains are now prefixed with lsb_distrib_ instead of simply lsb_. e old naming is not preserved,
so SLS may be affected.

• Improved grains detection on MacOS

Pillar

• Don't try to load git_pillar if not enabled in master config (issue 6052)

• Functions pillar.item and pillar.items added for parity with grains.item/grains.items.
e old function pillar.data is preserved for backwards compatibility.

• Fixed minion traceback when Pillar SLS is malformed (issue 5910)

Peer Publishing

• More gracefully handle improperly quoted publish commands (issue 5958)

• Fixed traceback when timeout specified via the CLI fo publish.publish, publish.full_data (issue
5959)

• Fixed unintended change in output of publish.publish (issue 5928)

1398 Chapter 26. Release notes

https://github.com/saltstack/salt/issues/6361
https://github.com/saltstack/salt/issues/6052
https://github.com/saltstack/salt/issues/5910
https://github.com/saltstack/salt/issues/5958
https://github.com/saltstack/salt/issues/5959
https://github.com/saltstack/salt/issues/5959
https://github.com/saltstack/salt/issues/5928

Salt Documentation, Release 2014.7.6

Minion

• Fixed salt-key usage in minionswarm script

• ieted warning about SALT_MINION_CONFIG environment variable on minion startup and for CLI com-
mands run via salt-call (issue 5956)

• Added minion config parameter random_reauth_delay to stagger re-auth aempts when the minion is
waiting for the master to approve its public key. is helps prevent SYN flooding in larger environments.

User/Group Management

• Implement previously-ignored unique option for user.present states in FreeBSD

• Report in state output when a group.present state aempts to use a gid in use by another group

• Fixed regression that prevents a user.present state to set the password hash to the system default (i.e. an
unset password)

• Fixed multiple group.present states with the same group (issue 6439)

File Management

• Fixed file.mkdir seing incorrect permissions (issue 6033)

• Fixed cleanup of source files for templates when /tmp is in file_roots (issue 6118)

• Fixed caching of zero-byte files when a non-empty file was previously cached at the same path

• Added HTTP authentication support to the cp module (issue 5641)

• Diffs are now suppressed when binary files are changed

Package/Repository Management

• Fixed traceback when there is only one target for pkg.latest states

• Fixed regression in detection of virtual packages (apt)

• Limit number of pkg database refreshes to once per state.sls/state.highstate

• YUM: Allow 32-bit packages with arches other than i686 to be managed on 64-bit systems (issue 6299)

• Fixed incorrect reporting in pkgrepo.managed states (issue 5517)

• Fixed 32-bit binary package installs on 64-bit RHEL-based distros, and added proper support for 32-bit packages
on 64-bit Debian-based distros (issue 6303)

• Fixed issue where requisites were inadvertently being put into YUM repo files (issue 6471)

Service Management

• Fixed inaccurate reporting of results in service.running states when the service fails to start (issue 5894)

• Fixed handling of custom initscripts in RHEL-based distros so that they are immediately available, negating
the need for a second state run to manage the service that the initscript controls

26.2. Previous Releases 1399

https://github.com/saltstack/salt/issues/5956
https://github.com/saltstack/salt/issues/6439
https://github.com/saltstack/salt/issues/6033
https://github.com/saltstack/salt/issues/6118
https://github.com/saltstack/salt/issues/5641
https://github.com/saltstack/salt/issues/6299
https://github.com/saltstack/salt/issues/5517
https://github.com/saltstack/salt/issues/6303
https://github.com/saltstack/salt/issues/6471
https://github.com/saltstack/salt/issues/5894

Salt Documentation, Release 2014.7.6

Networking

• Function network.hwaddr renamed to network.hw_addr to match network.ip_addrs and net-
work.ip_addrs6. All three functions also now work without the underscore in the name, as well.

• Fixed traceback in bridge.show when interface is not present (issue 6326)

SSH

• Fixed incorrect result reporting for some ssh_known_hosts.present states

• Fixed inaccurate reporting when ssh_auth.present states are run with test=True, when rsa/dss is
used for the enc param instead of ssh-rsa/ssh-dss (issue 5374)

pip

• Properly handle -f lines in pip freeze output

• Fixed regression in pip.installed states with specifying a requirements file (issue 6003)

• Fixed use of editable argument in pip.installed states (issue 6025)

• Deprecated runas parameter in execution function calls, in favor of user

MySQL

• Allow specification of MySQL connection arguments via the CLI, overriding/bypassing minion config params

• Allow mysql_user.present states to set a passwordless login (issue 5550)

• Fixed endless loop when mysql.processlist is run (issue 6297)

PostgreSQL

• Fixed traceback in postgres.user_list (issue 6352)

Miscellaneous

• Don't allow npm states to be used if npm module is not available

• Fixed alternatives.install states for which the target is a symlink (issue 6162)

• Fixed traceback in sysbench module (issue 6175)

• Fixed traceback in job cache

• Fixed tempfile cleanup for windows

• Fixed issue where SLS files using the pydsl renderer were not being run

• Fixed issue where returners were being passed incorrect information (issue 5518)

• Fixed traceback when numeric args are passed to cmd.script states

• Fixed bug causing cp.get_dir to return more directories than expected (issue 6048)

• Fixed traceback when supervisord.running states are run with test=True (issue 6053)

• Fixed tracebacks when Salt encounters problems running rbenv (issue 5888)

1400 Chapter 26. Release notes

https://github.com/saltstack/salt/issues/6326
https://github.com/saltstack/salt/issues/5374
https://github.com/saltstack/salt/issues/6003
https://github.com/saltstack/salt/issues/6025
https://github.com/saltstack/salt/issues/5550
https://github.com/saltstack/salt/issues/6297
https://github.com/saltstack/salt/issues/6352
https://github.com/saltstack/salt/issues/6162
https://github.com/saltstack/salt/issues/6175
https://github.com/saltstack/salt/issues/5518
https://github.com/saltstack/salt/issues/6048
https://github.com/saltstack/salt/issues/6053
https://github.com/saltstack/salt/issues/5888

Salt Documentation, Release 2014.7.6

• Only make the monit module available if monit binary is present (issue 5871)

• Fixed incorrect behavior of img.mount_image

• Fixed traceback in tomcat.deploy_war in Windows

• Don't re-write /etc/fstab if mount fails

• Fixed tracebacks when Salt encounters problems running gem (issue 5886)

• Fixed incorrect behavior of selinux.boolean states (issue 5912)

• RabbitMQ: ote passwords to avoid symbols being interpolated by the shell (issue 6338)

• Fixed tracebacks in extfs.mkfs and extfs.tune (issue 6462)

• Fixed a regression with the module.run state where the m_name and m_fun arguments were being ignored
(issue 6464)

26.2.45 Salt 0.16.3 Release Notes

release 2013-08-09

Version 0.16.3 is another bugfix release for 0.16.0. e changes include:

• Various documentation fixes

• Fix proc directory regression (issue 6502)

• Properly detect Linaro Linux (issue 6496)

• Fix regressions in mount.mounted (issue 6522, issue 6545)

• Skip malformed state requisites (issue 6521)

• Fix regression in gitfs from bad import

• Fix for watching prereq states (including recursive requisite error) (issue 6057)

• Fix mod_watch not overriding prereq (issue 6520)

• Don't allow functions which compile states to be called within states (issue 5623)

• Return error for malformed top.sls (issue 6544)

• Fix traceback in mysql.query

• Fix regression in binary package installation for 64-bit packages on Debian-based Linux distros (issue 6563)

• Fix traceback caused by running cp.push without having set file_recv in the master config file

• Fix scheduler configuration in pillar (issue 6201)

26.2.46 Salt 0.16.4 Release Notes

release 2013-09-07

Version 0.16.4 is another bugfix release for 0.16.0, likely to be the last before 0.17.0 is released. e changes include:

• Multiple documentation improvements/additions

• Added the osfinger and osarch grains

• Properly handle 32-bit packages for debian32 on x86_64 (issue 6607)

• Fix regression in yum package installation in CentOS 5 (issue 6677)

26.2. Previous Releases 1401

https://github.com/saltstack/salt/issues/5871
https://github.com/saltstack/salt/issues/5886
https://github.com/saltstack/salt/issues/5912
https://github.com/saltstack/salt/issues/6338
https://github.com/saltstack/salt/issues/6462
https://github.com/saltstack/salt/issues/6464
https://github.com/saltstack/salt/issues/6502
http://www.linaro.org/
https://github.com/saltstack/salt/issues/6496
https://github.com/saltstack/salt/issues/6522
https://github.com/saltstack/salt/issues/6545
https://github.com/saltstack/salt/issues/6521
https://github.com/saltstack/salt/issues/6057
https://github.com/saltstack/salt/issues/6520
https://github.com/saltstack/salt/issues/5623
https://github.com/saltstack/salt/issues/6544
https://github.com/saltstack/salt/issues/6563
https://github.com/saltstack/salt/issues/6201
https://github.com/saltstack/salt/issues/6607
https://github.com/saltstack/salt/issues/6677

Salt Documentation, Release 2014.7.6

• Fix bug in hg.latest state that would erroneously delete directories (issue 6661)

• Fix bug related to pid not existing for ps.top (issue 6679)

• Fix regression in MySQL returner (issue 6695)

• Fix IP addresses grains (ipv4 and ipv6) to include all addresses (issue 6656)

• Fix regression preventing authenticated FTP (issue 6733)

• Fix seing password for windows users (issue 6824)

• Fix file.contains on values YAML parses as non-string (issue 6817)

• Fix file.get_gid, file.get_uid, and file.chown for broken symlinks (issue 6826)

• Fix comment for service reloads in service state (issue 6851)

26.2.47 Salt 0.17.0 Release Notes

release 2013-09-26

e 0.17.0 release is a very exciting release of Salt, this brings to Salt some very powerful new features and advances.
e advances range from the state system to the test suite, covering new transport capabilities and making states
easier and more powerful, to extending Salt Virt and much more!

e 0.17.0 release will also be the last release of Salt to follow the old 0.XX.X numbering system, the next release of
Salt will change the numbering to be date based following this format:

<Year>.<Month>.<Minor>

So if the release happens in November of 2013 the number will be 13.11.0, the first bugfix release will be 13.11.1 and
so forth.

Major Features

Halite

e new Halite web GUI is now available on PyPI. A great deal of work has been put into Halite to make it fully
event driven and amazingly fast. e Halite UI can be started from within the Salt Master (aer being installed from
PyPI), or standalone, and does not require an external database to run. It is very lightweight!

is initial release of Halite is primarily the framework for the UI and the communication systems, making it easy
to extend and build the UI up. It presently supports watching the event bus and firing commands over Salt.

At this time, Halite is not available as a package, but installation documentation is available at:
hp://docs.saltstack.com/topics/tutorials/halite.html

Halite is, like the rest of Salt, Open Source!

Much more will be coming in the future of Halite!

Salt SSH

e new salt-ssh command has been added to Salt. is system allows for remote execution and states to be run
over ssh. e benefit here being, that salt can run relying only on the ssh agent, rather than requiring a minion to
be deployed.

e salt-ssh system runs states in a compatible way as Salt and states created and run with salt-ssh can be moved
over to a standard salt deployment without modification.

1402 Chapter 26. Release notes

https://github.com/saltstack/salt/issues/6661
https://github.com/saltstack/salt/issues/6679
https://github.com/saltstack/salt/issues/6695
https://github.com/saltstack/salt/issues/6656
https://github.com/saltstack/salt/issues/6733
https://github.com/saltstack/salt/issues/6824
https://github.com/saltstack/salt/issues/6817
https://github.com/saltstack/salt/issues/6826
https://github.com/saltstack/salt/issues/6851
http://docs.saltstack.com/topics/tutorials/halite.html

Salt Documentation, Release 2014.7.6

Since this is the initial release of salt-ssh, there is plenty of room for improvement, but it is fully operational, not just
a bootstrap tool.

Rosters

Salt is designed to have the minions be aware of the master and the master does not need to be aware of the location
of the minions. e new salt roster system was created and designed to facilitate listing the targets for salt-ssh.

e roster system, like most of Salt, is a plugin system, allowing for the list of systems to target to be derived from
any pluggable backend. e rosters shipping with 0.17.0 are flat and scan. Flat is a file which is read in via the salt
render system and the scan roster does simple network scanning to discover ssh servers.

State Auto Order

is is a major change in how states are evaluated in Salt. State Auto Order is a new feature that makes states get
evaluated and executed in the order in which they are defined in the sls file. is feature makes it very easy to see
the finite order in which things will be executed, making Salt now, fully imperative AND fully declarative.

e requisite system still takes precedence over the order in which states are defined, so no existing states should
break with this change. But this new feature can be turned off by seing state_auto_order: False in the
master config, thus reverting to the old lexicographical order.

state.sls Runner

e state.sls runner has been created to allow for a more powerful system for orchestrating state runs and
function calls across the salt minions. is new system uses the state system for organizing executions.

is allows for states to be defined that are executed on the master to call states on minions via salt-run
state.sls.

Salt Thin

Salt in is an exciting new component of Salt, this is the ability to execute Salt routines without any transport
mechanisms installed, it is a pure python subset of Salt.

Salt in does not have any networking capability, but can be dropped into any system with Python installed and
then salt-call can be called directly. e Salt in system, is used by the salt-ssh command, but can still be
used to just drop salt somewhere for easy use.

Event Namespacing

Events have been updated to be much more flexible. e tags in events have all been namespaced allowing easier
tracking of event names.

Mercurial Fileserver Backend

e popular git fileserver backend has been joined by the mercurial fileserver backend, allowing the state tree to be
managed entirely via mercurial.

26.2. Previous Releases 1403

Salt Documentation, Release 2014.7.6

External Logging Handlers

e external logging handler system allows for Salt to directly hook into any external logging system. Currently
supported are sentry and logstash.

Jenkins Testing

e testing systems in Salt have been greatly enhanced, tests for salt are now executed, via jenkins.saltstack.com,
across many supported platforms. Jenkins calls out to salt-cloud to create virtual machines on Rackspace, then the
minion on the virtual machine checks into the master running on Jenkins where a state run is executed that sets up
the minion to run tests and executes the test suite.

is now automates the sequence of running platform tests and allows for continuous destructive tests to be run.

Salt Testing Project

e testing libraries for salt have been moved out of the main salt code base and into a standalone codebase. is
has been done to ease the use of the testing systems being used in salt based projects other than Salt itself.

StormPath External Authentication

e external auth system now supports the fantastic Stormpath cloud based authentication system.

LXC Support

Extensive additions have been added to Salt for LXC support. is included the backend libs for managing LXC
containers. Addition into the salt-virt system is still in the works.

Mac OS X User/Group Support

Salt is now able to manage users and groups on Minions running Mac OS X. However, at this time user passwords
cannot be managed.

Django ORM External Pillar

Pillar data can now be derived from Django managed databases.

Fixes from RC to release

• Multiple documentation fixes

• Add multiple source files + templating for file.append (issue 6905)

• Support sysctl configuration files in systemd>=207 (issue 7351)

• Add file.search and file.replace

• Fix cross-calling execution functions in provider overrides

• Fix locale override for postgres (issue 4543)

1404 Chapter 26. Release notes

https://github.com/saltstack/salt/issues/6905
https://github.com/saltstack/salt/issues/7351
https://github.com/saltstack/salt/issues/4543

Salt Documentation, Release 2014.7.6

• Fix Raspbian identification for service/pkg support (issue 7371)

• Fix cp.push file corruption (issue 6495)

• Fix ALT Linux password hash specification (issue 3474)

• Multiple salt-ssh-related fixes and improvements

26.2.48 Salt 0.17.1 Release Notes

release 2013-10-17

Note: THIS RELEASE IS NOT COMPATIBLEWITH PREVIOUS VERSIONS. If you update your master to 0.17.1, you
must update your minions as well. Sorry for the inconvenience -- this is a result of one of the security fixes listed
below.

e 0.17.1 release comes with a number of improvements to salt-ssh, many bugfixes, and a number of security
updates.

Salt SSH has been improved to be faster, more featureful and more secure. Since the original release of Salt SSH was
primarily a proof of concept, it has been very exciting to see its rapid adoption. We appreciate the willingness of
security experts to review Salt SSH and help discover oversights and ensure that security issues only exist for such
a tiny window of time.

SSH Enhancements

Shell Improvements

Improvements to Salt SSH's communication have been added that improve routine execution regardless of the target
system's login shell.

Performance

Deployment of routines is now faster and takes fewer commands to execute.

Security Updates

Be advised that these security issues all apply to a small subset of Salt users and mostly apply to Salt SSH.

Insufficient Argument Validation

is issue allowed for a user with limited privileges to embed executions inside of routines to execute routines that
should be restricted. is applies to users using external auth or client ACL and opening up specific routines.

Be advised that these patches address the direct issue. Additional commits have been applied to help mitigate this
issue from resurfacing.

CVE CVE-2013-4435

26.2. Previous Releases 1405

https://github.com/saltstack/salt/issues/7371
https://github.com/saltstack/salt/issues/6495
https://github.com/saltstack/salt/issues/3474

Salt Documentation, Release 2014.7.6

Affected Versions

0.15.0 - 0.17.0

Pates hps://github.com/saltstack/salt/commit/6d8ef68b605fd63c36bb8ed96122a75ad2e80269
hps://github.com/saltstack/salt/commit/ebdef37b7e5d2b95a01d34b211c61c61da67e46a
hps://github.com/saltstack/salt/commit/7f190ff890e47cdd591d9d7cefa5126574660824
hps://github.com/saltstack/salt/commit/8e5afe59cef6743fe5dbd510dcf463dbdfca1ced
hps://github.com/saltstack/salt/commit/aca78f314481082862e96d4f0c1b75fa382bb885
hps://github.com/saltstack/salt/commit/6a9752cdb1e8df2c9505ea910434c79d132eb1e2
hps://github.com/saltstack/salt/commit/b73677435ba54ecfc93c1c2d840a7f9ba6f53410
hps://github.com/saltstack/salt/commit/07972eb0a6f985749a55d8d4a2e471596591c80d
hps://github.com/saltstack/salt/commit/1e3f197726aa13ac5c3f2416000089f477f489b5

Found By Feth Arezki, of Majerti

MITM SSH aack in salt-ssh

SSH host keys were being accepted by default and not enforced on future SSH connections. ese patches set SSH
host key checking by default and can be overridden by passing the -i flag to salt-ssh.

CVE CVE-2013-4436

Affected Versions 0.17.0

Found By Michael Scherer, Red Hat

Insecure Usage of /tmp in salt-ssh

e initial release of salt-ssh used the /tmp directory in an insecure way. ese patches not only secure usage of
files under /tmp in salt-ssh, but also add checksum validation for all packages sent into the now secure locations on
target systems.

CVE CVE-2013-4438

Affected Versions 0.17.0

Pates hps://github.com/saltstack/salt/commit/aa4bb77ef230758cad84381dde0ec660d2dc340a
hps://github.com/saltstack/salt/commit/8f92b6b2cb2e4ec3af8783eb6bf4ff06f5a352cf
hps://github.com/saltstack/salt/commit/c58e56811d5a50c908df0597a0ba0b643b45ebfd
hps://github.com/saltstack/salt/commit/0359db9b46e47614cff35a66ea6a6a76846885d2
hps://github.com/saltstack/salt/commit/4348392860e0fd43701c331ac3e681cf1a8c17b0
hps://github.com/saltstack/salt/commit/664d1a1cac05602fad2693f6f97092d98a72bf61
hps://github.com/saltstack/salt/commit/bab92775a576e28ff9db262f32db9cf2375bba87
hps://github.com/saltstack/salt/commit/c6d34f1acf64900a3c87a2d37618ff414e5a704e

1406 Chapter 26. Release notes

https://github.com/saltstack/salt/commit/6d8ef68b605fd63c36bb8ed96122a75ad2e80269
https://github.com/saltstack/salt/commit/ebdef37b7e5d2b95a01d34b211c61c61da67e46a
https://github.com/saltstack/salt/commit/7f190ff890e47cdd591d9d7cefa5126574660824
https://github.com/saltstack/salt/commit/8e5afe59cef6743fe5dbd510dcf463dbdfca1ced
https://github.com/saltstack/salt/commit/aca78f314481082862e96d4f0c1b75fa382bb885
https://github.com/saltstack/salt/commit/6a9752cdb1e8df2c9505ea910434c79d132eb1e2
https://github.com/saltstack/salt/commit/b73677435ba54ecfc93c1c2d840a7f9ba6f53410
https://github.com/saltstack/salt/commit/07972eb0a6f985749a55d8d4a2e471596591c80d
https://github.com/saltstack/salt/commit/1e3f197726aa13ac5c3f2416000089f477f489b5
https://github.com/saltstack/salt/commit/aa4bb77ef230758cad84381dde0ec660d2dc340a
https://github.com/saltstack/salt/commit/8f92b6b2cb2e4ec3af8783eb6bf4ff06f5a352cf
https://github.com/saltstack/salt/commit/c58e56811d5a50c908df0597a0ba0b643b45ebfd
https://github.com/saltstack/salt/commit/0359db9b46e47614cff35a66ea6a6a76846885d2
https://github.com/saltstack/salt/commit/4348392860e0fd43701c331ac3e681cf1a8c17b0
https://github.com/saltstack/salt/commit/664d1a1cac05602fad2693f6f97092d98a72bf61
https://github.com/saltstack/salt/commit/bab92775a576e28ff9db262f32db9cf2375bba87
https://github.com/saltstack/salt/commit/c6d34f1acf64900a3c87a2d37618ff414e5a704e

Salt Documentation, Release 2014.7.6

Found By Michael Scherer, Red Hat

YAML Calling Unsafe Loading Routine

It has been argued that this is not a valid security issue, as the YAML loading that was happening was only being
called aer an initial gateway filter in Salt has already safely loaded the YAML and would fail if non-safe routines
were embedded. Nonetheless, the CVE was filed and patches applied.

CVE CVE-2013-4438

Patches

hps://github.com/saltstack/salt/commit/339b0a51befae6b6b218ebcb55daa9cd3329a1c5

Found By Michael Scherer, Red Hat

Failure to Drop Supplementary Group on Salt Master

If a salt master was started as a non-root user by the root user, root's groups would still be applied to the running
process. is fix changes the process to have only the groups of the running user.

CVE CVE not considered necessary by submier.

Affected Versions 0.11.0 - 0.17.0

Pates hps://github.com/saltstack/salt/commit/b89fa9135822d029795ab1eecd68cce2d1ced715

Found By Michael Scherer, Red Hat

Failure to Validate Minions Posting Data

is issue allowed a minion to pose as another authorized minion when posting data such as the mine data. All
minions now pass through the id challenge before posting such data.

CVE CVE-2013-4439

Affected Versions 0.15.0 - 0.17.0

Patches

hps://github.com/saltstack/salt/commit/7b850ff3d07ef6782888914ac4556c01e8a1c482
hps://github.com/saltstack/salt/commit/151759b2a1e1c6ce29277aa81b054219147f80fd

Found By David Anderson

26.2. Previous Releases 1407

https://github.com/saltstack/salt/commit/339b0a51befae6b6b218ebcb55daa9cd3329a1c5
https://github.com/saltstack/salt/commit/b89fa9135822d029795ab1eecd68cce2d1ced715
https://github.com/saltstack/salt/commit/7b850ff3d07ef6782888914ac4556c01e8a1c482
https://github.com/saltstack/salt/commit/151759b2a1e1c6ce29277aa81b054219147f80fd

Salt Documentation, Release 2014.7.6

Fix Reference

Version 0.17.1 is the first bugfix release for 0.17.0. e changes include:

• Fix symbolic links in thin.tgz (issue 7482)

• Pass env through to file.patch state (issue 7452)

• Service provider fixes and reporting improvements (issue 7361)

• Add --priv option for specifying salt-ssh private key

• Fix salt-thin's salt-call on setuptools installations (issue 7516)

• Fix salt-ssh to support passwords with spaces (issue 7480)

• Fix regression in wildcard includes (issue 7455)

• Fix salt-call outpuer regression (issue 7456)

• Fix custom returner support for startup states (issue 7540)

• Fix value handling in augeas (issue 7605)

• Fix regression in apt (issue 7624)

• Fix minion ID guessing to use socket.getfqdn() first (issue 7558)

• Add minion ID caching (issue 7558)

• Fix salt-key race condition (issue 7304)

• Add --include-all flag to salt-key (issue 7399)

• Fix custom grains in pillar (part of issue 5716, issue 6083)

• Fix race condition in salt-key (issue 7304)

• Fix regression in minion ID guessing, prioritize socket.getfqdn() (issue 7558)

• Cache minion ID on first guess (issue 7558)

• Allow trailing slash in file.directory state

• Fix reporting of file_roots in pillar return (issue 5449 and issue 5951)

• Remove pillar matching for mine.get (issue 7197)

• Sanitize args for multiple execution modules

• Fix yumpkg mod_repo functions to filter hidden args (issue 7656)

• Fix conflicting IDs in state includes (issue 7526)

• Fix mysql_grants.absent string formaing issue (issue 7827)

• Fix postgres.version so it won't return None (issue 7695)

• Fix for trailing slashes in mount.mounted state

• Fix rogue AributErrors in the outpuer system (issue 7845)

• Fix for incorrect ssh key encodings resulting in incorrect key added (issue 7718)

• Fix for pillar/grains naming regression in python renderer (issue 7693)

• Fix args/kwargs handling in the scheduler (issue 7422)

• Fix logfile handling for file://, tcp:// and udp:// (issue 7754)

• Fix error handling in config file parsing (issue 6714)

1408 Chapter 26. Release notes

https://github.com/saltstack/salt/issues/7482
https://github.com/saltstack/salt/issues/7452
https://github.com/saltstack/salt/issues/7361
https://github.com/saltstack/salt/issues/7516
https://github.com/saltstack/salt/issues/7480
https://github.com/saltstack/salt/issues/7455
https://github.com/saltstack/salt/issues/7456
https://github.com/saltstack/salt/issues/7540
https://github.com/saltstack/salt/issues/7605
https://github.com/saltstack/salt/issues/7624
https://github.com/saltstack/salt/issues/7558
https://github.com/saltstack/salt/issues/7558
https://github.com/saltstack/salt/issues/7304
https://github.com/saltstack/salt/issues/7399
https://github.com/saltstack/salt/issues/5716
https://github.com/saltstack/salt/issues/6083
https://github.com/saltstack/salt/issues/7304
https://github.com/saltstack/salt/issues/7558
https://github.com/saltstack/salt/issues/7558
https://github.com/saltstack/salt/issues/5449
https://github.com/saltstack/salt/issues/5951
https://github.com/saltstack/salt/issues/7197
https://github.com/saltstack/salt/issues/7656
https://github.com/saltstack/salt/issues/7526
https://github.com/saltstack/salt/issues/7827
https://github.com/saltstack/salt/issues/7695
https://github.com/saltstack/salt/issues/7845
https://github.com/saltstack/salt/issues/7718
https://github.com/saltstack/salt/issues/7693
https://github.com/saltstack/salt/issues/7422
https://github.com/saltstack/salt/issues/7754
https://github.com/saltstack/salt/issues/6714

Salt Documentation, Release 2014.7.6

• Fix RVM using sudo when running as non-root user (issue 2193)

• Fix client ACL and underlying logging bugs (issue 7706)

• Fix scheduler bug with returner (issue 7367)

• Fix user management bug related to default groups (issue 7690)

• Fix various salt-ssh bugs (issue 7528)

• Many various documentation fixes

26.2.49 Salt 0.17.2 Release Notes

release 2013-11-14

Version 0.17.2 is another bugfix release for 0.17.0. e changes include:

• Add ability to delete key with grains.delval (issue 7872)

• Fix possible state compiler stack trace (issue 5767)

• Fix architecture regression in yumpkg (issue 7813)

• Use correct ps on Debian to prevent truncating (issue 5646)

• Fix grains targeting for new grains (issue 5737)

• Fix bug with merging in git_pillar (issue 6992)

• Fix print_jobs duplicate results

• Fix apt version specification for pkg.install

• Fix possible KeyError from ext_job_cache missing option

• Fix auto_order for - names states (issue 7649)

• Fix regression in new gitfs installs (directory not found error)

• Fix escape pipe issue on Windows for file.recurse (issue 7967)

• Fix fileclient in case of master restart (issue 7987)

• Try to output warning if CLI command malformed (issue 6538)

• Fix --out=quiet to actually be quiet (issue 8000)

• Fix for state.sls in salt-ssh (issue 7991)

• Fix for MySQL grants ordering issue (issue 5817)

• Fix traceback for certain missing CLI args (issue 8016)

• Add ability to disable lspci queries on master (issue 4906)

• Fail if sls defined in topfile does not exist (issue 5998)

• Add ability to downgrade MySQL grants (issue 6606)

• Fix ssh_auth.absent traceback (issue 8043)

• Add upstart detection for Debian/Raspbian (issue 8039)

• Fix ID-related issues (issue 8052, issue 8050, and others)

• Fix for jinja rendering issues (issue 8066 and issue 8079)

• Fix argument parsing in salt-ssh (issue 7928)

26.2. Previous Releases 1409

https://github.com/saltstack/salt/issues/2193
https://github.com/saltstack/salt/issues/7706
https://github.com/saltstack/salt/issues/7367
https://github.com/saltstack/salt/issues/7690
https://github.com/saltstack/salt/issues/7528
https://github.com/saltstack/salt/issues/7872
https://github.com/saltstack/salt/issues/5767
https://github.com/saltstack/salt/issues/7813
https://github.com/saltstack/salt/issues/5646
https://github.com/saltstack/salt/issues/5737
https://github.com/saltstack/salt/issues/6992
https://github.com/saltstack/salt/issues/7649
https://github.com/saltstack/salt/issues/7967
https://github.com/saltstack/salt/issues/7987
https://github.com/saltstack/salt/issues/6538
https://github.com/saltstack/salt/issues/8000
https://github.com/saltstack/salt/issues/7991
https://github.com/saltstack/salt/issues/5817
https://github.com/saltstack/salt/issues/8016
https://github.com/saltstack/salt/issues/4906
https://github.com/saltstack/salt/issues/5998
https://github.com/saltstack/salt/issues/6606
https://github.com/saltstack/salt/issues/8043
https://github.com/saltstack/salt/issues/8039
https://github.com/saltstack/salt/issues/8052
https://github.com/saltstack/salt/issues/8050
https://github.com/saltstack/salt/issues/8066
https://github.com/saltstack/salt/issues/8079
https://github.com/saltstack/salt/issues/7928

Salt Documentation, Release 2014.7.6

• Fix some GPU detection instances (issue 6945)

• Fix bug preventing includes from other environments in SLS files

• Fix for kwargs with dashes (issue 8102)

• Fix salt.utils.which for windows `.exe' (issue 7904)

• Fix apache.adduser without apachectl (issue 8123)

• Fix issue with evaluating test kwarg in states (issue 7788)

• Fix regression in salt.client.Caller() (issue 8078)

• Fix apt-key silent failure

• Fix bug where cmd.script would try to run even if caching failed (issue 7601)

• Fix apt pkg.latest regression (issue 8067)

• Fix for mine data not being updated (issue 8144)

• Fix for noarch packages in yum

• Fix a Xen detection edge case (issue 7839)

• Fix windows __opts__ dictionary persistence (issue 7714)

• Fix version generation for when it's part of another git repo (issue 8090)

• Fix _handle_iorder stacktrace so that the real syntax error is shown (issue 8114 and issue 7905)

• Fix git.latest state when a commit SHA is used (issue 8163)

• Fix various small bugs in yumpkg.py (issue 8201)

• Fix for specifying identify file in git.latest (issue 8094)

• Fix for --output-file CLI arg (issue 8205)

• Add ability to specify shutdown time for system.shutdown (issue 7833)

• Fix for salt version using non-salt git repo info (issue 8266)

• Add additional hints at impact of pkgrepo states when test=True (issue 8247)

• Fix for salt-ssh files not being owned by root (issue 8216)

• Fix retry logic and error handling in fileserver (related to issue 7755)

• Fix file.replace with test=True (issue 8279)

• Add flag for limiting file traversal in fileserver (issue 6928)

• Fix for extra mine processes (issue 5729)

• Fix for unloading custom modules (issue 7691)

• Fix for salt-ssh opts (issue 8005 and issue 8271)

• Fix compound matcher for grains (issue 7944)

• Improve error reporting in ebuild module (related to issue 5393)

• Add dir_mode to file.managed (issue 7860)

• Improve traceroute support for FreeBSD and OS X (issue 4927)

• Fix for matching minions under syndics (issue 7671)

• Improve exception handling for missing ID (issue 8259)

1410 Chapter 26. Release notes

https://github.com/saltstack/salt/issues/6945
https://github.com/saltstack/salt/issues/8102
https://github.com/saltstack/salt/issues/7904
https://github.com/saltstack/salt/issues/8123
https://github.com/saltstack/salt/issues/7788
https://github.com/saltstack/salt/issues/8078
https://github.com/saltstack/salt/issues/7601
https://github.com/saltstack/salt/issues/8067
https://github.com/saltstack/salt/issues/8144
https://github.com/saltstack/salt/issues/7839
https://github.com/saltstack/salt/issues/7714
https://github.com/saltstack/salt/issues/8090
https://github.com/saltstack/salt/issues/8114
https://github.com/saltstack/salt/issues/7905
https://github.com/saltstack/salt/issues/8163
https://github.com/saltstack/salt/issues/8201
https://github.com/saltstack/salt/issues/8094
https://github.com/saltstack/salt/issues/8205
https://github.com/saltstack/salt/issues/7833
https://github.com/saltstack/salt/issues/8266
https://github.com/saltstack/salt/issues/8247
https://github.com/saltstack/salt/issues/8216
https://github.com/saltstack/salt/issues/7755
https://github.com/saltstack/salt/issues/8279
https://github.com/saltstack/salt/issues/6928
https://github.com/saltstack/salt/issues/5729
https://github.com/saltstack/salt/issues/7691
https://github.com/saltstack/salt/issues/8005
https://github.com/saltstack/salt/issues/8271
https://github.com/saltstack/salt/issues/7944
https://github.com/saltstack/salt/issues/5393
https://github.com/saltstack/salt/issues/7860
https://github.com/saltstack/salt/issues/4927
https://github.com/saltstack/salt/issues/7671
https://github.com/saltstack/salt/issues/8259

Salt Documentation, Release 2014.7.6

• Fix grain mismatch for ScientificLinux (issue 8338)

• Add configuration option for minion_id_caching

• Fix open mode auth errors (issue 8402)

26.2.50 Salt 0.17.3 Release Notes

release 2013-12-08

Note: 0.17.3 had some regressions which were promptly fixed in the 0.17.4 release. Please use 0.17.4 instead.

Version 0.17.3 is another bugfix release for 0.17.0. e changes include:

• Fix some jinja render errors (issue 8418)

• Fix file.replace state changing file ownership (issue 8399)

• Fix state ordering with the PyDSL renderer (issue 8446)

• Fix for new npm version (issue 8517)

• Fix for pip state requiring name even with requirements file (issue 8519)

• Fix yum logging to open terminals (issue 3855)

• Add sane maxrunning defaults for scheduler (issue 8563)

• Fix states duplicate key detection (issue 8053)

• Fix SUSE patch level reporting (issue 8428)

• Fix managed file creation umask (issue 8590)

• Fix logstash exception (issue 8635)

• Improve argument exception handling for salt command (issue 8016)

• Fix pecl success reporting (issue 8750)

• Fix launchctl module exceptions (issue 8759)

• Fix argument order in pw_user module

• Add warnings for failing grains (issue 8690)

• Fix hgfs problems caused by connections le open (issue 8811 and issue 8810)

• Add Debian iptables default for iptables-persistent package (issue 8889)

• Fix installation of packages with dots in pkg name (issue 8614)

• Fix noarch package installation on CentOS 6 (issue 8945)

• Fix portage_config.enforce_nice_config (issue 8252)

• Fix salt.util.copyfile umask usage (issue 8590)

• Fix rescheduling of failed jobs (issue 8941)

• Fix pkg on Amazon Linux (uses yumpkg5 now) (issue 8226)

• Fix conflicting options in postgres module (issue 8717)

• Fix ps modules for psutil >= 0.3.0 (issue 7432)

• Fix postgres module to return False on failure (issue 8778)

26.2. Previous Releases 1411

https://github.com/saltstack/salt/issues/8338
https://github.com/saltstack/salt/issues/8402
https://github.com/saltstack/salt/issues/8418
https://github.com/saltstack/salt/issues/8399
https://github.com/saltstack/salt/issues/8446
https://github.com/saltstack/salt/issues/8517
https://github.com/saltstack/salt/issues/8519
https://github.com/saltstack/salt/issues/3855
https://github.com/saltstack/salt/issues/8563
https://github.com/saltstack/salt/issues/8053
https://github.com/saltstack/salt/issues/8428
https://github.com/saltstack/salt/issues/8590
https://github.com/saltstack/salt/issues/8635
https://github.com/saltstack/salt/issues/8016
https://github.com/saltstack/salt/issues/8750
https://github.com/saltstack/salt/issues/8759
https://github.com/saltstack/salt/issues/8690
https://github.com/saltstack/salt/issues/8811
https://github.com/saltstack/salt/issues/8810
https://github.com/saltstack/salt/issues/8889
https://github.com/saltstack/salt/issues/8614
https://github.com/saltstack/salt/issues/8945
https://github.com/saltstack/salt/issues/8252
https://github.com/saltstack/salt/issues/8590
https://github.com/saltstack/salt/issues/8941
https://github.com/saltstack/salt/issues/8226
https://github.com/saltstack/salt/issues/8717
https://github.com/saltstack/salt/issues/7432
https://github.com/saltstack/salt/issues/8778

Salt Documentation, Release 2014.7.6

• Fix argument passing for args with pound signs (issue 8585)

• Fix pid of salt CLi command showing in status.pid output (issue 8720)

• Fix rvm to run gem as the correct user (issue 8951)

• Fix namespace issue in win_file module (issue 9060)

• Fix masterless state paths on windows (issue 9021)

• Fix timeout option in master config (issue 9040)

26.2.51 Salt 0.17.4 Release Notes

release 2013-12-10

Version 0.17.4 is another bugfix release for 0.17.0. e changes include:

• Fix file.replace bug when replacement str is numeric (issue 9101)

• Fix regression in file.managed (issue 9131)

• Prevent traceback when job is None. (issue 9145)

26.2.52 Salt 0.17.5 Release Notes

release 2014-01-27

Version 0.17.5 is another bugfix release for 0.17.0. e changes include:

• Fix user.present states with non-string fullname (issue 9085)

• Fix virt.init return value on failure (issue 6870)

• Fix reporting of file.blockreplace state when test=True

• Fix network.interfaces when used in cron (issue 7990)

• Fix bug in pkgrepo when switching to/from mirrorlist-based repo def (issue 9121)

• Fix infinite recursion when cache file is corrupted

• Add checking for rev and mirror/bare args in git.latest (issue 9107)

• Add cmd.watch alias (points to cmd.wait) (issue 8612)

• Fix stacktrace when prereq is not formed as a list (issue 8235)

• Fix stdin issue with lvdisplay command (issue 9128)

• Add pre-check function for range matcher (issue 9236)

• Add exception handling for psutil for processes that go missing (issue 9274)

• Allow _in requisites to match both on ID and name (issue 9061)

• Fix multiple client timeout issues (issue 7157 and issue 9302, probably others)

• Fix ZMQError: Operation cannot be accomplished in current state errors (issue 6306)

• Multiple optimization in minion auth routines

• Clarify logs for minion ID caching

1412 Chapter 26. Release notes

https://github.com/saltstack/salt/issues/8585
https://github.com/saltstack/salt/issues/8720
https://github.com/saltstack/salt/issues/8951
https://github.com/saltstack/salt/issues/9060
https://github.com/saltstack/salt/issues/9021
https://github.com/saltstack/salt/issues/9040
https://github.com/saltstack/salt/issues/9101
https://github.com/saltstack/salt/issues/9131
https://github.com/saltstack/salt/issues/9145
https://github.com/saltstack/salt/issues/9085
https://github.com/saltstack/salt/issues/6870
https://github.com/saltstack/salt/issues/7990
https://github.com/saltstack/salt/issues/9121
https://github.com/saltstack/salt/issues/9107
https://github.com/saltstack/salt/issues/8612
https://github.com/saltstack/salt/issues/8235
https://github.com/saltstack/salt/issues/9128
https://github.com/saltstack/salt/issues/9236
https://github.com/saltstack/salt/issues/9274
https://github.com/saltstack/salt/issues/9061
https://github.com/saltstack/salt/issues/7157
https://github.com/saltstack/salt/issues/9302
https://github.com/saltstack/salt/issues/6306

Salt Documentation, Release 2014.7.6

26.2.53 Salt 0.6.0 release notes

e Salt remote execution manager has reached initial functionality! Salt is a management application which can be
used to execute commands on remote sets of servers.

e whole idea behind Salt is to create a system where a group of servers can be remotely controlled from a single
master, not only can commands be executed on remote systems, but salt can also be used to gather information about
your server environment.

Unlike similar systems, like Func and MCollective, Salt is extremely simple to setup and use, the entire application
is contained in a single package, and the master and minion daemons require no running dependencies in the way
that Func requires Certmaster and MCollective requires activeMQ.

Salt also manages authentication and encryption. Rather than using SSL for encryption, salt manages encryption on
a payload level, so the data sent across the network is encrypted with fast AES encryption, and authentication uses
RSA keys. is means that Salt is fast, secure, and very efficient.

Messaging in Salt is executed with ZeroMQ, so the message passing interface is built into salt and does not require
an external ZeroMQ server. is also adds speed to Salt since there is no additional bloat on the networking layer,
and ZeroMQ has already proven itself as a very fast networking system.

e remote execution in Salt is ``Lazy Execution'', in that once the command is sent the requesting network connec-
tion is closed. is makes it easier to detach the execution from the calling process on the master, it also means that
replies are cached, so that information gathered from historic commands can be queried in the future.

Salt also allows users to make execution modules in Python. Writers of these modules should also be pleased to
know that they have access to the impressive information gathered from PuppetLabs' Facter application, making
Salt module more flexible. In the future I hope to also allow Salt to group servers based on Facter information as
well.

All in all Salt is fast, efficient and clean, can be used from a simple command line client or through an API, uses
message queue technology to make network execution extremely fast, and encryption is handled in a very fast and
efficient manner. Salt is also VERY easy to use and VERY easy to extend.

You can find the source code for Salt on my GitHub page, I have also set up a few wiki pages explaining how to use
and set up Salt. If you are using Arch Linux there is a package available in the Arch Linux AUR.

Salt 0.6.0 Source: hps://cloud.github.com/downloads/saltstack/salt/salt-0.6.0.tar.gz

GitHub page: hps://github.com/saltstack/salt

Wiki: hps://github.com/saltstack/salt/wiki

Arch Linux Package: hps://aur.archlinux.org/packages/salt-git/

I am very open to contributions, for instance I need packages for more Linux distributions as well as BSD packages
and testers.

Give Salt a try, this is the initial release and is not a 1.0 quality release, but it has been working well for me! I am
eager to get your feedback!

26.2.54 Salt 0.7.0 release notes

I am pleased to announce the release of Salt 0.7.0!

is release marks what is the first stable release of salt, 0.7.0 should be suitable for general use.

0.7.0 Brings the following new features to Salt:

• Integration with Facter data from puppet labs

• Allow for matching minions from the salt client via Facter information

26.2. Previous Releases 1413

https://cloud.github.com/downloads/saltstack/salt/salt-0.6.0.tar.gz
https://github.com/saltstack/salt
https://github.com/saltstack/salt/wiki
https://aur.archlinux.org/packages/salt-git/

Salt Documentation, Release 2014.7.6

• Minion job threading, many jobs can be executed from the master at once

• Preview of master clustering support - Still experimental

• Introduce new minion modules for stats, virtualization, service management and more

• Add extensive logging to the master and minion daemons

• Add sys.reload_functions for dynamic function reloading

• Greatly improve authentication

• Introduce the saltkey command for managing public keys

• Begin backend development preparatory to introducing buer

• Addition of man pages for the core commands

• Extended and cleaned configuration

0.7.0 Fixes the following major bugs:

• Fix crash in minions when matching failed

• Fix configuration file lookups for the local client

• Repair communication bugs in encryption

• Numerous fixes in the minion modules

e next release of Salt should see the following features:

• Stabilize the cluster support

• Introduce a remote client for salt command tiers

• salt-p system for distributed file copies

• Initial support for ``buer''

Coming up next is a higher level management framework for salt called Buer. I want salt to stay as a simple and
effective communication framework, and allow for more complicated executions to be managed via Buer.

Right now Buer is being developed to act as a cloud controller using salt as the communication layer, but features
like system monitoring and advanced configuration control (a puppet manager) are also in the pipe.

Special thanks to Joseph Hall for the status and network modules, and thanks to Mahias Teege for tracking down
some configuration bugs!

Salt can be downloaded from the following locations;

Source Tarball:

hps://cloud.github.com/downloads/saltstack/salt/salt-0.7.0.tar.gz

Arch Linux Package:

hps://aur.archlinux.org/packages/salt-git/

Please enjoy the latest Salt release!

26.2.55 Salt 0.8.0 release notes

Salt 0.8.0 is ready for general consumption! e source tarball is available on GitHub for download:

hps://cloud.github.com/downloads/saltstack/salt/salt-0.8.0.tar.gz

1414 Chapter 26. Release notes

https://cloud.github.com/downloads/saltstack/salt/salt-0.7.0.tar.gz
https://aur.archlinux.org/packages/salt-git/
https://cloud.github.com/downloads/saltstack/salt/salt-0.8.0.tar.gz

Salt Documentation, Release 2014.7.6

A lot of work has gone into salt since the last release just 2 weeks ago, and salt has improved a great deal. A swath
of new features are here along with performance and threading improvements!

e main new features of salt 0.8.0 are:

Salt-cp

Cython minion modules

Dynamic returners

Faster return handling

Lowered required Python version to 2.6

Advanced minion threading

Configurable minion modules

Salt-cp

e salt-cp command introduces the ability to copy simple files via salt to targeted servers. Using salt-cp is very
simple, just call salt-cp with a target specification, the source file(s) and where to copy the files on the minions. For
instance:

salt-cp ‘*’ /etc/hosts /etc/hosts

Will copy the local /etc/hosts file to all of the minions.

Salt-cp is very young, in the future more advanced features will be added, and the functionality will much more
closely resemble the cp command.

Cython minion modules

Cython is an amazing tool used to compile Python modules down to c. is is arguably the fastest way to run Python
code, and since pyzmq requires cython, adding support to salt for cython adds no new dependencies.

Cython minion modules allow minion modules to be wrien in cython and therefore executed in compiled c. Simply
write the salt module in cython and use the file extension “.pyx” and the minion module will be compiled when the
minion is started. An example cython module is included in the main distribution called cytest.pyx:

hps://github.com/saltstack/salt/blob/develop/salt/modules/cytest.pyx

Dynamic Returners

By default salt returns command data back to the salt master, but now salt can return command data to any system.
is is enabled via the new returners modules feature for salt. e returners modules take the return data and sends
it to a specific module. e returner modules work like minion modules, so any returner can be added to the minions.

is means that a custom data returner can be added to communicate the return data so anything from MySQL,
Redis, MongoDB and more!

ere are 2 simple stock returners in the returners directory:

hps://github.com/saltstack/salt/blob/develop/salt/returners

e documentation on writing returners will be added to the wiki shortly, and returners can be wrien in pure
Python, or in cython.

26.2. Previous Releases 1415

https://github.com/saltstack/salt/blob/develop/salt/modules/cytest.pyx
https://github.com/saltstack/salt/blob/develop/salt/returners

Salt Documentation, Release 2014.7.6

Configurable Minion Modules

Minion modules may need to be configured, now the options passed to the minion configuration file can be accessed
inside of the minion modules via the __opt__ dict.

Information on how to use this simple addition has been added to the wiki: Writing modules

e test module has an example of using the __opts__ dict, and how to set default options:

hps://github.com/saltstack/salt/blob/develop/salt/modules/test.py

Advanced Minion Threading

In 0.7.0 the minion would block aer receiving a command from the master, now the minion will spawn a thread
or multiprocess. By default Python threads are used because for general use they have proved to be faster, but the
minion can now be configured to use the Python multiprocessing module instead. Using multiprocessing will cause
executions that are CPU bound or would otherwise exploit the negative aspects of the Python GIL to run faster and
more reliably, but simple calls will still be faster with Python threading. e configuration option can be found in
the minion configuration file:

hps://github.com/saltstack/salt/blob/develop/conf/minion

Lowered Supported Python to 2.6

e requirement for Python 2.7 has been removed to support Python 2.6. I have received requests to take the
minimum Python version back to 2.4, but unfortunately this will not be possible, since the ZeroMQ Python bindings
do not support Python 2.4.

Salt 0.8.0 is a very major update, it also changes the network protocol slightly which makes communication with
older salt daemons impossible, your master and minions need to be upgraded together!

I could use some help bringing salt to the people! Right now I only have packages for Arch Linux, Fedora 14 and
Gentoo. We need packages for Debian and people willing to help test on more platforms. We also need help writing
more minion modules and returner modules. If you want to contribute to salt please hop on the mailing list and send
in patches, make a fork on GitHub and send in pull requests! If you want to help but are not sure where you can,
please email me directly or post tot he mailing list!

I hope you enjoy salt, while it is not yet 1.0 salt is completely viable and usable!

-omas S. Hatch

26.2.56 Salt 0.8.7 release notes

It has been a month since salt 0.8.0, and it has been a long month! But Salt is still coming along strong. 0.8.7 has
a lot of changes and a lot of updates. is update makes Salt’s ZeroMQ back end beer, strips Facter from the
dependencies, and introduces interfaces to handle more capabilities.

Many of the major updates are in the background, but the changes should shine through to the surface. A number
of the new features are still a lile thin, but the back end to support expansion is in place.

I also recently gave a presentation to the Utah Python users group in Salt Lake City, the slides from this presentation
are available here: hps://cloud.github.com/downloads/saltstack/salt/Salt.pdf

e video from this presentation will be available shortly.

e major new features and changes in Salt 0.8.7 are:

• Revamp ZeroMQ topology on the master for beer scalability

1416 Chapter 26. Release notes

https://github.com/saltstack/salt/blob/develop/salt/modules/test.py
https://github.com/saltstack/salt/blob/develop/conf/minion
https://cloud.github.com/downloads/saltstack/salt/Salt.pdf

Salt Documentation, Release 2014.7.6

• State enforcement

• Dynamic state enforcement managers

• Extract the module loader into salt.loader

• Make Job ids more granular

• Replace Facter functionality with the new salt grains interface

• Support for “virtual” salt modules

• Introduce the salt-call command

• Beer debugging for minion modules

e new ZeroMQ topology allows for beer scalability, this will be required by the need to execute massive file
transfers to multiple machines in parallel and state management. e new ZeroMQ topology is available in the
aforementioned presentation.

0.8.7 introduces the capability to declare states, this is similar to the capabilities of Puppet. States in salt are declared
via state data structures. is system is very young, but the core feature set is available. Salt states work around
rendering files which represent Salt high data. More on the Salt state system will be documented in the near future.

e system for loading salt modules has been pulled out of the minion class to be a standalone module, this has
enabled more dynamic loading of Salt modules and enables many of the updates in 0.8.7 –

hps://github.com/saltstack/salt/blob/develop/salt/loader.py

Salt Job ids are now microsecond precise, this was needed to repair a race condition unveiled by the speed improve-
ments in the new ZeroMQ topology.

e new grains interface replaces the functionality of Facter, the idea behind grains differs from Facter in that the
grains are only used for static system data, dynamic data needs to be derived from a call to a salt module. is makes
grains much faster to use, since the grains data is generated when the minion starts.

Virtual salt modules allows for a salt module to be presented as something other than its module name. e idea
here is that based on information from the minion decisions about which module should be presented can be made.
e best example is the pacman module. e pacman module will only load on Arch Linux minions, and will be
called pkg. Similarly the yum module will be presented as pkg when the minion starts on a Fedora/RedHat system.

e new salt-call command allows for minion modules to be executed from the minion. is means that on the
minion a salt module can be executed, this is a great tool for testing Salt modules. e salt-call command can also
be used to view the grains data.

In previous releases when a minion module threw an exception very lile data was returned to the master. Now the
stack trace from the failure is returned making debugging of minion modules MUCH easier.

Salt is nearing the goal of 1.0, where the core feature set and capability is complete!

Salt 0.8.7 can be downloaded from GitHub here: hps://cloud.github.com/downloads/saltstack/salt/salt-0.8.7.tar.gz

-omas S Hatch

26.2.57 Salt 0.8.8 release notes

Salt 0.8.8 is here! is release adds a great deal of code and some serious new features. e latest release can be
downloaded here: hps://cloud.github.com/downloads/saltstack/salt/salt-0.8.8.tar.gz

Improved Documentation has been set up for salt using sphinx thanks to the efforts of Seth House. is new doc-
umentation system will act as the back end to the salt website which is still under heavy development. e new
sphinx documentation system has also been used to greatly clean up the salt manpages. e salt 7 manpage in par-
ticular now contains extensive information which was previously only in the wiki. e new documentation can be

26.2. Previous Releases 1417

https://github.com/saltstack/salt/blob/develop/salt/loader.py
https://cloud.github.com/downloads/saltstack/salt/salt-0.8.7.tar.gz
https://cloud.github.com/downloads/saltstack/salt/salt-0.8.8.tar.gz

Salt Documentation, Release 2014.7.6

found at: hp://docs.saltstack.com/ We still have a lot to add, and when the domain is set up I will post another
announcement.

More additions have been made to the ZeroMQ setup, particularly in the realm of file transfers. Salt 0.8.8 introduces
a built in, stateless, encrypted file server which allows salt minions to download files from the salt master using the
same encryption system used for all other salt communications. e main motivation for the salt file server has been
to facilitate the new salt state system.

Much of the salt code has been cleaned up and a new cleaner logging system has been introduced thanks to the
efforts of Pedro Algarvio. ese additions will allow for much more flexible logging to be executed by salt, and fixed
a great deal of my poor spelling in the salt docstrings! Pedro Algarvio has also cleaned up the API, making it easier
to embed salt into another application.

e biggest addition to salt found in 0.8.8 is the new state system. e salt module system has received a new front
end which allows salt to be used as a configuration management system. e configuration management system
allows for system configuration to be defined in data structures. e configuration management system, or as it
is called in salt, the “salt state system” supports many of the features found in other configuration managers, but
allows for system states to be wrien in a far simpler format, executes at blazing speeds, and operates via the salt
minion matching system. e state system also operates within the normal scope of salt, and requires no additional
configuration to use.

e salt state system can enforce the following states with many more to come: Packages Files Services Executing
commands Hosts

e system used to define the salt states is based on a data structure, the data structure used to define the salt states
has been made to be as easy to use as possible. e data structure is defined by default using a YAML file rendered
via a Jinja template. is means that the state definition language supports all of the data structures that YAML
supports, and all of the programming constructs and logic that Jinja supports. If the user does not like YAML or Jinja
the states can be defined in yaml-mako, json-jinja, or json-mako. e system used to render the states is completely
dynamic, and any rendering system can be added to the capabilities of Salt, this means that a rendering system that
renders XML data in a cheetah template, or whatever you can imagine, can be easily added to the capabilities of salt.

e salt state system also supports isolated environments, as well as matching code from several environments to a
single salt minion.

e feature base for Salt has grown quite a bit since my last serious documentation push. As we approach 0.9.0
the goals are becoming very clear, and the documentation needs a lot of work. e main goals for 0.9.0 are to
further refine the state system, fix any bugs we find, get Salt running on as many platforms as we can, and get the
documentation filled out. ere is a lot more to come as Salt moves forward to encapsulate a much larger scope,
while maintaining supreme usability and simplicity.

If you would like a more complete overview of Salt please watch the Salt presentation: Slides:
hps://cloud.github.com/downloads/saltstack/salt/Salt.pdf

-omas S Hatch

26.2.58 Salt 0.8.9 Release Notes

Salt 0.8.9 has finally arrived! Unfortunately this is much later than I had hoped to release 0.8.9, life has been very
crazy over the last month. But despite challenges, Salt has moved forward!

is release, as expected, adds few new features andmany refinements. One of themost exciting aspect of this release
is that the development community for salt has grown a great deal and much of the code is from contributors.

Also, I have filled out the documentation a great deal. So information on States is properly documented, and much
of the documentation that was out of date has been filled in.

1418 Chapter 26. Release notes

http://docs.saltstack.com/
https://cloud.github.com/downloads/saltstack/salt/Salt.pdf

Salt Documentation, Release 2014.7.6

Download!

e Salt source can be downloaded from the salt GitHub site:

hps://cloud.github.com/downloads/saltstack/salt/salt-0.8.9.tar.gz

Or from PyPI:

hps://pypi.python.org/packages/source/s/salt/salt-0.8.9.tar.gz

Here s the md5sum:

7d5aca4633bc22f59045f59e82f43b56

For instructions on how to set up Salt please see the Installation instructions.

New Features

Salt Run

A big feature is the addition of Salt run, the salt-run command allows for master side execution modules to be
made that gather specific information or execute custom routines from the master.

Documentation for salt-run can be found here

Refined Outpuers

One problem oen complained about in salt was the fact that the output was so messy. anks to help from Jeff
Schroeder a cleaner interface for the command output for the Salt CLI has been made. is new interface makes
adding new printout formats easy and additions to the capabilities of minion modules makes it possible to set the
printout mode or outputter for functions in minion modules.

Cross Calling Salt Modules

Salt modules can now call each other, the __salt__ dict has been added to the predefined references in minion
modules. is new feature is documented in the modules documentation.

Watch Option Added to Salt State System

Now in Salt states you can set the watch option, this will allow watch enabled states to change based on a change in
the other defined states. is is similar to subscribe and notify statements in puppet.

Root Dir Option

Travis Cline has added the ability to define the option root_dirwhich allows the salt minion to operate in a subdir.
is is a strong move in supporting the minion running as an unprivileged user

Config Files Defined in Variables

anks again to Travis Cline, the master and minion configuration file locations can be defined in environment
variables now.

26.2. Previous Releases 1419

https://cloud.github.com/downloads/saltstack/salt/salt-0.8.9.tar.gz
https://pypi.python.org/packages/source/s/salt/salt-0.8.9.tar.gz

Salt Documentation, Release 2014.7.6

New Modules

ite a few new modules, states, returners and runners have been made.

New Minion Modules

apt Support for apt-get has been added, this adds greatly improved Debian and Ubuntu support to Salt!

useradd and groupadd Support for manipulating users and groups on Unix-like systems.

moosefs Initial support for reporting on aspects of the distributed file system, MooseFS. For more information on
MooseFS please see: hp://www.moosefs.org

anks to Joseph Hall for his work on MooseFS support.

mount Manage mounts and the fstab.

puppet Execute puppet on remote systems.

shadow Manipulate and manage the user password file.

ssh Interact with ssh keys.

New States

user and group Support for managing users and groups in Salt States.

mount Enforce mounts and the fstab.

New Returners

mongo_return Send the return information to a MongoDB server.

New Runners

manage Display minions that are up or down.

26.2.59 Salt 0.9.0 Release Notes

release 2011-08-27

Salt 0.9.0 is here. is is an exciting release, 0.9.0 includes the new network topology features allowing peer salt
commands and masters of masters via the syndic interface.

0.9.0 also introduces many more modules, improvements to the API and improvements to the ZeroMQ systems.

1420 Chapter 26. Release notes

http://www.moosefs.org

Salt Documentation, Release 2014.7.6

Download!

e Salt source can be downloaded from the salt GitHub site:

hps://cloud.github.com/downloads/saltstack/salt/salt-0.9.0.tar.gz

Or from PyPI:

hps://pypi.python.org/packages/source/s/salt/salt-0.9.0.tar.gz

Here is the md5sum:

9a925da04981e65a0f237f2e77ddab37

For instructions on how to set up Salt please see the Installation instructions.

New Features

Salt Syndic

e new Syndic interface allows a master to be commanded via another higher level salt master. is is a powerful
solution allowing a master control structure to exist, allowing salt to scale to much larger levels then before.

Peer Communication

0.9.0 introduces the capability for a minion to call a publication on the master and receive the return from another
set of minions. is allows salt to act as a communication channel between minions and as a general infrastructure
message bus.

Peer communication is turned off by default but can be enabled via the peer option in the master configuration file.
Documentation on the new Peer interface.

Easily Extensible API

e minion and master classes have been redesigned to allow for specialized minion and master servers to be easily
created. An example on how this is done for the master can be found in the master.py salt module:

hps://github.com/saltstack/salt/blob/develop/salt/master.py

e Master class extends the SMaster class and set up the main master server.

e minion functions can now also be easily added to another application via the SMinion class, this class can be
found in the minion.py module:

hps://github.com/saltstack/salt/blob/develop/salt/minion.py

Cleaner Key Management

is release changes some of the key naming to allow for multiple master keys to be held based on the type of minion
gathering the master key.

e -d option has also been added to the salt-key command allowing for easy removal of accepted public keys.

e --gen-keys option is now available as well for salt-key, this allows for a salt specific RSA key pair to be easily
generated from the command line.

26.2. Previous Releases 1421

https://cloud.github.com/downloads/saltstack/salt/salt-0.9.0.tar.gz
https://pypi.python.org/packages/source/s/salt/salt-0.9.0.tar.gz
https://github.com/saltstack/salt/blob/develop/salt/master.py
https://github.com/saltstack/salt/blob/develop/salt/minion.py

Salt Documentation, Release 2014.7.6

Improved 0MQ Master Workers

e 0MQ worker system has been further refined to be faster and more robust. is new system has been able to
handle a much larger load than the previous setup. e new system uses the IPC protocol in 0MQ instead of TCP.

New Modules

ite a few new modules have been made.

New Minion Modules

apae Work directly with apache servers, great for managing balanced web servers

cron Read out the contents of a systems crontabs

mdadm Module to manage raid devices in Linux, appears as the raid module

mysql Gather simple data from MySQL databases

ps Extensive utilities for managing processes

publish Used by the peer interface to allow minions to make publications

26.2.60 Salt 0.9.1 Release Notes

release 2011-08-29

26.2.61 Salt 0.9.2 Release Notes

release 2011-09-17

Salt 0.9.2 has arrived! 0.9.2 is primarily a bugfix release, the exciting component in 0.9.2 is greatly improved support
for salt states. All of the salt states interfaces have been more thoroughly tested and the new salt-states git repo is
growing with example of how to use states.

is release introduces salt states for early developers and testers to start helping us clean up the states interface
and make it ready for the world!

0.9.2 also fixes a number of bugs found on Python 2.6.

Download!

e Salt source can be downloaded from the salt GitHub site:

hps://cloud.github.com/downloads/saltstack/salt/salt-0.9.2.tar.gz

Or from PyPI:

hps://pypi.python.org/packages/source/s/salt/salt-0.9.2.tar.gz

1422 Chapter 26. Release notes

https://cloud.github.com/downloads/saltstack/salt/salt-0.9.2.tar.gz
https://pypi.python.org/packages/source/s/salt/salt-0.9.2.tar.gz

Salt Documentation, Release 2014.7.6

For instructions on how to set up Salt please see the Installation instructions.

New Features

Salt-Call Additions

e salt-call command has received an overhaul, it now hooks into the outpuer system so command output looks
clean, and the logging system has been hooked into salt-call, so the -l option allows the logging output from salt
minion functions to be displayed.

e end result is that the salt-call command can execute the state system and return clean output:

salt-call state.highstate

State System Fixes

e state system has been tested and beer refined. As of this release the state system is ready for early testers
to start playing with. If you are interested in working with the state system please check out the (still very small)
salt-states GitHub repo:

hps://github.com/saltstack/salt-states

is git repo is the active development branch for determining how a clean salt-state database should look and act.
Since the salt state system is still very young a lot of help is still needed here. Please fork the salt-states repo and
help us develop a truly large and scalable system for configuration management!

Notable Bug Fixes

Python 2.6 String Formaing

Python 2.6 does not support format strings without an index identifier, all of them have been repaired.

Cython Loading Disabled by Default

Cython loading requires a development tool chain to be installed on the minion, requiring this by default can cause
problems for most Salt deployments. If Cython auto loading is desired it will need to be turned on in the minion
config.

26.2.62 Salt 0.9.3 Release Notes

release 2011-11-05

Salt 0.9.3 is finally arrived. is is another big step forward for Salt, new features range from proper FreeBSD support
to fixing issues seen when aaching a minion to a master over the Internet.

e biggest improvements in 0.9.3 though can be found in the state system, it has progressed from something ready
for early testers to a system ready to compete with platforms such as Puppet and Chef. e backbone of the state
system has been greatly refined and many new features are available.

26.2. Previous Releases 1423

https://github.com/saltstack/salt-states

Salt Documentation, Release 2014.7.6

Download!

e Salt source can be downloaded from the salt GitHub site:

hps://cloud.github.com/downloads/saltstack/salt/salt-0.9.3.tar.gz

Or from PyPI:

hps://pypi.python.org/packages/source/s/salt/salt-0.9.3.tar.gz

For instructions on how to set up Salt please see the Installation instructions.

New Features

WAN Support

Recently more people have been testing Salt minions connecting to Salt Masters over the Internet. It was found
that Minions would commonly loose their connection to the master when working over the internet. e minions
can now detect if the connection has been lost and reconnect to the master, making WAN connections much more
reliable.

State System Fixes

Substantial testing has gone into the state system and it is ready for real world usage. A great deal has been added
to the documentation for states and the modules and functions available to states have been cleanly documented.

A number of State System bugs have also been founds and repaired, the output from the state system has also been
refined to be extremely clear and concise.

Error reporting has also been introduced, issues found in sls files will now be clearly reported when executing Salt
States.

Extend Declaration

e Salt States have also gained the extend declaration. is declaration allows for states to be cleanly modified in
a post environment. Simply said, if there is an apache.sls file that declares the apache service, then another sls can
include apache and then extend it:

include:
- apache

extend:
apache:

service:
- require:

- pkg: mod_python

mod_python:
pkg:

- installed

e notable behavior with the extend functionality is that it literally extends or overwrites a declaration set up in
another sls module. is means that Salt will behave as though the modifications were made directly to the apache
sls. is ensures that the apache service in this example is directly tied to all requirements.

1424 Chapter 26. Release notes

https://cloud.github.com/downloads/saltstack/salt/salt-0.9.3.tar.gz
https://pypi.python.org/packages/source/s/salt/salt-0.9.3.tar.gz

Salt Documentation, Release 2014.7.6

Highstate Structure Specification

is release comes with a clear specification of the Highstate data structure that is used to declare Salt States. is
specification explains everything that can be declared in the Salt SLS modules.

e specification is extremely simple, and illustrates how Salt has been able to fulfill the requirements of a central
configuration manager within a simple and easy to understand format and specification.

SheBang Renderer Switch

It came to our aention that having many renderers means that there may be a situation where more than one State
Renderer should be available within a single State Tree.

e method chosen to accomplish this was something already familiar to developers and systems administrators, a
SheBang. e Python State Renderer displays this new capability.

Python State Renderer

Until now Salt States could only be declared in yaml or json using Jinja or Mako. A new, very powerful, renderer
has been added, making it possible to write Salt States in pure Python:

#!py

def run():
'''
Install the python-mako package
'''
return {'include': ['python'],

'python-mako': {'pkg': ['installed']}}

is renderer is used by making a run function that returns the Highstate data structure. Any capabilities of Python
can be used in pure Python sls modules.

is example of a pure Python sls module is the same as this example in yaml:

include:
- python

python-mako:
pkg:

- installed

FreeBSD Support

Additional support has been added for FreeBSD, this is Salt's first branch out of the Linux world and proves the
viability of Salt on non-Linux platforms.

Salt remote execution already worked on FreeBSD, and should work without issue on any Unix-like platform. But
this support comes in the form of package management and user support, so Salt States also work on FreeBSD now.

enew freebsdpkgmodule provides packagemanagement support for FreeBSD and the newpw_user and pw_group
provide user and group management.

26.2. Previous Releases 1425

Salt Documentation, Release 2014.7.6

Module and State Additions

Cron Support

Support for managing the system crontab has been added, declaring a cron state can be done easily:

date > /tmp/datestamp:
cron:

- present
- user: fred
- minute: 5
- hour: 3

File State Additions

efile state has been given a number of new features, primarily the directory, recurse, symlink and absent functions.

file.directory Make sure that a directory exists and has the right permissions.

/srv/foo:
file:

- directory
- user: root
- group: root
- mode: 1755

file.symlink Make a symlink.

/var/lib/www:
file:

- symlink
- target: /srv/www
- force: True

file.recurse e recurse state function will recursively download a directory on the master file server and place it
on the minion. Any change in the files on the master will be pushed to the minion. e recurse function is
very powerful and has been tested by pushing out the full Linux kernel source.

/opt/code:
file:

- recurse
- source: salt://linux

file.absent Make sure that the file is not on the system, recursively deletes directories, files and symlinks.

/etc/httpd/conf.d/somebogusfile.conf:
file:

- absent

Sysctl Module and State

e sysctl module and state allows for sysctl components in the kernel to be managed easily. the sysctl module
contains the following functions:

sysctl.show Return a list of sysctl parameters for this minion

1426 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

sysctl.get Return a single sysctl parameter for this minion

sysctl.assign Assign a single sysctl parameter for this minion

sysctl.persist Assign and persist a simple sysctl parameter for this minion

e sysctl state allows for sysctl parameters to be assigned:

vm.swappiness:
sysctl:

- present
- value: 20

Kernel Module Management

A module for managing Linux kernel modules has been added. e new functions are as follows:

kmod.available Return a list of all available kernel modules

kmod.e_available Check to see if the specified kernel module is available

kmod.lsmod Return a dict containing information about currently loaded modules

kmod.load Load the specified kernel module

kmod.remove Unload the specified kernel module

e kmod state can enforce modules be either present or absent:

kvm_intel:
kmod:

- present

Ssh Authorized Keys

e ssh_auth state can distribute ssh authorized keys out to minions. Ssh authorized keys can be present or absent.

AAAAB3NzaC1kc3MAAACBAL0sQ9fJ5bYTEyYvlRBsJdDOo49CNfhlWHWXQRqul6rwL4KIuPrhY7hBw0tV7UNC7J9IZRNO4iGod9C+OYutuWGJ2x5YNf7P4uGhH9AhBQGQ4LKOLxhDyT1OrDKXVFw3wgY3rHiJYAbd1PXNuclJHOKL27QZCRFjWSEaSrUOoczvAAAAFQD9d4jp2dCJSIseSkk4Lez3LqFcqQAAAIAmovHIVSrbLbXAXQE8eyPoL9x5C+x2GRpEcA7AeMH6bGx/xw6NtnQZVMcmZIre5Elrw3OKgxcDNomjYFNHuOYaQLBBMosyO++tJe1KTAr3A2zGj2xbWO9JhEzu8xvSdF8jRu0N5SRXPpzSyU4o1WGIPLVZSeSq1VFTHRT4lXB7PQAAAIBXUz6ZO0bregF5xtJRuxUN583HlfQkXvxLqHAGY8WSEVlTnuG/x75wolBDbVzeTlxWxgxhafj7P6Ncdv25Wz9wvc6ko/puww0b3rcLNqK+XCNJlsM/7lB8Q26iK5mRZzNsGeGwGTyzNIMBekGYQ5MRdIcPv5dBIP/1M6fQDEsAXQ==:
ssh_auth:

- present
- user: frank
- enc: dsa
- comment: 'Frank's key'

26.2.63 Salt 0.9.4 Release Notes

release 2011-11-27

Salt 0.9.4 has arrived. is is a critical update that repairs a number of key bugs found in 0.9.3. But this update is
not without feature additions as well! 0.9.4 adds support for Gentoo portage to the pkg module and state system.
Also there are 2 major new state additions, the failhard option and the ability to set up finite state ordering with the
order option.

is release also sees our largest increase in community contributions. ese contributors have and continue to be
the life blood of the Salt project, and the team continues to grow. I want to put out a big thanks to our new and
existing contributors.

26.2. Previous Releases 1427

Salt Documentation, Release 2014.7.6

Download!

e Salt source can be downloaded from the salt GitHub site:

hps://cloud.github.com/downloads/saltstack/salt/salt-0.9.4.tar.gz

Or from PyPI:

hps://pypi.python.org/packages/source/s/salt/salt-0.9.4.tar.gz

For instructions on how to set up Salt please see the Installation instructions.

New Features

Failhard State Option

Normally, when a state fails Salt continues to execute the remainder of the defined states and will only refuse to
execute states that require the failed state.

But the situation may exist, where you would want all state execution to stop if a single state execution fails. e
capability to do this is called failing hard.

State Level Failhard A single state can have a failhard set, this means that if this individual state fails that all state
execution will immediately stop. is is a great thing to do if there is a state that sets up a critical config file and
seing a require for each state that reads the config would be cumbersome. A good example of this would be seing
up a package manager early on:

/etc/yum.repos.d/company.repo:
file:

- managed
- source: salt://company/yumrepo.conf
- user: root
- group: root
- mode: 644
- order: 1
- failhard: True

In this situation, the yum repo is going to be configured before other states, and if it fails to lay down the config file,
than no other states will be executed.

Global Failhard It may be desired to have failhard be applied to every state that is executed, if this is the case,
then failhard can be set in the master configuration file. Seing failhard in the master configuration file will result
in failing hard when any minion gathering states from the master have a state fail.

is is NOT the default behavior, normally Salt will only fail states that require a failed state.

Using the global failhard is generally not recommended, since it can result in states not being executed or even
checked. It can also be confusing to see states failhard if an admin is not actively aware that the failhard has been
set.

To use the global failhard set failhard: True in the master configuration

1428 Chapter 26. Release notes

https://cloud.github.com/downloads/saltstack/salt/salt-0.9.4.tar.gz
https://pypi.python.org/packages/source/s/salt/salt-0.9.4.tar.gz

Salt Documentation, Release 2014.7.6

Finite Ordering of State Execution

When creating salt sls files, it is oen important to ensure that they run in a specific order. While states will always
execute in the same order, that order is not necessarily defined the way you want it.

A few tools exist in Salt to set up the correct state ordering, these tools consist of requisite declarations and order
options.

e Order Option Before using the order option, remember that the majority of state ordering should be done
with requisite statements, and that a requisite statement will override an order option.

e order option is used by adding an order number to a state declaration with the option order :

vim:
pkg:

- installed
- order: 1

By adding the order option to 1 this ensures that the vim package will be installed in tandem with any other state
declaration set to the order 1.

Any state declared without an order option will be executed aer all states with order options are executed.

But this construct can only handle ordering states from the beginning. Sometimes you may want to send a state to
the end of the line, to do this set the order to last:

vim:
pkg:

- installed
- order: last

Substantial testing has gone into the state system and it is ready for real world usage. A great deal has been added
to the documentation for states and the modules and functions available to states have been cleanly documented.

A number of State System bugs have also been founds and repaired, the output from the state system has also been
refined to be extremely clear and concise.

Error reporting has also been introduced, issues found in sls files will now be clearly reported when executing Salt
States.

Gentoo Support

Additional experimental support has been added for Gentoo. is is found in the contribution from Doug Renn, aka
nestegg.

26.2.64 Salt 0.9.5 Release Notes

release 2012-01-15

Salt 0.9.5 is one of the largest steps forward in the development of Salt.

0.9.5 comes with many milestones, this release has seen the community of developers grow out to an international
team of 46 code contributors and has many feature additions, feature enhancements, bug fixes and speed improve-
ments.

26.2. Previous Releases 1429

Salt Documentation, Release 2014.7.6

Warning: Be sure to read the upgrade instructions about the switch to msgpack before upgrading!

Community

Nothing has proven to have more value to the development of Salt that the outstanding community that has been
growing at such a great pace around Salt. is has proven not only that Salt has great value, but also the expandability
of Salt is as exponential as I originally intended.

0.9.5 has received over 600 additional commits since 0.9.4 with a swath of new commiers. e following individuals
have contributed to the development of 0.9.5:

• Aaron Bull Schaefer

• Ani Kaihola

• Bas Tichelaar

• Brad Barden

• Brian Wagner

• Byron Clark

• Chris Scheller

• Christer Edwards

• Clint Savage

• Corey inn

• David Boucha

• Eivind Uggedal

• Eric Poelke

• Evan Borgstrom

• Jed Glazner

• Jeff Schroeder

• Jeffrey C. Ollie

• Jonas Buckner

• Kent Tenney

• Martin Schnabel

• Maxim Burgerhout

• Mitch Anderson

• Nathaniel Whiteinge

• Seth House

• omas S Hatch

• omas Schreiber

• Tor Hveem

• lzyeval

1430 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

• syphernl

is makes 21 new developers since 0.9.4 was released!

To keep up with the growing community follow Salt on Ohloh (hp://www.ohloh.net/p/salt), to join the Salt devel-
opment community, fork Salt on Github, and get coding (hps://github.com/saltstack/salt)!

Major Features

SPEED! Pickle to msgpack

For a few months now we have been talking about moving away from Python pickles for network serialization, but
a preferred serialization format had not yet been found. Aer an extensive performance testing period involving
everything from JSON to protocol buffers, a clear winner emerged. Message Pack (hp://msgpack.org/) proved to
not only be the fastest andmost compact, but also the most ``salt like''. Message Pack is simple, and the code involved
is very small. e msgpack library for Python has been added directly to Salt.

is move introduces a few changes to Salt. First off, Salt is no longer a ``noarch'' package, since the msgpack lib is
wrien in C. Salt 0.9.5 will also have compatibility issues with 0.9.4 with the default configuration.

We have gone through great lengths to avoid backwards compatibility issues with Salt, but changing the serialization
medium was going to create issues regardless. Salt 0.9.5 is somewhat backwards compatible with earlier minions.
A 0.9.5 master can command older minions, but only if the serial config value in the master is set to pickle.
is will tell the master to publish messages in pickle format and will allow the master to receive messages in both
msgpack and pickle formats.

erefore the suggested methods for upgrading are either to just upgrade everything at once, or:

1. Upgrade the master to 0.9.5

2. Set serial to pickle in the master config

3. Upgrade the minions

4. Remove the serial option from the master config

Since pickles can be used as a security exploit the ability for a master to accept pickles from minions at all will be
removed in a future release.

C Bindings for YAML

All of the YAML rendering is now done with the YAML C bindings. is speeds up all of the sls files when running
states.

Experimental Windows Support

David Boucha has worked tirelessly to bring initial support to Salt for Microso Windows operating systems. Right
now the Salt Minion can run as a native Windows service and accept commands.

In the weeks and months to come Windows will receive the full treatment and will have support for Salt States and
more robust support for managing Windows systems. is is a big step forward for Salt to move entirely outside of
the Unix world, and proves Salt is a viable cross platform solution. Big anks to Dave for his contribution here!

26.2. Previous Releases 1431

http://www.ohloh.net/p/salt
https://github.com/saltstack/salt
http://msgpack.org/

Salt Documentation, Release 2014.7.6

Dynamic Module Distribution

Many Salt users have expressed the desire to have Salt distribute in-house modules, states, renderers, returners, and
grains. is support has been added in a number of ways:

Modules via States Nowwhen salt modules are deployed to aminion via the state system as a file, then themodules
will be automatically loaded into the active running minion - no restart required - and into the active running state.
So custom state modules can be deployed and used in the same state run.

Modules via Module Environment Directories Under the file_roots each environment can now have directories
that are used to deploy large groups of modules. ese directories sync modules at the beginning of a state run on
the minion, or can be manually synced via the Salt module salt.modules.saltutil.sync_all.

e directories are named:

• _modules

• _states

• _grains

• _renderers

• _returners

e modules are pushed to their respective scopes on the minions.

Module Reloading

Modules can now be reloaded without restarting the minion, this is done by calling the
salt.modules.sys.reload_modules function.

But wait, there's more! Now when a salt module of any type is added via states the modules will be automatically
reloaded, allowing for modules to be laid down with states and then immediately used.

Finally, all modules are reloaded when modules are dynamically distributed from the salt master.

Enable / Disable Added to Service

A great deal of demand has existed for adding the capability to set services to be started at boot in the service module.
is feature also comes with an overhaul of the service modules and initial systemd support.

is means that the service state can now accept - enable: True to make sure a service is enabled at
boot, and - enable: False to make sure it is disabled.

Compound Target

A new target type has been added to the lineup, the compound target. In previous versions the desired minions
could only be targeted via a single specific target type, but now many target specifications can be declared.

ese targets can also be separated by and/or operators, so certain properties can be used to omit a node:

salt -C 'webserv* and G@os:Debian or E@db.*' test.ping

1432 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

will match all minions with ids starting with webserv via a glob and minions matching the os:Debian grain. Or
minions that match the db.* regular expression.

Node Groups

Oen the convenience of having a predefined group of minions to execute targets on is desired. is can be accom-
plished with the new nodegroups feature. Nodegroups allow for predefined compound targets to be declared in the
master configuration file:

nodegroups:
group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com and bl*.domain.com'
group2: 'G@os:Debian and foo.domain.com'

And then used via the -N option:

salt -N group1 test.ping

Minion Side Data Store

e data module introduces the initial approach into storing persistent data on the minions, specific to the minions.
is allows for data to be stored on minions that can be accessed from the master or from the minion.

e Minion datastore is young, and will eventually provide an interface similar to a more mature key/value pair
server.

Major Grains Improvement

e Salt grains have been overhauled to include a massive amount of extra data. this includes hardware data, os data
and salt specific data.

Salt -Q is Useful Now

In the past the salt query system, which would display the data from recent executions would be displayed in pure
Python, and it was unreadable.

0.9.5 has added the outpuer system to the -Q option, thus enabling the salt query system to return readable output.

Packaging Updates

Huge strides have been made in packaging Salt for distributions. ese additions are thanks to our wonderful
community where the work to set up packages has proceeded tirelessly.

FreeBSD

Salt on FreeBSD? ere a port for that:

hp://svnweb.freebsd.org/ports/head/sysutils/py-salt/

is port was developed and added by Christer Edwards. is also marks the first time Salt has been included in an
upstream packaging system!

26.2. Previous Releases 1433

http://svnweb.freebsd.org/ports/head/sysutils/py-salt/

Salt Documentation, Release 2014.7.6

Fedora and Red Hat Enterprise

Salt packages have been prepared for inclusion in the Fedora Project and in EPEL for Red Hat Enterprise 5 and 6.
ese packages are the result of the efforts made by Clint Savage (herlo).

Debian/Ubuntu

A team of many contributors have assisted in developing packages for Debian and Ubuntu. Salt is still actively
seeking inclusion in upstream Debian and Ubuntu and the package data that has been prepared is being pushed
through the needed channels for inclusion.

ese packages have been prepared with the help of:

• Corey

• Aaron Toponce

• and`

More to Come

We are actively seeking inclusion in more distributions. Primarily geing Salt into Gentoo, SUSE, OpenBSD and
preparing Solaris support are all turning into higher priorities.

Refinement

Salt continues to be refined into a faster, more stable and more usable application. 0.9.5 comes with more debug
logging, more bug fixes and more complete support.

More Testing, More BugFixes

0.9.5 comes with more bugfixes due to more testing than any previous release. e growing community and the
introduction a a dedicated QA environment have unearthed many issues that were hiding under the covers. is has
further refined and cleaned the state interface, taking care of things from minor visual issues to repairing misleading
data.

Custom Exceptions

A custom exception module has been added to throw salt specific exceptions. is allows Salt to give much more
granular error information.

New Modules

data e new data module manages a persistent datastore on the minion. Big thanks to bastichelaar for his help
refining this module

freebsdkmod FreeBSD kernel modules can now bemanaged in the sameway Salt handles Linux kernel modules.

is module was contributed thanks to the efforts of Christer Edwards

1434 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

gentoo_service Support has been added for managing services in Gentoo. Now Gentoo services can be
started, stopped, restarted, enabled, disabled and viewed.

pip e pip module introduces management for pip installed applications. anks goes to whitinge for the addi-
tion of the pip module

rh_service e rh_service module enables Red Hat and Fedora specific service management. Now Red Hat
like systems come with extensive management of the classic init system used by Red Hat

saltutil e saltutil module has been added as a place to hold functions used in the maintenance and manage-
ment of salt itself. Saltutil is used to salt the salt minion. e saltutil module is presently used only to sync extension
modules from the master server.

systemd Systemd support has been added to Salt, now systems using this next generation init system are sup-
ported on systems running systemd.

virtualenv e virtualenv module has been added to allow salt to create virtual Python environments. anks
goes to whitinge for the addition of the virtualenv module

win_disk Support for gathering disk information on Microso Windows minions e windows modules come
courtesy of Utah_Dave

win_service e win_service module adds service support to Salt for Microso Windows services

win_useradd Salt can now manage local users on Microso Windows Systems

yumpkg5 e yumpkg module introduces in 0.9.4 uses the yum API to interact with the yum package manager.
Unfortunately, on Red Hat 5 systems salt does not have access to the yum API because the yum API is running under
Python 2.4 and Salt needs to run under Python 2.6.

e yumpkg5 module bypasses this issue by shelling out to yum on systems where the yum API is not available.

New States

mysql_database e new mysql_database state adds the ability to systems running a mysql server to manage
the existence of mysql databases.

e mysql states are thanks to syphernl

mysql_user e mysql_user state enables mysql user management.

virtualenv e virtualenv state can manage the state of Python virtual environments. anks to Whitinge for
the virtualenv state

26.2. Previous Releases 1435

Salt Documentation, Release 2014.7.6

New Returners

cassandra_returner A returner allowing Salt to send data to a cassandra server. anks to Byron Clark for
contributing this returner

26.2.65 Salt 0.9.6 Release Notes

release 2012-01-21

Salt 0.9.6 is a release targeting a few bugs and changes. is is primarily targeting an issue found in the names
declaration in the state system. But a few other bugs were also repaired, like missing support for grains in extmods.

Due to a conflict in distribution packaging msgpack will no longer be bundled with Salt, and is required as a depen-
dency.

New Features

HTTP and p support in files.managed

Now under the source option in the file.managed state a HTTP or p address can be used instead of a file located on
the salt master.

Allow Multiple Returners

Now the returner interface can define multiple returners, and will also return data back to the master, making the
process less ambiguous.

Minion Memory Improvements

A number of modules have been taken out of the minion if the underlying systems required by said modules are not
present on the minion system. A number of other modules need to be stripped out in this same way which should
continue to make the minion more efficient.

Minions Can Locally Cache Return Data

A new option, cache_jobs, has been added to the minion to allow for all of the historically run jobs to cache on the
minion, allowing for looking up historic returns. By default cache_jobs is set to False.

Pure Python Template Support For file.managed

Templates in the file.managed state can now be defined in a Python script. is script needs to have a run function
that returns the string that needs to be in the named file.

26.2.66 Salt 0.9.7 Release Notes

release 2012-02-15

1436 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

Salt 0.9.7 is here! e latest iteration of Salt brings more features and many fixes. is release is a great refinement
over 0.9.6, adding many conveniences under the hood, as well as some features that make working with Salt much
beer.

A few highlights include the new Job system, refinements to the requisite system in states, the mod_init interface
for states, external node classification, search path to managed files in the file state, and refinements and additions
to dynamic module loading.

0.9.7 also introduces the long developed (and o changed) unit test framework and the initial unit tests.

Major Features

Salt Jobs Interface

e new jobs interface makes the management of running executions much cleaner and more transparent. Building
on the existing execution framework the jobs system allows clear introspection into the active running state of the
running Salt interface.

e Jobs interface is centered in the new minion side proc system. e minions now store msgpack serialized files
under /var/cache/salt/proc. ese files keep track of the active state of processes on the minion.

Functions in the saltutil Module A number of functions have been added to the saltutil module to manage and
view the jobs:

running - Returns the data of all running jobs that are found in the proc directory.

find_job - Returns specific data about a certain job based on job id.

signal_job - Allows for a given jid to be sent a signal.

term_job - Sends a termination signal (SIGTERM, 15) to the process controlling the specified job.

kill_job Sends a kill signal (SIGKILL, 9) to the process controlling the specified job.

The jobs Runner

A convenience runner front end and reporting system has been added as well. e jobs runner contains functions
to make viewing data easier and cleaner.

e jobs runner contains a number of functions…

active e active function runs saltutil.running on all minions and formats the return data about all run-
ning jobs in a much more usable and compact format. e active function will also compare jobs that have returned
and jobs that are still running, making it easier to see what systems have completed a job and what systems are still
being waited on.

lookup_jid When jobs are executed the return data is sent back to the master and cached. By default is is cached
for 24 hours, but this can be configured via the keep_jobs option in the master configuration.

Using the lookup_jid runner will display the same return data that the initial job invocation with the salt com-
mand would display.

list_jobs Before finding a historic job, it may be required to find the job id. list_jobs will parse the cached
execution data and display all of the job data for jobs that have already, or partially returned.

26.2. Previous Releases 1437

Salt Documentation, Release 2014.7.6

External Node Classification

Salt can now use external node classifiers like Cobbler's cobbler-ext-nodes.

Salt uses specific data from the external node classifier. In particular the classes value denotes which sls modules to
run, and the environment value sets to another environment.

An external node classification can be set in the master configuration file via the external_nodes option:
hp://salt.readthedocs.org/en/latest/ref/configuration/master.html#external-nodes

External nodes are loaded in addition to the top files. If it is intended to only use external nodes, do not deploy any
top files.

State Mod Init System

An issue arose with the pkg state. Every time a package was run Salt would need to refresh the package database.
is made systems with slower package metadata refresh speeds much slower to work with. To alleviate this issue
the mod_init interface has been added to salt states.

e mod_init interface is a function that can be added to a state file. is function is called with the first state
called. In the case of the pkg state, the mod_init function sets up a tag which makes the package database only
refresh on the first aempt to install a package.

In a nutshell, the mod_init interface allows a state to run any command that only needs to be run once, or can be
used to set up an environment for working with the state.

Source File Search Path

e file state continues to be refined, adding speed and capabilities. is release adds the ability to pass a list to the
source option. is list is then iterated over until the source file is found, and the first found file is used.

e new syntax looks like this:

/etc/httpd/conf/httpd.conf:
file:

- managed
- source:

- salt://httpd/httpd.conf
- http://myserver/httpd.conf: md5=8c1fe119e6f1fd96bc06614473509bf1

e source option can take sources in the list from the salt file server as well as an arbitrary web source. If using an
arbitrary web source the checksum needs to be passed as well for file verification.

Refinements to the Requisite System

A few discrepancies were still lingering in the requisite system, in particular, it was not possible to have a require
and a watch requisite declared in the same state declaration.

is issue has been alleviated, as well as making the requisite system run more quickly.

1438 Chapter 26. Release notes

http://salt.readthedocs.org/en/latest/ref/configuration/master.html#external-nodes

Salt Documentation, Release 2014.7.6

Initial Unit Testing Framework

Because of the module system, and the need to test real scenarios, the development of a viable unit testing system has
been difficult, but unit testing has finally arrived. Only a small amount of unit testing coverage has been developed,
much more coverage will be in place soon.

A huge thanks goes out to those who have helped with unit testing, and the contributions that have been made to
get us where we are. Without these contributions unit tests would still be in the dark.

Compound Targets Expanded

Originally only support for and and or were available in the compound target. 0.9.7 adds the capability to negate
compound targets with not.

Nodegroups in the Top File

Previously the nodegroups defined in the master configuration file could not be used to match nodes for states. e
nodegroups support has been expanded and the nodegroups defined in the master configuration can now be used to
match minions in the top file.

26.2.67 Salt 0.9.8 Release Notes

release 2012-03-21

Salt 0.9.8 is a big step forward, withmany additions and enhancements, as well as a number of precursors to advanced
future developments.

is version of Salt adds much more power to the command line, making the old hard timeout issues a thing of
the past and adds keyword argument support. ese additions are also available in the salt client API, making the
available API tools much more powerful.

e new pillar system allows for data to be stored on the master and assigned to minions in a granular way similar to
the state system. It also allows flexibility for users who want to keep data out of their state tree similar to `external
lookup' functionality in other tools.

A new way to extend requisites was added, the ``requisite in'' statement. is makes adding requires or watch
statements to external state decs much easier.

Additions to requisites making them much more powerful have been added as well as improved error checking for
sls files in the state system. A new provider system has been added to allow for redirecting what modules run in the
background for individual states.

Support for OpenSUSE has been added and support for Solaris has begun serious development. Windows support
has been significantly enhanced as well.

e matcher and target systems have received a great deal of aention. e default behavior of grain matching has
changed slightly to reflect the rest of salt and the compound matcher system has been refined.

A number of impressive features with keyword arguments have been added to both the CLI and to the state system.
is makes states much more powerful and flexible while maintaining the simple configuration everyone loves.

e new batch size capability allows for executions to be rolled through a group of targeted minions a percentage or
specific number at a time. is was added to prevent the ``thundering herd'' problem when targeting large numbers
of minions for things like service restarts or file downloads.

26.2. Previous Releases 1439

Salt Documentation, Release 2014.7.6

Upgrade Considerations

Upgrade Issues

ere was a previously missed oversight which could cause a newer minion to crash an older master. at oversight
has been resolved so the version incompatibility issue will no longer occur. When upgrading to 0.9.8 make sure to
upgrade the master first, followed by the minions.

Debian/Ubuntu Packages

e original Debian/Ubuntu packages were called salt and included all salt applications. New packages in the ppa are
split by function. If an old salt package is installed then it should be manually removed and the new split packages
need to be freshly installed.

On the master:

apt-get purge salt
apt-get install salt-{master,minion}

On the minions:

apt-get purge salt
apt-get install salt-minion

And on any Syndics:

apt-get install salt-syndic

e official Salt PPA for Ubuntu is located at: hps://launchpad.net/~saltstack/+archive/salt

Major Features

Pillar

Pillar offers an interface to declare variable data on the master that is then assigned to the minions. e pillar data
is made available to all modules, states, sls files etc. It is compiled on the master and is declared using the existing
renderer system. is means that learning pillar should be fairly trivial to those already familiar with salt states.

CLI Additions

e salt command has received a serious overhaul and is more powerful than ever. Data is returned to the ter-
minal as it is received, and the salt command will now wait for all running minions to return data before stopping.
is makes adding very large --timeout arguments completely unnecessary and gets rid of long running operations
returning empty {} when the timeout is exceeded.

When calling salt via sudo, the user originally running salt is saved to the log for auditing purposes. is makes it
easy to see who ran what by just looking through the minion logs.

e salt-key command gained the -D and --delete-all arguments for removing all keys. Be careful with this one!

1440 Chapter 26. Release notes

https://launchpad.net/~saltstack/+archive/salt

Salt Documentation, Release 2014.7.6

Running States Without a Master

e addition of running states without a salt-master has been added to 0.9.8. is feature allows for the unmodified
salt state tree to be read locally from a minion. e result is that the UNMODIFIED state tree has just become
portable, allowing minions to have a local copy of states or to manage states without a master entirely.

is is accomplished via the new file client interface in Salt that allows for the salt:// URI to be redirected to
custom interfaces. is means that there are now two interfaces for the salt file server, calling the master or looking
in a local, minion defined file_roots.

is new feature can be used by modifying the minion config to point to a local file_roots and seing the
file_client option to local.

Keyword Arguments and States

State modules now accept the **kwargs argument. is results in all data in a sls file assigned to a state being
made available to the state function.

is passes data in a transparent way back to the modules executing the logic. In particular, this allows adding
arguments to the pkg.install module that enable more advanced and granular controls with respect to what
the state is capable of.

An example of this along with the new debconf module for installing ldap client packages on Debian:

ldap-client-packages:
pkg:

- debconf: salt://debconf/ldap-client.ans
- installed
- names:

- nslcd
- libpam-ldapd
- libnss-ldapd

Keyword Arguments and the CLI

In the past it was required that all arguments be passed in the proper order to the salt and salt-call commands. As
of 0.9.8, keyword arguments can be passed in the form of kwarg=argument.

salt -G 'type:dev' git.clone \
repository=https://github.com/saltstack/salt.git cwd=/tmp/salt user=jeff

Matcher Refinements and Changes

A number of fixes and changes have been applied to the Matcher system. e most noteworthy is the change in
the grain matcher. e grain matcher used to use a regular expression to match the passed data to a grain, but now
defaults to a shell glob like the majority of match interfaces in Salt. A new option is available that still uses the old
style regex matching to grain data called grain-pcre. To use regex matching in compound matches use the leer
P.

For example, this would match any ArchLinux or Fedora minions:

salt --grain-pcre 'os:(Arch:Fed).*' test.ping

26.2. Previous Releases 1441

Salt Documentation, Release 2014.7.6

And the associated compound matcher suitable for top.sls is P :

P@os:(Arch|Fed).*

NOTE: Changing the grains matcher from pcre to glob is backwards incompatible.

Support has been added for matching minions with Yahoo's range library. is is handled by passing range syntax
with -R or --range arguments to salt.

More information at: hps://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

Requisite ``in''

A new means to updating requisite statements has been added to make adding watchers and requires to external
states easier. Before 0.9.8 the only way to extend the states that were watched by a state outside of the sls was to use
an extend statement:

include:
- http

extend:
apache:

service:
- watch:

- pkg: tomcat

tomcat:
pkg:

- installed

But the new Requisite in statement allows for easier extends for requisites:

include:
- http

tomcat:
pkg:

- installed
- watch_in:

- service: apache

Requisite in is part of the extend system, so still remember to always include the sls that is being extended!

Providers

Salt predetermines what modules should be mapped to what uses based on the properties of a system. ese de-
terminations are generally made for modules that provide things like package and service management. e apt
module maps to pkg on Debian and the yum module maps to pkg on Fedora for instance.

Sometimes in states, it may be necessary for a non-default module to be used for the desired functionality. For
instance, an Arch Linux system may have been set up with systemd support. Instead of using the default service
module detected for Arch Linux, the systemd module can be used:

1442 Chapter 26. Release notes

https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

Salt Documentation, Release 2014.7.6

http:
service:

- running
- enable: True
- provider: systemd

Default providers can also be defined in the minion config file:

providers:
service: systemd

When default providers are passed in the minion config, then those providers will be applied to all functionality in
Salt, this means that the functions called by the minion will use these modules, as well as states.

Requisite Glob Matching

Requisites can now be defined with glob expansion. is means that if there are many requisites, they can be defined
on a single line.

To watch all files in a directory:

http:
service:

- running
- enable: True
- watch:

- file: /etc/http/conf.d/*

is example will watch all defined files that match the glob /etc/http/conf.d/*

Batch Size

e new batch size option allows commands to be executed while maintaining that only so many hosts are executing
the command at one time. is option can take a percentage or a finite number:

salt '*' -b 10 test.ping

salt -G 'os:RedHat' --batch-size 25% apache.signal restart

is will only run test.ping on 10 of the targeted minions at a time and then restart apache on 25% of the minions
matching os:RedHat at a time and work through them all until the task is complete. is makes jobs like rolling
web server restarts behind a load balancer or doing maintenance on BSD firewalls using carp much easier with salt.

Module Updates

is is a list of notable, but non-exhaustive updates with new and existing modules.

Windows support has seen a flurry of support this release cycle. We've gained all new file, network, and shadow
modules. Please note that these are still a work in progress.

For our ruby users, new rvm and gem modules have been added along with the associated states

e virt module gained basic Xen support.

26.2. Previous Releases 1443

Salt Documentation, Release 2014.7.6

e yum module gained Scientific Linux support.

e pkg module on Debian, Ubuntu, and derivatives force apt to run in a non-interactive mode. is prevents issues
when package installation waits for confirmation.

A pkg module for OpenSUSE's zypper was added.

e service module on Ubuntu natively supports upstart.

A new debconf module was contributed by our community for more advanced control over deb package deployments
on Debian based distributions.

e mysql.user state and mysql module gained a password_hash argument.

e cmd module and state gained a shell keyword argument for specifying a shell other than /bin/sh on Linux /
Unix systems.

New git and mercurial modules have been added for fans of distributed version control.

In Progress Development

Master Side State Compiling

While we feel strongly that the advantages gained with minion side state compiling are very critical, it does pre-
vent certain features that may be desired. 0.9.8 has support for initial master side state compiling, but many more
components still need to be developed, it is hoped that these can be finished for 0.9.9.

e goal is that states can be compiled on both themaster and theminion allowing for compilation to be split between
master and minion. Why will this be great? It will allow storing sensitive data on the master and sending it to some
minions without all minions having access to it. is will be good for handling ssl certificates on front-end web
servers for instance.

Solaris Support

Salt 0.9.8 sees the introduction of basic Solaris support. e daemon runs well, but grains and more of the modules
need updating and testing.

Windows Support

Salt states on windows are now much more viable thanks to contributions from our community! States for file,
service, local user, and local group management are more fully fleshed out along with network and disk modules.
Windows users can also now manage registry entries using the new ``reg'' module.

26.2.68 Salt 0.9.9 Release Notes

release 2012-04-27

0.9.9 is out and comes with some serious bug fixes and even more serious features. is release is the last major
feature release before 1.0.0 and could be considered the 1.0.0 release candidate.

A few updates include more advanced kwargs support, the ability for salt states to more safely configure a running
salt minion, beer job directory management and the new state test interface.

Many new tests have been added as well, including the new minion swarm test that allows for easier testing of Salt
working with large groups of minions. is means that if you have experienced stability issues with Salt before,
particularly in larger deployments, that these bugs have been tested for, found, and killed.

1444 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

Major Features

State Test Interface

Until 0.9.9 the only option when running states to see what was going to be changed was to print out the highstate
with state.show_highstate and manually look it over. But now states can be run to discover what is going to be
changed.

Passing the option test=True to many of the state functions will now cause the salt state system to only check
for what is going to be changed and report on those changes.

salt '*' state.highstate test=True

Now states that would have made changes report them back in yellow.

State Syntax Update

A shorthand syntax has been added to sls files, and it will be the default syntax in documentation going forward.
e old syntax is still fully supported and will not be deprecated, but it is recommended to move to the new syntax
in the future. is change moves the state function up into the state name using a dot notation. is is in-line with
how state functions are generally referred to as well:

e new way:

/etc/sudoers:
file.present:

- source: salt://sudo/sudoers
- user: root
- mode: 400

Use and Use_in Requisites

Two new requisite statements are available in 0.9.9. e use and use_in requisite and requisite-in allow for the trans-
parent duplication of data between states. When a state ``uses'' another state it copies the other state's arguments
as defaults. is was created in direct response to the new network state, and allows for many network interfaces
to be configured in the same way easily. A simple example:

root_file:
file.absent:

- name: /tmp/nothing
- user: root
- mode: 644
- group: root
- use_in:

- file: /etc/vimrc

fred_file:
file.absent:

- name: /tmp/nothing
- user: fred
- group: marketing
- mode: 660

26.2. Previous Releases 1445

Salt Documentation, Release 2014.7.6

/files/marketing/district7.rst:
file.present:

- source: salt://marketing/district7.rst
- template: jinja
- use:

- file: fred_file

/etc/vimrc:
file.present:

- source: salt://edit/vimrc

is makes the 2 lower state decs inherit the options from their respectively ``used'' state decs.

Network State

e new network state allows for the configuration of network devices via salt states and the ip salt module. is
addition has been given to the project by Jeff Hutchins and Bret Palsson from Jive Communications.

Currently the only network configuration backend available is for Red Hat based systems, like Red Hat Enterprise,
CentOS, and Fedora.

Exponential Jobs

Originally the jobs executed were stored on the master in the format: <cachedir>/jobs/jid/{minion
ids} But this format restricted the number of jobs in the cache to the number of subdirectories allowed on
the filesystem. Ext3 for instance limits subdirectories to 32000. To combat this the new format for 0.9.9 is:
<cachedir>/jobs/jid_hash[:2]/jid_hash[2:]/{minion ids} So that now the number of maxi-
mum jobs that can be run before the cleanup cycle hits the job directory is substantially higher.

ssh_auth Additions

e original ssh_auth state was limited to accepting only arguments to apply to a public key, and the key itself.
is was restrictive due to the way the we learned that many people were using the state, so the key section has
been expanded to accept options and arguments to the key that over ride arguments passed in the state. is gives
substantial power to using ssh_auth with names:

sshkeys:
ssh_auth:

- present
- user: backup
- enc: ssh-dss
- options:

- option1="value1"
- option2="value2 flag2"

- comment: backup
- names:

- AAAAB3NzaC1yc2EAAAABIwAAAQEAlyE26SMFFVY5YJvnL7AF5CRTPtAigSW1U887ASfBt6FDa7Qr1YdO5ochiLoz8aSiMKd5h4dhB6ymHbmntMPjQena29jQjXAK4AK0500rMShG1Y1HYEjTXjQxIy/SMjq2aycHI+abiVDn3sciQjsLsNW59t48Udivl2RjWG7Eo+LYiB17MKD5M40r5CP2K4B8nuL+r4oAZEHKOJUF3rzA20MZXHRQuki7vVeWcW7ie8JHNBcq8iObVSoruylXav4aKG02d/I4bz/l0UdGh18SpMB8zVnT3YF5nukQQ/ATspmhpU66s4ntMehULC+ljLvZL40ByNmF0TZc2sdSkA0111==
- AAAAB3NzaC1yc2EAAAABIwAAAQEAlyE26SMFFVY5YJvnL7AF5CRTPtAigSW1U887ASfBt6FDa7Qr1YdO5ochiLoz8aSiMKd5h4dhB6ymHbmntMPjQena29jQjXAK4AK0500rMShG1Y1HYEjTXjQxIy/SMjq2aycHI+abiVDn3sciQjsLsNW59t48Udivl2RjWG7Eo+LYiB17MKD5M40r5CP2K4B8nuL+r4oAZEHKOJUF3rzA20MZXHRQuki7vVeWcW7ie8JHNBcq8iObVSoruylXav4aKG02d/I4bz/l0UdGh18SpMB8zVnT3YF5nukQQ/ATspmhpU66s4ntMehULC+ljLvZL40ByNmF0TZc2sdSkA0222== override
- ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAlyE26SMFFVY5YJvnL7AF5CRTPtAigSW1U887ASfBt6FDa7Qr1YdO5ochiLoz8aSiMKd5h4dhB6ymHbmntMPjQena29jQjXAK4AK0500rMShG1Y1HYEjTXjQxIy/SMjq2aycHI+abiVDn3sciQjsLsNW59t48Udivl2RjWG7Eo+LYiB17MKD5M40r5CP2K4B8nuL+r4oAZEHKOJUF3rzA20MZXHRQuki7vVeWcW7ie8JHNBcq8iObVSoruylXav4aKG02d/I4bz/l0UdGh18SpMB8zVnT3YF5nukQQ/ATspmhpU66s4ntMehULC+ljLvZL40ByNmF0TZc2sdSkA0333== override
- ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAlyE26SMFFVY5YJvnL7AF5CRTPtAigSW1U887ASfBt6FDa7Qr1YdO5ochiLoz8aSiMKd5h4dhB6ymHbmntMPjQena29jQjXAK4AK0500rMShG1Y1HYEjTXjQxIy/SMjq2aycHI+abiVDn3sciQjsLsNW59t48Udivl2RjWG7Eo+LYiB17MKD5M40r5CP2K4B8nuL+r4oAZEHKOJUF3rzA20MZXHRQuki7vVeWcW7ie8JHNBcq8iObVSoruylXav4aKG02d/I4bz/l0UdGh18SpMB8zVnT3YF5nukQQ/ATspmhpU66s4ntMehULC+ljLvZL40ByNmF0TZc2sdSkA0444==
- option3="value3",option4="value4 flag4" ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAlyE26SMFFVY5YJvnL7AF5CRTPtAigSW1U887ASfBt6FDa7Qr1YdO5ochiLoz8aSiMKd5h4dhB6ymHbmntMPjQena29jQjXAK4AK0500rMShG1Y1HYEjTXjQxIy/SMjq2aycHI+abiVDn3sciQjsLsNW59t48Udivl2RjWG7Eo+LYiB17MKD5M40r5CP2K4B8nuL+r4oAZEHKOJUF3rzA20MZXHRQuki7vVeWcW7ie8JHNBcq8iObVSoruylXav4aKG02d/I4bz/l0UdGh18SpMB8zVnT3YF5nukQQ/ATspmhpU66s4ntMehULC+ljLvZL40ByNmF0TZc2sdSkA0555== override
- option3="value3" ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAlyE26SMFFVY5YJvnL7AF5CRTPtAigSW1U887ASfBt6FDa7Qr1YdO5ochiLoz8aSiMKd5h4dhB6ymHbmntMPjQena29jQjXAK4AK0500rMShG1Y1HYEjTXjQxIy/SMjq2aycHI+abiVDn3sciQjsLsNW59t48Udivl2RjWG7Eo+LYiB17MKD5M40r5CP2K4B8nuL+r4oAZEHKOJUF3rzA20MZXHRQuki7vVeWcW7ie8JHNBcq8iObVSoruylXav4aKG02d/I4bz/l0UdGh18SpMB8zVnT3YF5nukQQ/ATspmhpU66s4ntMehULC+ljLvZL40ByNmF0TZc2sdSkA0666==

1446 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

LocalClient Additions

To follow up the recent additions in 0.9.8 of additional kwargs support, 0.9.9 also adds the capability to send kwargs
into commands via a dict. is addition to the LocalClient api can be used like so:

import salt.client

client = salt.client.LocalClient('/etc/salt/master')
ret = client.cmd('*', 'cmd.run', ['ls -l'], kwarg={'cwd': '/etc'})

is update has been added to all cmd methods in the LocalClient class.

Beer Self Salting

One problem faced with running Salt states, is that it has been difficult to manage the Salt minion via states, this is
due to the fact that if the minion is called to restart while a state run is happening then the state run would be killed.
0.9.9 slightly changes the process scope of the state runs, so now when salt is executing states it can safely restart
the salt-minion daemon.

In addition to daemonizing the state run, the apt module also daemonizes. is update makes it possible to cleanly
update the salt-minion package on Debian/Ubuntu systems without leaving apt in an inconsistent state or killing
the active minion process mid-execution.

Wildcards for SLS Modules

Now, when including sls modules in include statements or in the top file, shell globs can be used. is can greatly
simplify listing matched sls modules in the top file and include statements:

base:
'*':

- files*
- core*

include:
- users.dev.*
- apache.ser*

External Pillar

Since the pillar data is just, data, it does not need to come expressly from the pillar interface. e external pillar
system allows for hooks to be added making it possible to extract pillar data from any arbitrary external interface.
e external pillar interface is configured via the ext_pillar option. Currently interfaces exist to gather external
pillar data via hiera or via a shell command that sends yaml data to the terminal:

ext_pillar:
- cmd_yaml: cat /etc/salt/ext.yaml
- hiera: /etc/hirea.yaml

26.2. Previous Releases 1447

Salt Documentation, Release 2014.7.6

e initial external pillar interfaces and extra interfaces can be added to the file salt/pillar.py, it is planned to add
more external pillar interfaces. If the need arises a new module loader interface will be created in the future to
manage external pillar interfaces.

Single State Executions

e new state.single function allows for single states to be cleanly executed. is is a great tool for seing up a small
group of states on a system or for testing out the behavior of single states:

salt '*' state.single user.present name=wade uid=2000

e test interface functions here as well, so changes can also be tested against as:

salt '*' state.single user.present name=wade uid=2000 test=True

New Tests

A few exciting new test interfaces have been added, the minion swarm allows not only testing of larger loads, but
also allows users to see how Salt behaves with large groups of minions without having to create a large deployment.

Minion Swarm

e minion swarm test system allows for large groups of minions to be tested against easily without requiring large
numbers of servers or virtual machines. e minion swarm creates as many minions as a system can handle and
roots them in the /tmp directory and connects them to a master.

e benefit here is that we were able to replicate issues that happen only when there are large numbers of minions.
A number of elusive bugs which were causing stability issues in masters and minions have since been hunted down.
Bugs that used to take careful watch by users over several days can now be reliably replicated in minutes, and fixed
in minutes.

Using the swarm is easy, make sure a master is up for the swarm to connect to, and then use the minionswarm.py
script in the tests directory to spin up as many minions as you want. Remember, this is a fork bomb, don't spin up
more than your hardware can handle!

python minionswarm.py -m 20 --master salt-master

Shell Tests

e new Shell testing system allows us to test the behavior of commands executed from a high level. is allows for
the high level testing of salt runners and commands like salt-key.

Client Tests

Tests have been added to test the aspects of the client APIs and ensure that the client calls work, and that they
manage passed data, in a desirable way.

See also:

Legacy salt-cloud release docs

1448 Chapter 26. Release notes

Salt Documentation, Release 2014.7.6

See also:

Legacy salt-api release docs

26.2. Previous Releases 1449

Salt Documentation, Release 2014.7.6

1450 Chapter 26. Release notes

CHAPTER 27

Salt Based Projects

A number of unofficial open source projects, based on Salt, or wrien to enhance Salt have been created.

27.1 Salt Sandbox

Created by Aaron Bull Schaefer, aka ``elasticdog''.

hps://github.com/elasticdog/salt-sandbox

Salt Sandbox is a multi-VMVagrant-based Salt development environment used for creating and testing new Salt state
modules outside of your production environment. It's also a great way to learn firsthand about Salt and its remote
execution capabilities.

Salt Sandbox will set up three separate virtual machines:

• salt.example.com - the Salt master server

• minion1.example.com - the first Salt minion machine

• minion2.example.com - the second Salt minion machine

ese VMs can be used in conjunction to segregate and test your modules based on node groups, top file environ-
ments, grain values, etc. You can even test modules on different Linux distributions or release versions to beer
match your production infrastructure.

1451

https://github.com/elasticdog/salt-sandbox

Salt Documentation, Release 2014.7.6

1452 Chapter 27. Salt Based Projects

CHAPTER 28

Security disclosure policy

email security@saltstack.com

gpg key ID 4EA0793D

gpg key fingerprint 8ABE 4EFC F0F4 B24B FF2A AF90 D570 F2D3 4EA0 793D

gpg public key:

-----BEGIN PGP PUBLIC KEY BLOCK----
Version: GnuPG/MacGPG2 v2.0.22 (Darwin)

mQINBFO15mMBEADa3CfQwk5ED9wAQ8fFDku277CegG3U1hVGdcxqKNvucblwoKCb
hRK6u9ihgaO9V9duV2glwgjytiBI/z6lyWqdaD37YXG/gTL+9Md+qdSDeaOa/9eg
7y+g4P+FvU9HWUlujRVlofUn5Dj/IZgUywbxwEybutuzvvFVTzsn+DFVwTH34Qoh
QIuNzQCSEz3Lhh8zq9LqkNy91ZZQO1ZIUrypafspH6GBHHcE8msBFgYiNBnVcUFH
u0r4j1Rav+621EtD5GZsOt05+NJI8pkaC/dDKjURcuiV6bhmeSpNzLaXUhwx6f29
Vhag5JhVGGNQxlRTxNEM86HEFp+4zJQ8m/wRDrGX5IAHsdESdhP+ljDVlAAX/ttP
/Ucl2fgpTnDKVHOA00E515Q87ZHv6awJ3GL1veqi8zfsLaag7rw1TuuHyGLOPkDt
t5PAjsS9R3KI7pGnhqI6bTOi591odUdgzUhZChWUUX1VStiIDi2jCvyoOOLMOGS5
AEYXuWYP7KgujZCDRaTNqRDdgPd93Mh9JI8UmkzXDUgijdzVpzPjYgFaWtyK8lsc
Fizqe3/Yzf9RCVX/lmRbiEH+ql/zSxcWlBQd17PKaL+TisQFXcmQzccYgAxFbj2r
QHp5ABEu9YjFme2Jzun7Mv9V4qo3JF5dmnUk31yupZeAOGZkirIsaWC3hwARAQAB
tDBTYWx0U3RhY2sgU2VjdXJpdHkgVGVhbSA8c2VjdXJpdHlAc2FsdHN0YWNrLmNv
bT6JAj4EEwECACgFAlO15mMCGwMFCQeGH4AGCwkIBwMCBhUIAgkKCwQWAgMBAh4B
AheAAAoJENVw8tNOoHk9z/MP/2vzY27fmVxU5X8joiiturjlgEqQw41IYEmWv1Bw
4WVXYCHP1yu/1MC1uuvOmOd5BlI8YO2C2oyW7d1B0NorguPtz55b7jabCElekVCh
h/H4ZVThiwqgPpthRv/2npXjIm7SLSs/kuaXo6Qy2JpszwDVFw+xCRVL0tH9KJxz
HuNBeVq7abWD5fzIWkmGM9hicG/R2D0RIlco1Q0VNKy8klG+pOFOW886KnwkSPc7
JUYp1oUlHsSlhTmkLEG54cyVzrTP/XuZuyMTdtyTc3mfgW0adneAL6MARtC5UB/h
q+v9dqMf4iD3wY6ctu8KWE8Vo5MUEsNNO9EA2dUR88LwFZ3ZnnXdQkizgR/Aa515
dm17vlNkSoomYCo84eN7GOTfxWcq+iXYSWcKWT4X+h/ra+LmNndQWQBRebVUtbKE
ZDwKmiQz/5LY5EhlWcuU4lVmMSFpWXt5FR/PtzgTdZAo9QKkBjcv97LYbXvsPI69
El1BLAg+m+1UpE1L7zJT1il6PqVyEFAWBxW46wXCCkGssFsvz2yRp0PDX8A6u4yq
rTkt09uYht1is61joLDJ/kq3+6k8gJWkDOW+2NMrmf+/qcdYCMYXmrtOpg/wF27W
GMNAkbdyzgeX/MbUBCGCMdzhevRuivOI5bu4vT5s3KdshG+yhzV45bapKRd5VN+1
mZRquQINBFO15mMBEAC5UuLii9ZLz6qHfIJp35IOW9U8SOf7QFhzXR7NZ3DmJsd3
f6Nb/habQFIHjm3K9wbpj+FvaW2oWRlFVvYdzjUq6c82GUUjW1dnqgUvFwdmM835
1n0YQ2TonmyaF882RvsRZrbJ65uvy7SQxlouXaAYOdqwLsPxBEOyOnMPSktW5V2U
IWyxsNP3sADchWIGq9p5D3Y/loyIMsS1dj+TjoQZOKSj7CuRT98+8yhGAY8YBEXu
9r3I9o6mDkuPpAljuMc8r09Im6az2egtK/szKt4Hy1bpSSBZU4W/XR7XwQNywmb3
wxjmYT6Od3Mwj0jtzc3gQiH8hcEy3+BO+NNmyzFVyIwOLziwjmEcw62S57wYKUVn
HD2nglMsQa8Ve0e6ABBMEY7zGEGStva59rfgeh0jUMJiccGiUDTMs0tdkC6knYKb
u/fdRqNYFoNuDcSeLEw4DdCuP01l2W4yY+fiK6hAcL25amjzc+yYo9eaaqTn6RAT

1453

mailto:security@saltstack.com

Salt Documentation, Release 2014.7.6

bzdhHQZdpAMxY+vNT0+NhP1Zo5gYBMR65Zp/VhFsf67ijb03FUtdw9N8dHwiR2m8
vVA8kO/gCD6wS2p9RdXqrJ9JhnHYWjiVuXR+f755ZAndyQfRtowMdQIoiXuJEXYw
6XN+/BX81gJaynJYc0uw0MnxWQX+A5m8HqEsbIFUXBYXPgbwXTm7c4IHGgXXdwAR
AQABiQIlBBgBAgAPBQJTteZjAhsMBQkHhh+AAAoJENVw8tNOoHk91rcQAIhxLv4g
duF/J1Cyf6Wixz4rqslBQ7DgNztdIUMjCThg3eB6pvIzY5d3DNROmwU5JvGP1rEw
hNiJhgBDFaB0J/y28uSci+orhKDTHb/cn30IxfuAuqrv9dujvmlgM7JUswOtLZhs
5FYGa6v1RORRWhUx2PQsF6ORg22QAaagc7OlaO3BXBoiE/FWsnEQCUsc7GnnPqi7
um45OJl/pJntsBUKvivEU20fj7j1UpjmeWz56NcjXoKtEvGh99gM5W2nSMLE3aPw
vcKhS4yRyLjOe19NfYbtID8m8oshUDji0XjQ1z5NdGcf2V1YNGHU5xyK6zwyGxgV
xZqaWnbhDTu1UnYBna8BiUobkuqclb4T9k2WjbrUSmTwKixokCOirFDZvqISkgmN
r6/g3w2TRi11/LtbUciF0FN2pd7rj5mWrOBPEFYJmrB6SQeswWNhr5RIsXrQd/Ho
zvNm0HnUNEe6w5YBfA6sXQy8B0Zs6pcgLogkFB15TuHIIIpxIsVRv5z8SlEnB7HQ
Io9hZT58yjhekJuzVQB9loU0C/W0lzci/pXTt6fd9puYQe1DG37pSifRG6kfHxrR
if6nRyrfdTlawqbqdkoqFDmEybAM9/hv3BqriGahGGH/hgplNQbYoXfNwYMYaHuB
aSkJvrOQW8bpuAzgVyd7TyNFv+t1kLlfaRYJ
=wBTJ
-----END PGP PUBLIC KEY BLOCK-----

e SaltStack Security Team is available at security@saltstack.com for security-related bug reports or questions.

We request the disclosure of any security-related bugs or issues be reported non-publicly until such time as the issue
can be resolved and a security-fix release can be prepared. At that time we will release the fix and make a public
announcement with upgrade instructions and download locations.

28.1 Security response procedure

SaltStack takes security and the trust of our customers and users very seriously. Our disclosure policy is intended
to resolve security issues as quickly and safely as is possible.

1. A security report sent to security@saltstack.com is assigned to a team member. is person is the primary
contact for questions and will coordinate the fix, release, and announcement.

2. e reported issue is reproduced and confirmed. A list of affected projects and releases is made.

3. Fixes are implemented for all affected projects and releases that are actively supported. Back-ports of the fix
are made to any old releases that are actively supported.

4. Packagers are notified via the salt-packagers mailing list that an issue was reported and resolved, and that an
announcement is incoming.

5. A new release is created and pushed to all affected repositories. e release documentation provides a full
description of the issue, plus any upgrade instructions or other relevant details.

6. An announcement is made to the salt-users and salt-announce mailing lists. e announcement contains a
description of the issue and a link to the full release documentation and download locations.

28.2 Receiving security announcemnts

e fastest place to receive security announcements is via the salt-announce mailing list. is list is low-traffic.

1454 Chapter 28. Security disclosure policy

mailto:security@saltstack.com
mailto:security@saltstack.com
https://groups.google.com/forum/#!forum/salt-packagers
https://groups.google.com/forum/#!forum/salt-users
https://groups.google.com/forum/#!forum/salt-announce
https://groups.google.com/forum/#!forum/salt-announce

CHAPTER 29

Frequently Asked estions

FAQ

• Frequently Asked estions
– Is Salt open-core?
– What ports should I open on my firewall?
– I'm seeing weird behavior (including but not limited to packages not installing their users properly)
– My script runs every time I run a state.highstate. Why?
– When I run test.ping, why don't the Minions that aren't responding return anything? Returning
False would be helpful.

– How does Salt determine the Minion's id?
– I'm trying to manage packages/services but I get an error saying that the state is not available.

Why?
– I'm using gitfs and my custom modules/states/etc are not syncing. Why?
– Why aren't my custom modules/states/etc. available on my Minions?
– Module X isn't available, even though the shell command it uses is installed. Why?
– Can I run different versions of Salt on my Master and Minion?
– Does Salt support backing up managed files?
– What is the best way to restart a Salt daemon using Salt?

* Linux/Unix
* Windows

– Salting the Salt Master

29.1 Is Salt open-core?

No. Salt is 100% commied to being open-source, including all of our APIs and the `Halite' web interface which was
introduced in version 0.17.0. It is developed under the Apache 2.0 license, allowing it to be used in both open and
proprietary projects.

29.2 What ports should I open on my firewall?

Minions need to be able to connect to the Master on TCP ports 4505 and 4506. Minions do not need any inbound
ports open. More detailed information on firewall seings can be found here.

1455

https://github.com/saltstack/halite
http://www.apache.org/licenses/LICENSE-2.0.html

Salt Documentation, Release 2014.7.6

29.3 I'm seeing weird behavior (including but not limited to packages
not installing their users properly)

is is oen caused by SELinux. Try disabling SELinux or puing it in permissive mode and see if the weird behavior
goes away.

29.4 My script runs every time I run a state.highstate. Why?

You are probably using cmd.run rather than cmd.wait. A cmd.wait state will only run when there has been a
change in a state that it is watching.

A cmd.run state will run the corresponding command every time (unless it is prevented from running by the
unless or onlyif arguments).

More details can be found in the documentation for the cmd states.

29.5 When I run test.ping, why don't the Minions that aren't responding
return anything? Returning False would be helpful.

When you run test.ping the Master tells Minions to run commands/functions, and listens for the return data, printing
it to the screen when it is received. If it doesn't receive anything back, it doesn't have anything to display for that
Minion.

ere are a couple options for geing information on Minions that are not responding. One is to use the verbose
(-v) option when you run salt commands, as it will display ``Minion did not return'' for any Minions which time
out.

salt -v '*' pkg.install zsh

Another option is to use the manage.down runner:

salt-run manage.down

Also, if the Master is under heavy load, it is possible that the CLI will exit without displaying return data for all
targeted Minions. However, this doesn't mean that the Minions did not return; this only means that the Salt CLI
timed out waiting for a response. Minions will still send their return data back to the Master once the job completes.
If any expected Minions are missing from the CLI output, the jobs.list_jobs runner can be used to show the
job IDs of the jobs that have been run, and the jobs.lookup_jid runner can be used to get the return data for
that job.

salt-run jobs.list_jobs
salt-run jobs.lookup_jid 20130916125524463507

If you find that you are oen missing Minion return data on the CLI, only to find it with the jobs runners, then this
may be a sign that the worker_threads value may need to be increased in the master config file. Additionally,
running your Salt CLI commands with the -t option will make Salt wait longer for the return data before the CLI
command exits. For instance, the below command will wait up to 60 seconds for the Minions to return:

salt -t 60 '*' test.ping

1456 Chapter 29. Frequently Asked estions

Salt Documentation, Release 2014.7.6

29.6 How does Salt determine the Minion's id?

If the Minion id is not configured explicitly (using the id parameter), Salt will determine the id based on the host-
name. Exactly how this is determined varies a lile between operating systems and is described in detail here.

29.7 I'm trying tomanage packages/services but I get an error saying that
the state is not available. Why?

Salt detects the Minion's operating system and assigns the correct package or service management module based
on what is detected. However, for certain custom spins and OS derivatives this detection fails. In cases like this, an
issue should be opened on our tracker, with the following information:

1. e output of the following command:

salt <minion_id> grains.items | grep os

2. e contents of /etc/lsb-release, if present on the Minion.

29.8 I'm using gitfs and my custom modules/states/etc are not syncing.
Why?

In versions of Salt 0.16.3 or older, there is a bug in gitfs which can affect the syncing of custom types. Upgrading to
0.16.4 or newer will fix this.

29.9 Why aren't my custom modules/states/etc. available on my Min-
ions?

Custom modules are only synced to Minions when state.highstate, saltutil.sync_modules, or
saltutil.sync_all is run. Similarly, custom states are only synced to Minions when state.highstate,
saltutil.sync_states, or saltutil.sync_all is run.

Other custom types (renderers, outpuers, etc.) have similar behavior, see the documentation for the saltutil
module for more information.

29.10 Module X isn't available, even though the shell command it uses is
installed. Why?

is is most likely a PATH issue. Did you custom-compile the soware which the module requires?
RHEL/CentOS/etc. in particular override the root user's path in /etc/init.d/functions, seing it to
/sbin:/usr/sbin:/bin:/usr/bin, making soware installed into /usr/local/bin unavailable to Salt
when the Minion is started using the initscript. In version 2014.1.0, Salt will have a beer solution for these sort of
PATH-related issues, but recompiling the soware to install it into a location within the PATH should resolve the
issue in the meantime. Alternatively, you can create a symbolic link within the PATH using a file.symlink
state.

29.6. How does Salt determine the Minion's id? 1457

https://github.com/saltstack/salt/issues

Salt Documentation, Release 2014.7.6

/usr/bin/foo:
file.symlink:

- target: /usr/local/bin/foo

29.11 Can I run different versions of Salt on my Master and Minion?

is depends on the versions. In general, it is recommended that Master and Minion versions match.

When upgrading Salt, the master(s) should always be upgraded first. Backwards compatibility for minions running
newer versions of salt than their masters is not guaranteed.

Whenever possible, backwards compatibility between new masters and old minions will be preserved. Generally,
the only exception to this policy is in case of a security vulnerability.

Recent examples of backwards compatibility breakage include the 0.17.1 release (where all backwards compatibility
was broken due to a security fix), and the 2014.1.0 release (which retained compatibility between 2014.1.0 masters
and 0.17 minions, but broke compatibility for 2014.1.0 minions and older masters).

29.12 Does Salt support backing up managed files?

Yes. Salt provides an easy to use addition to your file.managed states that allow you to back up files via backup_mode,
backup_mode can be configured on a per state basis, or in the minion config (note that if set in the minion config
this would simply be the default method to use, you still need to specify that the file should be backed up!).

29.13 What is the best way to restart a Salt daemon using Salt?

Restarting Salt using Salt without having the restart interrupt the whole process is a tricky problem to solve. We're
still working on it but in the meantime a good way is to use the system scheduler with a short interval. e following
example is a state that will always execute at the very end of a state run.

29.13.1 Linux/Unix

salt-minion-reload:
cmd.run:

- name: echo service salt-minion restart | at now + 1 minute
- order: last

To ensure that at is installed and atd is running, the following states can be used (be sure to double-check the package
name and service name for the distro the minion is running, in case they differ from the example below.

at:
pkg.installed:

- name: at
service.running:

- name: atd
- enable: True

An alternatvie to using the atd daemon is to fork and disown the process.

1458 Chapter 29. Frequently Asked estions

Salt Documentation, Release 2014.7.6

restart_minion:
cmd.run:

- name: |
nohup /bin/sh -c 'sleep 10 && salt-call --local service.restart salt-minion'

- python_shell: True
- order: last

29.13.2 Windows

schedule-start:
cmd.run:

- name: at (Get-Date).AddMinutes(1).ToString("HH:mm") cmd /c "net start salt-minion"
- shell: powershell
- order: last

service.dead:
- name: salt-minion
- require:

- cmd: schedule-start

29.14 Salting the Salt Master

In order to configure a master server via states, the Salt master can also be ``salted'' in order to enforce state on the
Salt master as well as the Salt minions. Salting the Salt master requires a Salt minion to be installed on the same
machine as the Salt master. Once the Salt minion is installed, the minion configuration file must be pointed to the
local Salt master:

master: 127.0.0.1

Once the Salt master has been ``salted'' with a Salt minion, it can be targeted just like any other minion. If the
minion on the salted master is running, the minion can be targeted via any usual salt command. Additionally, the
salt-call command can execute operations to enforce state on the salted master without requiring the minion
to be running.

More information about salting the Salt master can be found in the salt-formula for salt itself:

hps://github.com/saltstack-formulas/salt-formula

29.14. Salting the Salt Master 1459

https://github.com/saltstack-formulas/salt-formula

Salt Documentation, Release 2014.7.6

1460 Chapter 29. Frequently Asked estions

CHAPTER 30

Glossary

Auto-Order e evaluation of states in the order that they are defined in a SLS file. See also: ordering.

Bootstrap A stand-alone Salt project which can download and install a Salt master and/or a Salt minion onto a host.
See also: salt-bootstrap <hps://github.com/saltstack/salt-bootstrap>.

Compound Mater A combination of many target definitions that can be combined with boolean operators. See
also: targeting.

EAuth Shorthand for `external authentication'. A system for calling to a system outside of Salt in order to au-
thenticate users and determine if they are allowed to issue particular commands to Salt. See also: external
auth.

Environment A directory tree containing state files which can be applied to minions. See also: top file.

Execution Module A Python module that contains execution functions which directly perform various system-
management tasks on a server. Salt ships with a number of execution modules but users can also write their
own execution modules to perform specialized tasks. See also: the list of execution modules.

Execution Function A Python function inside an Execution Module that may take arguments and performs specific
system-management tasks. See also: the list of execution modules.

External Job Cae An external data-store that can archive information about jobs that have been run. A default
returner. See also: ext_job_cache, the list of returners.

External Pillar Amodule that accepts arbitrary arguments and returns a dictionary. e dictionary is automatically
added to a pillar for a minion.

Event A notice emied onto an event bus. Events are oen driven by requests for actions to occur on a minion or
master and the results of those actions. See also: Salt Reactor .

File Server A local or remote location for storing both Salt-specific files such as top files or SLS files as well as files
that can be distributed to minions, such as system configuration files. See also: Salt's file server .

Grain A key-value pair which contains a fact about a system, such as its hostname, network addresses. See also:
targeting with grains.

Halite e Salt GUI. See also: Halite.

Jinja A templating language which allows variables and simple logic to be dynamically inserted into static text files
when they are rendered. See also: Salt's Jinja documentation.

Job e complete set of tasks to be performed by the execution of a Salt command are a single job. See also: jobs
runner.

Job ID A unique identifier to represent a given job.

Highdata e data structure in a SLS file the represents a set of state declarations. See also: state layers.

1461

https://github.com/saltstack/halite

Salt Documentation, Release 2014.7.6

Highstate e collection of states to be applied to a system. See also: state layers.

Low State e collection of processed states aer requisites and order are evaluated. See also: state layers.

Master A central Salt daemon which from which commands can be issued to listening minions.

Masterless A minion which does not require a Salt master to operate. All configuration is local. See also:
file_client.

Master Tops A system for the master that allows hooks into external systems to generate top file data.

Mine A facility to collect arbitrary data from minions and store that data on the master. is data is then available
to all other minions. [Sometimes referred to as Salt Mine.] See also: Salt Mine.

Minion A server running a Salt minion daemon which can listen to commands from a master and perform the
requested tasks. Generally, minions are servers which are to be controlled using Salt.

Minion ID A globally unique identifier for a minion. See also: id.

Multi-Master e ability for a minion to be actively connected to multiple Salt masters at the same time in high-
availability environments.

Node Group A pre-defined group of minions declared in the master configuration file. See also: targeting.

Outputter A formaer for defining the characteristics of output data from a Salt command. See also: list of output-
ters.

Overstate A system by which a Master can issue function calls to minions in a deterministic order. See also: over-
state.

Peer Communication e ability for minions to communicate directly with other minions instead of brokering
commands through the Salt master. See also: peer communication.

Pillar A simple key-value store for user-defined data to be made available to a minion. Oen used to store and
distribute sensitive data to minions. See also: Pillar , list of Pillar modules.

Proxy Minion A minion which can control devices that are unable to run a Salt minion locally, such as routers and
switches.

PyDSL A Pythonic domain-specific-language used as a Salt renderer. PyDSL can be used in cases where adding
pure Python into SLS files is beneficial. See also: PyDSL.

Reactor An interface for listening to events and defining actions that Salt should taken upon receipt of given events.
See also: Reactor .

Render Pipe Allows SLS files to be rendered by multiple renderers, with each renderer receiving the output of the
previous. See also: composing renderers.

Renderer Responsible for translating a given data serialization format such as YAML or JSON into a Python data
structure that can be consumed by Salt. See also: list of renderers.

Returner Allows for the results of a Salt command to be sent to a given data-store such as a database or log file for
archival. See also: list of returners.

Roster A flat-file list of target hosts. (Currently only used by salt-ssh.)

Runner Module A module containing a set of runner functions. See also: list of runner modules.

Runner Function A function which is is called by the salt-run command and executes on the master instead of
on a minion. See also: Runner Module.

Salt Cloud A suite of tools used to create and deploy systems on many hosted cloud providers. See also: salt-cloud.

Salt SSH A configuration management and remote orchestration system that does not require that any soware
besides SSH be installed on systems to be controlled.

1462 Chapter 30. Glossary

Salt Documentation, Release 2014.7.6

Salt in A subset of the normal Salt distribution that does not include any transport routines. A Salt in bundle
can be dropped onto a host and used directly without any requirement that the host be connected to a network.
Used by Salt SSH. See also: thin runner.

Salt Virt Used to manage the creation and deployment of virtual machines onto a set of host machines. Oen used
to create and deploy private clouds. See also: virt runner.

SLS Module Contains a set of state declarations.

State Declaration A data structure which contains a unique ID and describes one or more states of a system such
as ensuring that a package is installed or a user is defined. See also: highstate structure.

State Module A module which contains a set of state functions. See also: list of state modules.

State Function A function contained inside a state module which can manages the application of a particular state
to a system. State functions frequently call out to one or more execution modules to perform a given task.

State Run e application of a set of states on a set of systems.

State Compiler Translates highdata into lowdata.

Syndic A forwarder which can relay messages between tiered masters. See also: Syndic.

Target Minion(s) to which a given salt command will apply. See also: targeting.

Top File Determines which SLS files should be applied to various systems and organizes those groups of systems
into environments. See also: top file, list of master top modules.

Worker A master process which can send notices and receive replies from minions. See also: worker_threads.

__virtual__ A function in a module that is called on module load to determine whether or not the module should
be available to a minion. is function commonly contains logic to determine if all requirements for a module
are available, such as external libraries.

1463

Salt Documentation, Release 2014.7.6

1464 Chapter 30. Glossary

Salt Module Index

a
salt.auth.auto, 297
salt.auth.keystone, 297
salt.auth.ldap, 297
salt.auth.pam, 298
salt.auth.pki, 299
salt.auth.stormpath_mod, 299

c
salt.cloud.clouds.aliyun, 334
salt.cloud.clouds.botocore_aws, 336
salt.cloud.clouds.cloudstack, 337
salt.cloud.clouds.digital_ocean, 338
salt.cloud.clouds.ec2, 340
salt.cloud.clouds.gce, 346
salt.cloud.clouds.gogrid, 350
salt.cloud.clouds.joyent, 351
salt.cloud.clouds.libcloud_aws, 355
salt.cloud.clouds.linode, 356
salt.cloud.clouds.lxc, 358
salt.cloud.clouds.msazure, 359
salt.cloud.clouds.nova, 360
salt.cloud.clouds.opennebula, 363
salt.cloud.clouds.openstack, 364
salt.cloud.clouds.parallels, 367
salt.cloud.clouds.proxmox, 368
salt.cloud.clouds.rackspace, 370
salt.cloud.clouds.saltify, 372
salt.cloud.clouds.softlayer, 372
salt.cloud.clouds.softlayer_hw, 373
salt.cloud.clouds.vsphere, 375

e
salt.exceptions, 462

f
salt.fileserver.gitfs, 453
salt.fileserver.hgfs, 454
salt.fileserver.minionfs, 455
salt.fileserver.roots, 456

salt.fileserver.s3fs, 457
salt.fileserver.svnfs, 458

l
salt.log.handlers.logstash_mod, 445
salt.log.handlers.sentry_mod, 446

m
salt.modules.aliases, 471
salt.modules.alternatives, 472
salt.modules.apache, 473
salt.modules.aptpkg, 474
salt.modules.archive, 481
salt.modules.at, 483
salt.modules.augeas_cfg, 484
salt.modules.aws_sqs, 485
salt.modules.blockdev, 487
salt.modules.bluez, 487
salt.modules.boto_asg, 489
salt.modules.boto_cloudwatch, 491
salt.modules.boto_elasticache, 493
salt.modules.boto_elb, 495
salt.modules.boto_iam, 498
salt.modules.boto_route53, 500
salt.modules.boto_secgroup, 501
salt.modules.boto_sqs, 503
salt.modules.brew, 504
salt.modules.bridge, 506
salt.modules.bsd_shadow, 508
salt.modules.cassandra, 508
salt.modules.chef, 510
salt.modules.chocolatey, 511
salt.modules.cloud, 514
salt.modules.cmdmod, 516
salt.modules.composer, 520
salt.modules.config, 522
salt.modules.cp, 523
salt.modules.cron, 526
salt.modules.daemontools, 528
salt.modules.darwin_sysctl, 529
salt.modules.data, 530

1465

Salt Documentation, Release 2014.7.6

salt.modules.ddns, 531
salt.modules.deb_apache, 532
salt.modules.debconfmod, 533
salt.modules.debian_ip, 533
salt.modules.debian_service, 535
salt.modules.defaults, 537
salt.modules.dig, 537
salt.modules.disk, 538
salt.modules.djangomod, 539
salt.modules.dnsmasq, 540
salt.modules.dnsutil, 540
salt.modules.dockerio, 542
salt.modules.dpkg, 553
salt.modules.ebuild, 553
salt.modules.eix, 558
salt.modules.environ, 558
salt.modules.eselect, 559
salt.modules.etcd_mod, 561
salt.modules.event, 562
salt.modules.extfs, 563
salt.modules.file, 565
salt.modules.freebsd_sysctl, 584
salt.modules.freebsdjail, 585
salt.modules.freebsdkmod, 586
salt.modules.freebsdpkg, 587
salt.modules.freebsdports, 590
salt.modules.freebsdservice, 592
salt.modules.gem, 593
salt.modules.genesis, 595
salt.modules.gentoo_service, 596
salt.modules.gentoolkitmod, 598
salt.modules.git, 599
salt.modules.glance, 605
salt.modules.glusterfs, 606
salt.modules.gnomedesktop, 608
salt.modules.grains, 609
salt.modules.groupadd, 613
salt.modules.grub_legacy, 614
salt.modules.guestfs, 614
salt.modules.hadoop, 615
salt.modules.haproxyconn, 615
salt.modules.hashutil, 617
salt.modules.hg, 618
salt.modules.hosts, 619
salt.modules.htpasswd, 620
salt.modules.img, 621
salt.modules.incron, 621
salt.modules.influx, 622
salt.modules.ini_manage, 626
salt.modules.introspect, 628
salt.modules.ipset, 628
salt.modules.iptables, 630
salt.modules.junos, 634
salt.modules.key, 634

salt.modules.keyboard, 635
salt.modules.keystone, 635
salt.modules.kmod, 641
salt.modules.launchctl, 642
salt.modules.layman, 643
salt.modules.ldapmod, 643
salt.modules.linux_acl, 644
salt.modules.linux_lvm, 645
salt.modules.linux_sysctl, 646
salt.modules.localemod, 647
salt.modules.locate, 648
salt.modules.logadm, 649
salt.modules.logrotate, 649
salt.modules.lvs, 650
salt.modules.lxc, 652
salt.modules.mac_group, 660
salt.modules.mac_user, 661
salt.modules.macports, 662
salt.modules.makeconf, 665
salt.modules.match, 672
salt.modules.mdadm, 674
salt.modules.memcached, 676
salt.modules.mine, 677
salt.modules.mod_random, 678
salt.modules.modjk, 679
salt.modules.mongodb, 682
salt.modules.monit, 683
salt.modules.moosefs, 684
salt.modules.mount, 685
salt.modules.munin, 686
salt.modules.mysql, 687
salt.modules.nagios, 693
salt.modules.netbsd_sysctl, 695
salt.modules.netbsdservice, 695
salt.modules.network, 697
salt.modules.nfs3, 700
salt.modules.nftables, 700
salt.modules.nginx, 705
salt.modules.nova, 705
salt.modules.npm, 710
salt.modules.omapi, 711
salt.modules.openbsdpkg, 712
salt.modules.openbsdservice, 713
salt.modules.openstack_config, 715
salt.modules.oracle, 716
salt.modules.osxdesktop, 717
salt.modules.pacman, 718
salt.modules.pagerduty, 721
salt.modules.pam, 721
salt.modules.parted, 722
salt.modules.pecl, 725
salt.modules.pillar, 726
salt.modules.pip, 727
salt.modules.pkg, 466

1466 Salt Module Index

Salt Documentation, Release 2014.7.6

salt.modules.pkg_resource, 731
salt.modules.pkgin, 732
salt.modules.pkgng, 735
salt.modules.pkgutil, 746
salt.modules.portage_config, 748
salt.modules.postfix, 749
salt.modules.postgres, 750
salt.modules.poudriere, 754
salt.modules.powerpath, 756
salt.modules.ps, 756
salt.modules.publish, 759
salt.modules.puppet, 761
salt.modules.pw_group, 762
salt.modules.pw_user, 763
salt.modules.pyenv, 764
salt.modules.qemu_img, 766
salt.modules.qemu_nbd, 766
salt.modules.quota, 767
salt.modules.rabbitmq, 768
salt.modules.raet_publish, 771
salt.modules.rbenv, 772
salt.modules.rdp, 774
salt.modules.redismod, 774
salt.modules.reg, 778
salt.modules.rest_package, 779
salt.modules.rest_sample, 779
salt.modules.rest_service, 779
salt.modules.ret, 780
salt.modules.rh_ip, 780
salt.modules.rh_service, 782
salt.modules.riak, 784
salt.modules.rpm, 784
salt.modules.rsync, 785
salt.modules.rvm, 786
salt.modules.s3, 789
salt.modules.saltcloudmod, 790
salt.modules.saltutil, 791
salt.modules.schedule, 794
salt.modules.seed, 796
salt.modules.selinux, 797
salt.modules.sensors, 798
salt.modules.serverdensity_device, 798
salt.modules.service, 799
salt.modules.shadow, 800
salt.modules.smartos_imgadm, 802
salt.modules.smartos_vmadm, 803
salt.modules.smf, 804
salt.modules.smtp, 806
salt.modules.softwareupdate, 807
salt.modules.solaris_group, 809
salt.modules.solaris_shadow, 809
salt.modules.solaris_user, 810
salt.modules.solarispkg, 812
salt.modules.solr, 815

salt.modules.sqlite3, 821
salt.modules.ssh, 822
salt.modules.state, 824
salt.modules.status, 827
salt.modules.supervisord, 830
salt.modules.svn, 832
salt.modules.swift, 835
salt.modules.sysbench, 836
salt.modules.sysmod, 837
salt.modules.system, 840
salt.modules.systemd, 840
salt.modules.test, 843
salt.modules.timezone, 846
salt.modules.tls, 847
salt.modules.tomcat, 851
salt.modules.twilio_notify, 855
salt.modules.upstart, 855
salt.modules.useradd, 858
salt.modules.uwsgi, 859
salt.modules.varnish, 860
salt.modules.virt, 861
salt.modules.virtualenv_mod, 867
salt.modules.win_autoruns, 868
salt.modules.win_disk, 868
salt.modules.win_dns_client, 869
salt.modules.win_file, 869
salt.modules.win_firewall, 874
salt.modules.win_groupadd, 875
salt.modules.win_ip, 875
salt.modules.win_network, 877
salt.modules.win_ntp, 879
salt.modules.win_path, 879
salt.modules.win_pkg, 880
salt.modules.win_repo, 882
salt.modules.win_servermanager, 883
salt.modules.win_service, 884
salt.modules.win_shadow, 886
salt.modules.win_status, 886
salt.modules.win_system, 887
salt.modules.win_timezone, 889
salt.modules.win_update, 890
salt.modules.win_useradd, 892
salt.modules.xapi, 894
salt.modules.xmpp, 898
salt.modules.yumpkg, 899
salt.modules.zcbuildout, 907
salt.modules.zfs, 909
salt.modules.znc, 910
salt.modules.zpool, 910
salt.modules.zypper, 911

n
salt.netapi.rest_cherrypy.app, 915
salt.netapi.rest_cherrypy.wsgi, 917

Salt Module Index 1467

Salt Documentation, Release 2014.7.6

salt.netapi.rest_tornado.saltnado, 932
salt.netapi.rest_tornado.saltnado_websockets,

933
salt.netapi.rest_wsgi, 939

o
salt.output.grains, 941
salt.output.highstate, 942
salt.output.json_out, 943
salt.output.key, 943
salt.output.nested, 943
salt.output.newline_values_only, 944
salt.output.no_out, 945
salt.output.no_return, 945
salt.output.overstatestage, 946
salt.output.pprint_out, 946
salt.output.raw, 946
salt.output.txt, 946
salt.output.virt_query, 947
salt.output.yaml_out, 947

p
salt.pillar.cmd_json, 949
salt.pillar.cmd_yaml, 950
salt.pillar.cmd_yamlex, 950
salt.pillar.cobbler, 950
salt.pillar.django_orm, 950
salt.pillar.etcd_pillar, 952
salt.pillar.foreman, 953
salt.pillar.git_pillar, 954
salt.pillar.hiera, 955
salt.pillar.libvirt, 955
salt.pillar.mongo, 955
salt.pillar.mysql, 957
salt.pillar.pillar_ldap, 960
salt.pillar.puppet, 960
salt.pillar.reclass_adapter, 960
salt.pillar.redismod, 961
salt.pillar.s3, 961
salt.pillar.svn_pillar, 962
salt.pillar.virtkey, 963

r
salt.renderers.gpg, 966
salt.renderers.jinja, 967
salt.renderers.json, 971
salt.renderers.mako, 972
salt.renderers.msgpack, 972
salt.renderers.py, 972
salt.renderers.pydsl, 973
salt.renderers.pyobjects, 978
salt.renderers.stateconf, 981
salt.renderers.wempy, 985
salt.renderers.yaml, 986

salt.renderers.yamlex, 987
salt.returners.carbon_return, 989
salt.returners.cassandra_return, 990
salt.returners.couchbase_return, 991
salt.returners.couchdb_return, 991
salt.returners.elasticsearch_return, 992
salt.returners.etcd_return, 992
salt.returners.local, 993
salt.returners.local_cache, 994
salt.returners.memcache_return, 994
salt.returners.mongo_future_return, 995
salt.returners.mongo_return, 995
salt.returners.multi_returner, 996
salt.returners.mysql, 996
salt.returners.odbc, 998
salt.returners.postgres, 1000
salt.returners.redis_return, 1001
salt.returners.sentry_return, 1002
salt.returners.smtp_return, 1002
salt.returners.sqlite3_return, 1003
salt.returners.syslog_return, 1004
salt.roster.flat, 1005
salt.roster.scan, 1005
salt.runners.cache, 1006
salt.runners.cloud, 1007
salt.runners.doc, 1008
salt.runners.error, 1008
salt.runners.fileserver, 1009
salt.runners.git_pillar, 1012
salt.runners.jobs, 1012
salt.runners.launchd, 1012
salt.runners.lxc, 1013
salt.runners.manage, 1014
salt.runners.mine, 1016
salt.runners.network, 1016
salt.runners.pillar, 1017
salt.runners.queue, 1017
salt.runners.search, 1019
salt.runners.state, 1019
salt.runners.survey, 1022
salt.runners.thin, 1023
salt.runners.virt, 1023
salt.runners.winrepo, 1024

s
salt.states.alias, 1076
salt.states.alternatives, 1077
salt.states.apache, 1078
salt.states.apache_module, 1079
salt.states.apt, 1079
salt.states.archive, 1079
salt.states.at, 1080
salt.states.augeas, 1081
salt.states.aws_sqs, 1083

1468 Salt Module Index

Salt Documentation, Release 2014.7.6

salt.states.blockdev, 1084
salt.states.boto_asg, 1084
salt.states.boto_cloudwatch_alarm, 1087
salt.states.boto_elasticache, 1089
salt.states.boto_elb, 1091
salt.states.boto_iam_role, 1093
salt.states.boto_lc, 1095
salt.states.boto_route53, 1097
salt.states.boto_secgroup, 1099
salt.states.boto_sqs, 1101
salt.states.cloud, 1102
salt.states.cmd, 1103
salt.states.composer, 1110
salt.states.cron, 1111
salt.states.ddns, 1114
salt.states.debconfmod, 1115
salt.states.disk, 1116
salt.states.dockerio, 1117
salt.states.environ, 1121
salt.states.eselect, 1122
salt.states.event, 1122
salt.states.file, 1123
salt.states.gem, 1142
salt.states.git, 1142
salt.states.glusterfs, 1145
salt.states.gnomedesktop, 1146
salt.states.grains, 1147
salt.states.group, 1149
salt.states.hg, 1150
salt.states.host, 1150
salt.states.htpasswd, 1151
salt.states.incron, 1151
salt.states.influxdb_database, 1153
salt.states.influxdb_user, 1153
salt.states.ini_manage, 1154
salt.states.ipset, 1155
salt.states.iptables, 1157
salt.states.keyboard, 1161
salt.states.keystone, 1161
salt.states.kmod, 1164
salt.states.layman, 1164
salt.states.libvirt, 1165
salt.states.locale, 1165
salt.states.lvm, 1165
salt.states.lvs_server, 1166
salt.states.lvs_service, 1167
salt.states.lxc, 1168
salt.states.makeconf, 1170
salt.states.mdadm, 1170
salt.states.memcached, 1171
salt.states.modjk, 1171
salt.states.modjk_worker, 1172
salt.states.module, 1173
salt.states.mongodb_database, 1174

salt.states.mongodb_user, 1175
salt.states.mount, 1175
salt.states.mysql_database, 1177
salt.states.mysql_grants, 1177
salt.states.mysql_query, 1179
salt.states.mysql_user, 1179
salt.states.network, 1181
salt.states.nftables, 1184
salt.states.npm, 1186
salt.states.ntp, 1188
salt.states.openstack_config, 1188
salt.states.pagerduty, 1189
salt.states.pecl, 1189
salt.states.pip_state, 1190
salt.states.pkg, 1193
salt.states.pkgng, 1198
salt.states.pkgrepo, 1198
salt.states.portage_config, 1201
salt.states.ports, 1201
salt.states.postgres_database, 1202
salt.states.postgres_extension, 1203
salt.states.postgres_group, 1204
salt.states.postgres_user, 1206
salt.states.powerpath, 1207
salt.states.process, 1207
salt.states.pyenv, 1208
salt.states.quota, 1209
salt.states.rabbitmq_cluster, 1209
salt.states.rabbitmq_plugin, 1210
salt.states.rabbitmq_policy, 1210
salt.states.rabbitmq_user, 1211
salt.states.rabbitmq_vhost, 1212
salt.states.rbenv, 1212
salt.states.rdp, 1214
salt.states.redismod, 1214
salt.states.reg, 1215
salt.states.rvm, 1215
salt.states.saltmod, 1217
salt.states.schedule, 1220
salt.states.selinux, 1221
salt.states.serverdensity_device, 1222
salt.states.service, 1223
salt.states.smtp, 1224
salt.states.ssh_auth, 1225
salt.states.ssh_known_hosts, 1226
salt.states.stateconf, 1227
salt.states.status, 1227
salt.states.supervisord, 1227
salt.states.svn, 1228
salt.states.sysctl, 1229
salt.states.test, 1230
salt.states.timezone, 1231
salt.states.tomcat, 1232
salt.states.user, 1234

Salt Module Index 1469

Salt Documentation, Release 2014.7.6

salt.states.virtualenv_mod, 1236
salt.states.win_dns_client, 1236
salt.states.win_firewall, 1237
salt.states.win_network, 1237
salt.states.win_path, 1238
salt.states.win_servermanager, 1239
salt.states.win_system, 1239
salt.states.win_update, 1239
salt.states.winrepo, 1242
salt.states.xmpp, 1242
salt.states.zcbuildout, 1242
salt.states.zk_concurrency, 1244

t
salt.tops.cobbler, 1250
salt.tops.ext_nodes, 1250
salt.tops.mongo, 1251
salt.tops.reclass_adapter, 1252

u
salt.utils.aggregation, 459
salt.utils.serializers, 464
salt.utils.serializers.json, 464
salt.utils.serializers.msgpack, 465
salt.utils.serializers.yaml, 465

w
salt.wheel.config, 1252
salt.wheel.error, 1253
salt.wheel.file_roots, 1253
salt.wheel.key, 1253
salt.wheel.pillar_roots, 1254

1470 Salt Module Index

Index

Symbols
--args-separator=ARGS_SEPARATOR

salt command line option, 306
--async

salt command line option, 306
--auto-create

salt-key command line option, 316
--file-root=FILE_ROOT

salt-call command line option, 304
--force-color

salt command line option, 308, 321
salt-call command line option, 305
salt-cloud command line option, 311
salt-key command line option, 314

--gen-keys-dir=GEN_KEYS_DIR
salt-key command line option, 315

--gen-keys=GEN_KEYS
salt-key command line option, 315

--gen-signature
salt-key command line option, 315

--grain-pcre
salt command line option, 307, 320
salt-cp command line option, 312

--hard-crash
salt-call command line option, 303
salt-key command line option, 313
salt-run command line option, 319

--id=ID
salt-call command line option, 304

--include-all
salt-key command line option, 315

--key-deploy
command line option, 320

--keysize=KEYSIZE
salt-key command line option, 315

--list-images=LIST_IMAGES
salt-cloud command line option, 310

--list-locations=LIST_LOCATIONS
salt-cloud command line option, 310

--list-providers

salt-cloud command line option, 310
--list-sizes=LIST_SIZES

salt-cloud command line option, 310
--local

salt-call command line option, 303
--log-file-level=LOG_LEVEL_LOGFILE

salt command line option, 306, 321
salt-api command line option, 323
salt-call command line option, 304
salt-cp command line option, 312
salt-key command line option, 314
salt-master command line option, 317
salt-minion command line option, 318
salt-run command line option, 319
salt-syndic command line option, 322

--log-file=LOG_FILE
salt command line option, 306, 321
salt-api command line option, 323
salt-call command line option, 304
salt-cp command line option, 312
salt-key command line option, 314
salt-master command line option, 317
salt-minion command line option, 318
salt-run command line option, 319
salt-syndic command line option, 322

--master=MASTER
salt-call command line option, 303

--max-procs
command line option, 320

--metadata
salt-call command line option, 304

--no-color
salt command line option, 308, 321
salt-call command line option, 305
salt-cloud command line option, 311
salt-key command line option, 314

--out
salt command line option, 307, 321
salt-call command line option, 304
salt-cloud command line option, 310
salt-key command line option, 314

1471

Salt Documentation, Release 2014.7.6

--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE
salt command line option, 308, 321
salt-call command line option, 304
salt-cloud command line option, 311
salt-key command line option, 314

--out-indent OUTPUT_INDENT, --output-indent OUT-
PUT_INDENT

salt command line option, 308, 321
salt-call command line option, 304
salt-cloud command line option, 310
salt-key command line option, 314

--passwd
command line option, 320

--pid-file PIDFILE
salt-master command line option, 316
salt-minion command line option, 317
salt-syndic command line option, 322

--pid-file=PIDFILE
salt-api command line option, 323

--pillar-root=PILLAR_ROOT
salt-call command line option, 304

--priv
command line option, 319

--priv=PRIV
salt-key command line option, 315

--pub=PUB
salt-key command line option, 315

--refresh, --refresh-cache
command line option, 320

--refresh-grains-cache
salt-call command line option, 304

--retcode-passthrough
salt-call command line option, 304

--return RETURNER
salt-call command line option, 303

--return=RETURNER
salt command line option, 306

--roster
command line option, 319

--roster-file
command line option, 320

--rotate-aes-key=ROTATE_AES_KEY
salt-key command line option, 314

--script-args=SCRIPT_ARGS
salt-cloud command line option, 309

--set-password=<USERNAME> <PROVIDER>
salt-cloud command line option, 310

--show-deploy-args
salt-cloud command line option, 309

--show-timeout
salt command line option, 306

--signature-path=SIGNATURE_PATH
salt-key command line option, 315

--skip-grains

salt-call command line option, 304
--state-output=STATE_OUTPUT

salt command line option, 306
--subset=SUBSET

salt command line option, 306
--version

salt command line option, 305, 320
salt-api command line option, 323
salt-call command line option, 303
salt-cloud command line option, 308
salt-cp command line option, 312
salt-key command line option, 313
salt-master command line option, 316
salt-minion command line option, 317
salt-run command line option, 318
salt-syndic command line option, 322

--versions-report
salt command line option, 305, 320
salt-api command line option, 323
salt-call command line option, 303
salt-cloud command line option, 308
salt-cp command line option, 312
salt-key command line option, 313
salt-master command line option, 316
salt-minion command line option, 317
salt-run command line option, 318
salt-syndic command line option, 322

-A, --accept-all
salt-key command line option, 315

-C, --compound
salt command line option, 307

-D, --delete-all
salt-key command line option, 315

-E, --pcre
salt command line option, 307, 320
salt-cp command line option, 312

-F, --finger-all
salt-key command line option, 315

-F, --full-query
salt-cloud command line option, 310

-G, --grain
salt command line option, 307, 320
salt-cp command line option, 312

-H, --hard
salt-cloud command line option, 309

-I, --pillar
salt command line option, 307

-L LOCATION, --location=LOCATION
salt-cloud command line option, 309

-L, --list
salt command line option, 307, 320
salt-cp command line option, 312

-L, --list-all
salt-key command line option, 315

1472 Index

Salt Documentation, Release 2014.7.6

-N, --nodegroup
salt command line option, 307, 320
salt-cp command line option, 313

-P, --parallel
salt-cloud command line option, 309

-P, --print-all
salt-key command line option, 315

-Q, --query
salt-cloud command line option, 309, 310

-R, --range
salt command line option, 307, 320
salt-cp command line option, 313

-R, --reject-all
salt-key command line option, 315

-S, --ipcidr
salt command line option, 307

-S, --select-query
salt-cloud command line option, 310

-T, --make-token
salt command line option, 306

-a ACCEPT, --accept=ACCEPT
salt-key command line option, 315

-a ACTION, --action=ACTION
salt-cloud command line option, 309

-a EAUTH, --auth=EAUTH
salt command line option, 306

-b BATCH, --batch-size=BATCH
salt command line option, 306

-c CONFIG_DIR, --config-dir=CONFIG_dir
salt command line option, 305, 320
salt-api command line option, 323
salt-call command line option, 303
salt-cloud command line option, 309
salt-cp command line option, 312
salt-key command line option, 313
salt-master command line option, 316
salt-minion command line option, 317
salt-run command line option, 318
salt-syndic command line option, 322

-d DELETE, --delete=DELETE
salt-key command line option, 315

-d, --daemon
salt-api command line option, 323
salt-master command line option, 316
salt-minion command line option, 317
salt-syndic command line option, 322

-d, --destroy
salt-cloud command line option, 309

-d, --doc, --documentation
salt command line option, 306
salt-call command line option, 303
salt-run command line option, 319

-f FINGER, --finger=FINGER
salt-key command line option, 315

-f <FUNC-NAME> <PROVIDER>, --function=<FUNC-
NAME> <PROVIDER>

salt-cloud command line option, 309
-g, --grains

salt-call command line option, 303
-h, --help

salt command line option, 305, 320
salt-api command line option, 323
salt-call command line option, 303
salt-cloud command line option, 308
salt-cp command line option, 312
salt-key command line option, 313
salt-master command line option, 316
salt-minion command line option, 317
salt-run command line option, 318
salt-syndic command line option, 322

-i, --ignore-host-keys
command line option, 320

-k, --keep-tmp
salt-cloud command line option, 309

-l ARG, --list=ARG
salt-key command line option, 314

-l LOG_LEVEL, --log-level=LOG_LEVEL
salt command line option, 306, 321
salt-api command line option, 323
salt-call command line option, 304
salt-cp command line option, 312
salt-master command line option, 317
salt-minion command line option, 318
salt-run command line option, 319
salt-syndic command line option, 322

-m MAP, --map=MAP
salt-cloud command line option, 309

-m MODULE_DIRS, --module-dirs=MODULE_DIRS
salt-call command line option, 303

-p PRINT, --print=PRINT
salt-key command line option, 315

-p PROFILE, --profile=PROFILE
salt-cloud command line option, 309

-q, --quiet
salt-key command line option, 313

-r REJECT, --reject=REJECT
salt-key command line option, 315

-r, --raw, --raw-shell
command line option, 319

-s, --static
salt command line option, 306

-t TIMEOUT, --timeout=TIMEOUT
salt command line option, 305
salt-cp command line option, 312
salt-run command line option, 318

-u USER, --user=USER
salt-key command line option, 313
salt-master command line option, 316

Index 1473

Salt Documentation, Release 2014.7.6

salt-minion command line option, 317
salt-syndic command line option, 322

-u, --update-bootstrap
salt-cloud command line option, 309

-v VERBOSE, --verbose
salt command line option, 306

-y, --assume-yes
salt-cloud command line option, 309

-y, --yes
salt-key command line option, 313

__virtual__, 1463

A
A() (in module salt.modules.dig), 537
A() (in module salt.modules.dnsutil), 540
a2dismod() (in module salt.modules.deb_apache), 532
a2dissite() (in module salt.modules.deb_apache), 532
a2enmod() (in module salt.modules.deb_apache), 532
a2ensite() (in module salt.modules.deb_apache), 532
AAAA() (in module salt.modules.dig), 537
AAAA() (in module salt.modules.dnsutil), 540
abort_import() (in module salt.modules.solr), 816
absent() (in module salt.states.alias), 1077
absent() (in module salt.states.at), 1080
absent() (in module salt.states.aws_sqs), 1083
absent() (in module salt.states.boto_asg), 1086
absent() (in module salt.states.boto_cloudwatch_alarm),

1088
absent() (in module salt.states.boto_elasticache), 1090
absent() (in module salt.states.boto_elb), 1092
absent() (in module salt.states.boto_iam_role), 1094
absent() (in module salt.states.boto_lc), 1096
absent() (in module salt.states.boto_route53), 1098
absent() (in module salt.states.boto_secgroup), 1100
absent() (in module salt.states.boto_sqs), 1101
absent() (in module salt.states.cloud), 1102
absent() (in module salt.states.cron), 1113
absent() (in module salt.states.ddns), 1115
absent() (in module salt.states.dockerio), 1118
absent() (in module salt.states.file), 1126
absent() (in module salt.states.grains), 1147
absent() (in module salt.states.group), 1149
absent() (in module salt.states.host), 1151
absent() (in module salt.states.incron), 1152
absent() (in module salt.states.influxdb_database), 1153
absent() (in module salt.states.influxdb_user), 1153
absent() (in module salt.states.ipset), 1156
absent() (in module salt.states.kmod), 1164
absent() (in module salt.states.layman), 1164
absent() (in module salt.states.lvs_server), 1166
absent() (in module salt.states.lvs_service), 1167
absent() (in module salt.states.lxc), 1168
absent() (in module salt.states.makecon), 1170
absent() (in module salt.states.mdadm), 1170

absent() (in module salt.states.memcached), 1171
absent() (in module salt.states.mongodb_database), 1174
absent() (in module salt.states.mongodb_user), 1175
absent() (in module salt.states.mysql_database), 1177
absent() (in module salt.states.mysql_grants), 1178
absent() (in module salt.states.mysql_user), 1180
absent() (in module salt.states.openstack_config), 1188
absent() (in module salt.states.pkgrepo), 1199
absent() (in module salt.states.postgres_database), 1202
absent() (in module salt.states.postgres_extension), 1203
absent() (in module salt.states.postgres_group), 1204
absent() (in module salt.states.postgres_user), 1206
absent() (in module salt.states.process), 1207
absent() (in module salt.states.pyenv), 1208
absent() (in module salt.states.rabbitmq_policy), 1210
absent() (in module salt.states.rabbitmq_user), 1211
absent() (in module salt.states.rabbitmq_vhost), 1212
absent() (in module salt.states.rbenv), 1213
absent() (in module salt.states.redismod), 1214
absent() (in module salt.states.reg), 1215
absent() (in module salt.states.schedule), 1221
absent() (in module salt.states.ssh_auth), 1225
absent() (in module salt.states.ssh_known_hosts), 1226
absent() (in module salt.states.user), 1234
absent() (in module salt.states.win_path), 1238
accept() (in module salt.wheel.key), 1253
acceptance_wait_time

conf/minion, 433
acceptance_wait_time_max

conf/minion, 433
access() (in module salt.modules.file), 565
accumulated() (in module salt.states.file), 1126
action() (in module salt.modules.cloud), 514
action() (in module salt.runners.cloud), 1007
action() (salt.cloud.CloudClient method), 332
activate() (in module salt.states.modjk_worker), 1172
active() (in module salt.modules.mount), 685
active() (in module salt.runners.jobs), 1012
active_tcp() (in module salt.modules.network), 697
add() (in module salt.modules.bridge), 506
add() (in module salt.modules.git), 599
add() (in module salt.modules.groupadd), 613
add() (in module salt.modules.ipset), 628
add() (in module salt.modules.layman), 643
add() (in module salt.modules.mac_group), 660
add() (in module salt.modules.mac_user), 661
add() (in module salt.modules.memcached), 676
add() (in module salt.modules.pw_group), 762
add() (in module salt.modules.pw_user), 763
add() (in module salt.modules.schedule), 794
add() (in module salt.modules.solaris_group), 809
add() (in module salt.modules.solaris_user), 810
add() (in module salt.modules.supervisord), 830
add() (in module salt.modules.svn), 832

1474 Index

Salt Documentation, Release 2014.7.6

add() (in module salt.modules.useradd), 858
add() (in module salt.modules.win_groupadd), 875
add() (in module salt.modules.win_path), 880
add() (in module salt.modules.win_useradd), 892
add() (in module salt.modules.zpool), 910
add_dns() (in module salt.modules.win_dns_client), 869
add_host() (in module salt.modules.ddns), 531
add_host() (in module salt.modules.hosts), 619
add_host() (in module salt.modules.omapi), 711
add_license() (in module salt.modules.powerpath), 756
add_pkg() (in module salt.modules.pkg_resource), 731
add_record() (in module salt.modules.boto_route53), 501
add_rule() (in module salt.modules.win_firewall), 874
add_rule() (in module salt.states.win_firewall), 1237
add_server() (in module salt.modules.lvs), 650
add_service() (in module salt.modules.lvs), 650
add_user() (in module salt.modules.rabbitmq), 768
add_vhost() (in module salt.modules.rabbitmq), 768
addgroup() (in module salt.modules.win_useradd), 892
addif() (in module salt.modules.bridge), 506
address_() (in module salt.modules.bluez), 487
adduser() (in module salt.modules.groupadd), 613
Aggregate (class in salt.utils.aggregation), 460
aggregate() (in module salt.utils.aggregation), 460
align_check() (in module salt.modules.parted), 722
all_status() (in module salt.modules.status), 827
always_verify_signature

conf/minion, 439
appdata_ptr (salt.auth.pam.PamConv aribute), 298
append() (in module salt.modules.file), 565
append() (in module salt.modules.grains), 609
append() (in module salt.modules.iptables), 630
append() (in module salt.modules.nables), 700
append() (in module salt.states.file), 1127
append() (in module salt.states.grains), 1147
append() (in module salt.states.iptables), 1160
append() (in module salt.states.nables), 1185
append_cflags() (in module salt.modules.makecon), 665
append_cxxflags() (in module salt.modules.makecon),

665
append_domain

conf/minion, 431
append_emerge_default_opts() (in module

salt.modules.makecon), 665
append_features() (in module salt.modules.makecon),

665
append_gentoo_mirrors() (in module

salt.modules.makecon), 666
append_makeopts() (in module salt.modules.makecon),

666
append_to_package_conf() (in module

salt.modules.portage_config), 748
append_use_flags() (in module

salt.modules.portage_config), 748

append_var() (in module salt.modules.makecon), 666
apply() (in module salt.wheel.config), 1252
apply_() (in module salt.modules.seed), 796
apply_network_seings() (in module

salt.modules.debian_ip), 533
apply_network_seings() (in module

salt.modules.rh_ip), 780
archive() (in module salt.modules.git), 599
archive() (in module salt.modules.hg), 618
arg() (in module salt.modules.test), 843
arg_repr() (in module salt.modules.test), 843
arg_type() (in module salt.modules.test), 843
argspec() (in module salt.modules.sysmod), 837
arp() (in module salt.modules.network), 697
as_list (salt.pillar.mysql.merger aribute), 959
assemble() (in module salt.modules.mdadm), 674
assign() (in module salt.modules.darwin_sysctl), 529
assign() (in module salt.modules.freebsd_sysctl), 584
assign() (in module salt.modules.linux_sysctl), 646
assign() (in module salt.modules.netbsd_sysctl), 695
associate_profile_to_role() (in module

salt.modules.boto_iam), 499
async() (salt.runner.RunnerClient method), 330
async() (salt.wheel.WheelClient method), 331
at() (in module salt.modules.at), 483
atc() (in module salt.modules.at), 483
atq() (in module salt.modules.at), 483
atrm() (in module salt.modules.at), 484
aach_disk() (in module salt.cloud.clouds.gce), 347
aach_lb() (in module salt.cloud.clouds.gce), 347
aach_subnets() (in module salt.modules.boto_elb), 496
aach_volume() (in module salt.cloud.clouds.ec2), 341
aach_volume() (in module salt.cloud.clouds.nova), 361
aachable() (in module salt.modules.lxc), 652
aributes() (in module salt.modules.extfs), 563
audit() (in module salt.modules.pkgng), 735
auth() (in module salt.auth.auto), 297
auth() (in module salt.auth.keystone), 297
auth() (in module salt.auth.ldap), 297
auth() (in module salt.auth.pam), 298
auth() (in module salt.auth.pki), 299
auth() (in module salt.auth.stormpath_mod), 299
auth() (in module salt.modules.keystone), 636
auth_keys() (in module salt.modules.ssh), 822
authenticate() (in module salt.auth.pam), 298
AuthenticationError, 461, 462
AuthorizationError, 461, 462
authorize() (in module salt.modules.boto_secgroup), 502
authorize_cache_security_group_ingress() (in module

salt.modules.boto_elasticache), 493
auto() (in module salt.modules.alternatives), 472
auto() (in module salt.states.alternatives), 1077
Auto-Order, 1461
auto_accept

Index 1475

Salt Documentation, Release 2014.7.6

conf/master, 407
autoload_dynamic_modules

conf/minion, 437
autoreject_file

conf/master, 407
autoremove() (in module salt.modules.pkgng), 735
AutoSearch() (salt.modules.win_update.PyWinUpdater

method), 890
AutoSearch() (salt.states.win_update.PyWinUpdater

method), 1240
autosign_file

conf/master, 407
autosign_timeout

conf/master, 407
avail() (in module salt.modules.localemod), 647
avail() (in module salt.modules.smartos_imgadm), 802
avail_images() (in module salt.cloud.clouds.aliyun), 334
avail_images() (in module salt.cloud.clouds.cloudstack),

337
avail_images() (in module

salt.cloud.clouds.digital_ocean), 339
avail_images() (in module salt.cloud.clouds.ec2), 341
avail_images() (in module salt.cloud.clouds.gce), 347
avail_images() (in module salt.cloud.clouds.gogrid), 351
avail_images() (in module salt.cloud.clouds.joyent), 352
avail_images() (in module salt.cloud.clouds.linode), 357
avail_images() (in module salt.cloud.clouds.lxc), 358
avail_images() (inmodule salt.cloud.clouds.msazure), 359
avail_images() (in module salt.cloud.clouds.nova), 361
avail_images() (in module salt.cloud.clouds.opennebula),

363
avail_images() (in module salt.cloud.clouds.openstack),

366
avail_images() (in module salt.cloud.clouds.parallels),

367
avail_images() (in module salt.cloud.clouds.proxmox),

369
avail_images() (in module salt.cloud.clouds.rackspace),

371
avail_images() (in module salt.cloud.clouds.solayer),

372
avail_images() (in module

salt.cloud.clouds.solayer_hw), 374
avail_images() (in module salt.cloud.clouds.vsphere), 375
avail_locations() (in module salt.cloud.clouds.aliyun),

334
avail_locations() (in module

salt.cloud.clouds.cloudstack), 337
avail_locations() (in module

salt.cloud.clouds.digital_ocean), 339
avail_locations() (in module salt.cloud.clouds.ec2), 341
avail_locations() (in module salt.cloud.clouds.gce), 347
avail_locations() (in module salt.cloud.clouds.joyent),

352

avail_locations() (inmodule salt.cloud.clouds.linode), 357
avail_locations() (in module salt.cloud.clouds.msazure),

359
avail_locations() (in module salt.cloud.clouds.nova), 361
avail_locations() (in module

salt.cloud.clouds.opennebula), 363
avail_locations() (inmodule salt.cloud.clouds.openstack),

366
avail_locations() (in module salt.cloud.clouds.proxmox),

369
avail_locations() (in module salt.cloud.clouds.rackspace),

371
avail_locations() (in module salt.cloud.clouds.solayer),

372
avail_locations() (in module

salt.cloud.clouds.solayer_hw), 374
avail_locations() (in module salt.cloud.clouds.vsphere),

375
avail_platforms() (in module salt.modules.genesis), 595
avail_sizes() (in module salt.cloud.clouds.aliyun), 335
avail_sizes() (inmodule salt.cloud.clouds.cloudstack), 337
avail_sizes() (in module salt.cloud.clouds.digital_ocean),

339
avail_sizes() (in module salt.cloud.clouds.ec2), 341
avail_sizes() (in module salt.cloud.clouds.gce), 347
avail_sizes() (in module salt.cloud.clouds.gogrid), 351
avail_sizes() (in module salt.cloud.clouds.joyent), 352
avail_sizes() (in module salt.cloud.clouds.linode), 357
avail_sizes() (in module salt.cloud.clouds.msazure), 359
avail_sizes() (in module salt.cloud.clouds.nova), 362
avail_sizes() (in module salt.cloud.clouds.opennebula),

363
avail_sizes() (in module salt.cloud.clouds.openstack), 366
avail_sizes() (in module salt.cloud.clouds.rackspace), 371
avail_sizes() (in module salt.cloud.clouds.solayer), 372
avail_sizes() (in module salt.cloud.clouds.solayer_hw),

374
available() (in module salt.modules.daemontools), 528
available() (in module salt.modules.debian_service), 535
available() (in module salt.modules.freebsdkmod), 586
available() (in module salt.modules.freebsdservice), 592
available() (in module salt.modules.gentoo_service), 596
available() (in module salt.modules.kmod), 641
available() (in module salt.modules.launchctl), 642
available() (in module salt.modules.netbsdservice), 695
available() (in module salt.modules.openbsdservice), 713
available() (in module salt.modules.rh_service), 782
available() (in module salt.modules.service), 799
available() (in module salt.modules.sm), 804
available() (in module salt.modules.systemd), 840
available() (in module salt.modules.upstart), 856
available() (in module salt.modules.win_service), 884
available_extensions() (inmodule salt.modules.postgres),

750

1476 Index

Salt Documentation, Release 2014.7.6

available_version() (in module salt.modules.macports),
662

available_version() (in module salt.modules.pkgin), 732

B
backup() (in module salt.modules.pkgng), 736
backup() (in module salt.modules.solr), 816
backup_mode

conf/minion, 432
backup_mode() (in module salt.modules.config), 522
ban() (in module salt.modules.varnish), 860
ban_list() (in module salt.modules.varnish), 860
base64_decodestring() (in module salt.modules.hashutil),

617
base64_encodestring() (in module salt.modules.hashutil),

617
Best Practices, 1255
bgrewriteaof() (in module salt.modules.redismod), 775
bgsave() (in module salt.modules.redismod), 775
blkid() (in module salt.modules.disk), 538
block() (in module salt.modules.bluez), 487
block_device_mappings() (in module

salt.cloud.clouds.ec2), 341
block_device_mappings() (in module

salt.cloud.clouds.libcloud_aws), 355
blockreplace() (in module salt.modules.file), 566
blockreplace() (in module salt.states.file), 1129
blocks() (in module salt.modules.extfs), 563
boolean() (in module salt.states.selinux), 1221
boot() (in module salt.cloud.clouds.linode), 357
boot() (in module salt.modules.nova), 706
boot_time() (in module salt.modules.ps), 756
Bootstrap, 1461
bootstrap() (in module salt.modules.chocolatey), 511
bootstrap() (in module salt.modules.genesis), 595
bootstrap() (in module salt.modules.img), 621
bootstrap() (in module salt.modules.lxc), 652
bootstrap() (in module salt.modules.zcbuildout), 908
bootstrap() (in module salt.runners.manage), 1014
bootstrap() (in module salt.states.npm), 1186
bootstrap_psexec() (in module salt.runners.manage),

1015
branch() (in module salt.modules.git), 600
build() (in module salt.modules.dockerio), 544
build_bond() (in module salt.modules.debian_ip), 534
build_bond() (in module salt.modules.rh_ip), 781
build_interface() (in module salt.modules.debian_ip), 534
build_interface() (in module salt.modules.rh_ip), 781
build_network_seings() (in module

salt.modules.debian_ip), 534
build_network_seings() (in module salt.modules.rh_ip),

781
build_routes() (in module salt.modules.debian_ip), 534
build_routes() (in module salt.modules.rh_ip), 781

build_rule() (in module salt.modules.iptables), 630
build_rule() (in module salt.modules.nables), 701
build_schedule_item() (in module

salt.modules.schedule), 795
buildmod() (in module salt.modules.znc), 910
buildout() (in module salt.modules.zcbuildout), 908
built() (in module salt.states.dockerio), 1118
bulk_activate() (in module salt.modules.modjk), 679
bulk_build() (in module salt.modules.poudriere), 754
bulk_disable() (in module salt.modules.modjk), 680
bulk_recover() (in module salt.modules.modjk), 680
bulk_stop() (in module salt.modules.modjk), 680

C
ca_exists() (in module salt.modules.tls), 847
cache_dir() (in module salt.modules.cp), 523
cache_file() (in module salt.modules.cp), 524
cache_files() (in module salt.modules.cp), 524
cache_jobs

conf/minion, 432
cache_local_file() (in module salt.modules.cp), 524
cache_master() (in module salt.modules.cp), 524
cachedir

conf/master, 403
conf/minion, 432

call() (in module salt.states.cmd), 1105
Caller (class in salt.client), 329
cas() (in module salt.modules.data), 530
cert_base_path() (in module salt.modules.tls), 847
cflags_contains() (in module salt.modules.makecon), 666
chain_absent() (in module salt.states.iptables), 1160
chain_absent() (in module salt.states.nables), 1185
chain_present() (in module salt.states.iptables), 1160
chain_present() (in module salt.states.nables), 1186
change() (in module salt.states.augeas), 1081
change_password() (in module salt.modules.rabbitmq),

768
check() (in module salt.modules.ipset), 628
check() (in module salt.modules.iptables), 631
check() (in module salt.modules.nables), 701
check() (in module salt.modules.parted), 722
check() (in module salt.modules.pkgng), 736
check_available() (in module salt.modules.freebsdkmod),

586
check_available() (in module salt.modules.kmod), 641
check_chain() (in module salt.modules.iptables), 631
check_chain() (in module salt.modules.nables), 701
check_db() (in module salt.modules.ebuild), 553
check_db() (in module salt.modules.yumpkg), 899
check_extra_requirements() (in module

salt.modules.ebuild), 554
check_extra_requirements() (in module

salt.modules.pkg_resource), 731
check_file_meta() (in module salt.modules.file), 566

Index 1477

Salt Documentation, Release 2014.7.6

check_hash() (in module salt.modules.file), 566
check_installed() (in module salt.modules.alternatives),

472
check_ip() (in module salt.modules.dig), 538
check_ip() (in module salt.modules.dnsutil), 541
check_key() (in module salt.modules.ssh), 822
check_key_file() (in module salt.modules.ssh), 822
check_known_host() (in module salt.modules.ssh), 822
check_managed() (in module salt.modules.file), 567
check_managed_changes() (in module salt.modules.file),

567
check_mod_enabled() (in module

salt.modules.deb_apache), 532
check_perms() (in module salt.modules.file), 567
check_server() (in module salt.modules.lvs), 650
check_service() (in module salt.modules.lvs), 650
check_set() (in module salt.modules.ipset), 628
check_site_enabled() (in module

salt.modules.deb_apache), 532
check_table() (in module salt.modules.nables), 702
checkout() (in module salt.modules.git), 600
checkout() (in module salt.modules.svn), 832
chfullname() (in module salt.modules.mac_user), 661
chfullname() (in module salt.modules.pw_user), 763
chfullname() (in module salt.modules.solaris_user), 810
chfullname() (in module salt.modules.useradd), 858
chfullname() (in module salt.modules.win_useradd), 893
chgid() (in module salt.modules.groupadd), 613
chgid() (in module salt.modules.mac_group), 660
chgid() (in module salt.modules.mac_user), 661
chgid() (in module salt.modules.pw_group), 762
chgid() (in module salt.modules.pw_user), 763
chgid() (in module salt.modules.solaris_group), 809
chgid() (in module salt.modules.solaris_user), 810
chgid() (in module salt.modules.useradd), 858
chgroups() (in module salt.modules.mac_user), 661
chgroups() (in module salt.modules.pw_user), 763
chgroups() (in module salt.modules.solaris_user), 811
chgroups() (in module salt.modules.useradd), 858
chgroups() (in module salt.modules.win_useradd), 893
chgrp() (in module salt.modules.file), 567
chgrp() (in module salt.modules.win_file), 869
chhome() (in module salt.modules.mac_user), 661
chhome() (in module salt.modules.pw_user), 763
chhome() (in module salt.modules.solaris_user), 811
chhome() (in module salt.modules.useradd), 858
chhome() (in module salt.modules.win_useradd), 893
chhomephone() (in module salt.modules.pw_user), 763
chhomephone() (in module salt.modules.solaris_user),

811
chhomephone() (in module salt.modules.useradd), 858
chocolatey_version() (in module

salt.modules.chocolatey), 511
chost_contains() (in module salt.modules.makecon), 666

chown() (in module salt.modules.file), 567
chown() (in module salt.modules.win_file), 870
chpgrp() (in module salt.modules.win_file), 870
chprofile() (in module salt.modules.win_useradd), 893
chroomnumber() (in module salt.modules.pw_user), 763
chroomnumber() (in module salt.modules.solaris_user),

811
chroomnumber() (in module salt.modules.useradd), 858
chshell() (in module salt.modules.mac_user), 661
chshell() (in module salt.modules.pw_user), 763
chshell() (in module salt.modules.solaris_user), 811
chshell() (in module salt.modules.useradd), 858
chuid() (in module salt.modules.mac_user), 661
chuid() (in module salt.modules.pw_user), 764
chuid() (in module salt.modules.solaris_user), 811
chuid() (in module salt.modules.useradd), 859
chworkphone() (in module salt.modules.pw_user), 764
chworkphone() (in module salt.modules.solaris_user),

811
chworkphone() (in module salt.modules.useradd), 859
clean() (in module salt.modules.pkgng), 737
clean_dynamic_modules

conf/minion, 437
clean_metadata() (in module salt.modules.yumpkg), 899
clean_old_jobs() (in module salt.returners.local_cache),

994
clean_old_jobs() (in module

salt.returners.multi_returner), 996
clear() (in module salt.modules.data), 530
clear() (in module salt.modules.lvs), 651
clear() (in module salt.modules.qemu_nbd), 766
clear_all() (in module salt.runners.cache), 1006
clear_cache() (in module salt.fileserver.gitfs), 453
clear_cache() (in module salt.fileserver.hgfs), 454
clear_cache() (in module salt.fileserver.svnfs), 458
clear_cache() (in module salt.modules.saltutil), 791
clear_cache() (in module salt.modules.state), 824
clear_cache() (in module salt.runners.fileserver), 1009
clear_grains() (in module salt.runners.cache), 1006
clear_lock() (in module salt.fileserver.gitfs), 453
clear_lock() (in module salt.fileserver.hgfs), 454
clear_lock() (in module salt.fileserver.svnfs), 458
clear_lock() (in module salt.runners.fileserver), 1009
clear_mine() (in module salt.runners.cache), 1006
clear_mine_func() (in module salt.runners.cache), 1007
clear_password() (in module salt.modules.rabbitmq), 768
clear_pillar() (in module salt.runners.cache), 1007
client() (in module salt.modules.che), 510
client_acl

conf/master, 407
client_acl_blacklist

conf/master, 407
client_config() (in module salt.config), 325
client_version() (in module salt.modules.oracle), 716

1478 Index

Salt Documentation, Release 2014.7.6

clone() (in module salt.modules.git), 600
clone() (in module salt.modules.hg), 618
clone() (in module salt.modules.lxc), 653
cloned() (in module salt.states.lxc), 1168
cloud_init() (in module salt.modules.lxc), 653
cloud_init() (in module salt.runners.lxc), 1013
cloud_init_interface() (in module salt.modules.lxc), 653
CloudClient (class in salt.cloud), 332
cluster_commit() (in module salt.modules.riak), 784
cluster_join() (in module salt.modules.riak), 784
cluster_plan() (in module salt.modules.riak), 784
cluster_status() (in module salt.modules.rabbitmq), 768
cmd() (in module salt.modules.saltutil), 791
cmd() (salt.client.LocalClient method), 326
cmd() (salt.runner.RunnerClient method), 330
cmd() (salt.wheel.WheelClient method), 331
cmd_async() (salt.client.LocalClient method), 328
cmd_async() (salt.runner.RunnerClient method), 331
cmd_async() (salt.wheel.WheelClient method), 331
cmd_batch() (salt.client.LocalClient method), 328
cmd_iter() (in module salt.modules.saltutil), 791
cmd_iter() (salt.client.LocalClient method), 328
cmd_iter_no_block() (salt.client.LocalClient method),

328
cmd_subset() (salt.client.LocalClient method), 329
cmd_sync() (salt.runner.RunnerClient method), 331
cmd_sync() (salt.wheel.WheelClient method), 332
collatz() (in module salt.modules.test), 843
collectstatic() (in module salt.modules.djangomod), 539
color

conf/master, 404
column_families() (in module salt.modules.cassandra),

508
column_family_definition() (in module

salt.modules.cassandra), 509
command line option

--key-deploy, 320
--max-procs, 320
--passwd, 320
--priv, 319
--refresh, --refresh-cache, 320
--roster, 319
--roster-file, 320
-i, --ignore-host-keys, 320
-r, --raw, --raw-shell, 319

command() (in module salt.modules.djangomod), 539
CommandExecutionError, 461, 463
CommandNotFoundError, 461, 463
comment() (in module salt.modules.file), 567
comment() (in module salt.states.file), 1130
commit() (in module salt.modules.dockerio), 545
commit() (in module salt.modules.git), 600
commit() (in module salt.modules.junos), 634
commit() (in module salt.modules.svn), 832

compactionstats() (in module salt.modules.cassandra),
509

Compound Matcher, 1461
compound() (in module salt.modules.match), 672
computer_desc() (in module salt.states.win_system),

1239
computer_name() (in module salt.states.win_system),

1239
conf() (in module salt.modules.grub_legacy), 614
conf/logging

external-logging-handlers, 444
log_datefmt, 443
log_datefmt_logfile, 444
log_file, 443
log_fmt_console, 444
log_fmt_logfile, 444
log_granular_levels, 444
log_level, 443
log_level_logfile, 443

conf/master
auto_accept, 407
autoreject_file, 407
autosign_file, 407
autosign_timeout, 407
cachedir, 403
client_acl, 407
client_acl_blacklist, 407
color, 404
cython_enable, 409
default_include, 428
enable_gpu_grains, 404
enforce_mine_cache, 405
ext_job_cache, 405
ext_pillar, 422
extension_modules, 403
external_auth, 408
external_nodes, 410
failhard, 410
file_buffer_size, 412
file_ignore_glob, 412
file_ignore_regex, 412
file_recv, 408
file_roots, 412
fileserver_backend, 411
gitfs_base, 414
gitfs_env_blacklist, 414
gitfs_env_whitelist, 414
gitfs_insecure_auth, 415
gitfs_mountpoint, 414
gitfs_passphrase, 416
gitfs_password, 415
gitfs_privkey, 415
gitfs_provider, 413
gitfs_pubkey, 415

Index 1479

Salt Documentation, Release 2014.7.6

gitfs_remotes, 413
gitfs_root, 414
gitfs_ssl_verify, 413
gitfs_user, 415
hash_type, 411
hgfs_base, 417
hgfs_branch_method, 416
hgfs_env_blacklist, 418
hgfs_env_whitelist, 417
hgfs_mountpoint, 417
hgfs_remotes, 416
hgfs_root, 417
include, 428
interface, 401
ipv6, 401
job_cache, 404
keep_jobs, 403
log_datefmt, 427
log_datefmt_logfile, 427
log_file, 426
log_fmt_console, 427
log_fmt_logfile, 427
log_granular_levels, 427
log_level, 426
log_level_logfile, 426
loop_interval, 404
master_id, 401
master_job_cache, 405
master_pubkey_signature, 409
master_sign_key_name, 408
master_sign_pubkey, 408
master_tops, 410
master_use_pubkey_signature, 409
max_minions, 405
max_open_files, 402
minion_data_cache, 405
minionfs_blacklist, 422
minionfs_env, 421
minionfs_mountpoint, 421
minionfs_whitelist, 421
nodegroups, 427
open_mode, 406
order_masters, 424
output, 404
peer, 425
peer_run, 426
pidfile, 402
pillar_roots, 422
pillar_source_merging_strategy, 423
pki_dir, 403
presence_events, 406
publish_port, 401
range_server, 428
renderer, 410

ret_port, 402
root_dir, 403
roster_file, 406
rotate_aes_key, 409
runner_dirs, 409
sock_dir, 404
ssh_minion_opts, 406
state_output, 411
state_top, 410
state_verbose, 410
svnfs_branches, 420
svnfs_env_blacklist, 420
svnfs_env_whitelist, 420
svnfs_mountpoint, 419
svnfs_remotes, 418
svnfs_root, 419
svnfs_tags, 420
svnfs_trunk, 419
syndic_log_file, 425
syndic_master, 424
syndic_master_log_file, 425
syndic_master_port, 425
test, 411
timeout, 404
token_expire, 408
user, 402
verify_env, 403
win_gitrepos, 429
win_repo, 428
win_repo_mastercachefile, 428
worker_threads, 402
yaml_utf8, 411

conf/minion
acceptance_wait_time, 433
acceptance_wait_time_max, 433
always_verify_signature, 439
append_domain, 431
autoload_dynamic_modules, 437
backup_mode, 432
cache_jobs, 432
cachedir, 432
clean_dynamic_modules, 437
cython_enable, 436
disable_modules, 435
disable_returners, 435
dns_check, 434
environment, 437
failhard, 441
file_client, 437
file_roots, 437
grains_dirs, 435
hash_type, 438
id, 431
include, 441

1480 Index

Salt Documentation, Release 2014.7.6

ipc_mode, 434
log_datefmt, 440
log_datefmt_logfile, 440
log_file, 439
log_fmt_console, 440
log_fmt_logfile, 440
log_granular_levels, 441
log_level, 440
log_level_logfile, 440
master, 429
master_port, 430
master_sign_key_name, 439
master_type, 430
module_dirs, 435
multiprocessing, 439
open_mode, 438
pidfile, 431
pillar_roots, 438
pki_dir, 431
providers, 436
random_reauth_delay, 433
recon_default, 433
recon_max, 433
recon_randomize, 434
render_dirs, 436
renderer, 436
retry_dns, 430
returner_dirs, 435
root_dir, 431
sock_dir, 432
state_output, 437
state_verbose, 436
states_dirs, 435
tcp_pub_port, 434
tcp_pull_port, 434
update_restart_services, 442
update_url, 442
user, 431
verify_env, 432
verify_master_pubkey_sign, 439

conf_test() (in module salt.modules.test), 843
config() (in module salt.modules.apache), 473
config() (in module salt.modules.freebsdports), 590
config() (in module salt.modules.rsync), 785
config() (in module salt.states.git), 1143
config_get() (in module salt.modules.git), 601
config_get() (in module salt.modules.redismod), 775
config_set() (in module salt.modules.git), 601
config_set() (in module salt.modules.redismod), 775
configfile() (in module salt.states.apache), 1078
configtest() (in module salt.modules.nginx), 705
configurable_test_state() (in module salt.states.test), 1230
connect() (in module salt.modules.network), 697
connect() (in module salt.modules.qemu_nbd), 766

contains() (in module salt.modules.file), 568
contains_glob() (in module salt.modules.file), 568
contains_regex() (in module salt.modules.file), 568
contains_regex_multiline() (in module salt.modules.file),

568
context() (in module salt.states.statecon), 1227
conv (salt.auth.pam.PamConv aribute), 298
convert_to_arn() (in module

salt.modules.boto_cloudwatch), 492
convert_to_group_ids() (in module

salt.modules.boto_secgroup), 502
copy() (in module salt.modules.file), 568
copy() (in module salt.states.file), 1130
copy_snapshot() (in module salt.cloud.clouds.ec2), 341
core_status() (in module salt.modules.solr), 816
cp() (in module salt.modules.lxc), 654
cp() (in module salt.modules.parted), 722
cpu() (in module salt.modules.sysbench), 836
cpu_percent() (in module salt.modules.ps), 756
cpu_times() (in module salt.modules.ps), 757
cpuinfo() (in module salt.modules.status), 827
cpustats() (in module salt.modules.status), 827
create() (in module salt.cloud.clouds.aliyun), 335
create() (in module salt.cloud.clouds.cloudstack), 337
create() (in module salt.cloud.clouds.digital_ocean), 339
create() (in module salt.cloud.clouds.ec2), 341
create() (in module salt.cloud.clouds.gce), 347
create() (in module salt.cloud.clouds.gogrid), 351
create() (in module salt.cloud.clouds.joyent), 352
create() (in module salt.cloud.clouds.libcloud_aws), 355
create() (in module salt.cloud.clouds.linode), 357
create() (in module salt.cloud.clouds.lxc), 358
create() (in module salt.cloud.clouds.msazure), 359
create() (in module salt.cloud.clouds.nova), 362
create() (in module salt.cloud.clouds.opennebula), 364
create() (in module salt.cloud.clouds.openstack), 366
create() (in module salt.cloud.clouds.parallels), 367
create() (in module salt.cloud.clouds.proxmox), 369
create() (in module salt.cloud.clouds.rackspace), 371
create() (in module salt.cloud.clouds.saltify), 372
create() (in module salt.cloud.clouds.solayer), 372
create() (in module salt.cloud.clouds.solayer_hw), 374
create() (in module salt.cloud.clouds.vsphere), 375
create() (in module salt.modules.boto_asg), 489
create() (in module salt.modules.boto_elasticache), 494
create() (in module salt.modules.boto_elb), 496
create() (in module salt.modules.boto_secgroup), 502
create() (in module salt.modules.boto_sqs), 504
create() (in module salt.modules.cloud), 514
create() (in module salt.modules.glusterfs), 606
create() (in module salt.modules.lxc), 655
create() (in module salt.modules.mdadm), 674
create() (in module salt.modules.saltcloudmod), 790

Index 1481

Salt Documentation, Release 2014.7.6

create() (in module salt.modules.serverdensity_device),
798

create() (in module salt.modules.virt), 861
create() (in module salt.modules.virtualenv_mod), 867
create() (in module salt.modules.xapi), 894
create() (in module salt.modules.zpool), 910
create() (in module salt.runners.cloud), 1007
create() (salt.cloud.CloudClient method), 332
create_aach_volumes() (in module

salt.cloud.clouds.ec2), 341
create_aach_volumes() (in module

salt.cloud.clouds.libcloud_aws), 355
create_aach_volumes() (in module

salt.cloud.clouds.nova), 362
create_ca() (in module salt.modules.tls), 847
create_ca_signed_cert() (in module salt.modules.tls), 848
create_cache_security_group() (in module

salt.modules.boto_elasticache), 494
create_config() (in module salt.cloud.clouds.linode), 357
create_container() (in module salt.modules.dockerio),

545
create_csr() (in module salt.modules.tls), 849
create_disk() (in module salt.cloud.clouds.gce), 347
create_disk_from_distro() (in module

salt.cloud.clouds.linode), 357
create_event() (in module salt.modules.pagerduty), 721
create_event() (in module salt.states.pagerduty), 1189
create_extension() (inmodule salt.modules.postgres), 750
create_file_vdev() (in module salt.modules.zpool), 910
create_fwrule() (in module salt.cloud.clouds.gce), 348
create_hc() (in module salt.cloud.clouds.gce), 348
create_instance_profile() (in module

salt.modules.boto_iam), 499
create_jail() (in module salt.modules.poudriere), 754
create_key() (in module salt.modules.reg), 778
create_keypair() (in module salt.cloud.clouds.ec2), 341
create_launch_configuration() (in module

salt.modules.boto_asg), 490
create_lb() (in module salt.cloud.clouds.gce), 348
create_listeners() (in module salt.modules.boto_elb), 496
create_metadata() (in module salt.modules.postgres), 751
create_network() (in module salt.cloud.clouds.gce), 348
create_node() (in module salt.cloud.clouds.aliyun), 335
create_node() (in module

salt.cloud.clouds.digital_ocean), 339
create_node() (in module salt.cloud.clouds.joyent), 352
create_node() (in module salt.cloud.clouds.parallels), 367
create_node() (in module salt.cloud.clouds.proxmox), 369
create_or_update_alarm() (in module

salt.modules.boto_cloudwatch), 492
create_pkcs12() (in module salt.modules.tls), 849
create_ports_tree() (in module salt.modules.poudriere),

755
create_queue() (in module salt.modules.aws_sqs), 485

create_role() (in module salt.modules.boto_iam), 499
create_role_policy() (in module salt.modules.boto_iam),

499
create_self_signed_cert() (in module salt.modules.tls),

850
create_snapshot() (in module salt.cloud.clouds.ec2), 341
create_snapshot() (in module salt.cloud.clouds.gce), 348
create_swap_disk() (in module salt.cloud.clouds.linode),

357
create_volume() (in module salt.cloud.clouds.ec2), 341
create_volume() (in module salt.cloud.clouds.nova), 362
create_win_salt_restart_task() (in module

salt.modules.win_service), 884
create_xml_path() (in module salt.modules.virt), 861
create_xml_str() (in module salt.modules.virt), 861
created() (in module salt.states.glusterfs), 1145
created() (in module salt.states.lxc), 1168
createsuperuser() (in module salt.modules.djangomod),

539
cross_test() (in module salt.modules.test), 843
ctrl_alt_del() (in module salt.modules.virt), 861
current_branch() (in module salt.modules.git), 601
custom() (in module salt.modules.status), 827
custom() (in module salt.modules.supervisord), 830
cxxflags_contains() (in module salt.modules.makecon),

666
cython_enable

conf/master, 409
conf/minion, 436

D
data() (in module salt.modules.match), 672
db_alter() (in module salt.modules.postgres), 751
db_check() (in module salt.modules.mysql), 687
db_create() (in module salt.modules.influx), 623
db_create() (in module salt.modules.mysql), 687
db_create() (in module salt.modules.postgres), 751
db_exists() (in module salt.modules.influx), 623
db_exists() (in module salt.modules.mongodb), 682
db_exists() (in module salt.modules.mysql), 687
db_exists() (in module salt.modules.postgres), 751
db_list() (in module salt.modules.influx), 623
db_list() (in module salt.modules.mongodb), 682
db_list() (in module salt.modules.mysql), 687
db_list() (in module salt.modules.postgres), 751
db_optimize() (in module salt.modules.mysql), 688
db_remove() (in module salt.modules.influx), 623
db_remove() (in module salt.modules.mongodb), 683
db_remove() (in module salt.modules.mysql), 688
db_remove() (in module salt.modules.postgres), 751
db_repair() (in module salt.modules.mysql), 688
db_tables() (in module salt.modules.mysql), 688
dbsize() (in module salt.modules.redismod), 775
dead() (in module salt.states.service), 1223

1482 Index

Salt Documentation, Release 2014.7.6

dead() (in module salt.states.supervisord), 1227
decrement() (in module salt.modules.memcached), 676
decrypt_ciphertext() (in module salt.renderers.gpg), 967
decrypt_object() (in module salt.renderers.gpg), 967
default() (in module salt.modules.pyenv), 764
default() (in module salt.modules.rbenv), 772
default_config() (in module salt.modules.linux_sysctl),

647
default_hash() (in module salt.modules.bsd_shadow), 508
default_hash() (in module salt.modules.shadow), 800
default_hash() (in module salt.modules.solaris_shadow),

809
default_include

conf/master, 428
define_vol_xml_path() (in module salt.modules.virt), 861
define_vol_xml_str() (in module salt.modules.virt), 861
define_xml_path() (in module salt.modules.virt), 861
define_xml_str() (in module salt.modules.virt), 861
deinstall() (in module salt.modules.freebsdports), 590
del_export() (in module salt.modules.nfs3), 700
del_password() (in module salt.modules.shadow), 800
del_repo() (in module salt.modules.aptpkg), 474
del_repo() (in module salt.modules.yumpkg), 899
del_repo() (in module salt.modules.zypper), 911
del_tags() (in module salt.cloud.clouds.ec2), 341
del_tags() (in module salt.cloud.clouds.libcloud_aws),

355
delete() (in module salt.modules.boto_asg), 490
delete() (in module salt.modules.boto_elasticache), 494
delete() (in module salt.modules.boto_elb), 496
delete() (in module salt.modules.boto_secgroup), 502
delete() (in module salt.modules.boto_sqs), 504
delete() (in module salt.modules.bridge), 507
delete() (in module salt.modules.ddns), 531
delete() (in module salt.modules.glusterfs), 607
delete() (in module salt.modules.groupadd), 613
delete() (in module salt.modules.ipset), 628
delete() (in module salt.modules.iptables), 631
delete() (in module salt.modules.layman), 643
delete() (in module salt.modules.mac_group), 660
delete() (in module salt.modules.mac_user), 662
delete() (in module salt.modules.memcached), 676
delete() (in module salt.modules.mine), 677
delete() (in module salt.modules.nables), 702
delete() (in module salt.modules.nova), 706
delete() (in module salt.modules.openstack_config), 715
delete() (in module salt.modules.pw_group), 762
delete() (in module salt.modules.pw_user), 764
delete() (in module salt.modules.redismod), 775
delete() (in module salt.modules.s3), 789
delete() (in module salt.modules.schedule), 795
delete() (in module salt.modules.serverdensity_device),

798
delete() (in module salt.modules.smartos_imgadm), 802

delete() (in module salt.modules.solaris_group), 809
delete() (in module salt.modules.solaris_user), 811
delete() (in module salt.modules.swi), 836
delete() (in module salt.modules.useradd), 859
delete() (in module salt.modules.win_groupadd), 875
delete() (in module salt.modules.win_useradd), 893
delete() (in module salt.runners.queue), 1018
delete() (in module salt.states.iptables), 1160
delete() (in module salt.states.nables), 1186
delete() (in module salt.wheel.key), 1253
delete_alarm() (in module

salt.modules.boto_cloudwatch), 492
delete_backup() (in module salt.modules.file), 569
delete_cache_security_group() (in module

salt.modules.boto_elasticache), 494
delete_chain() (in module salt.modules.iptables), 632
delete_chain() (in module salt.modules.nables), 702
delete_disk() (in module salt.cloud.clouds.gce), 348
delete_fwrule() (in module salt.cloud.clouds.gce), 348
delete_hc() (in module salt.cloud.clouds.gce), 348
delete_host() (in module salt.modules.ddns), 531
delete_host() (in module salt.modules.omapi), 712
delete_instance_profile() (in module

salt.modules.boto_iam), 499
delete_jail() (in module salt.modules.poudriere), 755
delete_key() (in module salt.cloud.clouds.joyent), 352
delete_key() (in module salt.modules.reg), 778
delete_keypair() (in module salt.cloud.clouds.ec2), 341
delete_launch_configuration() (in module

salt.modules.boto_asg), 490
delete_lb() (in module salt.cloud.clouds.gce), 348
delete_listeners() (in module salt.modules.boto_elb), 496
delete_message() (in module salt.modules.aws_sqs), 486
delete_network() (in module salt.cloud.clouds.gce), 349
delete_policy() (in module salt.modules.rabbitmq), 768
delete_queue() (in module salt.modules.aws_sqs), 486
delete_record() (in module salt.modules.boto_route53),

501
delete_role() (in module salt.modules.boto_iam), 499
delete_role_policy() (in module salt.modules.boto_iam),

499
delete_server() (in module salt.modules.lvs), 651
delete_service() (in module salt.modules.lvs), 651
delete_set() (in module salt.modules.ipset), 629
delete_snapshot() (in module salt.cloud.clouds.ec2), 341
delete_snapshot() (in module salt.cloud.clouds.gce), 349
delete_table() (in module salt.modules.nables), 702
delete_user() (in module salt.modules.rabbitmq), 768
delete_vhost() (in module salt.modules.rabbitmq), 769
delete_volume() (in module salt.cloud.clouds.ec2), 342
delfacl() (in module salt.modules.linux_acl), 644
delif() (in module salt.modules.bridge), 507
delta_import() (in module salt.modules.solr), 817
deluser() (in module salt.modules.groupadd), 613

Index 1483

Salt Documentation, Release 2014.7.6

delval() (in module salt.modules.grains), 610
delvol_on_destroy() (in module salt.cloud.clouds.ec2),

342
depclean() (in module salt.modules.ebuild), 554
deploy_war() (in module salt.modules.tomcat), 852
depth (salt.pillar.mysql.merger aribute), 959
deregister_instances() (in module salt.modules.boto_elb),

496
describe() (in module salt.modules.git), 601
describe() (in module salt.modules.hg), 618
describe_snapshots() (in module salt.cloud.clouds.ec2),

342
describe_volumes() (in module salt.cloud.clouds.ec2), 342
deserialize() (in module salt.utils.serializers.json), 464
deserialize() (in module salt.utils.serializers.msgpack),

465
deserialize() (in module salt.utils.serializers.yaml), 465
desktop_interface() (in module

salt.states.gnomedesktop), 1146
desktop_lockdown() (in module

salt.states.gnomedesktop), 1146
destroy() (in module salt.cloud.clouds.aliyun), 335
destroy() (in module salt.cloud.clouds.cloudstack), 337
destroy() (in module salt.cloud.clouds.digital_ocean), 339
destroy() (in module salt.cloud.clouds.ec2), 342
destroy() (in module salt.cloud.clouds.gce), 349
destroy() (in module salt.cloud.clouds.gogrid), 351
destroy() (in module salt.cloud.clouds.joyent), 352
destroy() (in module salt.cloud.clouds.libcloud_aws), 355
destroy() (in module salt.cloud.clouds.linode), 357
destroy() (in module salt.cloud.clouds.lxc), 359
destroy() (in module salt.cloud.clouds.msazure), 360
destroy() (in module salt.cloud.clouds.nova), 362
destroy() (in module salt.cloud.clouds.opennebula), 364
destroy() (in module salt.cloud.clouds.openstack), 366
destroy() (in module salt.cloud.clouds.parallels), 367
destroy() (in module salt.cloud.clouds.proxmox), 369
destroy() (in module salt.cloud.clouds.rackspace), 371
destroy() (in module salt.cloud.clouds.solayer), 373
destroy() (in module salt.cloud.clouds.solayer_hw), 374
destroy() (in module salt.cloud.clouds.vsphere), 375
destroy() (in module salt.modules.cloud), 514
destroy() (in module salt.modules.lxc), 655
destroy() (in module salt.modules.mdadm), 675
destroy() (in module salt.modules.smartos_vmadm), 803
destroy() (in module salt.modules.virt), 862
destroy() (in module salt.modules.xapi), 894
destroy() (in module salt.modules.zpool), 911
destroy() (in module salt.runners.cloud), 1007
destroy() (salt.cloud.CloudClient method), 332
detach_disk() (in module salt.cloud.clouds.gce), 349
detach_lb() (in module salt.cloud.clouds.gce), 349
detach_subnets() (in module salt.modules.boto_elb), 497
detach_volume() (in module salt.cloud.clouds.ec2), 342

detail() (in module salt.modules.mdadm), 675
dfs() (in module salt.modules.hadoop), 615
dfs_absent() (in module salt.modules.hadoop), 615
dfs_present() (in module salt.modules.hadoop), 615
did_composer_install() (in module

salt.modules.composer), 520
diff() (in module salt.modules.dockerio), 546
diff() (in module salt.modules.junos), 634
diff() (in module salt.modules.svn), 833
diff() (in module salt.runners.survey), 1022
dig() (in module salt.modules.network), 698
dig() (in module salt.modules.win_network), 877
dir_list() (in module salt.fileserver.gitfs), 453
dir_list() (in module salt.fileserver.hgfs), 454
dir_list() (in module salt.fileserver.minionfs), 455
dir_list() (in module salt.fileserver.roots), 456
dir_list() (in module salt.fileserver.s3fs), 457
dir_list() (in module salt.fileserver.svnfs), 458
dir_list() (in module salt.runners.fileserver), 1009
directives() (in module salt.modules.apache), 473
directory() (in module salt.states.file), 1131
directory_exists() (in module salt.modules.file), 569
dirinfo() (in module salt.modules.moosefs), 684
dirty() (in module salt.states.svn), 1228
disable() (in module salt.modules.debian_service), 535
disable() (in module salt.modules.freebsdservice), 592
disable() (in module salt.modules.gentoo_service), 596
disable() (in module salt.modules.netbsdservice), 696
disable() (in module salt.modules.puppet), 761
disable() (in module salt.modules.rdp), 774
disable() (in module salt.modules.rh_service), 782
disable() (in module salt.modules.schedule), 795
disable() (in module salt.modules.sm), 804
disable() (in module salt.modules.systemd), 841
disable() (in module salt.modules.upstart), 856
disable() (in module salt.modules.win_firewall), 874
disable() (in module salt.modules.win_ip), 875
disable() (in module salt.modules.win_service), 884
disable() (in module salt.states.apache_module), 1079
disable() (in module salt.states.modjk_worker), 1173
disable_availability_zones() (in module

salt.modules.boto_elb), 497
disable_job() (in module salt.modules.schedule), 795
disable_modules

conf/minion, 435
disable_plugin() (in module salt.modules.rabbitmq), 769
disable_returners

conf/minion, 435
disable_server() (in module salt.modules.haproxyconn),

615
disable_term_protect() (in module

salt.cloud.clouds.botocore_aws), 337
disable_term_protect() (in module salt.cloud.clouds.ec2),

342

1484 Index

Salt Documentation, Release 2014.7.6

disabled() (in module salt.modules.debian_service), 535
disabled() (in module salt.modules.freebsdservice), 592
disabled() (in module salt.modules.gentoo_service), 596
disabled() (in module salt.modules.netbsdservice), 696
disabled() (in module salt.modules.openbsdservice), 713
disabled() (in module salt.modules.rh_service), 782
disabled() (in module salt.modules.sm), 804
disabled() (in module salt.modules.systemd), 841
disabled() (in module salt.modules.upstart), 856
disabled() (in module salt.modules.win_service), 884
disabled() (in module salt.states.rabbitmq_plugin), 1210
disabled() (in module salt.states.rdp), 1214
disabled() (in module salt.states.service), 1223
disabled() (in module salt.states.win_firewall), 1237
disassociate_profile_from_role() (in module

salt.modules.boto_iam), 499
discoverable() (in module salt.modules.bluez), 487
disk_io_counters() (in module salt.modules.ps), 757
disk_partition_usage() (in module salt.modules.ps), 757
disk_partitions() (in module salt.modules.ps), 757
disk_usage() (in module salt.modules.ps), 757
diskstats() (in module salt.modules.status), 828
diskusage() (in module salt.modules.status), 828
display() (in module salt.modules.alternatives), 472
display() (salt.output.nested.NestDisplay method), 944
display() (salt.output.no_return.NestDisplay method),

945
dns_check

conf/minion, 434
dns_dhcp() (in module salt.modules.win_dns_client), 869
dns_dhcp() (in module salt.states.win_dns_client), 1236
dns_exists() (in module salt.states.win_dns_client), 1236
do() (in module salt.modules.pyenv), 765
do() (in module salt.modules.rbenv), 773
do() (in module salt.modules.rvm), 786
do_with_python() (in module salt.modules.pyenv), 765
do_with_ruby() (in module salt.modules.rbenv), 773
doc() (in module salt.modules.sysmod), 837
dot_vals() (in module salt.modules.config), 522
down() (in module salt.modules.debian_ip), 534
down() (in module salt.modules.rh_ip), 781
down() (in module salt.runners.manage), 1015
download() (inmodule salt.modules.sowareupdate), 807
Download() (salt.modules.win_update.PyWinUpdater

method), 890
Download() (salt.states.win_update.PyWinUpdater

method), 1240
download_all() (in module salt.modules.sowareupdate),

807
download_updates() (in module

salt.modules.win_update), 891
downloaded() (in module salt.states.win_update), 1241
drop_extension() (in module salt.modules.postgres), 751
dump() (in module salt.modules.blockdev), 487

dump() (in module salt.modules.data), 530
dump() (in module salt.modules.extfs), 563
dump_config() (in module salt.modules.modjk), 680
dumpconf() (in module salt.modules.znc), 910

E
EAuth, 1461
EauthAuthenticationError, 461, 463
ec2_credentials_create() (in module

salt.modules.keystone), 636
ec2_credentials_delete() (in module

salt.modules.keystone), 636
ec2_credentials_get() (in module salt.modules.keystone),

636
ec2_credentials_list() (in module salt.modules.keystone),

636
echo() (in module salt.modules.test), 843
eclean_dist() (in module salt.modules.gentoolkitmod),

598
eclean_pkg() (in module salt.modules.gentoolkitmod),

598
edit_conf() (in module salt.modules.lxc), 655
edit_server() (in module salt.modules.lvs), 651
edit_service() (in module salt.modules.lvs), 651
edited_conf() (in module salt.states.lxc), 1169
emerge_default_opts_contains() (in module

salt.modules.makecon), 667
empty_dir_list() (in module salt.runners.fileserver), 1010
enable() (in module salt.modules.debian_service), 535
enable() (in module salt.modules.freebsdservice), 592
enable() (in module salt.modules.gentoo_service), 596
enable() (in module salt.modules.netbsdservice), 696
enable() (in module salt.modules.puppet), 761
enable() (in module salt.modules.rdp), 774
enable() (in module salt.modules.rh_service), 782
enable() (in module salt.modules.schedule), 795
enable() (in module salt.modules.sm), 805
enable() (in module salt.modules.systemd), 841
enable() (in module salt.modules.upstart), 856
enable() (in module salt.modules.win_ip), 875
enable() (in module salt.modules.win_service), 884
enable() (in module salt.states.apache_module), 1079
enable_availability_zones() (in module

salt.modules.boto_elb), 497
enable_gpu_grains

conf/master, 404
enable_job() (in module salt.modules.schedule), 795
enable_plugin() (in module salt.modules.rabbitmq), 769
enable_server() (in module salt.modules.haproxyconn),

616
enable_term_protect() (in module

salt.cloud.clouds.botocore_aws), 337
enable_term_protect() (in module salt.cloud.clouds.ec2),

342

Index 1485

Salt Documentation, Release 2014.7.6

enabled() (in module salt.modules.debian_service), 535
enabled() (in module salt.modules.freebsdservice), 592
enabled() (in module salt.modules.gentoo_service), 597
enabled() (in module salt.modules.netbsdservice), 696
enabled() (in module salt.modules.openbsdservice), 714
enabled() (in module salt.modules.rh_service), 782
enabled() (in module salt.modules.sm), 805
enabled() (in module salt.modules.systemd), 841
enabled() (in module salt.modules.upstart), 856
enabled() (in module salt.modules.win_service), 884
enabled() (in module salt.states.rabbitmq_plugin), 1210
enabled() (in module salt.states.rdp), 1214
enabled() (in module salt.states.service), 1223
enabled_service_owners() (in module

salt.modules.introspect), 628
endpoint_absent() (in module salt.states.keystone), 1162
endpoint_create() (in module salt.modules.keystone), 637
endpoint_delete() (in module salt.modules.keystone), 637
endpoint_get() (in module salt.modules.keystone), 637
endpoint_list() (in module salt.modules.keystone), 637
endpoint_present() (in module salt.states.keystone), 1162
enforce_mine_cache

conf/master, 405
enforce_nice_config() (in module

salt.modules.portage_config), 748
ensure_views() (in module

salt.returners.couchdb_return), 991
enter_root() (salt.pillar.mysql.merger method), 959
env_absent() (in module salt.states.cron), 1113
env_present() (in module salt.states.cron), 1113
Environment, 1461
environment

conf/minion, 437
envs() (in module salt.fileserver.gitfs), 453
envs() (in module salt.fileserver.hgfs), 454
envs() (in module salt.fileserver.minionfs), 455
envs() (in module salt.fileserver.roots), 456
envs() (in module salt.fileserver.s3fs), 457
envs() (in module salt.fileserver.svnfs), 458
envs() (in module salt.pillar.git_pillar), 955
envs() (in module salt.runners.fileserver), 1010
envs() (salt.pillar.git_pillar.GitPillar method), 955
error() (in module salt.runners.error), 1008
error() (in module salt.wheel.error), 1253
Event, see Reactor, 158, 1461
event bus, 158
event system, 158
event() (in module salt.runners.state), 1019
Events (class in salt.netapi.rest_cherrypy.app), 924
EventsSaltAPIHandler (in module

salt.netapi.rest_tornado.saltnado), 939
ex_mod_init() (in module salt.modules.ebuild), 554
exception() (in module salt.modules.test), 843
exec_action() (in module salt.modules.eselect), 559

exec_code() (in module salt.modules.cmdmod), 516
execs() (in module salt.modules.systemd), 841
execute() (in module salt.modules.augeas_cfg), 484
execute_salt_restart_task() (in module

salt.modules.win_service), 884
Execution Function, 1461
Execution Module, 1461
execution() (in module salt.runners.doc), 1008
exists() (in module salt.modules.boto_asg), 490
exists() (in module salt.modules.boto_elasticache), 494
exists() (in module salt.modules.boto_elb), 497
exists() (in module salt.modules.boto_secgroup), 502
exists() (in module salt.modules.boto_sqs), 504
exists() (in module salt.modules.dockerio), 546
exists() (in module salt.modules.lxc), 655
exists() (in module salt.modules.parted), 722
exists() (in module salt.modules.redismod), 775
exists() (in module salt.modules.win_path), 880
exists() (in module salt.modules.zpool), 911
exists() (in module salt.states.aws_sqs), 1083
exists() (in module salt.states.file), 1132
exists() (in module salt.states.win_path), 1238
expand_repo_def() (in module salt.modules.aptpkg), 475
expand_repo_def() (in module salt.modules.yumpkg),

899
expire() (in module salt.modules.redismod), 775
expireat() (in module salt.modules.redismod), 776
export() (in module salt.modules.dockerio), 546
export() (in module salt.modules.svn), 833
export() (in module salt.states.svn), 1228
ext() (in module salt.modules.pillar), 726
ext_job_cache

conf/master, 405
ext_pillar

conf/master, 422
ext_pillar() (in module salt.pillar.cmd_json), 949
ext_pillar() (in module salt.pillar.cmd_yaml), 950
ext_pillar() (in module salt.pillar.cmd_yamlex), 950
ext_pillar() (in module salt.pillar.cobbler), 950
ext_pillar() (in module salt.pillar.django_orm), 952
ext_pillar() (in module salt.pillar.etcd_pillar), 953
ext_pillar() (in module salt.pillar.foreman), 954
ext_pillar() (in module salt.pillar.git_pillar), 955
ext_pillar() (in module salt.pillar.hiera), 955
ext_pillar() (in module salt.pillar.libvirt), 955
ext_pillar() (in module salt.pillar.mongo), 956
ext_pillar() (in module salt.pillar.mysql), 959
ext_pillar() (in module salt.pillar.pillar_ldap), 960
ext_pillar() (in module salt.pillar.puppet), 960
ext_pillar() (in module salt.pillar.reclass_adapter), 960
ext_pillar() (in module salt.pillar.redismod), 961
ext_pillar() (in module salt.pillar.s3), 962
ext_pillar() (in module salt.pillar.svn_pillar), 963
ext_pillar() (in module salt.pillar.virtkey), 963

1486 Index

Salt Documentation, Release 2014.7.6

extension_modules
conf/master, 403

External Job Cache, 1461
External Pillar, 1461
external-logging-handlers

conf/logging, 444
external_auth

conf/master, 408
external_nodes

conf/master, 410
extra_action() (salt.cloud.CloudClient method), 332
extract_hash() (in module salt.modules.file), 569
extract_queries() (salt.pillar.mysql.merger method), 959
extracted() (in module salt.states.archive), 1079

F
fact() (in module salt.modules.puppet), 761
facts() (in module salt.modules.puppet), 761
facts_refresh() (in module salt.modules.junos), 634
fail_with_changes() (in module salt.states.test), 1230
fail_without_changes() (in module salt.states.test), 1230
failhard

conf/master, 410
conf/minion, 441

features_contains() (in module salt.modules.makecon),
667

fetch() (in module salt.modules.git), 602
fetch() (in module salt.modules.pkgng), 737
fetch() (in module salt.modules.sqlite3), 821
fib() (in module salt.modules.test), 844
field_names (salt.pillar.mysql.merger aribute), 959
File Server, 1461
file() (in module salt.states.cron), 1113
file_buffer_size

conf/master, 412
file_client

conf/minion, 437
file_dict() (in module salt.modules.aptpkg), 475
file_dict() (in module salt.modules.dpkg), 553
file_dict() (in module salt.modules.freebsdpkg), 588
file_dict() (in module salt.modules.pacman), 718
file_dict() (in module salt.modules.pkgin), 733
file_dict() (in module salt.modules.rpm), 784
file_dict() (in module salt.modules.yumpkg), 900
file_exists() (in module salt.modules.file), 569
file_hash() (in module salt.fileserver.gitfs), 453
file_hash() (in module salt.fileserver.hgfs), 454
file_hash() (in module salt.fileserver.minionfs), 455
file_hash() (in module salt.fileserver.roots), 456
file_hash() (in module salt.fileserver.s3fs), 457
file_hash() (in module salt.fileserver.svnfs), 458
file_ignore_glob

conf/master, 412
file_ignore_regex

conf/master, 412
file_list() (in module salt.fileserver.gitfs), 453
file_list() (in module salt.fileserver.hgfs), 455
file_list() (in module salt.fileserver.minionfs), 456
file_list() (in module salt.fileserver.roots), 456
file_list() (in module salt.fileserver.s3fs), 457
file_list() (in module salt.fileserver.svnfs), 458
file_list() (in module salt.modules.aptpkg), 475
file_list() (in module salt.modules.dpkg), 553
file_list() (in module salt.modules.freebsdpkg), 588
file_list() (in module salt.modules.pacman), 718
file_list() (in module salt.modules.pkgin), 733
file_list() (in module salt.modules.rpm), 785
file_list() (in module salt.modules.yumpkg), 900
file_list() (in module salt.runners.fileserver), 1010
file_list_emptydirs() (in module salt.fileserver.gitfs), 453
file_list_emptydirs() (in module salt.fileserver.hgfs), 455
file_list_emptydirs() (in module salt.fileserver.roots), 456
file_list_emptydirs() (in module salt.fileserver.s3fs), 457
file_list_emptydirs() (in module salt.fileserver.svnfs), 458
file_recv

conf/master, 408
file_roots

conf/master, 412
conf/minion, 437

fileinfo() (in module salt.modules.moosefs), 684
fileio() (in module salt.modules.sysbench), 837
fileserver_backend

conf/master, 411
FileserverConfigError, 461, 463
filter_by() (in module salt.modules.grains), 610
filter_by() (in module salt.modules.match), 672
find() (in module salt.modules.file), 569
find() (in module salt.wheel.file_roots), 1253
find() (in module salt.wheel.pillar_roots), 1254
find_cached_job() (in module salt.modules.saltutil), 791
find_file() (in module salt.fileserver.gitfs), 453
find_file() (in module salt.fileserver.hgfs), 455
find_file() (in module salt.fileserver.minionfs), 456
find_file() (in module salt.fileserver.roots), 456
find_file() (in module salt.fileserver.s3fs), 457
find_file() (in module salt.fileserver.svnfs), 458
find_guest() (in module salt.runners.lxc), 1013
find_guests() (in module salt.runners.lxc), 1013
find_interfaces() (in module salt.modules.bridge), 507
find_job() (in module salt.modules.saltutil), 791
finger() (in module salt.modules.key), 634
finger() (in module salt.wheel.key), 1253
finger_master() (in module salt.modules.key), 634
fire() (in module salt.modules.event), 562
fire_master() (in module salt.modules.event), 562
flags() (in module salt.states.portage_config), 1201
flavor_create() (in module salt.modules.nova), 706
flavor_delete() (in module salt.modules.nova), 707

Index 1487

Salt Documentation, Release 2014.7.6

flavor_list() (in module salt.modules.nova), 707
flush() (in module salt.modules.ipset), 629
flush() (in module salt.modules.iptables), 632
flush() (in module salt.modules.mine), 677
flush() (in module salt.modules.nables), 703
flush() (in module salt.states.ipset), 1156
flush() (in module salt.states.iptables), 1160
flush() (in module salt.states.nables), 1186
flushall() (in module salt.modules.redismod), 776
flushdb() (in module salt.modules.redismod), 776
focus (salt.pillar.mysql.merger aribute), 959
force_off() (in module salt.runners.virt), 1023
force_reload() (in module salt.modules.debian_service),

535
force_reload() (in module salt.modules.netbsdservice),

696
force_reload() (in module salt.modules.systemd), 841
force_reload() (in module salt.modules.upstart), 856
force_reset() (in module salt.modules.rabbitmq), 769
formaed() (in module salt.states.blockdev), 1084
free_slave() (in module salt.modules.mysql), 688
freecpu() (in module salt.modules.virt), 862
freecpu() (in module salt.modules.xapi), 894
freemem() (in module salt.modules.virt), 862
freemem() (in module salt.modules.xapi), 894
freeze() (in module salt.modules.lxc), 655
freeze() (in module salt.modules.pip), 728
freeze() (in module salt.runners.lxc), 1013
fstab() (in module salt.modules.freebsdjail), 585
fstab() (in module salt.modules.mount), 685
full_data() (in module salt.modules.publish), 759
full_data() (in module salt.modules.raet_publish), 771
full_import() (in module salt.modules.solr), 817
full_info() (in module salt.modules.virt), 862
full_info() (in module salt.modules.xapi), 894
full_query() (in module salt.modules.cloud), 514
full_query() (in module salt.runners.cloud), 1008
full_query() (salt.cloud.CloudClient method), 333
full_restart() (in module salt.modules.daemontools), 528
full_restart() (in module salt.modules.upstart), 856
fullversion() (in module salt.modules.apache), 473
fullversion() (in module salt.modules.dnsmasq), 540
fullversion() (in module salt.modules.linux_lvm), 645
fullversion() (in module salt.modules.tomcat), 852
function() (in module salt.states.saltmod), 1217
function() (salt.client.Caller method), 330

G
gather_bootstrap_script() (in module

salt.modules.config), 522
gemset_copy() (in module salt.modules.rvm), 786
gemset_create() (in module salt.modules.rvm), 786
gemset_delete() (in module salt.modules.rvm), 786
gemset_empty() (in module salt.modules.rvm), 787

gemset_list() (in module salt.modules.rvm), 787
gemset_list_all() (in module salt.modules.rvm), 787
gemset_present() (in module salt.states.rvm), 1217
gen() (in module salt.wheel.key), 1253
gen_accept() (in module salt.wheel.key), 1253
gen_hyper_keys() (in module salt.pillar.libvirt), 955
gen_locale() (in module salt.modules.localemod), 647
gen_password() (in module salt.modules.shadow), 800
generate() (in module salt.runners.thin), 1023
genrepo() (in module salt.modules.win_repo), 883
genrepo() (in module salt.runners.winrepo), 1024
genrepo() (in module salt.states.winrepo), 1242
gentoo_mirrors_contains() (in module

salt.modules.makecon), 667
get() (in module salt.modules.augeas_cfg), 484
get() (in module salt.modules.config), 522
get() (in module salt.modules.darwin_sysctl), 529
get() (in module salt.modules.defaults), 537
get() (in module salt.modules.environ), 558
get() (in module salt.modules.freebsd_sysctl), 584
get() (in module salt.modules.gnomedesktop), 608
get() (in module salt.modules.grains), 611
get() (in module salt.modules.linux_sysctl), 647
get() (in module salt.modules.memcached), 676
get() (in module salt.modules.mine), 677
get() (in module salt.modules.netbsd_sysctl), 695
get() (in module salt.modules.openstack_config), 715
get() (in module salt.modules.pillar), 726
get() (in module salt.modules.rvm), 787
get() (in module salt.modules.s3), 789
get() (in module salt.modules.smartos_imgadm), 802
get() (in module salt.modules.swi), 836
get() (in module salt.runners.mine), 1016
GET() (salt.netapi.rest_cherrypy.app.Events method),

924
GET() (salt.netapi.rest_cherrypy.app.Jobs method), 922
GET() (salt.netapi.rest_cherrypy.app.Keys method), 928
GET() (salt.netapi.rest_cherrypy.app.Login method), 919
GET() (salt.netapi.rest_cherrypy.app.LowDataAdapter

method), 918
GET() (salt.netapi.rest_cherrypy.app.Minions method),

921
GET() (salt.netapi.rest_cherrypy.app.Stats method), 931
GET() (salt.netapi.rest_cherrypy.app.WebsocketEndpoint

method), 930
get_() (in module salt.modules.etcd_mod), 561
get_alarm() (in module salt.modules.boto_cloudwatch),

492
get_alias() (in module salt.modules.hosts), 619
get_all() (in module salt.modules.daemontools), 528
get_all() (in module salt.modules.debian_service), 535
get_all() (in module salt.modules.freebsdservice), 592
get_all() (in module salt.modules.gentoo_service), 597
get_all() (in module salt.modules.launchctl), 642

1488 Index

Salt Documentation, Release 2014.7.6

get_all() (in module salt.modules.netbsdservice), 696
get_all() (in module salt.modules.openbsdservice), 714
get_all() (in module salt.modules.rh_service), 782
get_all() (in module salt.modules.service), 799
get_all() (in module salt.modules.sm), 805
get_all() (in module salt.modules.systemd), 841
get_all() (in module salt.modules.upstart), 857
get_all() (in module salt.modules.win_service), 884
get_all_alarms() (in module

salt.modules.boto_cloudwatch), 493
get_all_interfaces() (in module salt.modules.win_ip), 876
get_aributes() (in module salt.modules.boto_elb), 497
get_aributes() (in module salt.modules.boto_sqs), 504
get_aributes() (in module salt.modules.win_file), 870
get_auth() (in module salt.cloud.clouds.linode), 357
get_auth_url() (in module salt.auth.keystone), 297
get_availability_zone() (in module salt.cloud.clouds.ec2),

342
get_availability_zone() (in module

salt.cloud.clouds.libcloud_aws), 355
get_available_extension() (in module

salt.modules.postgres), 752
get_base() (in module salt.modules.lxc), 656
get_block_device() (in module salt.modules.parted), 722
get_bond() (in module salt.modules.debian_ip), 534
get_bond() (in module salt.modules.rh_ip), 781
get_ca() (in module salt.modules.tls), 850
get_cache_subnet_group() (in module

salt.modules.boto_elasticache), 495
get_cflags() (in module salt.modules.makecon), 667
get_chost() (in module salt.modules.makecon), 667
get_cli_returns() (salt.client.LocalClient method), 329
get_cloud_init_mime() (in module

salt.modules.boto_asg), 490
get_computer_desc() (in module

salt.modules.win_system), 887
get_computer_name() (in module

salt.modules.win_system), 887
get_config() (in module salt.modules.boto_asg), 490
get_config() (in module salt.modules.boto_elasticache),

495
get_config() (inmodule salt.modules.boto_secgroup), 503
get_config() (in module salt.modules.dnsmasq), 540
get_config() (in module salt.modules.win_firewall), 875
get_configured_provider() (in module

salt.cloud.clouds.aliyun), 335
get_configured_provider() (in module

salt.cloud.clouds.botocore_aws), 337
get_configured_provider() (in module

salt.cloud.clouds.cloudstack), 338
get_configured_provider() (in module

salt.cloud.clouds.digital_ocean), 339
get_configured_provider() (in module

salt.cloud.clouds.ec2), 342

get_configured_provider() (in module
salt.cloud.clouds.gce), 349

get_configured_provider() (in module
salt.cloud.clouds.gogrid), 351

get_configured_provider() (in module
salt.cloud.clouds.joyent), 353

get_configured_provider() (in module
salt.cloud.clouds.libcloud_aws), 355

get_configured_provider() (in module
salt.cloud.clouds.linode), 357

get_configured_provider() (in module
salt.cloud.clouds.lxc), 359

get_configured_provider() (in module
salt.cloud.clouds.msazure), 360

get_configured_provider() (in module
salt.cloud.clouds.nova), 362

get_configured_provider() (in module
salt.cloud.clouds.opennebula), 364

get_configured_provider() (in module
salt.cloud.clouds.openstack), 366

get_configured_provider() (in module
salt.cloud.clouds.parallels), 367

get_configured_provider() (in module
salt.cloud.clouds.proxmox), 369

get_configured_provider() (in module
salt.cloud.clouds.rackspace), 371

get_configured_provider() (in module
salt.cloud.clouds.saltify), 372

get_configured_provider() (in module
salt.cloud.clouds.solayer), 373

get_configured_provider() (in module
salt.cloud.clouds.solayer_hw), 374

get_configured_provider() (in module
salt.cloud.clouds.vsphere), 375

get_conn() (in module salt.cloud.clouds.cloudstack), 338
get_conn() (in module salt.cloud.clouds.gce), 349
get_conn() (in module salt.cloud.clouds.gogrid), 351
get_conn() (in module salt.cloud.clouds.libcloud_aws),

355
get_conn() (in module salt.cloud.clouds.linode), 357
get_conn() (in module salt.cloud.clouds.msazure), 360
get_conn() (in module salt.cloud.clouds.nova), 362
get_conn() (in module salt.cloud.clouds.openstack), 366
get_conn() (in module salt.cloud.clouds.rackspace), 371
get_conn() (in module salt.cloud.clouds.solayer), 373
get_conn() (in module salt.cloud.clouds.solayer_hw),

374
get_conn() (in module salt.cloud.clouds.vsphere), 376
get_console_output() (in module salt.cloud.clouds.ec2),

342
get_container_root() (in module salt.modules.dockerio),

546
get_containers() (in module salt.modules.dockerio), 546
get_current_target() (in module salt.modules.eselect),

Index 1489

Salt Documentation, Release 2014.7.6

560
get_cxxflags() (in module salt.modules.makecon), 667
get_data() (salt.roster.flat.RosterMatcher method), 1005
get_default_gateway() (in module salt.modules.win_ip),

876
get_devmm() (in module salt.modules.file), 571
get_diff() (in module salt.modules.file), 571
get_dir() (in module salt.modules.cp), 524
get_disabled() (in module salt.modules.debian_service),

536
get_disabled() (in module salt.modules.freebsdservice),

592
get_disabled() (in module salt.modules.gentoo_service),

597
get_disabled() (in module salt.modules.netbsdservice),

696
get_disabled() (in module salt.modules.openbsdservice),

714
get_disabled() (in module salt.modules.rh_service), 783
get_disabled() (in module salt.modules.sm), 805
get_disabled() (in module salt.modules.systemd), 841
get_disabled() (in module salt.modules.upstart), 857
get_disabled() (in module salt.modules.win_service), 885
get_disk_size() (in module salt.cloud.clouds.linode), 357
get_disks() (in module salt.modules.virt), 862
get_disks() (in module salt.modules.xapi), 895
get_dns_config() (in module

salt.modules.win_dns_client), 869
get_dns_servers() (in module

salt.modules.win_dns_client), 869
get_docker() (in module salt.modules.mine), 677
get_elb_config() (in module salt.modules.boto_elb), 497
get_emerge_default_opts() (in module

salt.modules.makecon), 667
get_enabled() (in module salt.modules.debian_service),

536
get_enabled() (in module salt.modules.freebsdjail), 585
get_enabled() (in module salt.modules.freebsdservice),

592
get_enabled() (in module salt.modules.gentoo_service),

597
get_enabled() (in module salt.modules.netbsdservice),

696
get_enabled() (in module salt.modules.openbsdservice),

714
get_enabled() (in module salt.modules.rh_service), 783
get_enabled() (in module salt.modules.sm), 805
get_enabled() (in module salt.modules.systemd), 841
get_enabled() (in module salt.modules.upstart), 857
get_enabled() (in module salt.modules.win_service), 885
get_event_iter_returns() (salt.client.LocalClientmethod),

329
get_features() (in module salt.modules.makecon), 668
get_file() (in module salt.modules.cp), 524

get_file_str() (in module salt.modules.cp), 525
get_flags_from_package_conf() (in module

salt.modules.portage_config), 748
get_fun() (in module salt.modules.ret), 780
get_fun() (in module salt.returners.couchdb_return), 991
get_fun() (in module salt.returners.etcd_return), 993
get_fun() (in module salt.returners.memcache_return),

994
get_fun() (inmodule salt.returners.mongo_future_return),

995
get_fun() (in module salt.returners.mongo_return), 996
get_fun() (in module salt.returners.mysql), 997
get_fun() (in module salt.returners.odbc), 999
get_fun() (in module salt.returners.postgres), 1001
get_fun() (in module salt.returners.redis_return), 1001
get_fun() (in module salt.returners.sqlite3_return), 1004
get_gentoo_mirrors() (in module

salt.modules.makecon), 668
get_gid() (in module salt.modules.file), 571
get_gid() (in module salt.modules.win_file), 871
get_graphics() (in module salt.modules.virt), 862
get_group() (in module salt.modules.file), 571
get_group() (in module salt.modules.win_file), 871
get_group_id() (in module salt.modules.boto_secgroup),

503
get_hash() (in module salt.modules.file), 571
get_health_check() (in module salt.modules.boto_elb),

497
get_hostname() (in module salt.modules.network), 698
get_hwclock() (in module salt.modules.timezone), 846
get_hwclock() (in module salt.modules.win_timezone),

889
get_id() (in module salt.modules.parted), 722
get_image() (in module salt.cloud.clouds.aliyun), 335
get_image() (in module salt.cloud.clouds.cloudstack), 338
get_image() (in module salt.cloud.clouds.digital_ocean),

339
get_image() (in module salt.cloud.clouds.gogrid), 351
get_image() (in module salt.cloud.clouds.joyent), 353
get_image() (in module salt.cloud.clouds.linode), 357
get_image() (in module salt.cloud.clouds.nova), 362
get_image() (in module salt.cloud.clouds.opennebula),

364
get_image() (in module salt.cloud.clouds.openstack), 366
get_image() (in module salt.cloud.clouds.parallels), 367
get_image() (in module salt.cloud.clouds.rackspace), 371
get_images() (in module salt.modules.dockerio), 546
get_installed_extension() (in module

salt.modules.postgres), 752
get_instance_health() (in module salt.modules.boto_elb),

497
get_interface() (in module salt.modules.debian_ip), 534
get_interface() (in module salt.modules.rh_ip), 781
get_interface() (in module salt.modules.win_ip), 876

1490 Index

Salt Documentation, Release 2014.7.6

get_ip() (in module salt.cloud.clouds.cloudstack), 338
get_ip() (in module salt.modules.hosts), 619
get_jid() (in module salt.modules.ret), 780
get_jid() (in module salt.returners.couchbase_return),

991
get_jid() (in module salt.returners.couchdb_return), 991
get_jid() (in module salt.returners.etcd_return), 993
get_jid() (in module salt.returners.local_cache), 994
get_jid() (in module salt.returners.memcache_return),

994
get_jid() (inmodule salt.returners.mongo_future_return),

995
get_jid() (in module salt.returners.mongo_return), 996
get_jid() (in module salt.returners.multi_returner), 996
get_jid() (in module salt.returners.mysql), 997
get_jid() (in module salt.returners.odbc), 999
get_jid() (in module salt.returners.postgres), 1001
get_jid() (in module salt.returners.redis_return), 1001
get_jid() (in module salt.returners.sqlite3_return), 1004
get_jids() (in module salt.modules.ret), 780
get_jids() (in module salt.returners.couchbase_return),

991
get_jids() (in module salt.returners.couchdb_return), 991
get_jids() (in module salt.returners.etcd_return), 993
get_jids() (in module salt.returners.local_cache), 994
get_jids() (in module salt.returners.memcache_return),

994
get_jids() (inmodule salt.returners.mongo_future_return),

995
get_jids() (in module salt.returners.multi_returner), 996
get_jids() (in module salt.returners.mysql), 997
get_jids() (in module salt.returners.odbc), 999
get_jids() (in module salt.returners.postgres), 1001
get_jids() (in module salt.returners.redis_return), 1002
get_jids() (in module salt.returners.sqlite3_return), 1004
get_kernels() (in module salt.cloud.clouds.linode), 357
get_key() (in module salt.cloud.clouds.cloudstack), 338
get_key() (in module salt.modules.redismod), 776
get_keyid() (in module salt.cloud.clouds.digital_ocean),

339
get_keypair() (in module salt.cloud.clouds.cloudstack),

338
get_known_host() (in module salt.modules.ssh), 823
get_lb_conn() (in module salt.cloud.clouds.gce), 349
get_load() (in module salt.returners.couchbase_return),

991
get_load() (in module salt.returners.etcd_return), 993
get_load() (in module salt.returners.local_cache), 994
get_load() (in module salt.returners.memcache_return),

994
get_load() (inmodule salt.returners.mongo_future_return),

995
get_load() (in module salt.returners.multi_returner), 996
get_load() (in module salt.returners.mysql), 997

get_load() (in module salt.returners.odbc), 999
get_load() (in module salt.returners.postgres), 1001
get_load() (in module salt.returners.redis_return), 1002
get_load() (in module salt.returners.sqlite3_return), 1004
get_locale() (in module salt.modules.localemod), 648
get_location() (in module salt.cloud.clouds.aliyun), 335
get_location() (in module salt.cloud.clouds.cloudstack),

338
get_location() (in module

salt.cloud.clouds.digital_ocean), 339
get_location() (in module salt.cloud.clouds.ec2), 343
get_location() (in module salt.cloud.clouds.joyent), 353
get_location() (in module

salt.cloud.clouds.libcloud_aws), 355
get_location() (in module salt.cloud.clouds.linode), 357
get_location() (in module salt.cloud.clouds.opennebula),

364
get_location() (in module salt.cloud.clouds.solayer), 373
get_location() (in module

salt.cloud.clouds.solayer_hw), 374
get_location_path() (in module salt.cloud.clouds.joyent),

353
get_locked_packages() (in module

salt.modules.yumpkg), 900
get_macs() (in module salt.modules.smartos_vmadm),

803
get_macs() (in module salt.modules.virt), 862
get_macs() (in module salt.modules.xapi), 895
get_makeopts() (in module salt.modules.makecon), 668
get_managed() (in module salt.modules.file), 572
get_master_status() (in module salt.modules.mysql), 688
get_minions() (in module salt.modules.ret), 780
get_minions() (inmodule salt.returners.couchdb_return),

991
get_minions() (in module salt.returners.etcd_return), 993
get_minions() (in module

salt.returners.memcache_return), 994
get_minions() (in module

salt.returners.mongo_future_return), 995
get_minions() (in module salt.returners.mysql), 998
get_minions() (in module salt.returners.odbc), 1000
get_minions() (in module salt.returners.postgres), 1001
get_minions() (in module salt.returners.redis_return),

1002
get_minions() (in module salt.returners.sqlite3_return),

1004
get_missing_flags() (in module

salt.modules.portage_config), 748
get_mode() (in module salt.modules.file), 572
get_mode() (in module salt.modules.quota), 767
get_mode() (in module salt.modules.win_file), 871
get_modules() (in module salt.modules.eselect), 560
get_network_seings() (in module

salt.modules.debian_ip), 534

Index 1491

Salt Documentation, Release 2014.7.6

get_network_seings() (in module salt.modules.rh_ip),
781

get_networkid() (in module
salt.cloud.clouds.cloudstack), 338

get_nics() (in module salt.modules.virt), 862
get_nics() (in module salt.modules.xapi), 895
get_node() (in module salt.cloud.clouds.cloudstack), 338
get_node() (in module salt.cloud.clouds.joyent), 353
get_node() (in module salt.cloud.clouds.linode), 357
get_node() (in module salt.cloud.clouds.openstack), 366
get_offset() (in module salt.modules.timezone), 846
get_offset() (in module salt.modules.win_timezone), 889
get_one_kernel() (in module salt.cloud.clouds.linode),

358
get_option() (in module salt.modules.ini_manage), 626
get_opts() (in module salt.modules.test), 844
get_or_set_hash() (in module salt.modules.grains), 611
get_output_volume() (in module

salt.modules.osxdesktop), 717
get_parameter() (in module salt.modules.lxc), 656
get_password() (in module salt.cloud.clouds.cloudstack),

338
get_password() (in module salt.cloud.clouds.linode), 358
get_path() (in module salt.modules.win_path), 880
get_pending_computer_name() (in module

salt.modules.win_system), 887
get_pgid() (in module salt.modules.win_file), 871
get_pgroup() (in module salt.modules.win_file), 871
get_pid_list() (in module salt.modules.ps), 757
get_placementgroup() (in module salt.cloud.clouds.ec2),

343
get_policy() (in module salt.modules.iptables), 632
get_private_ip() (in module salt.cloud.clouds.linode), 358
get_profiles() (in module salt.modules.virt), 862
get_provider() (in module salt.cloud.clouds.lxc), 359
get_pubkey() (in module salt.cloud.clouds.linode), 358
get_record() (in module salt.modules.boto_route53), 501
get_repo() (in module salt.modules.aptpkg), 475
get_repo() (in module salt.modules.yumpkg), 900
get_repo() (in module salt.modules.zypper), 912
get_repo_data() (in module salt.modules.win_pkg), 880
get_resources_nodes() (in module

salt.cloud.clouds.proxmox), 369
get_resources_vms() (in module

salt.cloud.clouds.proxmox), 369
get_role_policy() (in module salt.modules.boto_iam), 500
get_routes() (in module salt.modules.debian_ip), 534
get_routes() (in module salt.modules.rh_ip), 782
get_rule() (in module salt.modules.win_firewall), 875
get_rule_handle() (in module salt.modules.nables), 703
get_rules() (in module salt.modules.iptables), 632
get_rules() (in module salt.modules.lvs), 651
get_rules() (in module salt.modules.nables), 703
get_running() (in module salt.modules.modjk), 680

get_running() (in module salt.modules.sm), 805
get_saved_policy() (in module salt.modules.iptables), 632
get_saved_rules() (in module salt.modules.iptables), 633
get_saved_rules() (in module salt.modules.nables), 703
get_scaling_policy_arn() (in module

salt.modules.boto_asg), 491
get_sd_auth() (in module

salt.modules.serverdensity_device), 798
get_section() (in module salt.modules.ini_manage), 626
get_securitygroup() (in module salt.cloud.clouds.aliyun),

335
get_selections() (in module salt.modules.aptpkg), 475
get_selections() (in module salt.modules.debconfmod),

533
get_selinux_context() (in module salt.modules.file), 572
get_servers() (in module salt.modules.win_ntp), 879
get_service_name() (in module

salt.modules.win_service), 885
get_site_packages() (in module

salt.modules.virtualenv_mod), 868
get_size() (in module salt.cloud.clouds.aliyun), 335
get_size() (in module salt.cloud.clouds.cloudstack), 338
get_size() (in module salt.cloud.clouds.digital_ocean),

339
get_size() (in module salt.cloud.clouds.gogrid), 351
get_size() (in module salt.cloud.clouds.joyent), 353
get_size() (in module salt.cloud.clouds.linode), 358
get_size() (in module salt.cloud.clouds.nova), 362
get_size() (in module salt.cloud.clouds.openstack), 366
get_size() (in module salt.cloud.clouds.rackspace), 371
get_slave_status() (in module salt.modules.mysql), 688
get_spot_config() (in module salt.cloud.clouds.ec2), 343
get_ssh_gateway_config() (in module

salt.cloud.clouds.ec2), 343
get_ssh_key_filename() (in module

salt.cloud.clouds.linode), 358
get_stopped() (in module salt.modules.sm), 805
get_str() (in module salt.modules.mod_random), 678
get_subnet_length() (in module salt.modules.win_ip),

876
get_subnetid() (in module salt.cloud.clouds.ec2), 343
get_sum() (in module salt.modules.file), 572
get_swap() (in module salt.cloud.clouds.linode), 358
get_sync() (in module salt.modules.makecon), 668
get_sys() (in module salt.modules.keyboard), 635
get_system_date() (in module salt.modules.win_system),

887
get_system_time() (in module salt.modules.win_system),

887
get_tags() (in module salt.cloud.clouds.ec2), 343
get_tags() (in module salt.cloud.clouds.libcloud_aws),

356
get_target() (in module salt.modules.aliases), 471
get_target_list() (in module salt.modules.eselect), 560

1492 Index

Salt Documentation, Release 2014.7.6

get_template() (in module salt.modules.cp), 525
get_tenancy() (in module salt.cloud.clouds.ec2), 343
get_uid() (in module salt.modules.file), 573
get_uid() (in module salt.modules.win_file), 872
get_url() (in module salt.modules.cp), 525
get_user() (in module salt.modules.file), 573
get_user() (in module salt.modules.win_file), 872
get_users() (in module salt.modules.ps), 757
get_valid_salt_views() (in module

salt.returners.couchdb_return), 991
get_var() (in module salt.modules.makecon), 668
get_vm_status() (in module salt.cloud.clouds.proxmox),

369
get_vmconfig() (in module salt.cloud.clouds.proxmox),

369
get_weight() (in module salt.modules.haproxyconn), 616
get_x() (in module salt.modules.keyboard), 635
get_xml() (in module salt.modules.virt), 863
get_yaml_loader() (in module salt.renderers.yaml), 986
get_zone() (in module salt.modules.timezone), 846
get_zone() (in module salt.modules.win_timezone), 889
get_zonecode() (in module salt.modules.timezone), 846
get_zonecode() (in module salt.modules.win_timezone),

889
GetAvailableCategories()

(salt.modules.win_update.PyWinUpdater
method), 890

GetAvailableCategories()
(salt.states.win_update.PyWinUpdater
method), 1240

GetCategories() (salt.modules.win_update.PyWinUpdater
method), 890

GetCategories() (salt.states.win_update.PyWinUpdater
method), 1240

getClockFormat() (in module
salt.modules.gnomedesktop), 608

getClockShowDate() (in module
salt.modules.gnomedesktop), 608

GetDownloadResults() (salt.modules.win_update.PyWinUpdater
method), 890

GetDownloadResults() (salt.states.win_update.PyWinUpdater
method), 1240

getenforce() (in module salt.modules.selinux), 797
getent() (in module salt.modules.groupadd), 613
getent() (in module salt.modules.mac_group), 660
getent() (in module salt.modules.mac_user), 662
getent() (in module salt.modules.pw_group), 762
getent() (in module salt.modules.pw_user), 764
getent() (in module salt.modules.solaris_group), 809
getent() (in module salt.modules.solaris_user), 811
getent() (in module salt.modules.useradd), 859
getent() (in module salt.modules.win_groupadd), 875
getent() (in module salt.modules.win_useradd), 893
getfacl() (in module salt.modules.linux_acl), 644

getgoal() (in module salt.modules.moosefs), 684
getIdleActivation() (in module

salt.modules.gnomedesktop), 608
getIdleDelay() (in module salt.modules.gnomedesktop),

608
GetInstallationResults() (salt.modules.win_update.PyWinUpdater

method), 890
GetInstallationResults() (salt.states.win_update.PyWinUpdater

method), 1240
GetInstallationResultsPrey()

(salt.modules.win_update.PyWinUpdater
method), 891

GetSearchResults() (salt.modules.win_update.PyWinUpdater
method), 891

GetSearchResultsPrey()
(salt.modules.win_update.PyWinUpdater
method), 891

getsebool() (in module salt.modules.selinux), 797
getsid() (in module salt.modules.win_service), 885
getval() (in module salt.modules.data), 530
getvals() (in module salt.modules.data), 530
gid_to_group() (in module salt.modules.file), 573
gid_to_group() (in module salt.modules.win_file), 872
gitfs_base

conf/master, 414
gitfs_env_blacklist

conf/master, 414
gitfs_env_whitelist

conf/master, 414
gitfs_insecure_auth

conf/master, 415
gitfs_mountpoint

conf/master, 414
gitfs_passphrase

conf/master, 416
gitfs_password

conf/master, 415
gitfs_privkey

conf/master, 415
gitfs_provider

conf/master, 413
gitfs_pubkey

conf/master, 415
gitfs_remotes

conf/master, 413
gitfs_root

conf/master, 414
gitfs_ssl_verify

conf/master, 413
gitfs_user

conf/master, 415
GitPillar (class in salt.pillar.git_pillar), 955
glob() (in module salt.modules.match), 672

Index 1493

Salt Documentation, Release 2014.7.6

glsa_check_list() (in module
salt.modules.gentoolkitmod), 599

Grain, 1461
grain() (in module salt.modules.match), 673
grain_pcre() (in module salt.modules.match), 673
grains() (in module salt.loader), 326
grains() (in module salt.runners.cache), 1007
grains_dirs

conf/minion, 435
grains_refresh() (in module salt.modules.rest_sample),

779
grant_add() (in module salt.modules.mysql), 689
grant_exists() (in module salt.modules.mysql), 689
grant_revoke() (in module salt.modules.mysql), 689
grep() (in module salt.modules.file), 573
group_create() (in module salt.modules.postgres), 752
group_diff() (in module salt.modules.yumpkg), 900
group_info() (in module salt.modules.yumpkg), 900
group_install() (in module salt.modules.yumpkg), 901
group_list() (in module salt.modules.yumpkg), 901
group_remove() (in module salt.modules.postgres), 752
group_to_gid() (in module salt.modules.file), 573
group_to_gid() (in module salt.modules.win_file), 872
group_update() (in module salt.modules.postgres), 752
groups() (in module salt.auth.ldap), 298
groups() (in module salt.auth.pam), 299
gunzip() (in module salt.modules.archive), 481
gzip() (in module salt.modules.archive), 481

H
Halite, 1461
halt() (in module salt.modules.system), 840
halt() (in module salt.modules.win_system), 887
handle (salt.auth.pam.PamHandle aribute), 298
has_exec() (in module salt.modules.cmdmod), 516
has_flag() (in module salt.modules.portage_config), 749
has_method() (in module salt.cloud.clouds.joyent), 353
has_pair() (in module salt.modules.hosts), 619
has_powerpath() (in module salt.modules.powerpath),

756
has_powershell() (in module salt.modules.win_service),

885
has_target() (in module salt.modules.aliases), 471
has_use() (in module salt.modules.portage_config), 749
has_value() (in module salt.modules.environ), 558
has_value() (in module salt.modules.grains), 612
hash() (in module salt.modules.mod_random), 678
hash() (in module salt.runners.survey), 1022
hash_file() (in module salt.modules.cp), 525
hash_known_hosts() (in module salt.modules.ssh), 823
hash_type

conf/master, 411
conf/minion, 438

head() (in module salt.modules.s3), 790

head() (in module salt.modules.swi), 836
held() (in module salt.states.apt), 1079
hget() (in module salt.modules.redismod), 776
hgetall() (in module salt.modules.redismod), 776
hgfs_base

conf/master, 417
hgfs_branch_method

conf/master, 416
hgfs_env_blacklist

conf/master, 418
hgfs_env_whitelist

conf/master, 417
hgfs_mountpoint

conf/master, 417
hgfs_remotes

conf/master, 416
hgfs_root

conf/master, 417
high() (in module salt.modules.state), 824
Highdata, 1461
Highstate, 1462
highstate() (in module salt.modules.state), 824
hmac_signature() (in module salt.modules.hashutil), 617
hold() (in module salt.modules.aptpkg), 476
hold() (in module salt.modules.yumpkg), 901
host_keys() (in module salt.modules.ssh), 823
hosts_append() (in module salt.modules.dnsutil), 541
hosts_remove() (in module salt.modules.dnsutil), 541
hw_addr() (in module salt.modules.network), 698
hw_addr() (in module salt.modules.win_network), 877
hwaddr() (in module salt.modules.network), 698
hwaddr() (in module salt.modules.win_network), 878
hyper_info() (in module salt.runners.virt), 1023

I
iam_profile() (in module salt.cloud.clouds.ec2), 343
iam_profile() (in module salt.cloud.clouds.libcloud_aws),

356
id

conf/minion, 431
ignore() (in module salt.modules.sowareupdate), 807
ignore_cidr() (in module salt.cloud.clouds.nova), 362
ignore_cidr() (in module salt.cloud.clouds.openstack),

366
image_create() (in module salt.modules.glance), 606
image_delete() (in module salt.modules.glance), 606
image_list() (in module salt.modules.glance), 606
image_list() (in module salt.modules.nova), 707
image_meta_delete() (in module salt.modules.nova), 707
image_meta_set() (in module salt.modules.nova), 707
image_show() (in module salt.modules.glance), 606
import_image() (in module salt.modules.dockerio), 547
import_image() (in module

salt.modules.smartos_imgadm), 802

1494 Index

Salt Documentation, Release 2014.7.6

import_key() (in module salt.cloud.clouds.joyent), 353
import_status() (in module salt.modules.solr), 817
in_subnet() (in module salt.modules.network), 698
in_subnet() (in module salt.modules.win_network), 878
include

conf/master, 428
conf/minion, 441

increment() (in module salt.modules.memcached), 676
indexes() (in module salt.modules.sqlite3), 821
indices() (in module salt.modules.sqlite3), 821
info() (in module salt.modules.bsd_shadow), 508
info() (in module salt.modules.cassandra), 509
info() (in module salt.modules.dockerio), 547
info() (in module salt.modules.groupadd), 614
info() (in module salt.modules.lxc), 656
info() (in module salt.modules.mac_group), 660
info() (in module salt.modules.mac_user), 662
info() (in module salt.modules.pw_group), 762
info() (in module salt.modules.pw_user), 764
info() (in module salt.modules.redismod), 776
info() (in module salt.modules.shadow), 801
info() (in module salt.modules.solaris_group), 809
info() (in module salt.modules.solaris_shadow), 810
info() (in module salt.modules.solaris_user), 812
info() (in module salt.modules.svn), 833
info() (in module salt.modules.useradd), 859
info() (in module salt.modules.win_groupadd), 875
info() (in module salt.modules.win_shadow), 886
info() (in module salt.modules.win_useradd), 893
info() (in module salt.runners.lxc), 1013
init() (in module salt.fileserver.gitfs), 454
init() (in module salt.fileserver.hgfs), 455
init() (in module salt.fileserver.svnfs), 458
init() (in module salt.modules.git), 602
init() (in module salt.modules.lxc), 656
init() (in module salt.modules.qemu_nbd), 767
init() (in module salt.modules.smartos_vmadm), 803
init() (in module salt.modules.system), 840
init() (in module salt.modules.virt), 863
init() (in module salt.modules.win_system), 887
init() (in module salt.runners.lxc), 1013
init() (in module salt.runners.virt), 1023
inodeusage() (in module salt.modules.disk), 538
insert() (in module salt.modules.iptables), 633
insert() (in module salt.modules.nables), 703
insert() (in module salt.runners.queue), 1018
insert() (in module salt.states.iptables), 1160
insert() (in module salt.states.nables), 1186
inspect_container() (in module salt.modules.dockerio),

547
inspect_image() (in module salt.modules.dockerio), 547
install() (in module salt.modules.alternatives), 472
install() (in module salt.modules.aptpkg), 476
install() (in module salt.modules.brew), 504

install() (in module salt.modules.chocolatey), 511
install() (in module salt.modules.composer), 520
install() (in module salt.modules.ebuild), 554
install() (in module salt.modules.freebsdpkg), 588
install() (in module salt.modules.freebsdports), 590
install() (in module salt.modules.gem), 593
install() (in module salt.modules.macports), 663
install() (in module salt.modules.npm), 710
install() (in module salt.modules.openbsdpkg), 712
install() (in module salt.modules.pacman), 718
install() (in module salt.modules.pecl), 725
install() (in module salt.modules.pip), 728
install() (in module salt.modules.pkgin), 733
install() (in module salt.modules.pkgng), 738
install() (in module salt.modules.pkgutil), 746
install() (in module salt.modules.pyenv), 765
install() (in module salt.modules.rbenv), 773
install() (in module salt.modules.rest_package), 779
install() (in module salt.modules.rvm), 787
install() (in module salt.modules.sowareupdate), 807
install() (in module salt.modules.solarispkg), 812
install() (in module salt.modules.win_pkg), 880
install() (in module salt.modules.win_servermanager),

883
install() (in module salt.modules.yumpkg), 902
install() (in module salt.modules.zypper), 912
install() (in module salt.states.alternatives), 1077
Install() (salt.modules.win_update.PyWinUpdater

method), 891
Install() (salt.states.win_update.PyWinUpdater method),

1240
install_agent() (in module

salt.modules.serverdensity_device), 798
install_cygwin() (in module salt.modules.chocolatey),

511
install_gem() (in module salt.modules.chocolatey), 512
install_missing() (in module salt.modules.chocolatey),

512
install_pyenv() (in module salt.states.pyenv), 1209
install_python() (inmodule salt.modules.chocolatey), 512
install_python() (in module salt.modules.pyenv), 765
install_rbenv() (in module salt.states.rbenv), 1213
install_ruby() (in module salt.modules.rbenv), 773
install_ruby() (in module salt.modules.rvm), 787
install_updates() (in module salt.modules.win_update),

891
install_webpi() (in module salt.modules.chocolatey), 512
install_windowsfeatures() (in module

salt.modules.chocolatey), 512
installed() (in module salt.modules.rest_package), 779
installed() (in module salt.states.composer), 1110
installed() (in module salt.states.dockerio), 1118
installed() (in module salt.states.gem), 1142
installed() (in module salt.states.npm), 1187

Index 1495

Salt Documentation, Release 2014.7.6

installed() (in module salt.states.pecl), 1189
installed() (in module salt.states.pip_state), 1190
installed() (in module salt.states.pkg), 1193
installed() (in module salt.states.ports), 1202
installed() (in module salt.states.pyenv), 1209
installed() (in module salt.states.rbenv), 1213
installed() (in module salt.states.rvm), 1217
installed() (in module salt.states.win_servermanager),

1239
installed() (in module salt.states.win_update), 1241
installed() (in module salt.states.zcbuildout), 1243
installed_extensions() (in module salt.modules.postgres),

752
instance_profile_exists() (in module

salt.modules.boto_iam), 500
interface

conf/master, 401
interface() (in module salt.modules.network), 698
interface_ip() (in module salt.modules.network), 698
interfaces() (in module salt.modules.bridge), 507
interfaces() (in module salt.modules.network), 698
interfaces() (in module salt.modules.win_network), 878
interfaces_names() (in module

salt.modules.win_network), 878
iostat() (in module salt.modules.zpool), 911
ip_addrs() (in module salt.modules.network), 699
ip_addrs() (in module salt.modules.win_network), 878
ip_addrs6() (in module salt.modules.network), 699
ip_addrs6() (in module salt.modules.win_network), 878
ipaddrs() (in module salt.modules.network), 699
ipaddrs() (in module salt.modules.win_network), 878
ipaddrs6() (in module salt.modules.network), 699
ipaddrs6() (in module salt.modules.win_network), 878
ipc_mode

conf/minion, 434
ipcidr() (in module salt.modules.match), 673
ipv6

conf/master, 401
is_available_extension() (in module

salt.modules.postgres), 753
is_blkdev() (in module salt.modules.file), 574
is_cached() (in module salt.modules.cp), 525
is_chrdev() (in module salt.modules.file), 574
is_disabled() (in module salt.modules.win_ip), 876
is_enabled() (in module salt.modules.freebsdjail), 585
is_enabled() (in module salt.modules.win_ip), 876
is_fifo() (in module salt.modules.file), 574
is_fuse_exec() (in module salt.modules.mount), 685
is_hyper() (in module salt.modules.virt), 863
is_hyper() (in module salt.modules.xapi), 895
is_installed() (in module salt.modules.pyenv), 765
is_installed() (in module salt.modules.rbenv), 773
is_installed() (in module salt.modules.rvm), 788

is_installed_extension() (in module
salt.modules.postgres), 753

is_jail() (in module salt.modules.poudriere), 755
is_kvm_hyper() (in module salt.modules.virt), 863
is_link() (in module salt.modules.file), 574
is_link() (in module salt.modules.win_file), 873
is_loaded() (in module salt.modules.freebsdkmod), 586
is_loaded() (in module salt.modules.kmod), 641
is_loopback() (in module salt.modules.network), 699
is_mounted() (in module salt.modules.mount), 685
is_present() (inmodule salt.modules.portage_config), 749
is_private() (in module salt.modules.network), 699
is_replication_enabled() (in module salt.modules.solr),

818
is_running() (in module salt.modules.dockerio), 547
is_running() (in module salt.modules.saltutil), 791
is_xen_hyper() (in module salt.modules.virt), 863
item() (in module salt.modules.environ), 558
item() (in module salt.modules.grains), 612
item() (in module salt.modules.pillar), 726
items() (in module salt.modules.environ), 559
items() (in module salt.modules.grains), 612
items() (in module salt.modules.pillar), 727

J
Jinja, 1461
Job, 1461
Job ID, 1461
Job Management, 151
job_cache

conf/master, 404
jobcheck() (in module salt.modules.at), 484
Jobs (class in salt.netapi.rest_cherrypy.app), 922
JobsSaltAPIHandler (in module

salt.netapi.rest_tornado.saltnado), 938
join() (in module salt.modules.file), 574
join() (in module salt.states.rabbitmq_cluster), 1210
join_cluster() (in module salt.modules.rabbitmq), 769
join_domain() (in module salt.modules.win_system), 888
joyent_node_state() (in module salt.cloud.clouds.joyent),

353

K
keep_jobs

conf/master, 403
keepvol_on_destroy() (in module salt.cloud.clouds.ec2),

343
key_json() (in module salt.pillar.redismod), 961
key_list() (in module salt.cloud.clouds.joyent), 353
key_regen() (in module salt.runners.manage), 1015
key_str() (in module salt.wheel.key), 1254
key_type() (in module salt.modules.redismod), 776
key_value() (in module salt.pillar.redismod), 961
keyname() (in module salt.cloud.clouds.ec2), 343

1496 Index

Salt Documentation, Release 2014.7.6

keyname() (in module salt.cloud.clouds.libcloud_aws),
356

keypair_add() (in module salt.modules.nova), 707
keypair_delete() (in module salt.modules.nova), 707
keypair_list() (in module salt.modules.nova), 707
Keys (class in salt.netapi.rest_cherrypy.app), 928
keys() (in module salt.modules.redismod), 776
keys() (in module salt.states.libvirt), 1165
keyspaces() (in module salt.modules.cassandra), 509
kill() (in module salt.modules.dockerio), 547
kill_job() (in module salt.modules.saltutil), 791
kill_pid() (in module salt.modules.ps), 757
kwarg() (in module salt.modules.test), 844

L
lastsave() (in module salt.modules.redismod), 777
latest() (in module salt.states.git), 1143
latest() (in module salt.states.hg), 1150
latest() (in module salt.states.pkg), 1197
latest() (in module salt.states.svn), 1229
latest_version() (in module salt.modules.aptpkg), 477
latest_version() (in module salt.modules.brew), 505
latest_version() (in module salt.modules.ebuild), 555
latest_version() (in module salt.modules.freebsdpkg), 589
latest_version() (in module salt.modules.macports), 663
latest_version() (in module salt.modules.openbsdpkg),

712
latest_version() (in module salt.modules.pacman), 719
latest_version() (in module salt.modules.pkgin), 733
latest_version() (in module salt.modules.pkgng), 739
latest_version() (in module salt.modules.pkgutil), 746
latest_version() (in module salt.modules.solarispkg), 813
latest_version() (in module salt.modules.win_pkg), 881
latest_version() (in module salt.modules.yumpkg), 903
latest_version() (in module salt.modules.zypper), 912
launch_configuration_exists() (in module

salt.modules.boto_asg), 491
lb_edit() (in module salt.modules.modjk), 680
lchown() (in module salt.modules.file), 574
lchown() (in module salt.modules.win_file), 873
leaks() (in module salt.modules.tomcat), 852
license_absent() (in module salt.states.powerpath), 1207
license_present() (in module salt.states.powerpath), 1207
link() (in module salt.modules.file), 575
list() (in module salt.runners.virt), 1024
list_() (in module salt.modules.bridge), 507
list_() (in module salt.modules.chocolatey), 513
list_() (in module salt.modules.gem), 594
list_() (in module salt.modules.lvs), 652
list_() (in module salt.modules.lxc), 657
list_() (in module salt.modules.match), 673
list_() (in module salt.modules.mdadm), 675
list_() (in module salt.modules.nova), 708
list_() (in module salt.modules.npm), 711

list_() (in module salt.modules.parted), 723
list_() (in module salt.modules.pecl), 725
list_() (in module salt.modules.pip), 730
list_() (in module salt.modules.pyenv), 765
list_() (in module salt.modules.rbenv), 773
list_() (in module salt.modules.rest_service), 779
list_() (in module salt.modules.rvm), 788
list_() (in module salt.modules.schedule), 795
list_() (in module salt.modules.win_autoruns), 868
list_() (in module salt.runners.lxc), 1014
list_() (in module salt.wheel.key), 1254
list_absent() (in module salt.states.grains), 1148
list_active_vms() (in module

salt.modules.smartos_vmadm), 803
list_active_vms() (in module salt.modules.virt), 863
list_aliases() (in module salt.modules.aliases), 471
list_all() (in module salt.modules.freebsdports), 591
list_all() (in module salt.wheel.key), 1254
list_avail() (in module salt.modules.localemod), 648
list_availability_zones() (in module

salt.cloud.clouds.aliyun), 335
list_availability_zones() (in module

salt.cloud.clouds.ec2), 344
list_available() (in module salt.modules.win_pkg), 881
list_available() (in module

salt.modules.win_servermanager), 883
list_backups() (in module salt.modules.file), 575
list_clusters() (in module salt.cloud.clouds.vsphere), 376
list_configured_members() (in module

salt.modules.modjk), 681
list_custom_images() (in module

salt.cloud.clouds.solayer), 373
list_datacenters() (in module salt.cloud.clouds.vsphere),

376
list_datastores() (in module salt.cloud.clouds.vsphere),

376
list_disks() (in module salt.cloud.clouds.msazure), 360
list_downloads() (in module

salt.modules.sowareupdate), 808
list_env() (in module salt.wheel.file_roots), 1253
list_env() (in module salt.wheel.pillar_roots), 1254
list_exports() (in module salt.modules.nfs3), 700
list_folders() (in module salt.cloud.clouds.vsphere), 376
list_functions() (in module salt.modules.sysmod), 838
list_groups() (in module salt.modules.mac_user), 662
list_groups() (in module salt.modules.pw_user), 764
list_groups() (in module salt.modules.solaris_user), 812
list_groups() (in module salt.modules.useradd), 859
list_groups() (in module salt.modules.win_useradd), 893
list_hosted_services() (in module

salt.cloud.clouds.msazure), 360
list_hosts() (in module salt.cloud.clouds.vsphere), 376
list_hosts() (in module salt.modules.hosts), 619

Index 1497

Salt Documentation, Release 2014.7.6

list_ignored() (in module salt.modules.sowareupdate),
808

list_images() (in module salt.modules.cloud), 514
list_images() (in module salt.runners.cloud), 1008
list_images() (salt.cloud.CloudClient method), 333
list_inactive_vms() (in module

salt.modules.smartos_vmadm), 803
list_inactive_vms() (in module salt.modules.virt), 863
list_incidents() (in module salt.modules.pagerduty), 721
list_installed() (in module

salt.modules.smartos_imgadm), 802
list_installed() (in module

salt.modules.win_servermanager), 883
list_items() (in module salt.runners.queue), 1018
list_jails() (in module salt.modules.poudriere), 755
list_job() (in module salt.runners.jobs), 1012
list_jobs() (in module salt.runners.jobs), 1012
list_keypairs() (in module

salt.cloud.clouds.digital_ocean), 339
list_keys() (in module salt.cloud.clouds.joyent), 353
list_length() (in module salt.runners.queue), 1018
list_licenses() (in module salt.modules.powerpath), 756
list_local() (in module salt.modules.layman), 643
list_locations() (in module salt.modules.cloud), 514
list_locations() (in module salt.runners.cloud), 1008
list_locations() (salt.cloud.CloudClient method), 333
list_master() (in module salt.modules.cp), 525
list_master_dirs() (in module salt.modules.cp), 525
list_master_symlinks() (in module salt.modules.cp), 525
list_minion() (in module salt.modules.cp), 526
list_modules() (in module salt.modules.sysmod), 838
list_monitor_data() (in module salt.cloud.clouds.aliyun),

335
list_nodes() (in module salt.cloud.clouds.aliyun), 335
list_nodes() (in module salt.cloud.clouds.cloudstack), 338
list_nodes() (in module salt.cloud.clouds.digital_ocean),

339
list_nodes() (in module salt.cloud.clouds.ec2), 344
list_nodes() (in module salt.cloud.clouds.gce), 349
list_nodes() (in module salt.cloud.clouds.gogrid), 351
list_nodes() (in module salt.cloud.clouds.joyent), 353
list_nodes() (in module salt.cloud.clouds.linode), 358
list_nodes() (in module salt.cloud.clouds.lxc), 359
list_nodes() (in module salt.cloud.clouds.msazure), 360
list_nodes() (in module salt.cloud.clouds.nova), 362
list_nodes() (in module salt.cloud.clouds.opennebula),

364
list_nodes() (in module salt.cloud.clouds.openstack), 366
list_nodes() (in module salt.cloud.clouds.parallels), 367
list_nodes() (in module salt.cloud.clouds.proxmox), 369
list_nodes() (in module salt.cloud.clouds.rackspace), 371
list_nodes() (in module salt.cloud.clouds.saltify), 372
list_nodes() (in module salt.cloud.clouds.solayer), 373

list_nodes() (in module salt.cloud.clouds.solayer_hw),
374

list_nodes() (in module salt.cloud.clouds.vsphere), 376
list_nodes_full() (in module salt.cloud.clouds.aliyun), 335
list_nodes_full() (in module

salt.cloud.clouds.cloudstack), 338
list_nodes_full() (in module

salt.cloud.clouds.digital_ocean), 339
list_nodes_full() (in module salt.cloud.clouds.ec2), 344
list_nodes_full() (in module salt.cloud.clouds.gce), 349
list_nodes_full() (in module salt.cloud.clouds.gogrid), 351
list_nodes_full() (in module salt.cloud.clouds.joyent), 353
list_nodes_full() (in module salt.cloud.clouds.linode), 358
list_nodes_full() (in module salt.cloud.clouds.lxc), 359
list_nodes_full() (in module salt.cloud.clouds.msazure),

360
list_nodes_full() (in module salt.cloud.clouds.nova), 362
list_nodes_full() (in module

salt.cloud.clouds.opennebula), 364
list_nodes_full() (in module salt.cloud.clouds.openstack),

366
list_nodes_full() (in module salt.cloud.clouds.parallels),

368
list_nodes_full() (in module salt.cloud.clouds.proxmox),

369
list_nodes_full() (in module salt.cloud.clouds.rackspace),

371
list_nodes_full() (in module salt.cloud.clouds.saltify), 372
list_nodes_full() (in module salt.cloud.clouds.solayer),

373
list_nodes_full() (in module

salt.cloud.clouds.solayer_hw), 374
list_nodes_full() (in module salt.cloud.clouds.vsphere),

376
list_nodes_min() (in module salt.cloud.clouds.aliyun),

335
list_nodes_min() (in module salt.cloud.clouds.ec2), 344
list_nodes_min() (in module salt.cloud.clouds.vsphere),

376
list_nodes_select() (in module salt.cloud.clouds.aliyun),

335
list_nodes_select() (in module

salt.cloud.clouds.cloudstack), 338
list_nodes_select() (in module

salt.cloud.clouds.digital_ocean), 339
list_nodes_select() (in module salt.cloud.clouds.ec2), 344
list_nodes_select() (in module salt.cloud.clouds.gce), 349
list_nodes_select() (in module salt.cloud.clouds.gogrid),

351
list_nodes_select() (in module salt.cloud.clouds.joyent),

354
list_nodes_select() (in module salt.cloud.clouds.linode),

358
list_nodes_select() (in module salt.cloud.clouds.lxc), 359

1498 Index

Salt Documentation, Release 2014.7.6

list_nodes_select() (in module
salt.cloud.clouds.msazure), 360

list_nodes_select() (in module salt.cloud.clouds.nova),
362

list_nodes_select() (in module
salt.cloud.clouds.opennebula), 364

list_nodes_select() (in module
salt.cloud.clouds.openstack), 366

list_nodes_select() (in module
salt.cloud.clouds.parallels), 368

list_nodes_select() (in module
salt.cloud.clouds.proxmox), 370

list_nodes_select() (in module
salt.cloud.clouds.rackspace), 371

list_nodes_select() (in module salt.cloud.clouds.saltify),
372

list_nodes_select() (in module
salt.cloud.clouds.solayer), 373

list_nodes_select() (in module
salt.cloud.clouds.solayer_hw), 374

list_nodes_select() (in module salt.cloud.clouds.vsphere),
376

list_peers() (in module salt.modules.glusterfs), 607
list_permissions() (inmodule salt.modules.rabbitmq), 769
list_pkgs() (in module salt.modules.aptpkg), 477
list_pkgs() (in module salt.modules.brew), 505
list_pkgs() (in module salt.modules.dpkg), 553
list_pkgs() (in module salt.modules.ebuild), 555
list_pkgs() (in module salt.modules.freebsdpkg), 589
list_pkgs() (in module salt.modules.macports), 664
list_pkgs() (in module salt.modules.openbsdpkg), 712
list_pkgs() (in module salt.modules.pacman), 719
list_pkgs() (in module salt.modules.pkgin), 733
list_pkgs() (in module salt.modules.pkgng), 739
list_pkgs() (in module salt.modules.pkgutil), 746
list_pkgs() (in module salt.modules.rest_package), 779
list_pkgs() (in module salt.modules.rpm), 785
list_pkgs() (in module salt.modules.solarispkg), 813
list_pkgs() (in module salt.modules.win_pkg), 881
list_pkgs() (in module salt.modules.yumpkg), 903
list_pkgs() (in module salt.modules.zypper), 913
list_plugins() (in module salt.modules.munin), 686
list_plugins() (in module salt.modules.nagios), 693
list_policies() (in module salt.modules.rabbitmq), 769
list_ports() (in module salt.modules.poudriere), 755
list_present() (in module salt.states.grains), 1148
list_queues() (in module salt.modules.aws_sqs), 486
list_queues() (in module salt.modules.rabbitmq), 769
list_queues() (in module salt.runners.queue), 1018
list_queues_vhost() (in module salt.modules.rabbitmq),

769
list_repo_pkgs() (in module salt.modules.yumpkg), 903
list_repos() (in module salt.modules.aptpkg), 477
list_repos() (in module salt.modules.yumpkg), 904

list_repos() (in module salt.modules.zypper), 913
list_resourcepools() (in module

salt.cloud.clouds.vsphere), 376
list_returner_functions() (in module

salt.modules.sysmod), 838
list_returners() (in module salt.modules.sysmod), 838
list_role_policies() (in module salt.modules.boto_iam),

500
list_roots() (in module salt.wheel.file_roots), 1253
list_roots() (in module salt.wheel.pillar_roots), 1254
list_runner_functions() (in module

salt.modules.sysmod), 838
list_runners() (in module salt.modules.sysmod), 838
list_sebool() (in module salt.modules.selinux), 797
list_securitygroup() (in module salt.cloud.clouds.aliyun),

336
list_servers() (in module salt.modules.haproxyconn), 616
list_services() (in module salt.modules.pagerduty), 721
list_sets() (in module salt.modules.ipset), 629
list_sizes() (in module salt.modules.cloud), 515
list_sizes() (in module salt.runners.cloud), 1008
list_sizes() (salt.cloud.CloudClient method), 333
list_state_functions() (in module salt.modules.sysmod),

839
list_state_modules() (in module salt.modules.sysmod),

839
list_states() (in module salt.modules.cp), 526
list_storage_services() (in module

salt.cloud.clouds.msazure), 360
list_tab() (in module salt.modules.cron), 526
list_tab() (in module salt.modules.incron), 621
list_updates() (in module salt.modules.win_update), 892
list_upgrades() (in module salt.modules.aptpkg), 478
list_upgrades() (in module salt.modules.brew), 505
list_upgrades() (in module salt.modules.ebuild), 556
list_upgrades() (in module salt.modules.macports), 664
list_upgrades() (in module salt.modules.pacman), 719
list_upgrades() (in module salt.modules.pkgutil), 747
list_upgrades() (in module salt.modules.sowareupdate),

808
list_upgrades() (in module salt.modules.win_pkg), 881
list_upgrades() (in module salt.modules.yumpkg), 904
list_upgrades() (in module salt.modules.zypper), 913
list_user_permissions() (in module

salt.modules.rabbitmq), 770
list_users() (in module salt.modules.mac_user), 662
list_users() (in module salt.modules.pw_user), 764
list_users() (in module salt.modules.rabbitmq), 770
list_users() (in module salt.modules.useradd), 859
list_users() (in module salt.modules.win_useradd), 893
list_vhosts() (in module salt.modules.rabbitmq), 770
list_vlans() (in module salt.cloud.clouds.solayer), 373
list_vlans() (in module salt.cloud.clouds.solayer_hw),

374

Index 1499

Salt Documentation, Release 2014.7.6

list_vms() (in module salt.modules.smartos_vmadm), 803
list_vms() (in module salt.modules.virt), 863
list_vms() (in module salt.modules.xapi), 895
list_volumes() (in module salt.modules.glusterfs), 607
list_webpi() (in module salt.modules.chocolatey), 513
list_windowsfeatures() (in module

salt.modules.chocolatey), 513
llen() (in module salt.modules.redismod), 777
load() (in module salt.modules.data), 531
load() (in module salt.modules.freebsdkmod), 586
load() (in module salt.modules.kmod), 641
load_states() (in module salt.renderers.pyobjects), 981
loadavg() (in module salt.modules.status), 828
loadavg() (in module salt.states.status), 1227
loaddata() (in module salt.modules.djangomod), 539
LoaderError, 461, 463
local() (salt.netapi.NetapiClient method), 280
local_async() (salt.netapi.NetapiClient method), 280
local_batch() (salt.netapi.NetapiClient method), 281
LocalClient (class in salt.client), 326
locate() (in module salt.modules.locate), 648
lock() (in module salt.fileserver.gitfs), 454
lock() (in module salt.fileserver.hgfs), 455
lock() (in module salt.fileserver.svnfs), 459
lock() (in module salt.modules.nova), 708
lock() (in module salt.modules.osxdesktop), 717
lock() (in module salt.runners.fileserver), 1011
lock() (in module salt.states.zk_concurrency), 1244
log_datefmt

conf/logging, 443
conf/master, 427
conf/minion, 440

log_datefmt_logfile
conf/logging, 444
conf/master, 427
conf/minion, 440

log_file
conf/logging, 443
conf/master, 426
conf/minion, 439

log_fmt_console
conf/logging, 444
conf/master, 427
conf/minion, 440

log_fmt_logfile
conf/logging, 444
conf/master, 427
conf/minion, 440

log_granular_levels
conf/logging, 444
conf/master, 427
conf/minion, 441

log_level
conf/logging, 443

conf/master, 426
conf/minion, 440

log_level_logfile
conf/logging, 443
conf/master, 426
conf/minion, 440

Login (class in salt.netapi.rest_cherrypy.app), 919
login() (in module salt.modules.dockerio), 548
Logout (class in salt.netapi.rest_cherrypy.app), 921
logs() (in module salt.modules.dockerio), 548
lookup_jid() (in module salt.runners.jobs), 1012
loop_interval

conf/master, 404
Low State, 1462
low() (in module salt.modules.state), 825
low() (salt.cloud.CloudClient method), 333
LowDataAdapter (class in salt.netapi.rest_cherrypy.app),

918
lowstate, 933
lrange() (in module salt.modules.redismod), 777
ls() (in module salt.modules.augeas_cfg), 484
ls() (in module salt.modules.cron), 526
ls() (in module salt.modules.grains), 612
ls() (in module salt.modules.incron), 621
ls() (in module salt.modules.lxc), 658
ls() (in module salt.modules.serverdensity_device), 799
ls() (in module salt.modules.tomcat), 853
ls_() (in module salt.modules.etcd_mod), 561
ls_remote() (in module salt.modules.git), 602
lsmod() (in module salt.modules.freebsdkmod), 586
lsmod() (in module salt.modules.kmod), 641
lstat() (in module salt.modules.file), 575
lucene_version() (in module salt.modules.solr), 818
lv_absent() (in module salt.states.lvm), 1166
lv_present() (in module salt.states.lvm), 1166
lvcreate() (in module salt.modules.linux_lvm), 645
lvdisplay() (in module salt.modules.linux_lvm), 645
lvremove() (in module salt.modules.linux_lvm), 645

M
make_image() (in module salt.modules.qemu_img), 766
make_pkgng_aware() (in module

salt.modules.poudriere), 755
makedirs_() (in module salt.modules.file), 575
makedirs_perms() (in module salt.modules.file), 575
makeopts_contains() (inmodule salt.modules.makecon),

668
manage_file() (in module salt.modules.file), 575
manage_mode() (in module salt.modules.config), 523
managed() (in module salt.states.file), 1132
managed() (in module salt.states.memcached), 1171
managed() (in module salt.states.network), 1183
managed() (in module salt.states.ntp), 1188
managed() (in module salt.states.pkgrepo), 1199

1500 Index

Salt Documentation, Release 2014.7.6

managed() (in module salt.states.virtualenv_mod), 1236
managed() (in module salt.states.win_network), 1238
managedcloud() (in module salt.cloud.clouds.nova), 362
managedcloud() (in module salt.cloud.clouds.openstack),

366
Map (class in salt.utils.aggregation), 460
map_run() (in module salt.runners.cloud), 1008
map_run() (salt.cloud.CloudClient method), 333
Master, 1462
master

conf/minion, 429
Master Tops, 1462
master() (in module salt.modules.status), 828
master() (in module salt.modules.win_status), 886
master_id

conf/master, 401
master_job_cache

conf/master, 405
master_port

conf/minion, 430
master_pubkey_signature

conf/master, 409
master_sign_key_name

conf/master, 408
conf/minion, 439

master_sign_pubkey
conf/master, 408

master_tops
conf/master, 410

master_type
conf/minion, 430

master_use_pubkey_signature
conf/master, 409

MasterExit, 461, 463
Masterless, 1462
match() (in module salt.modules.augeas_cfg), 485
match_index_versions() (in module salt.modules.solr),

818
max_minions

conf/master, 405
max_open_files

conf/master, 402
maybe_fix_ssl_version() (in module salt.modules.tls), 851
md5_digest() (in module salt.modules.hashutil), 617
member_status() (in module salt.modules.riak), 784
members() (in module salt.modules.groupadd), 614
meminfo() (in module salt.modules.status), 828
memory() (in module salt.modules.sysbench), 837
merge() (in module salt.modules.config), 523
merge() (in module salt.modules.git), 602
merger (class in salt.pillar.mysql), 959
migrate() (in module salt.modules.virt), 864
migrate() (in module salt.modules.xapi), 895
migrate() (in module salt.runners.virt), 1024

migrate_non_shared() (in module salt.modules.virt), 864
migrate_non_shared_inc() (in module salt.modules.virt),

864
min_query() (salt.cloud.CloudClient method), 333
Mine, 143, 1462
mine() (in module salt.runners.cache), 1007
Minion, 1462
Minion ID, 1462
Minion proc System, 151
minion_config() (in module salt.config), 325
minion_data_cache

conf/master, 405
minion_mods() (in module salt.loader), 325
MinionError, 461, 463
minionfs_blacklist

conf/master, 422
minionfs_env

conf/master, 421
minionfs_mountpoint

conf/master, 421
minionfs_whitelist

conf/master, 421
Minions (class in salt.netapi.rest_cherrypy.app), 921
MinionSaltAPIHandler (in module

salt.netapi.rest_tornado.saltnado), 938
missing() (in module salt.modules.daemontools), 528
missing() (in module salt.modules.debian_service), 536
missing() (in module salt.modules.freebsdservice), 593
missing() (in module salt.modules.gentoo_service), 597
missing() (in module salt.modules.launchctl), 642
missing() (in module salt.modules.netbsdservice), 696
missing() (in module salt.modules.openbsdservice), 714
missing() (in module salt.modules.rh_service), 783
missing() (in module salt.modules.service), 799
missing() (in module salt.modules.sm), 805
missing() (in module salt.modules.systemd), 842
missing() (in module salt.modules.upstart), 857
missing() (in module salt.modules.win_service), 885
missing() (in module salt.states.file), 1134
mkconfig() (in module salt.modules.seed), 796
mkdir() (in module salt.modules.file), 576
mkfs() (in module salt.modules.extfs), 563
mkfs() (in module salt.modules.parted), 723
mklabel() (in module salt.modules.parted), 723
mknod() (in module salt.modules.file), 576
mknod() (in module salt.states.file), 1134
mknod_blkdev() (in module salt.modules.file), 576
mknod_chrdev() (in module salt.modules.file), 576
mknod_fifo() (in module salt.modules.file), 577
mkpart() (in module salt.modules.parted), 723
mkpartfs() (in module salt.modules.parted), 723
mmodule() (in module salt.modules.saltutil), 792
mod_aggregate() (in module salt.states.pkg), 1197
mod_hostname() (in module salt.modules.network), 699

Index 1501

Salt Documentation, Release 2014.7.6

mod_list() (in module salt.modules.freebsdkmod), 587
mod_list() (in module salt.modules.kmod), 641
mod_repo() (in module salt.modules.aptpkg), 478
mod_repo() (in module salt.modules.yumpkg), 904
mod_repo() (in module salt.modules.zypper), 913
mod_run_check() (in module salt.states.cmd), 1106
mod_run_check() (in module salt.states.git), 1144
mod_run_check_cmd() (in module salt.states.file), 1135
mod_watch() (in module salt.states.cmd), 1106
mod_watch() (in module salt.states.dockerio), 1119
mod_watch() (in module salt.states.module), 1174
mod_watch() (in module salt.states.mount), 1176
mod_watch() (in module salt.states.service), 1224
mod_watch() (in module salt.states.supervisord), 1228
mod_watch() (in module salt.states.test), 1230
mod_watch() (in module salt.states.tomcat), 1232
mode() (in module salt.states.quota), 1209
mode() (in module salt.states.selinux), 1222
modfacl() (in module salt.modules.linux_acl), 644
modify() (in module salt.modules.schedule), 795
modify() (in module salt.modules.sqlite3), 821
module_dirs

conf/minion, 435
modules() (in module salt.modules.apache), 473
monitor() (in module salt.modules.monit), 683
monitored() (in module salt.states.serverdensity_device),

1222
mount() (in module salt.modules.guestfs), 614
mount() (in module salt.modules.mount), 685
mount() (in module salt.modules.qemu_nbd), 767
mount_image() (in module salt.modules.img), 621
mounted() (in module salt.states.mount), 1176
mounts() (in module salt.modules.moosefs), 684
msg (salt.auth.pam.PamMessage aribute), 298
msg_style (salt.auth.pam.PamMessage aribute), 298
Multi-Master, 1462
multiprocessing

conf/minion, 439
mutex() (in module salt.modules.sysbench), 837
MX() (in module salt.modules.dig), 537
MX() (in module salt.modules.dnsutil), 541

N
name() (in module salt.modules.parted), 724
namenode_format() (in module salt.modules.hadoop),

615
NestDisplay (class in salt.output.nested), 944
NestDisplay (class in salt.output.no_return), 945
NetapiClient (class in salt.netapi), 280
netdev() (in module salt.modules.status), 828
netstat() (in module salt.modules.network), 700
netstat() (in module salt.modules.win_network), 878
netstats() (in module salt.modules.cassandra), 509
netstats() (in module salt.modules.status), 829

network_create() (in module salt.cloud.clouds.nova), 362
network_create() (in module salt.modules.cloud), 515
network_io_counters() (in module salt.modules.ps), 758
network_list() (in module salt.cloud.clouds.nova), 362
network_list() (in module salt.modules.cloud), 515
networks() (in module salt.cloud.clouds.openstack), 366
new_chain() (in module salt.modules.iptables), 633
new_chain() (in module salt.modules.nables), 704
new_set() (in module salt.modules.ipset), 629
new_table() (in module salt.modules.nables), 704
next_hyper() (in module salt.runners.virt), 1024
Node Group, 1462
node_info() (in module salt.modules.virt), 864
node_info() (in module salt.modules.xapi), 895
nodegroups

conf/master, 427
noop() (in module salt.modules.puppet), 761
normalize_name() (in module salt.modules.yumpkg), 905
noscan() (in module salt.modules.bluez), 488
not_loaded() (in module salt.modules.test), 844
nproc() (in module salt.modules.status), 829
NS() (in module salt.modules.dig), 538
NS() (in module salt.modules.dnsutil), 541
nslookup() (in module salt.modules.win_network), 879
num_cpus() (in module salt.modules.ps), 758
num_fields (salt.pillar.mysql.merger aribute), 959

O
off() (in module salt.modules.quota), 767
on() (in module salt.modules.quota), 767
open_files() (in module salt.modules.file), 577
open_mode

conf/master, 406
conf/minion, 438

optimize() (in module salt.modules.solr), 818
optimize_providers() (in module salt.cloud.clouds.ec2),

344
option() (in module salt.modules.config), 523
options() (in module salt.modules.supervisord), 830
options_absent() (inmodule salt.states.ini_manage), 1154
options_present() (in module salt.states.ini_manage),

1154
opts_pkg() (in module salt.modules.test), 844
orchestrate() (in module salt.runners.state), 1021
order_masters

conf/master, 424
output

conf/master, 404
output() (in module salt.output.grains), 941
output() (in module salt.output.highstate), 942
output() (in module salt.output.json_out), 943
output() (in module salt.output.key), 943
output() (in module salt.output.nested), 944

1502 Index

Salt Documentation, Release 2014.7.6

output() (in module salt.output.newline_values_only),
945

output() (in module salt.output.no_out), 945
output() (in module salt.output.no_return), 945
output() (in module salt.output.overstatestage), 946
output() (in module salt.output.pprint_out), 946
output() (in module salt.output.raw), 946
output() (in module salt.output.txt), 946
output() (in module salt.output.virt_query), 947
output() (in module salt.output.yaml_out), 947
Outpuer, 1462
outpuer() (in module salt.modules.test), 844
over() (in module salt.runners.state), 1021
Overstate, 1462
owner() (in module salt.modules.aptpkg), 478
owner() (in module salt.modules.pacman), 719
owner() (in module salt.modules.yumpkg), 905
owner_to() (in module salt.modules.postgres), 753

P
pack() (in module salt.modules.genesis), 596
pack_sources() (in module salt.modules.pkg_resource),

732
pair() (in module salt.modules.bluez), 488
PamConv (class in salt.auth.pam), 298
PamHandle (class in salt.auth.pam), 298
PamMessage (class in salt.auth.pam), 298
PamResponse (class in salt.auth.pam), 298
param_set() (in module salt.modules.varnish), 860
param_show() (in module salt.modules.varnish), 860
pardir() (in module salt.modules.file), 577
parse_config() (in module salt.modules.pkgng), 740
parse_config() (in module salt.modules.poudriere), 755
parse_hosts() (in module salt.modules.dnsutil), 542
parse_targets() (in module salt.modules.pkg_resource),

732
parse_zone() (in module salt.modules.dnsutil), 542
part_list() (in module salt.modules.parted), 724
passwd() (in module salt.modules.tomcat), 853
patch() (in module salt.modules.file), 577
patch() (in module salt.states.file), 1135
path_exists_glob() (in module salt.modules.file), 577
pause() (in module salt.modules.virt), 864
pause() (in module salt.modules.xapi), 896
pause() (in module salt.runners.virt), 1024
pcre() (in module salt.modules.match), 674
peer

conf/master, 425
Peer Communication, 1462
peer() (in module salt.modules.glusterfs), 607
peer_run

conf/master, 426
peered() (in module salt.states.glusterfs), 1145
percent() (in module salt.modules.disk), 538

persist() (in module salt.modules.darwin_sysctl), 529
persist() (in module salt.modules.freebsd_sysctl), 585
persist() (in module salt.modules.linux_sysctl), 647
persist() (in module salt.modules.netbsd_sysctl), 695
pgrep() (in module salt.modules.ps), 758
pid() (in module salt.modules.status), 829
pidfile

conf/master, 402
conf/minion, 431

Pillar, 1462
pillar() (in module salt.modules.match), 674
pillar() (in module salt.runners.cache), 1007
pillar_dir() (salt.pillar.svn_pillar.SvnPillar method), 963
pillar_roots

conf/master, 422
conf/minion, 438

pillar_source_merging_strategy
conf/master, 423

ping() (in module salt.modules.gnomedesktop), 608
ping() (in module salt.modules.junos), 634
ping() (in module salt.modules.network), 700
ping() (in module salt.modules.redismod), 777
ping() (in module salt.modules.rest_sample), 779
ping() (in module salt.modules.solr), 819
ping() (in module salt.modules.sysbench), 837
ping() (in module salt.modules.test), 844
ping() (in module salt.modules.win_network), 879
pkg() (in module salt.modules.state), 825
PkgParseError, 461, 463
pki_dir

conf/master, 403
conf/minion, 431

pkill() (in module salt.modules.ps), 758
plugin_is_enabled() (in module salt.modules.rabbitmq),

770
policy_exists() (in module salt.modules.rabbitmq), 770
pop() (in module salt.runners.queue), 1018
port() (in module salt.modules.dockerio), 548
porree_matches() (in module salt.modules.ebuild), 556
POST (salt.netapi.rest_cherrypy.app.LowDataAdapter

aribute), 919
POST() (salt.netapi.rest_cherrypy.app.Keys method), 929
POST() (salt.netapi.rest_cherrypy.app.Login method),

919
POST() (salt.netapi.rest_cherrypy.app.Logout method),

921
POST() (salt.netapi.rest_cherrypy.app.Minions method),

921
POST() (salt.netapi.rest_cherrypy.app.Run method), 923
POST() (salt.netapi.rest_cherrypy.app.Webhookmethod),

926
power() (in module salt.modules.bluez), 488
poweroff() (in module salt.modules.system), 840
poweroff() (in module salt.modules.win_system), 888

Index 1503

Salt Documentation, Release 2014.7.6

preferred_ip() (in module salt.cloud.clouds.nova), 362
preferred_ip() (in module salt.cloud.clouds.openstack),

366
preferred_ip() (in module salt.cloud.clouds.rackspace),

371
prep_jid() (in module salt.returners.carbon_return), 990
prep_jid() (in module salt.returners.cassandra_return),

990
prep_jid() (in module salt.returners.couchbase_return),

991
prep_jid() (in module salt.returners.couchdb_return), 992
prep_jid() (inmodule salt.returners.elasticsearch_return),

992
prep_jid() (in module salt.returners.etcd_return), 993
prep_jid() (in module salt.returners.local_cache), 994
prep_jid() (in module salt.returners.memcache_return),

994
prep_jid() (inmodule salt.returners.mongo_future_return),

995
prep_jid() (in module salt.returners.mongo_return), 996
prep_jid() (in module salt.returners.multi_returner), 996
prep_jid() (in module salt.returners.mysql), 998
prep_jid() (in module salt.returners.odbc), 1000
prep_jid() (in module salt.returners.postgres), 1001
prep_jid() (in module salt.returners.redis_return), 1002
prep_jid() (in module salt.returners.sentry_return), 1002
prep_jid() (in module salt.returners.smtp_return), 1003
prep_jid() (in module salt.returners.sqlite3_return), 1004
prep_jid() (in module salt.returners.syslog_return), 1005
prepend() (in module salt.modules.file), 577
prepend() (in module salt.states.file), 1136
presence_events

conf/master, 406
present() (in module salt.runners.manage), 1015
present() (in module salt.states.alias), 1077
present() (in module salt.states.at), 1081
present() (in module salt.states.boto_asg), 1086
present() (in module salt.states.boto_cloudwatch_alarm),

1088
present() (in module salt.states.boto_elasticache), 1090
present() (in module salt.states.boto_elb), 1092
present() (in module salt.states.boto_iam_role), 1094
present() (in module salt.states.boto_lc), 1096
present() (in module salt.states.boto_route53), 1099
present() (in module salt.states.boto_secgroup), 1100
present() (in module salt.states.boto_sqs), 1102
present() (in module salt.states.cloud), 1102
present() (in module salt.states.cron), 1114
present() (in module salt.states.ddns), 1115
present() (in module salt.states.dockerio), 1119
present() (in module salt.states.git), 1144
present() (in module salt.states.grains), 1148
present() (in module salt.states.group), 1149
present() (in module salt.states.host), 1151

present() (in module salt.states.incron), 1152
present() (in module salt.states.influxdb_database), 1153
present() (in module salt.states.influxdb_user), 1153
present() (in module salt.states.ipset), 1156
present() (in module salt.states.kmod), 1164
present() (in module salt.states.layman), 1164
present() (in module salt.states.locale), 1165
present() (in module salt.states.lvs_server), 1167
present() (in module salt.states.lvs_service), 1167
present() (in module salt.states.makecon), 1170
present() (in module salt.states.mdadm), 1170
present() (in module salt.states.mongodb_user), 1175
present() (in module salt.states.mysql_database), 1177
present() (in module salt.states.mysql_grants), 1178
present() (in module salt.states.mysql_user), 1180
present() (in module salt.states.openstack_config), 1188
present() (in module salt.states.postgres_database), 1202
present() (in module salt.states.postgres_extension), 1203
present() (in module salt.states.postgres_group), 1204
present() (in module salt.states.postgres_user), 1206
present() (in module salt.states.rabbitmq_policy), 1211
present() (in module salt.states.rabbitmq_user), 1211
present() (in module salt.states.rabbitmq_vhost), 1212
present() (in module salt.states.reg), 1215
present() (in module salt.states.schedule), 1221
present() (in module salt.states.ssh_auth), 1225
present() (in module salt.states.ssh_known_hosts), 1226
present() (in module salt.states.sysctl), 1229
present() (in module salt.states.user), 1234
primary_suffix() (in module salt.states.win_dns_client),

1236
print_job() (in module salt.runners.jobs), 1012
probe() (in module salt.modules.parted), 724
process_fields() (salt.pillar.mysql.merger method), 959
process_queue() (in module salt.runners.queue), 1019
process_results() (salt.pillar.mysql.merger method), 959
processlist() (in module salt.modules.mysql), 690
procs() (in module salt.modules.status), 829
procs() (in module salt.modules.win_status), 886
profile() (in module salt.runners.cloud), 1008
profile() (in module salt.states.cloud), 1103
profile() (salt.cloud.CloudClient method), 333
profile_() (in module salt.modules.cloud), 515
profile_associated() (in module salt.modules.boto_iam),

500
provider() (in module salt.modules.test), 844
providers

conf/minion, 436
providers() (in module salt.modules.test), 845
Proxy Minion, 1462
psed() (in module salt.modules.file), 578
psql_query() (in module salt.modules.postgres), 753
publish() (in module salt.modules.publish), 760
publish() (in module salt.modules.raet_publish), 772

1504 Index

Salt Documentation, Release 2014.7.6

publish_port
conf/master, 401

pull() (in module salt.modules.dockerio), 548
pull() (in module salt.modules.git), 603
pull() (in module salt.modules.hg), 618
pulled() (in module salt.states.dockerio), 1119
purge() (in module salt.modules.aptpkg), 478
purge() (in module salt.modules.ebuild), 556
purge() (in module salt.modules.openbsdpkg), 712
purge() (in module salt.modules.pacman), 719
purge() (in module salt.modules.pkgin), 734
purge() (in module salt.modules.pkgutil), 747
purge() (in module salt.modules.schedule), 796
purge() (in module salt.modules.solarispkg), 814
purge() (in module salt.modules.varnish), 860
purge() (in module salt.modules.virt), 864
purge() (in module salt.modules.win_pkg), 881
purge() (in module salt.modules.yumpkg), 905
purge() (in module salt.modules.zypper), 913
purge() (in module salt.runners.lxc), 1014
purge() (in module salt.runners.virt), 1024
purged() (in module salt.states.pkg), 1197
push() (in module salt.modules.cp), 526
push() (in module salt.modules.dockerio), 548
push() (in module salt.modules.git), 603
push_dir() (in module salt.modules.cp), 526
pushed() (in module salt.states.dockerio), 1119
put() (in module salt.modules.s3), 790
put() (in module salt.modules.swi), 836
pv_absent() (in module salt.states.lvm), 1166
pv_present() (in module salt.states.lvm), 1166
pvcreate() (in module salt.modules.linux_lvm), 645
pvdisplay() (in module salt.modules.linux_lvm), 646
pvremove() (in module salt.modules.linux_lvm), 646
PyDSL, 1462
PyWinUpdater (class in salt.modules.win_update), 890
PyWinUpdater (class in salt.states.win_update), 1240

Q
query() (in module salt.cloud.clouds.aliyun), 336
query() (in module salt.cloud.clouds.digital_ocean), 339
query() (in module salt.cloud.clouds.ec2), 344
query() (in module salt.cloud.clouds.joyent), 354
query() (in module salt.cloud.clouds.parallels), 368
query() (in module salt.cloud.clouds.proxmox), 370
query() (in module salt.modules.cloud), 515
query() (in module salt.modules.influx), 624
query() (in module salt.modules.mysql), 690
query() (in module salt.runners.cloud), 1008
query() (in module salt.runners.search), 1019
query() (in module salt.runners.virt), 1024
query() (salt.cloud.CloudClient method), 333
query_instance() (in module salt.cloud.clouds.ec2), 344
queue_exists() (in module salt.modules.aws_sqs), 486

queue_instances() (in module salt.cloud.clouds.ec2), 344
quote_identifier() (in module salt.modules.mysql), 690

R
rackconnect() (in module salt.cloud.clouds.nova), 362
rackconnect() (in module salt.cloud.clouds.openstack),

367
rand_sleep() (in module salt.modules.test), 845
rand_str() (in module salt.modules.test), 845
random_reauth_delay

conf/minion, 433
range_server

conf/master, 428
rar() (in module salt.modules.archive), 481
raw() (in module salt.modules.pillar), 727
raw_cron() (in module salt.modules.cron), 527
raw_incron() (in module salt.modules.incron), 621
raw_interface_configs() (inmodule salt.modules.win_ip),

876
raw_mod() (in module salt.loader), 326
raw_system_incron() (in module salt.modules.incron),

621
Reactor, 136, see Event, 1462
read() (in module salt.wheel.file_roots), 1253
read() (in module salt.wheel.pillar_roots), 1254
read_conf() (in module salt.modules.lxc), 658
read_file() (in module salt.modules.pam), 721
read_key() (in module salt.modules.reg), 778
readdir() (in module salt.modules.file), 579
readlink() (in module salt.modules.file), 579
readlink() (in module salt.modules.win_file), 873
rebase() (in module salt.modules.git), 603
reboot() (in module salt.cloud.clouds.aliyun), 336
reboot() (in module salt.cloud.clouds.ec2), 344
reboot() (in module salt.cloud.clouds.gce), 349
reboot() (in module salt.cloud.clouds.joyent), 354
reboot() (in module salt.cloud.clouds.nova), 362
reboot() (in module salt.cloud.clouds.openstack), 367
reboot() (in module salt.modules.smartos_vmadm), 803
reboot() (in module salt.modules.system), 840
reboot() (in module salt.modules.virt), 864
reboot() (in module salt.modules.win_system), 888
reboot() (in module salt.modules.xapi), 896
receive_message() (in module salt.modules.aws_sqs), 486
recon_default

conf/minion, 433
recon_max

conf/minion, 433
recon_randomize

conf/minion, 434
recover_all() (in module salt.modules.modjk), 681
recurse() (in module salt.states.file), 1136
recv() (in module salt.modules.cp), 526
recv_known_host() (in module salt.modules.ssh), 823

Index 1505

Salt Documentation, Release 2014.7.6

reformat_node() (in module salt.cloud.clouds.joyent), 354
refresh_db() (in module salt.modules.aptpkg), 479
refresh_db() (in module salt.modules.brew), 505
refresh_db() (in module salt.modules.ebuild), 556
refresh_db() (in module salt.modules.freebsdpkg), 589
refresh_db() (in module salt.modules.macports), 664
refresh_db() (in module salt.modules.pacman), 719
refresh_db() (in module salt.modules.pkgin), 734
refresh_db() (in module salt.modules.pkgng), 740
refresh_db() (in module salt.modules.pkgutil), 747
refresh_db() (in module salt.modules.win_pkg), 881
refresh_db() (in module salt.modules.yumpkg), 905
refresh_db() (in module salt.modules.zypper), 914
refresh_modules() (in module salt.modules.saltutil), 792
refresh_pillar() (in module salt.modules.saltutil), 792
regen_keys() (in module salt.modules.saltutil), 792
register_instances() (in module salt.modules.boto_elb),

498
Registry (class in salt.modules.reg), 778
rehash() (in module salt.modules.pyenv), 765
rehash() (in module salt.modules.rbenv), 773
rehash() (in module salt.modules.win_path), 880
rehashconf() (in module salt.modules.znc), 910
reinstall_ruby() (in module salt.modules.rvm), 788
reject() (in module salt.wheel.key), 1254
reload_() (in module salt.modules.daemontools), 528
reload_() (in module salt.modules.debian_service), 536
reload_() (in module salt.modules.freebsdservice), 593
reload_() (in module salt.modules.netbsdservice), 697
reload_() (in module salt.modules.openbsdservice), 714
reload_() (in module salt.modules.rh_service), 783
reload_() (in module salt.modules.schedule), 796
reload_() (in module salt.modules.service), 799
reload_() (in module salt.modules.sm), 805
reload_() (in module salt.modules.systemd), 842
reload_() (in module salt.modules.tomcat), 853
reload_() (in module salt.modules.upstart), 857
reload_core() (in module salt.modules.solr), 819
reload_import_config() (in module salt.modules.solr),

819
reload_modules() (in module salt.modules.sysmod), 839
remote_get() (in module salt.modules.git), 603
remote_set() (in module salt.modules.git), 604
remotes() (in module salt.modules.git), 604
remount() (in module salt.modules.mount), 685
remove() (in module salt.modules.alternatives), 472
remove() (in module salt.modules.aptpkg), 479
remove() (in module salt.modules.augeas_cfg), 485
remove() (in module salt.modules.brew), 505
remove() (in module salt.modules.ebuild), 556
remove() (in module salt.modules.file), 579
remove() (in module salt.modules.freebsdkmod), 587
remove() (in module salt.modules.freebsdpkg), 589
remove() (in module salt.modules.grains), 612

remove() (in module salt.modules.kmod), 641
remove() (in module salt.modules.logadm), 649
remove() (in module salt.modules.macports), 664
remove() (in module salt.modules.openbsdpkg), 713
remove() (in module salt.modules.pacman), 720
remove() (in module salt.modules.pkgin), 734
remove() (in module salt.modules.pkgng), 740
remove() (in module salt.modules.pkgutil), 747
remove() (in module salt.modules.rest_package), 779
remove() (in module salt.modules.solarispkg), 814
remove() (in module salt.modules.supervisord), 830
remove() (in module salt.modules.svn), 834
remove() (in module salt.modules.win_path), 880
remove() (in module salt.modules.win_pkg), 882
remove() (in module salt.modules.win_servermanager),

883
remove() (in module salt.modules.yumpkg), 906
remove() (in module salt.modules.zypper), 914
remove() (in module salt.states.alternatives), 1078
remove_complex_types() (in module

salt.cloud.clouds.linode), 358
remove_container() (in module salt.modules.dockerio),

548
remove_image() (in module salt.modules.dockerio), 549
remove_license() (in module salt.modules.powerpath),

756
remove_option() (in module salt.modules.ini_manage),

627
remove_section() (in module salt.modules.ini_manage),

627
remove_var() (in module salt.modules.makecon), 668
removed() (in module salt.states.gem), 1142
removed() (in module salt.states.npm), 1187
removed() (in module salt.states.pecl), 1190
removed() (in module salt.states.pip_state), 1193
removed() (in module salt.states.pkg), 1198
removegroup() (in module salt.modules.win_useradd),

894
rename() (in module salt.cloud.clouds.ec2), 344
rename() (in module salt.cloud.clouds.libcloud_aws), 356
rename() (in module salt.modules.file), 579
rename() (in module salt.states.file), 1138
rename_set() (in module salt.modules.ipset), 629
Render Pipe, 1462
render() (in module salt.renderers.gpg), 967
render() (in module salt.renderers.jinja), 970
render() (in module salt.renderers.json), 971
render() (in module salt.renderers.mako), 972
render() (in module salt.renderers.msgpack), 972
render() (in module salt.renderers.py), 973
render() (in module salt.renderers.pydsl), 978
render() (in module salt.renderers.pyobjects), 981
render() (in module salt.renderers.wempy), 985
render() (in module salt.renderers.yaml), 986

1506 Index

Salt Documentation, Release 2014.7.6

render() (in module salt.renderers.yamlex), 987
render_dirs

conf/minion, 436
Renderer, 1462
renderer

conf/master, 410
conf/minion, 436

replace() (in module salt.modules.file), 579
replace() (in module salt.modules.memcached), 676
replace() (in module salt.modules.zpool), 911
replace() (in module salt.states.file), 1138
replication_details() (in module salt.modules.solr), 820
report() (in module salt.modules.quota), 767
request_instance() (in module salt.cloud.clouds.ec2), 344
request_instance() (in module salt.cloud.clouds.nova),

362
request_instance() (in module

salt.cloud.clouds.openstack), 367
reread() (in module salt.modules.supervisord), 830
rescue() (in module salt.modules.parted), 724
reset() (in module salt.modules.git), 604
reset() (in module salt.modules.rabbitmq), 770
reset() (in module salt.modules.virt), 864
reset() (in module salt.modules.xapi), 896
reset() (in module salt.runners.virt), 1024
reset_ignored() (inmodule salt.modules.sowareupdate),

808
reset_stats() (in module salt.modules.modjk), 681
resize() (in module salt.modules.parted), 724
resp (salt.auth.pam.PamResponse aribute), 298
resp_retcode (salt.auth.pam.PamResponse aribute), 298
restart() (in module salt.modules.daemontools), 529
restart() (in module salt.modules.debian_service), 536
restart() (in module salt.modules.dockerio), 549
restart() (in module salt.modules.freebsdjail), 585
restart() (in module salt.modules.freebsdservice), 593
restart() (in module salt.modules.gentoo_service), 597
restart() (in module salt.modules.launchctl), 642
restart() (in module salt.modules.monit), 683
restart() (in module salt.modules.netbsdservice), 697
restart() (in module salt.modules.openbsdservice), 714
restart() (in module salt.modules.rest_service), 779
restart() (in module salt.modules.rh_service), 783
restart() (in module salt.modules.service), 799
restart() (in module salt.modules.sm), 806
restart() (in module salt.modules.supervisord), 831
restart() (in module salt.modules.systemd), 842
restart() (in module salt.modules.upstart), 857
restart() (in module salt.modules.win_service), 885
restore() (in module salt.modules.pkgng), 741
restore_backup() (in module salt.modules.file), 580
restorecon() (in module salt.modules.file), 580
result (salt.pillar.mysql.merger aribute), 959
resume() (in module salt.modules.nova), 708

resume() (in module salt.modules.virt), 864
resume() (in module salt.modules.xapi), 896
resume() (in module salt.runners.virt), 1024
ret_glob_minions() (salt.roster.flat.RosterMatcher

method), 1005
ret_list_minions() (salt.roster.flat.RosterMatcher

method), 1005
ret_pcre_minions() (salt.roster.flat.RosterMatcher

method), 1005
ret_port

conf/master, 402
retcode() (in module salt.modules.cmdmod), 516
retcode() (in module salt.modules.dockerio), 549
retcode() (in module salt.modules.nagios), 693
retcode() (in module salt.modules.test), 845
retcode_pillar() (in module salt.modules.nagios), 694
retry_dns

conf/minion, 430
Returner, 1462
returner() (in module salt.returners.carbon_return), 990
returner() (in module salt.returners.cassandra_return),

990
returner() (in module salt.returners.couchbase_return),

991
returner() (in module salt.returners.couchdb_return), 992
returner() (inmodule salt.returners.elasticsearch_return),

992
returner() (in module salt.returners.etcd_return), 993
returner() (in module salt.returners.local), 993
returner() (in module salt.returners.local_cache), 994
returner() (in module salt.returners.memcache_return),

994
returner() (inmodule salt.returners.mongo_future_return),

995
returner() (in module salt.returners.mongo_return), 996
returner() (in module salt.returners.multi_returner), 996
returner() (in module salt.returners.mysql), 998
returner() (in module salt.returners.odbc), 1000
returner() (in module salt.returners.postgres), 1001
returner() (in module salt.returners.redis_return), 1002
returner() (in module salt.returners.sentry_return), 1002
returner() (in module salt.returners.smtp_return), 1003
returner() (in module salt.returners.sqlite3_return), 1004
returner() (in module salt.returners.syslog_return), 1005
returner_dirs

conf/minion, 435
returner_doc() (in module salt.modules.sysmod), 839
revdep_rebuild() (in module

salt.modules.gentoolkitmod), 599
revision() (in module salt.modules.git), 604
revision() (in module salt.modules.hg), 618
revoke() (in module salt.modules.boto_secgroup), 503
revoke_auth() (in module salt.modules.saltutil), 792

Index 1507

Salt Documentation, Release 2014.7.6

revoke_cache_security_group_ingress() (in module
salt.modules.boto_elasticache), 495

ring() (in module salt.modules.cassandra), 509
rm() (in module salt.modules.cron), 527
rm() (in module salt.modules.git), 604
rm() (in module salt.modules.incron), 622
rm() (in module salt.modules.parted), 724
rm_() (in module salt.modules.etcd_mod), 561
rm_alias() (in module salt.modules.aliases), 471
rm_auth_key() (in module salt.modules.ssh), 823
rm_dns() (in module salt.modules.win_dns_client), 869
rm_env() (in module salt.modules.cron), 527
rm_fstab() (in module salt.modules.mount), 685
rm_host() (in module salt.modules.hosts), 620
rm_job() (in module salt.modules.cron), 527
rm_job() (in module salt.modules.incron), 622
rm_known_host() (in module salt.modules.ssh), 823
rmconfig() (in module salt.modules.freebsdports), 591
rmdir() (in module salt.modules.file), 581
role_absent() (in module salt.states.keystone), 1163
role_create() (in module salt.modules.keystone), 637
role_delete() (in module salt.modules.keystone), 637
role_exists() (in module salt.modules.boto_iam), 500
role_get() (in module salt.modules.keystone), 637
role_get() (in module salt.modules.postgres), 753
role_list() (in module salt.modules.keystone), 637
role_present() (in module salt.states.keystone), 1163
rollback() (in module salt.modules.junos), 634
root_dir

conf/master, 403
conf/minion, 431

Roster, 1462
roster_file

conf/master, 406
RosterMatcher (class in salt.roster.flat), 1005
RosterMatcher (class in salt.roster.scan), 1005
rotate() (in module salt.modules.logadm), 649
rotate_aes_key

conf/master, 409
routes() (in module salt.states.network), 1183
rsync() (in module salt.modules.rsync), 785
rubygems() (in module salt.modules.rvm), 788
Run (class in salt.netapi.rest_cherrypy.app), 923
run() (in module salt.modules.cmdmod), 517
run() (in module salt.modules.dockerio), 549
run() (in module salt.modules.munin), 686
run() (in module salt.modules.nagios), 694
run() (in module salt.modules.puppet), 761
run() (in module salt.states.cmd), 1106
run() (in module salt.states.dockerio), 1119
run() (in module salt.states.module), 1174
run() (in module salt.states.mysql_query), 1179
run_all() (in module salt.modules.cmdmod), 518
run_all() (in module salt.modules.dockerio), 550

run_all() (in module salt.modules.munin), 686
run_all() (in module salt.modules.nagios), 694
run_all_pillar() (in module salt.modules.nagios), 694
run_buildout() (in module salt.modules.zcbuildout), 909
run_chroot() (in module salt.modules.cmdmod), 518
run_cmd() (in module salt.modules.lxc), 658
run_job() (in module salt.modules.schedule), 796
run_job() (salt.client.LocalClient method), 329
run_pillar() (in module salt.modules.nagios), 694
run_query() (in module salt.modules.oracle), 716
run_stderr() (in module salt.modules.cmdmod), 518
run_stderr() (in module salt.modules.dockerio), 550
run_stdout() (in module salt.modules.cmdmod), 519
run_stdout() (in module salt.modules.dockerio), 550
Runner Function, 1462
Runner Module, 1462
runner() (in module salt.modules.publish), 760
runner() (in module salt.modules.raet_publish), 772
runner() (in module salt.modules.saltutil), 792
runner() (in module salt.runners.doc), 1008
runner() (in module salt.states.saltmod), 1218
runner() (salt.netapi.NetapiClient method), 281
runner_dirs

conf/master, 409
runner_doc() (in module salt.modules.sysmod), 839
RunnerClient (class in salt.runner), 330
running() (in module salt.modules.saltutil), 792
running() (in module salt.modules.state), 825
running() (in module salt.states.dockerio), 1119
running() (in module salt.states.service), 1224
running() (in module salt.states.supervisord), 1228
running_service_owners() (in module

salt.modules.introspect), 628
RunSaltAPIHandler (in module

salt.netapi.rest_tornado.saltnado), 939

S
S3Credentials (class in salt.pillar.s3), 962
safe_accept() (in module salt.runners.manage), 1016
Salt Cloud, 1462
salt command line option

--args-separator=ARGS_SEPARATOR, 306
--async, 306
--force-color, 308, 321
--grain-pcre, 307, 320
--log-file-level=LOG_LEVEL_LOGFILE, 306, 321
--log-file=LOG_FILE, 306, 321
--no-color, 308, 321
--out, 307, 321
--out-file=OUTPUT_FILE, --output-

file=OUTPUT_FILE, 308, 321
--out-indent OUTPUT_INDENT, --output-indent

OUTPUT_INDENT, 308, 321
--return=RETURNER, 306

1508 Index

Salt Documentation, Release 2014.7.6

--show-timeout, 306
--state-output=STATE_OUTPUT, 306
--subset=SUBSET, 306
--version, 305, 320
--versions-report, 305, 320
-C, --compound, 307
-E, --pcre, 307, 320
-G, --grain, 307, 320
-I, --pillar, 307
-L, --list, 307, 320
-N, --nodegroup, 307, 320
-R, --range, 307, 320
-S, --ipcidr, 307
-T, --make-token, 306
-a EAUTH, --auth=EAUTH, 306
-b BATCH, --batch-size=BATCH, 306
-c CONFIG_DIR, --config-dir=CONFIG_dir, 305, 320
-d, --doc, --documentation, 306
-h, --help, 305, 320
-l LOG_LEVEL, --log-level=LOG_LEVEL, 306, 321
-s, --static, 306
-t TIMEOUT, --timeout=TIMEOUT, 305
-v VERBOSE, --verbose, 306

Salt Mine, 143
Salt Reactor, 136
Salt SSH, 1462
Salt in, 1463
Salt Virt, 1463
salt-api command line option

--log-file-level=LOG_LEVEL_LOGFILE, 323
--log-file=LOG_FILE, 323
--pid-file=PIDFILE, 323
--version, 323
--versions-report, 323
-c CONFIG_DIR, --config-dir=CONFIG_dir, 323
-d, --daemon, 323
-h, --help, 323
-l LOG_LEVEL, --log-level=LOG_LEVEL, 323

salt-call command line option
--file-root=FILE_ROOT, 304
--force-color, 305
--hard-crash, 303
--id=ID, 304
--local, 303
--log-file-level=LOG_LEVEL_LOGFILE, 304
--log-file=LOG_FILE, 304
--master=MASTER, 303
--metadata, 304
--no-color, 305
--out, 304
--out-file=OUTPUT_FILE, --output-

file=OUTPUT_FILE, 304
--out-indent OUTPUT_INDENT, --output-indent

OUTPUT_INDENT, 304

--pillar-root=PILLAR_ROOT, 304
--refresh-grains-cache, 304
--retcode-passthrough, 304
--return RETURNER, 303
--skip-grains, 304
--version, 303
--versions-report, 303
-c CONFIG_DIR, --config-dir=CONFIG_dir, 303
-d, --doc, --documentation, 303
-g, --grains, 303
-h, --help, 303
-l LOG_LEVEL, --log-level=LOG_LEVEL, 304
-m MODULE_DIRS, --module-

dirs=MODULE_DIRS, 303
salt-cloud command line option

--force-color, 311
--list-images=LIST_IMAGES, 310
--list-locations=LIST_LOCATIONS, 310
--list-providers, 310
--list-sizes=LIST_SIZES, 310
--no-color, 311
--out, 310
--out-file=OUTPUT_FILE, --output-

file=OUTPUT_FILE, 311
--out-indent OUTPUT_INDENT, --output-indent

OUTPUT_INDENT, 310
--script-args=SCRIPT_ARGS, 309
--set-password=<USERNAME> <PROVIDER>, 310
--show-deploy-args, 309
--version, 308
--versions-report, 308
-F, --full-query, 310
-H, --hard, 309
-L LOCATION, --location=LOCATION, 309
-P, --parallel, 309
-Q, --query, 309, 310
-S, --select-query, 310
-a ACTION, --action=ACTION, 309
-c CONFIG_DIR, --config-dir=CONFIG_dir, 309
-d, --destroy, 309
-f <FUNC-NAME> <PROVIDER>, --

function=<FUNC-NAME> <PROVIDER>,
309

-h, --help, 308
-k, --keep-tmp, 309
-m MAP, --map=MAP, 309
-p PROFILE, --profile=PROFILE, 309
-u, --update-bootstrap, 309
-y, --assume-yes, 309

salt-cp command line option
--grain-pcre, 312
--log-file-level=LOG_LEVEL_LOGFILE, 312
--log-file=LOG_FILE, 312
--version, 312

Index 1509

Salt Documentation, Release 2014.7.6

--versions-report, 312
-E, --pcre, 312
-G, --grain, 312
-L, --list, 312
-N, --nodegroup, 313
-R, --range, 313
-c CONFIG_DIR, --config-dir=CONFIG_dir, 312
-h, --help, 312
-l LOG_LEVEL, --log-level=LOG_LEVEL, 312
-t TIMEOUT, --timeout=TIMEOUT, 312

salt-key command line option
--auto-create, 316
--force-color, 314
--gen-keys-dir=GEN_KEYS_DIR, 315
--gen-keys=GEN_KEYS, 315
--gen-signature, 315
--hard-crash, 313
--include-all, 315
--keysize=KEYSIZE, 315
--log-file-level=LOG_LEVEL_LOGFILE, 314
--log-file=LOG_FILE, 314
--no-color, 314
--out, 314
--out-file=OUTPUT_FILE, --output-

file=OUTPUT_FILE, 314
--out-indent OUTPUT_INDENT, --output-indent

OUTPUT_INDENT, 314
--priv=PRIV, 315
--pub=PUB, 315
--rotate-aes-key=ROTATE_AES_KEY, 314
--signature-path=SIGNATURE_PATH, 315
--version, 313
--versions-report, 313
-A, --accept-all, 315
-D, --delete-all, 315
-F, --finger-all, 315
-L, --list-all, 315
-P, --print-all, 315
-R, --reject-all, 315
-a ACCEPT, --accept=ACCEPT, 315
-c CONFIG_DIR, --config-dir=CONFIG_dir, 313
-d DELETE, --delete=DELETE, 315
-f FINGER, --finger=FINGER, 315
-h, --help, 313
-l ARG, --list=ARG, 314
-p PRINT, --print=PRINT, 315
-q, --quiet, 313
-r REJECT, --reject=REJECT, 315
-u USER, --user=USER, 313
-y, --yes, 313

salt-master command line option
--log-file-level=LOG_LEVEL_LOGFILE, 317
--log-file=LOG_FILE, 317
--pid-file PIDFILE, 316

--version, 316
--versions-report, 316
-c CONFIG_DIR, --config-dir=CONFIG_dir, 316
-d, --daemon, 316
-h, --help, 316
-l LOG_LEVEL, --log-level=LOG_LEVEL, 317
-u USER, --user=USER, 316

salt-minion command line option
--log-file-level=LOG_LEVEL_LOGFILE, 318
--log-file=LOG_FILE, 318
--pid-file PIDFILE, 317
--version, 317
--versions-report, 317
-c CONFIG_DIR, --config-dir=CONFIG_dir, 317
-d, --daemon, 317
-h, --help, 317
-l LOG_LEVEL, --log-level=LOG_LEVEL, 318
-u USER, --user=USER, 317

salt-run command line option
--hard-crash, 319
--log-file-level=LOG_LEVEL_LOGFILE, 319
--log-file=LOG_FILE, 319
--version, 318
--versions-report, 318
-c CONFIG_DIR, --config-dir=CONFIG_dir, 318
-d, --doc, --documentation, 319
-h, --help, 318
-l LOG_LEVEL, --log-level=LOG_LEVEL, 319
-t TIMEOUT, --timeout=TIMEOUT, 318

salt-syndic command line option
--log-file-level=LOG_LEVEL_LOGFILE, 322
--log-file=LOG_FILE, 322
--pid-file PIDFILE, 322
--version, 322
--versions-report, 322
-c CONFIG_DIR, --config-dir=CONFIG_dir, 322
-d, --daemon, 322
-h, --help, 322
-l LOG_LEVEL, --log-level=LOG_LEVEL, 322
-u USER, --user=USER, 322

salt.auth.auto (module), 297
salt.auth.keystone (module), 297
salt.auth.ldap (module), 297
salt.auth.pam (module), 298
salt.auth.pki (module), 299
salt.auth.stormpath_mod (module), 299
salt.cloud.clouds.aliyun (module), 334
salt.cloud.clouds.botocore_aws (module), 336
salt.cloud.clouds.cloudstack (module), 337
salt.cloud.clouds.digital_ocean (module), 338
salt.cloud.clouds.ec2 (module), 340
salt.cloud.clouds.gce (module), 346
salt.cloud.clouds.gogrid (module), 350
salt.cloud.clouds.joyent (module), 351

1510 Index

Salt Documentation, Release 2014.7.6

salt.cloud.clouds.libcloud_aws (module), 355
salt.cloud.clouds.linode (module), 356
salt.cloud.clouds.lxc (module), 358
salt.cloud.clouds.msazure (module), 359
salt.cloud.clouds.nova (module), 360
salt.cloud.clouds.opennebula (module), 363
salt.cloud.clouds.openstack (module), 364
salt.cloud.clouds.parallels (module), 367
salt.cloud.clouds.proxmox (module), 368
salt.cloud.clouds.rackspace (module), 370
salt.cloud.clouds.saltify (module), 372
salt.cloud.clouds.solayer (module), 372
salt.cloud.clouds.solayer_hw (module), 373
salt.cloud.clouds.vsphere (module), 375
salt.exceptions (module), 461, 462
salt.fileserver.gitfs (module), 453
salt.fileserver.hgfs (module), 454
salt.fileserver.minionfs (module), 455
salt.fileserver.roots (module), 456
salt.fileserver.s3fs (module), 457
salt.fileserver.svnfs (module), 458
salt.log.handlers.logstash_mod (module), 445
salt.log.handlers.sentry_mod (module), 446
salt.modules.aliases (module), 471
salt.modules.alternatives (module), 472
salt.modules.apache (module), 473
salt.modules.aptpkg (module), 474
salt.modules.archive (module), 481
salt.modules.at (module), 483
salt.modules.augeas_cfg (module), 484
salt.modules.aws_sqs (module), 485
salt.modules.blockdev (module), 487
salt.modules.bluez (module), 487
salt.modules.boto_asg (module), 489
salt.modules.boto_cloudwatch (module), 491
salt.modules.boto_elasticache (module), 493
salt.modules.boto_elb (module), 495
salt.modules.boto_iam (module), 498
salt.modules.boto_route53 (module), 500
salt.modules.boto_secgroup (module), 501
salt.modules.boto_sqs (module), 503
salt.modules.brew (module), 504
salt.modules.bridge (module), 506
salt.modules.bsd_shadow (module), 508
salt.modules.cassandra (module), 508
salt.modules.chef (module), 510
salt.modules.chocolatey (module), 511
salt.modules.cloud (module), 514
salt.modules.cmdmod (module), 516
salt.modules.composer (module), 520
salt.modules.config (module), 522
salt.modules.cp (module), 523
salt.modules.cron (module), 526
salt.modules.daemontools (module), 528

salt.modules.darwin_sysctl (module), 529
salt.modules.data (module), 530
salt.modules.ddns (module), 531
salt.modules.deb_apache (module), 532
salt.modules.debconfmod (module), 533
salt.modules.debian_ip (module), 533
salt.modules.debian_service (module), 535
salt.modules.defaults (module), 537
salt.modules.dig (module), 537
salt.modules.disk (module), 538
salt.modules.djangomod (module), 539
salt.modules.dnsmasq (module), 540
salt.modules.dnsutil (module), 540
salt.modules.dockerio (module), 542
salt.modules.dpkg (module), 553
salt.modules.ebuild (module), 553
salt.modules.eix (module), 558
salt.modules.environ (module), 558
salt.modules.eselect (module), 559
salt.modules.etcd_mod (module), 561
salt.modules.event (module), 562
salt.modules.extfs (module), 563
salt.modules.file (module), 565
salt.modules.freebsd_sysctl (module), 584
salt.modules.freebsdjail (module), 585
salt.modules.freebsdkmod (module), 586
salt.modules.freebsdpkg (module), 587
salt.modules.freebsdports (module), 590
salt.modules.freebsdservice (module), 592
salt.modules.gem (module), 593
salt.modules.genesis (module), 595
salt.modules.gentoo_service (module), 596
salt.modules.gentoolkitmod (module), 598
salt.modules.git (module), 599
salt.modules.glance (module), 605
salt.modules.glusterfs (module), 606
salt.modules.gnomedesktop (module), 608
salt.modules.grains (module), 609
salt.modules.groupadd (module), 613
salt.modules.grub_legacy (module), 614
salt.modules.guestfs (module), 614
salt.modules.hadoop (module), 615
salt.modules.haproxyconn (module), 615
salt.modules.hashutil (module), 617
salt.modules.hg (module), 618
salt.modules.hosts (module), 619
salt.modules.htpasswd (module), 620
salt.modules.img (module), 621
salt.modules.incron (module), 621
salt.modules.influx (module), 622
salt.modules.ini_manage (module), 626
salt.modules.introspect (module), 628
salt.modules.ipset (module), 628
salt.modules.iptables (module), 630

Index 1511

Salt Documentation, Release 2014.7.6

salt.modules.junos (module), 634
salt.modules.key (module), 634
salt.modules.keyboard (module), 635
salt.modules.keystone (module), 635
salt.modules.kmod (module), 641
salt.modules.launchctl (module), 642
salt.modules.layman (module), 643
salt.modules.ldapmod (module), 643
salt.modules.linux_acl (module), 644
salt.modules.linux_lvm (module), 645
salt.modules.linux_sysctl (module), 646
salt.modules.localemod (module), 647
salt.modules.locate (module), 648
salt.modules.logadm (module), 649
salt.modules.logrotate (module), 649
salt.modules.lvs (module), 650
salt.modules.lxc (module), 652
salt.modules.mac_group (module), 660
salt.modules.mac_user (module), 661
salt.modules.macports (module), 662
salt.modules.makeconf (module), 665
salt.modules.match (module), 672
salt.modules.mdadm (module), 674
salt.modules.memcached (module), 676
salt.modules.mine (module), 677
salt.modules.mod_random (module), 678
salt.modules.modjk (module), 679
salt.modules.mongodb (module), 682
salt.modules.monit (module), 683
salt.modules.moosefs (module), 684
salt.modules.mount (module), 685
salt.modules.munin (module), 686
salt.modules.mysql (module), 687
salt.modules.nagios (module), 693
salt.modules.netbsd_sysctl (module), 695
salt.modules.netbsdservice (module), 695
salt.modules.network (module), 697
salt.modules.nfs3 (module), 700
salt.modules.nables (module), 700
salt.modules.nginx (module), 705
salt.modules.nova (module), 705
salt.modules.npm (module), 710
salt.modules.omapi (module), 711
salt.modules.openbsdpkg (module), 712
salt.modules.openbsdservice (module), 713
salt.modules.openstack_config (module), 715
salt.modules.oracle (module), 716
salt.modules.osxdesktop (module), 717
salt.modules.pacman (module), 718
salt.modules.pagerduty (module), 721
salt.modules.pam (module), 721
salt.modules.parted (module), 722
salt.modules.pecl (module), 725
salt.modules.pillar (module), 726

salt.modules.pip (module), 727
salt.modules.pkg (module), 466
salt.modules.pkg_resource (module), 731
salt.modules.pkgin (module), 732
salt.modules.pkgng (module), 735
salt.modules.pkgutil (module), 746
salt.modules.portage_config (module), 748
salt.modules.postfix (module), 749
salt.modules.postgres (module), 750
salt.modules.poudriere (module), 754
salt.modules.powerpath (module), 756
salt.modules.ps (module), 756
salt.modules.publish (module), 759
salt.modules.puppet (module), 761
salt.modules.pw_group (module), 762
salt.modules.pw_user (module), 763
salt.modules.pyenv (module), 764
salt.modules.qemu_img (module), 766
salt.modules.qemu_nbd (module), 766
salt.modules.quota (module), 767
salt.modules.rabbitmq (module), 768
salt.modules.raet_publish (module), 771
salt.modules.rbenv (module), 772
salt.modules.rdp (module), 774
salt.modules.redismod (module), 774
salt.modules.reg (module), 778
salt.modules.rest_package (module), 779
salt.modules.rest_sample (module), 779
salt.modules.rest_service (module), 779
salt.modules.ret (module), 780
salt.modules.rh_ip (module), 780
salt.modules.rh_service (module), 782
salt.modules.riak (module), 784
salt.modules.rpm (module), 784
salt.modules.rsync (module), 785
salt.modules.rvm (module), 786
salt.modules.s3 (module), 789
salt.modules.saltcloudmod (module), 790
salt.modules.saltutil (module), 791
salt.modules.schedule (module), 794
salt.modules.seed (module), 796
salt.modules.selinux (module), 797
salt.modules.sensors (module), 798
salt.modules.serverdensity_device (module), 798
salt.modules.service (module), 799
salt.modules.shadow (module), 800
salt.modules.smartos_imgadm (module), 802
salt.modules.smartos_vmadm (module), 803
salt.modules.smf (module), 804
salt.modules.smtp (module), 806
salt.modules.sowareupdate (module), 807
salt.modules.solaris_group (module), 809
salt.modules.solaris_shadow (module), 809
salt.modules.solaris_user (module), 810

1512 Index

Salt Documentation, Release 2014.7.6

salt.modules.solarispkg (module), 812
salt.modules.solr (module), 815
salt.modules.sqlite3 (module), 821
salt.modules.ssh (module), 822
salt.modules.state (module), 824
salt.modules.status (module), 827
salt.modules.supervisord (module), 830
salt.modules.svn (module), 832
salt.modules.swi (module), 835
salt.modules.sysbench (module), 836
salt.modules.sysmod (module), 837
salt.modules.system (module), 840
salt.modules.systemd (module), 840
salt.modules.test (module), 843
salt.modules.timezone (module), 846
salt.modules.tls (module), 847
salt.modules.tomcat (module), 851
salt.modules.twilio_notify (module), 855
salt.modules.upstart (module), 855
salt.modules.useradd (module), 858
salt.modules.uwsgi (module), 859
salt.modules.varnish (module), 860
salt.modules.virt (module), 861
salt.modules.virtualenv_mod (module), 867
salt.modules.win_autoruns (module), 868
salt.modules.win_disk (module), 868
salt.modules.win_dns_client (module), 869
salt.modules.win_file (module), 869
salt.modules.win_firewall (module), 874
salt.modules.win_groupadd (module), 875
salt.modules.win_ip (module), 875
salt.modules.win_network (module), 877
salt.modules.win_ntp (module), 879
salt.modules.win_path (module), 879
salt.modules.win_pkg (module), 880
salt.modules.win_repo (module), 882
salt.modules.win_servermanager (module), 883
salt.modules.win_service (module), 884
salt.modules.win_shadow (module), 886
salt.modules.win_status (module), 886
salt.modules.win_system (module), 887
salt.modules.win_timezone (module), 889
salt.modules.win_update (module), 890
salt.modules.win_useradd (module), 892
salt.modules.xapi (module), 894
salt.modules.xmpp (module), 898
salt.modules.yumpkg (module), 899
salt.modules.zcbuildout (module), 907
salt.modules.zfs (module), 909
salt.modules.znc (module), 910
salt.modules.zpool (module), 910
salt.modules.zypper (module), 911
salt.netapi.rest_cherrypy.app (module), 915
salt.netapi.rest_cherrypy.wsgi (module), 917

salt.netapi.rest_tornado.saltnado (module), 932
salt.netapi.rest_tornado.saltnado_websockets (module),

933
salt.netapi.rest_wsgi (module), 939
salt.output.grains (module), 941
salt.output.highstate (module), 942
salt.output.json_out (module), 943
salt.output.key (module), 943
salt.output.nested (module), 943
salt.output.newline_values_only (module), 944
salt.output.no_out (module), 945
salt.output.no_return (module), 945
salt.output.overstatestage (module), 946
salt.output.pprint_out (module), 946
salt.output.raw (module), 946
salt.output.txt (module), 946
salt.output.virt_query (module), 947
salt.output.yaml_out (module), 947
salt.pillar.cmd_json (module), 949
salt.pillar.cmd_yaml (module), 950
salt.pillar.cmd_yamlex (module), 950
salt.pillar.cobbler (module), 950
salt.pillar.django_orm (module), 950
salt.pillar.etcd_pillar (module), 952
salt.pillar.foreman (module), 953
salt.pillar.git_pillar (module), 954
salt.pillar.hiera (module), 955
salt.pillar.libvirt (module), 955
salt.pillar.mongo (module), 955
salt.pillar.mysql (module), 957
salt.pillar.pillar_ldap (module), 960
salt.pillar.puppet (module), 960
salt.pillar.reclass_adapter (module), 960
salt.pillar.redismod (module), 961
salt.pillar.s3 (module), 961
salt.pillar.svn_pillar (module), 962
salt.pillar.virtkey (module), 963
salt.renderers.gpg (module), 966
salt.renderers.jinja (module), 967
salt.renderers.json (module), 971
salt.renderers.mako (module), 972
salt.renderers.msgpack (module), 972
salt.renderers.py (module), 972
salt.renderers.pydsl (module), 973
salt.renderers.pyobjects (module), 978
salt.renderers.stateconf (module), 981
salt.renderers.wempy (module), 985
salt.renderers.yaml (module), 986
salt.renderers.yamlex (module), 987
salt.returners.carbon_return (module), 989
salt.returners.cassandra_return (module), 990
salt.returners.couchbase_return (module), 991
salt.returners.couchdb_return (module), 991
salt.returners.elasticsearch_return (module), 992

Index 1513

Salt Documentation, Release 2014.7.6

salt.returners.etcd_return (module), 992
salt.returners.local (module), 993
salt.returners.local_cache (module), 994
salt.returners.memcache_return (module), 994
salt.returners.mongo_future_return (module), 995
salt.returners.mongo_return (module), 995
salt.returners.multi_returner (module), 996
salt.returners.mysql (module), 996
salt.returners.odbc (module), 998
salt.returners.postgres (module), 1000
salt.returners.redis_return (module), 1001
salt.returners.sentry_return (module), 1002
salt.returners.smtp_return (module), 1002
salt.returners.sqlite3_return (module), 1003
salt.returners.syslog_return (module), 1004
salt.roster.flat (module), 1005
salt.roster.scan (module), 1005
salt.runners.cache (module), 1006
salt.runners.cloud (module), 1007
salt.runners.doc (module), 1008
salt.runners.error (module), 1008
salt.runners.fileserver (module), 1009
salt.runners.git_pillar (module), 1012
salt.runners.jobs (module), 1012
salt.runners.launchd (module), 1012
salt.runners.lxc (module), 1013
salt.runners.manage (module), 1014
salt.runners.mine (module), 1016
salt.runners.network (module), 1016
salt.runners.pillar (module), 1017
salt.runners.queue (module), 1017
salt.runners.search (module), 1019
salt.runners.state (module), 1019
salt.runners.survey (module), 1022
salt.runners.thin (module), 1023
salt.runners.virt (module), 1023
salt.runners.winrepo (module), 1024
salt.states.alias (module), 1076
salt.states.alternatives (module), 1077
salt.states.apache (module), 1078
salt.states.apache_module (module), 1079
salt.states.apt (module), 1079
salt.states.archive (module), 1079
salt.states.at (module), 1080
salt.states.augeas (module), 1081
salt.states.aws_sqs (module), 1083
salt.states.blockdev (module), 1084
salt.states.boto_asg (module), 1084
salt.states.boto_cloudwatch_alarm (module), 1087
salt.states.boto_elasticache (module), 1089
salt.states.boto_elb (module), 1091
salt.states.boto_iam_role (module), 1093
salt.states.boto_lc (module), 1095
salt.states.boto_route53 (module), 1097

salt.states.boto_secgroup (module), 1099
salt.states.boto_sqs (module), 1101
salt.states.cloud (module), 1102
salt.states.cmd (module), 1103
salt.states.composer (module), 1110
salt.states.cron (module), 1111
salt.states.ddns (module), 1114
salt.states.debconfmod (module), 1115
salt.states.disk (module), 1116
salt.states.dockerio (module), 1117
salt.states.environ (module), 1121
salt.states.eselect (module), 1122
salt.states.event (module), 1122
salt.states.file (module), 1123
salt.states.gem (module), 1142
salt.states.git (module), 1142
salt.states.glusterfs (module), 1145
salt.states.gnomedesktop (module), 1146
salt.states.grains (module), 1147
salt.states.group (module), 1149
salt.states.hg (module), 1150
salt.states.host (module), 1150
salt.states.htpasswd (module), 1151
salt.states.incron (module), 1151
salt.states.influxdb_database (module), 1153
salt.states.influxdb_user (module), 1153
salt.states.ini_manage (module), 1154
salt.states.ipset (module), 1155
salt.states.iptables (module), 1157
salt.states.keyboard (module), 1161
salt.states.keystone (module), 1161
salt.states.kmod (module), 1164
salt.states.layman (module), 1164
salt.states.libvirt (module), 1165
salt.states.locale (module), 1165
salt.states.lvm (module), 1165
salt.states.lvs_server (module), 1166
salt.states.lvs_service (module), 1167
salt.states.lxc (module), 1168
salt.states.makeconf (module), 1170
salt.states.mdadm (module), 1170
salt.states.memcached (module), 1171
salt.states.modjk (module), 1171
salt.states.modjk_worker (module), 1172
salt.states.module (module), 1173
salt.states.mongodb_database (module), 1174
salt.states.mongodb_user (module), 1175
salt.states.mount (module), 1175
salt.states.mysql_database (module), 1177
salt.states.mysql_grants (module), 1177
salt.states.mysql_query (module), 1179
salt.states.mysql_user (module), 1179
salt.states.network (module), 1181
salt.states.nables (module), 1184

1514 Index

Salt Documentation, Release 2014.7.6

salt.states.npm (module), 1186
salt.states.ntp (module), 1188
salt.states.openstack_config (module), 1188
salt.states.pagerduty (module), 1189
salt.states.pecl (module), 1189
salt.states.pip_state (module), 1190
salt.states.pkg (module), 1193
salt.states.pkgng (module), 1198
salt.states.pkgrepo (module), 1198
salt.states.portage_config (module), 1201
salt.states.ports (module), 1201
salt.states.postgres_database (module), 1202
salt.states.postgres_extension (module), 1203
salt.states.postgres_group (module), 1204
salt.states.postgres_user (module), 1206
salt.states.powerpath (module), 1207
salt.states.process (module), 1207
salt.states.pyenv (module), 1208
salt.states.quota (module), 1209
salt.states.rabbitmq_cluster (module), 1209
salt.states.rabbitmq_plugin (module), 1210
salt.states.rabbitmq_policy (module), 1210
salt.states.rabbitmq_user (module), 1211
salt.states.rabbitmq_vhost (module), 1212
salt.states.rbenv (module), 1212
salt.states.rdp (module), 1214
salt.states.redismod (module), 1214
salt.states.reg (module), 1215
salt.states.rvm (module), 1215
salt.states.saltmod (module), 1217
salt.states.schedule (module), 1220
salt.states.selinux (module), 1221
salt.states.serverdensity_device (module), 1222
salt.states.service (module), 1223
salt.states.smtp (module), 1224
salt.states.ssh_auth (module), 1225
salt.states.ssh_known_hosts (module), 1226
salt.states.stateconf (module), 1227
salt.states.status (module), 1227
salt.states.supervisord (module), 1227
salt.states.svn (module), 1228
salt.states.sysctl (module), 1229
salt.states.test (module), 1230
salt.states.timezone (module), 1231
salt.states.tomcat (module), 1232
salt.states.user (module), 1234
salt.states.virtualenv_mod (module), 1236
salt.states.win_dns_client (module), 1236
salt.states.win_firewall (module), 1237
salt.states.win_network (module), 1237
salt.states.win_path (module), 1238
salt.states.win_servermanager (module), 1239
salt.states.win_system (module), 1239
salt.states.win_update (module), 1239

salt.states.winrepo (module), 1242
salt.states.xmpp (module), 1242
salt.states.zcbuildout (module), 1242
salt.states.zk_concurrency (module), 1244
salt.tops.cobbler (module), 1250
salt.tops.ext_nodes (module), 1250
salt.tops.mongo (module), 1251
salt.tops.reclass_adapter (module), 1252
salt.utils.aggregation (module), 459
salt.utils.serializers (module), 464
salt.utils.serializers.json (module), 464
salt.utils.serializers.msgpack (module), 465
salt.utils.serializers.yaml (module), 465
salt.wheel.config (module), 1252
salt.wheel.error (module), 1253
salt.wheel.file_roots (module), 1253
salt.wheel.key (module), 1253
salt.wheel.pillar_roots (module), 1254
SaltAPIHandler (in module

salt.netapi.rest_tornado.saltnado), 938
SaltAuthHandler (in module

salt.netapi.rest_tornado.saltnado), 938
SaltClientError, 461, 463
SaltClientTimeout, 461, 463
SaltCloudConfigError, 461, 463
SaltCloudException, 461, 463
SaltCloudExecutionFailure, 462, 463
SaltCloudExecutionTimeout, 462, 463
SaltCloudNotFound, 462, 463
SaltCloudPasswordError, 462, 463
SaltCloudSystemExit, 462, 463
SaltException, 462, 463
SaltInvocationError, 462, 463
SaltMasterError, 462, 463
SaltRenderError, 462, 464
SaltReqTimeoutError, 462, 464
SaltRunnerError, 462, 464
SaltSyndicMasterError, 462, 464
SaltSystemExit, 462, 464
SaltWheelError, 462, 464
save() (in module salt.modules.iptables), 633
save() (in module salt.modules.nables), 704
save() (in module salt.modules.redismod), 777
save() (in module salt.modules.schedule), 796
save_config() (in module salt.modules.mdadm), 675
save_load() (in module salt.returners.couchbase_return),

991
save_load() (in module salt.returners.etcd_return), 993
save_load() (in module salt.returners.local_cache), 994
save_load() (in module salt.returners.memcache_return),

994
save_load() (in module

salt.returners.mongo_future_return), 995

Index 1515

Salt Documentation, Release 2014.7.6

save_load() (in module salt.returners.multi_returner),
996

save_load() (in module salt.returners.mysql), 998
save_load() (in module salt.returners.odbc), 1000
save_load() (in module salt.returners.postgres), 1001
save_load() (in module salt.returners.redis_return), 1002
save_load() (in module salt.returners.sqlite3_return),

1004
say() (in module salt.modules.osxdesktop), 717
Scalar() (in module salt.utils.aggregation), 460
scan() (in module salt.modules.bluez), 488
schedule() (in module salt.modules.sowareupdate), 808
Scheduling Jobs, 152
screensaver() (in module salt.modules.osxdesktop), 717
script() (in module salt.cloud.clouds.aliyun), 336
script() (in module salt.cloud.clouds.cloudstack), 338
script() (in module salt.cloud.clouds.digital_ocean), 339
script() (in module salt.cloud.clouds.ec2), 344
script() (in module salt.cloud.clouds.gce), 350
script() (in module salt.cloud.clouds.gogrid), 351
script() (in module salt.cloud.clouds.linode), 358
script() (in module salt.cloud.clouds.msazure), 360
script() (in module salt.cloud.clouds.nova), 363
script() (in module salt.cloud.clouds.opennebula), 364
script() (in module salt.cloud.clouds.openstack), 367
script() (in module salt.cloud.clouds.parallels), 368
script() (in module salt.cloud.clouds.proxmox), 370
script() (in module salt.cloud.clouds.rackspace), 371
script() (in module salt.cloud.clouds.saltify), 372
script() (in module salt.cloud.clouds.solayer), 373
script() (in module salt.cloud.clouds.solayer_hw), 374
script() (in module salt.cloud.clouds.vsphere), 376
script() (in module salt.modules.cmdmod), 519
script() (in module salt.modules.dockerio), 550
script() (in module salt.states.cmd), 1107
script() (in module salt.states.dockerio), 1121
script_retcode() (in module salt.modules.cmdmod), 519
script_retcode() (in module salt.modules.dockerio), 551
scrub() (in module salt.modules.zpool), 911
search() (in module salt.modules.dockerio), 551
search() (in module salt.modules.file), 581
search() (in module salt.modules.freebsdports), 591
search() (in module salt.modules.ldapmod), 644
search() (in module salt.modules.pkgin), 734
search() (in module salt.modules.pkgng), 742
Search() (salt.modules.win_update.PyWinUpdater

method), 891
Search() (salt.states.win_update.PyWinUpdater method),

1240
secgroup_create() (in module salt.modules.nova), 708
secgroup_delete() (in module salt.modules.nova), 708
secgroup_list() (in module salt.modules.nova), 708
sections_absent() (in module salt.states.ini_manage),

1154

sections_present() (in module salt.states.ini_manage),
1155

securitygroup() (in module salt.cloud.clouds.ec2), 345
securitygroup() (in module

salt.cloud.clouds.libcloud_aws), 356
securitygroupid() (in module salt.cloud.clouds.ec2), 345
sed() (in module salt.modules.file), 581
sed() (in module salt.states.file), 1139
sed_contains() (in module salt.modules.file), 581
seed_non_shared_migrate() (in module

salt.modules.virt), 865
seek_read() (in module salt.modules.file), 582
seek_write() (in module salt.modules.file), 582
select_query() (in module salt.modules.cloud), 515
select_query() (in module salt.runners.cloud), 1008
select_query() (salt.cloud.CloudClient method), 333
selfupdate() (in module salt.modules.composer), 521
selinux_fs_path() (in module salt.modules.selinux), 797
send() (in module salt.modules.event), 562
send() (in module salt.modules.mine), 678
send() (in module salt.states.event), 1122
send_msg() (in module salt.modules.smtp), 807
send_msg() (in module salt.modules.xmpp), 898
send_msg() (in module salt.states.smtp), 1224
send_msg() (in module salt.states.xmpp), 1242
send_sms() (in module salt.modules.twilio_notify), 855
SendMsgBot (class in salt.modules.xmpp), 898
sense() (in module salt.modules.sensors), 798
Sequence (class in salt.utils.aggregation), 461
serialize() (in module salt.states.file), 1139
serialize() (in module salt.utils.serializers.json), 464
serialize() (in module salt.utils.serializers.msgpack), 465
serialize() (in module salt.utils.serializers.yaml), 465
SerializerExtension (class in salt.utils.jinja), 970
serve_file() (in module salt.fileserver.gitfs), 454
serve_file() (in module salt.fileserver.hgfs), 455
serve_file() (in module salt.fileserver.minionfs), 456
serve_file() (in module salt.fileserver.roots), 456
serve_file() (in module salt.fileserver.s3fs), 458
serve_file() (in module salt.fileserver.svnfs), 459
server_by_name() (in module salt.modules.nova), 708
server_list() (in module salt.modules.nova), 708
server_list_detailed() (in module salt.modules.nova), 708
server_show() (in module salt.modules.nova), 709
server_status() (in module salt.modules.apache), 473
serverinfo() (in module salt.modules.tomcat), 853
servermods() (in module salt.modules.apache), 473
service_absent() (in module salt.states.keystone), 1163
service_create() (in module salt.modules.keystone), 638
service_delete() (in module salt.modules.keystone), 638
service_get() (in module salt.modules.keystone), 638
service_highstate() (in module salt.modules.introspect),

628
service_list() (in module salt.modules.keystone), 638

1516 Index

Salt Documentation, Release 2014.7.6

service_present() (in module salt.states.keystone), 1163
sessions() (in module salt.modules.tomcat), 853
set() (in module salt.states.debconfmod), 1116
set() (in module salt.states.statecon), 1227
set_() (in module salt.modules.alternatives), 472
set_() (in module salt.modules.debconfmod), 533
set_() (in module salt.modules.etcd_mod), 561
set_() (in module salt.modules.gnomedesktop), 609
set_() (in module salt.modules.logrotate), 649
set_() (in module salt.modules.memcached), 677
set_() (in module salt.modules.openstack_config), 715
set_() (in module salt.modules.parted), 724
set_() (in module salt.modules.quota), 767
set_() (in module salt.states.alternatives), 1078
set_() (in module salt.states.eselect), 1122
set_absent() (in module salt.states.ipset), 1156
set_aributes() (in module salt.modules.boto_elb), 498
set_aributes() (in module salt.modules.boto_sqs), 504
set_aributes() (in module salt.modules.win_file), 873
set_auth_key() (in module salt.modules.ssh), 823
set_auth_key_from_file() (in module salt.modules.ssh),

823
set_autostart() (in module salt.modules.virt), 865
set_ca_path() (in module salt.modules.tls), 851
set_cflags() (in module salt.modules.makecon), 669
set_chost() (in module salt.modules.makecon), 669
set_computer_desc() (in module

salt.modules.win_system), 888
set_computer_name() (in module

salt.modules.win_system), 888
set_config() (in module salt.modules.dnsmasq), 540
set_cxxflags() (in module salt.modules.makecon), 669
set_date() (in module salt.modules.shadow), 801
set_default() (in module salt.modules.rvm), 788
set_dhcp_all() (in module salt.modules.win_ip), 876
set_dhcp_dns() (in module salt.modules.win_ip), 877
set_dhcp_ip() (in module salt.modules.win_ip), 877
set_dns() (in module salt.modules.lxc), 658
set_emerge_default_opts() (in module

salt.modules.makecon), 669
set_env() (in module salt.modules.cron), 527
set_expire() (in module salt.modules.shadow), 801
set_file() (in module salt.modules.debconfmod), 533
set_file() (in module salt.states.debconfmod), 1116
set_fstab() (in module salt.modules.mount), 685
set_gentoo_mirrors() (in module

salt.modules.makecon), 669
set_health_check() (in module salt.modules.boto_elb),

498
set_host() (in module salt.modules.hosts), 620
set_hostname() (in module salt.modules.junos), 634
set_hwclock() (in module salt.modules.timezone), 846
set_hwclock() (in module salt.modules.win_timezone),

890

set_id() (in module salt.modules.parted), 725
set_inactdays() (in module salt.modules.shadow), 801
set_is_polling() (in module salt.modules.solr), 820
set_job() (in module salt.modules.cron), 527
set_job() (in module salt.modules.incron), 622
set_key() (in module salt.modules.redismod), 777
set_key() (in module salt.modules.reg), 778
set_known_host() (in module salt.modules.ssh), 824
set_locale() (in module salt.modules.localemod), 648
set_main() (in module salt.modules.postfix), 749
set_makeopts() (in module salt.modules.makecon), 670
set_master() (in module salt.modules.postfix), 749
set_maxdays() (in module salt.modules.shadow), 801
set_maxdays() (in module salt.modules.solaris_shadow),

810
set_mindays() (in module salt.modules.shadow), 801
set_mindays() (in module salt.modules.solaris_shadow),

810
set_mode() (in module salt.modules.file), 582
set_mode() (in module salt.modules.win_file), 873
set_option() (in module salt.modules.ini_manage), 627
set_output_volume() (in module

salt.modules.osxdesktop), 717
set_parameter() (in module salt.modules.lxc), 659
set_pass() (in module salt.modules.lxc), 659
set_pass() (in module salt.states.lxc), 1169
set_password() (in module salt.modules.bsd_shadow),

508
set_password() (in module salt.modules.shadow), 801
set_password() (in module salt.modules.solaris_shadow),

810
set_password() (in module salt.modules.win_shadow),

886
set_permissions() (in module salt.modules.rabbitmq), 770
set_policy() (in module salt.modules.iptables), 634
set_policy() (in module salt.modules.rabbitmq), 770
set_policy() (in module salt.states.iptables), 1161
set_present() (in module salt.states.ipset), 1156
set_replication_enabled() (in module salt.modules.solr),

820
set_salt_view() (in module

salt.returners.couchdb_return), 992
set_selections() (in module salt.modules.aptpkg), 479
set_selinux_context() (in module salt.modules.file), 582
set_servers() (in module salt.modules.win_ntp), 879
set_special() (in module salt.modules.cron), 527
set_static_dns() (in module salt.modules.win_ip), 877
set_static_ip() (in module salt.modules.win_ip), 877
set_sync() (in module salt.modules.makecon), 670
set_sys() (in module salt.modules.keyboard), 635
set_system_date() (in module salt.modules.win_system),

888
set_system_time() (in module salt.modules.win_system),

888

Index 1517

Salt Documentation, Release 2014.7.6

set_tags() (in module salt.cloud.clouds.ec2), 345
set_tags() (inmodule salt.cloud.clouds.libcloud_aws), 356
set_target() (in module salt.modules.aliases), 471
set_target() (in module salt.modules.eselect), 560
set_user_tags() (in module salt.modules.rabbitmq), 771
set_var() (in module salt.modules.makecon), 670
set_vm_status() (in module salt.cloud.clouds.proxmox),

370
set_warndays() (in module salt.modules.shadow), 802
set_warndays() (inmodule salt.modules.solaris_shadow),

810
set_weight() (in module salt.modules.haproxyconn), 616
set_x() (in module salt.modules.keyboard), 635
set_zone() (in module salt.modules.timezone), 846
set_zone() (in module salt.modules.win_timezone), 890
SetCategories() (salt.modules.win_update.PyWinUpdater

method), 891
SetCategories() (salt.states.win_update.PyWinUpdater

method), 1240
setClockFormat() (in module

salt.modules.gnomedesktop), 609
setClockShowDate() (in module

salt.modules.gnomedesktop), 609
setenforce() (in module salt.modules.selinux), 797
setenv() (in module salt.modules.environ), 559
setenv() (in module salt.states.environ), 1121
setIdleActivation() (in module

salt.modules.gnomedesktop), 609
setIdleDelay() (in module salt.modules.gnomedesktop),

609
SetInclude() (salt.modules.win_update.PyWinUpdater

method), 891
SetInclude() (salt.states.win_update.PyWinUpdater

method), 1240
SetIncludes() (salt.modules.win_update.PyWinUpdater

method), 891
SetIncludes() (salt.states.win_update.PyWinUpdater

method), 1240
setmem() (in module salt.modules.smartos_vmadm), 804
setmem() (in module salt.modules.virt), 865
setmem() (in module salt.modules.xapi), 896
setpassword() (inmodule salt.modules.win_useradd), 894
setsebool() (in module salt.modules.selinux), 797
setsebools() (in module salt.modules.selinux), 798
setval() (in module salt.modules.environ), 559
setval() (in module salt.modules.grains), 612
setvals() (in module salt.modules.grains), 613
setvalue() (in module salt.modules.augeas_cfg), 485
setvalue() (in module salt.states.augeas), 1083
setvcpus() (in module salt.modules.virt), 865
setvcpus() (in module salt.modules.xapi), 896
sha256_digest() (in module salt.modules.hashutil), 617
sha512_digest() (in module salt.modules.hashutil), 617

shadow_hash() (in module salt.modules.mod_random),
678

show() (in module salt.modules.bridge), 507
show() (in module salt.modules.darwin_sysctl), 530
show() (in module salt.modules.debconfmod), 533
show() (in module salt.modules.freebsd_sysctl), 585
show() (in module salt.modules.linux_sysctl), 647
show() (in module salt.modules.netbsd_sysctl), 695
show() (in module salt.modules.nova), 709
show() (in module salt.modules.smartos_imgadm), 802
show() (in module salt.modules.systemd), 842
show_backends() (in module salt.modules.haproxyconn),

616
show_conf() (in module salt.modules.logadm), 649
show_conf() (in module salt.modules.logrotate), 650
show_config() (in module salt.modules.freebsdjail), 585
show_current() (in module salt.modules.alternatives),

472
show_dbs() (in module salt.modules.oracle), 716
show_delvol_on_destroy() (in module

salt.cloud.clouds.ec2), 345
show_disk() (in module salt.cloud.clouds.aliyun), 336
show_disk() (in module salt.cloud.clouds.gce), 350
show_env() (in module salt.modules.oracle), 716
show_frontends() (in module

salt.modules.haproxyconn), 616
show_fwrule() (in module salt.cloud.clouds.gce), 350
show_hc() (in module salt.cloud.clouds.gce), 350
show_highstate() (in module salt.modules.state), 825
show_image() (in module salt.cloud.clouds.aliyun), 336
show_image() (in module salt.cloud.clouds.ec2), 345
show_image() (in module salt.cloud.clouds.parallels), 368
show_instance() (in module salt.cloud.clouds.aliyun), 336
show_instance() (in module

salt.cloud.clouds.cloudstack), 338
show_instance() (in module

salt.cloud.clouds.digital_ocean), 339
show_instance() (in module salt.cloud.clouds.ec2), 345
show_instance() (in module salt.cloud.clouds.gce), 350
show_instance() (in module salt.cloud.clouds.gogrid),

351
show_instance() (in module salt.cloud.clouds.linode), 358
show_instance() (in module salt.cloud.clouds.lxc), 359
show_instance() (in module salt.cloud.clouds.msazure),

360
show_instance() (in module salt.cloud.clouds.nova), 363
show_instance() (in module

salt.cloud.clouds.opennebula), 364
show_instance() (in module salt.cloud.clouds.openstack),

367
show_instance() (in module salt.cloud.clouds.parallels),

368
show_instance() (in module salt.cloud.clouds.proxmox),

370

1518 Index

Salt Documentation, Release 2014.7.6

show_instance() (in module salt.cloud.clouds.rackspace),
371

show_instance() (in module salt.cloud.clouds.solayer),
373

show_instance() (in module
salt.cloud.clouds.solayer_hw), 374

show_instance() (in module salt.cloud.clouds.vsphere),
376

show_key() (in module salt.cloud.clouds.joyent), 354
show_keypair() (in module

salt.cloud.clouds.digital_ocean), 340
show_keypair() (in module salt.cloud.clouds.ec2), 345
show_lb() (in module salt.cloud.clouds.gce), 350
show_low_sls() (in module salt.modules.state), 825
show_lowstate() (in module salt.modules.state), 825
show_main() (in module salt.modules.postfix), 750
show_master() (in module salt.modules.postfix), 750
show_network() (in module salt.cloud.clouds.gce), 350
show_pillar() (in module salt.modules.oracle), 717
show_pillar() (in module salt.runners.pillar), 1017
show_sls() (in module salt.modules.state), 825
show_snapshot() (in module salt.cloud.clouds.gce), 350
show_stages() (in module salt.runners.state), 1022
show_term_protect() (in module salt.cloud.clouds.ec2),

345
show_top() (in module salt.modules.state), 826
show_top() (in module salt.runners.pillar), 1017
show_volume() (in module salt.cloud.clouds.ec2), 345
showconfig() (in module salt.modules.freebsdports), 591
showglobal() (in module salt.modules.mysql), 691
showvariables() (in module salt.modules.mysql), 691
shutdown() (in module salt.cloud.clouds.proxmox), 370
shutdown() (in module salt.modules.redismod), 777
shutdown() (in module salt.modules.smartos_vmadm),

804
shutdown() (in module salt.modules.system), 840
shutdown() (in module salt.modules.virt), 865
shutdown() (in module salt.modules.win_system), 889
shutdown() (in module salt.modules.xapi), 896
shutdown_hard() (in module salt.modules.win_system),

889
sign() (in module salt.cloud.clouds.ec2), 345
signal() (in module salt.modules.apache), 474
signal() (in module salt.modules.nginx), 705
signal() (in module salt.modules.solr), 820
signal() (in module salt.modules.tomcat), 854
signal_job() (in module salt.modules.saltutil), 792
single() (in module salt.modules.state), 826
slave_lag() (in module salt.modules.mysql), 691
slaveof() (in module salt.modules.redismod), 777
sleep() (in module salt.modules.test), 845
SLS Module, 1463
sls() (in module salt.modules.state), 826
sls_id() (in module salt.modules.state), 826

smembers() (in module salt.modules.redismod), 777
sock_dir

conf/master, 404
conf/minion, 432

solo() (in module salt.modules.che), 510
sort_pkglist() (in module salt.modules.pkg_resource),

732
source_list() (in module salt.modules.file), 582
sources_add() (in module salt.modules.gem), 594
sources_list() (in module salt.modules.gem), 594
sources_remove() (in module salt.modules.gem), 594
SPF() (in module salt.modules.dig), 538
SPF() (in module salt.modules.dnsutil), 541
sqlite_version() (in module salt.modules.sqlite3), 821
ssh_interface() (in module salt.cloud.clouds.ec2), 345
ssh_interface() (in module salt.cloud.clouds.joyent), 354
ssh_interface() (in module

salt.cloud.clouds.libcloud_aws), 356
ssh_interface() (in module salt.cloud.clouds.nova), 363
ssh_interface() (in module salt.cloud.clouds.openstack),

367
ssh_interface() (in module salt.cloud.clouds.rackspace),

371
ssh_minion_opts

conf/master, 406
ssh_username() (in module

salt.cloud.clouds.libcloud_aws), 356
stack() (in module salt.modules.test), 845
start() (in module salt.cloud.clouds.aliyun), 336
start() (in module salt.cloud.clouds.ec2), 345
start() (in module salt.cloud.clouds.joyent), 354
start() (in module salt.cloud.clouds.libcloud_aws), 356
start() (in module salt.cloud.clouds.parallels), 368
start() (in module salt.cloud.clouds.proxmox), 370
start() (in module salt.modules.bluez), 488
start() (in module salt.modules.daemontools), 529
start() (in module salt.modules.debian_service), 536
start() (in module salt.modules.dockerio), 551
start() (in module salt.modules.freebsdjail), 585
start() (in module salt.modules.freebsdservice), 593
start() (in module salt.modules.gentoo_service), 597
start() (in module salt.modules.launchctl), 642
start() (in module salt.modules.lxc), 659
start() (in module salt.modules.monit), 683
start() (in module salt.modules.netbsdservice), 697
start() (in module salt.modules.openbsdservice), 714
start() (in module salt.modules.rest_service), 779
start() (in module salt.modules.rh_service), 783
start() (in module salt.modules.riak), 784
start() (in module salt.modules.service), 800
start() (in module salt.modules.smartos_vmadm), 804
start() (in module salt.modules.sm), 806
start() (in module salt.modules.supervisord), 831
start() (in module salt.modules.systemd), 842

Index 1519

Salt Documentation, Release 2014.7.6

start() (in module salt.modules.tomcat), 854
start() (in module salt.modules.upstart), 857
start() (in module salt.modules.virt), 865
start() (in module salt.modules.win_service), 885
start() (in module salt.modules.xapi), 896
start() (in module salt.runners.lxc), 1014
start() (in module salt.runners.virt), 1024
start() (salt.modules.xmpp.SendMsgBot method), 898
start_app() (in module salt.modules.rabbitmq), 771
start_time_service() (in module

salt.modules.win_system), 889
start_volume() (in module salt.modules.glusterfs), 607
started() (in module salt.states.glusterfs), 1145
started() (in module salt.states.lxc), 1169
stash() (in module salt.modules.git), 605
State Compiler, 1463
State Declaration, 1463
State Function, 1463
State Module, 1463
State Run, 1463
state() (in module salt.modules.lxc), 659
state() (in module salt.states.saltmod), 1218
state_doc() (in module salt.modules.sysmod), 839
state_output

conf/master, 411
conf/minion, 437

state_top
conf/master, 410

state_verbose
conf/master, 410
conf/minion, 436

states() (in module salt.loader), 326
states_dirs

conf/minion, 435
Stats (class in salt.netapi.rest_cherrypy.app), 931
stats() (in module salt.modules.file), 582
stats() (in module salt.modules.locate), 648
stats() (in module salt.modules.pkgng), 743
stats() (in module salt.modules.quota), 767
stats() (in module salt.modules.uwsgi), 859
stats() (in module salt.modules.win_file), 874
status() (in module salt.modules.daemontools), 529
status() (in module salt.modules.debian_service), 536
status() (in module salt.modules.freebsdjail), 586
status() (in module salt.modules.freebsdservice), 593
status() (in module salt.modules.gentoo_service), 597
status() (in module salt.modules.git), 605
status() (in module salt.modules.glusterfs), 608
status() (in module salt.modules.launchctl), 642
status() (in module salt.modules.memcached), 677
status() (in module salt.modules.mysql), 691
status() (in module salt.modules.netbsdservice), 697
status() (in module salt.modules.nginx), 705
status() (in module salt.modules.openbsdservice), 715

status() (in module salt.modules.puppet), 762
status() (in module salt.modules.rabbitmq), 771
status() (in module salt.modules.rdp), 774
status() (in module salt.modules.rest_service), 780
status() (in module salt.modules.rh_service), 783
status() (in module salt.modules.service), 800
status() (in module salt.modules.sm), 806
status() (in module salt.modules.supervisord), 831
status() (in module salt.modules.svn), 834
status() (in module salt.modules.systemd), 842
status() (in module salt.modules.tomcat), 854
status() (in module salt.modules.upstart), 857
status() (in module salt.modules.win_service), 886
status() (in module salt.modules.zpool), 911
status() (in module salt.runners.manage), 1016
status() (in module salt.states.disk), 1116
status_raw() (in module salt.modules.supervisord), 831
status_webapp() (in module salt.modules.tomcat), 854
statvfs() (in module salt.modules.file), 583
stop() (in module salt.cloud.clouds.aliyun), 336
stop() (in module salt.cloud.clouds.ec2), 345
stop() (in module salt.cloud.clouds.joyent), 354
stop() (in module salt.cloud.clouds.libcloud_aws), 356
stop() (in module salt.cloud.clouds.parallels), 368
stop() (in module salt.cloud.clouds.proxmox), 370
stop() (in module salt.modules.bluez), 488
stop() (in module salt.modules.daemontools), 529
stop() (in module salt.modules.debian_service), 536
stop() (in module salt.modules.dockerio), 552
stop() (in module salt.modules.freebsdjail), 586
stop() (in module salt.modules.freebsdservice), 593
stop() (in module salt.modules.gentoo_service), 598
stop() (in module salt.modules.launchctl), 642
stop() (in module salt.modules.lxc), 659
stop() (in module salt.modules.monit), 684
stop() (in module salt.modules.netbsdservice), 697
stop() (in module salt.modules.openbsdservice), 715
stop() (in module salt.modules.rest_service), 780
stop() (in module salt.modules.rh_service), 783
stop() (in module salt.modules.riak), 784
stop() (in module salt.modules.service), 800
stop() (in module salt.modules.sm), 806
stop() (in module salt.modules.supervisord), 831
stop() (in module salt.modules.systemd), 842
stop() (in module salt.modules.tomcat), 854
stop() (in module salt.modules.upstart), 857
stop() (in module salt.modules.virt), 865
stop() (in module salt.modules.win_service), 886
stop() (in module salt.runners.lxc), 1014
stop() (in module salt.states.modjk_worker), 1173
stop_app() (in module salt.modules.rabbitmq), 771
stop_time_service() (in module

salt.modules.win_system), 889
stop_volume() (in module salt.modules.glusterfs), 608

1520 Index

Salt Documentation, Release 2014.7.6

stopped() (in module salt.states.lxc), 1169
stp() (in module salt.modules.bridge), 507
str_encode() (in module salt.modules.mod_random), 679
string() (in module salt.states.redismod), 1214
stringify() (in module salt.modules.pkg_resource), 732
submodule() (in module salt.modules.git), 605
subnets() (in module salt.modules.network), 700
subnets() (in module salt.modules.win_network), 879
succeed_with_changes() (in module salt.states.test), 1231
succeed_without_changes() (in module salt.states.test),

1231
summary() (in module salt.modules.monit), 684
summary() (in module salt.modules.puppet), 762
suspend() (in module salt.modules.nova), 709
svnfs_branches

conf/master, 420
svnfs_env_blacklist

conf/master, 420
svnfs_env_whitelist

conf/master, 420
svnfs_mountpoint

conf/master, 419
svnfs_remotes

conf/master, 418
svnfs_root

conf/master, 419
svnfs_tags

conf/master, 420
svnfs_trunk

conf/master, 419
SvnPillar (class in salt.pillar.svn_pillar), 963
swap() (in module salt.states.mount), 1176
swap_memory() (in module salt.modules.ps), 759
swapoff() (in module salt.modules.mount), 686
swapon() (in module salt.modules.mount), 686
swaps() (in module salt.modules.mount), 686
switch() (in module salt.modules.svn), 834
symlink() (in module salt.modules.file), 583
symlink() (in module salt.modules.win_file), 874
symlink() (in module salt.states.file), 1140
symlink_list() (in module salt.fileserver.gitfs), 454
symlink_list() (in module salt.fileserver.roots), 456
symlink_list() (in module salt.runners.fileserver), 1011
sync() (in module salt.modules.eix), 558
sync() (in module salt.modules.layman), 643
sync_all() (in module salt.modules.saltutil), 793
sync_contains() (in module salt.modules.makecon), 670
sync_grains() (in module salt.modules.saltutil), 793
sync_modules() (in module salt.modules.saltutil), 793
sync_outpuers() (in module salt.modules.saltutil), 793
sync_renderers() (in module salt.modules.saltutil), 793
sync_returners() (in module salt.modules.saltutil), 793
sync_states() (in module salt.modules.saltutil), 793
sync_utils() (in module salt.modules.saltutil), 794

syncdb() (in module salt.modules.djangomod), 539
Syndic, 1463
syndic_log_file

conf/master, 425
syndic_master

conf/master, 424
syndic_master_log_file

conf/master, 425
syndic_master_port

conf/master, 425
sysctl() (in module salt.modules.freebsdjail), 586
system() (in module salt.states.keyboard), 1161
system() (in module salt.states.locale), 1165
system() (in module salt.states.network), 1183
system() (in module salt.states.timezone), 1231
system_types() (in module salt.modules.parted), 725
systemctl_reload() (in module salt.modules.systemd), 842

T
tables() (in module salt.modules.sqlite3), 822
tag() (in module salt.modules.dockerio), 552
take_action() (in module salt.cloud.clouds.joyent), 354
tar() (in module salt.modules.archive), 481
Target, 1463
targets() (in module salt.roster.flat), 1005
targets() (in module salt.roster.scan), 1005
targets() (salt.roster.flat.RosterMatcher method), 1005
targets() (salt.roster.scan.RosterMatcher method), 1005
tcp_pub_port

conf/minion, 434
tcp_pull_port

conf/minion, 434
template() (in module salt.modules.state), 827
template_str() (in module salt.modules.state), 827
templates() (in module salt.modules.lxc), 659
tenant_absent() (in module salt.states.keystone), 1163
tenant_create() (in module salt.modules.keystone), 638
tenant_delete() (in module salt.modules.keystone), 638
tenant_get() (in module salt.modules.keystone), 638
tenant_list() (in module salt.modules.keystone), 639
tenant_present() (in module salt.states.keystone), 1163
tenant_update() (in module salt.modules.keystone), 639
term() (in module salt.modules.daemontools), 529
term_job() (in module salt.modules.saltutil), 794
test

conf/master, 411
test() (in module salt.modules.ipset), 630
threads() (in module salt.modules.sysbench), 837
time() (in module salt.modules.redismod), 778
TimedProcTimeoutError, 462, 464
timeout

conf/master, 404
toggle() (in module salt.modules.parted), 725
token_expire

Index 1521

Salt Documentation, Release 2014.7.6

conf/master, 408
token_get() (in module salt.modules.keystone), 639
TokenAuthenticationError, 462, 464
tokenize_grant() (in module salt.modules.mysql), 691
Top File, 1463
top() (in module salt.modules.dockerio), 552
top() (in module salt.modules.ps), 759
top() (in module salt.modules.state), 827
top() (in module salt.tops.cobbler), 1250
top() (in module salt.tops.ext_nodes), 1250
top() (in module salt.tops.mongo), 1251
top() (in module salt.tops.reclass_adapter), 1252
total_physical_memory() (in module salt.modules.ps),

759
touch() (in module salt.modules.file), 583
touch() (in module salt.states.file), 1141
tpstats() (in module salt.modules.cassandra), 509
traceroute() (in module salt.modules.network), 700
traceroute() (in module salt.modules.win_network), 879
tree() (in module salt.modules.augeas_cfg), 485
tree() (in module salt.modules.etcd_mod), 562
trim_cflags() (in module salt.modules.makecon), 670
trim_cxxflags() (in module salt.modules.makecon), 671
trim_emerge_default_opts() (in module

salt.modules.makecon), 671
trim_features() (in module salt.modules.makecon), 671
trim_gentoo_mirrors() (in module

salt.modules.makecon), 671
trim_makeopts() (in module salt.modules.makecon), 671
trim_var() (in module salt.modules.makecon), 672
truncate() (in module salt.modules.file), 583
y() (in module salt.modules.cmdmod), 520
y() (in module salt.modules.test), 845
tune() (in module salt.modules.blockdev), 487
tune() (in module salt.modules.extfs), 564
tuned() (in module salt.states.blockdev), 1084
TXT() (in module salt.modules.dig), 538

U
uid_to_user() (in module salt.modules.file), 583
uid_to_user() (in module salt.modules.win_file), 874
umount() (in module salt.modules.mount), 686
umount_image() (in module salt.modules.img), 621
unblock() (in module salt.modules.bluez), 488
uncomment() (in module salt.modules.file), 583
uncomment() (in module salt.states.file), 1141
undefine() (in module salt.modules.virt), 865
undeploy() (in module salt.modules.tomcat), 854
undeployed() (in module salt.states.tomcat), 1232
unfreeze() (in module salt.modules.lxc), 659
unfreeze() (in module salt.runners.lxc), 1014
unhold() (in module salt.modules.aptpkg), 480
unhold() (in module salt.modules.yumpkg), 906
uninstall() (in module salt.modules.chocolatey), 513

uninstall() (in module salt.modules.gem), 594
uninstall() (in module salt.modules.npm), 711
uninstall() (in module salt.modules.pecl), 726
uninstall() (in module salt.modules.pip), 730
uninstall_python() (in module salt.modules.pyenv), 765
uninstall_ruby() (in module salt.modules.rbenv), 774
unlock() (in module salt.states.zk_concurrency), 1244
unmonitor() (in module salt.modules.monit), 684
unmounted() (in module salt.states.mount), 1176
unpack() (in module salt.modules.genesis), 596
unpair() (in module salt.modules.bluez), 488
unpurge() (in module salt.modules.dpkg), 553
unrar() (in module salt.modules.archive), 482
unzip() (in module salt.modules.archive), 482
up() (in module salt.modules.debian_ip), 535
up() (in module salt.modules.rh_ip), 782
up() (in module salt.runners.manage), 1016
update() (in module salt.fileserver.gitfs), 454
update() (in module salt.fileserver.hgfs), 455
update() (in module salt.fileserver.minionfs), 456
update() (in module salt.fileserver.roots), 456
update() (in module salt.fileserver.s3fs), 458
update() (in module salt.fileserver.svnfs), 459
update() (in module salt.modules.boto_asg), 491
update() (in module salt.modules.chocolatey), 513
update() (in module salt.modules.composer), 521
update() (in module salt.modules.data), 531
update() (in module salt.modules.ddns), 531
update() (in module salt.modules.ebuild), 557
update() (in module salt.modules.eix), 558
update() (in module salt.modules.freebsdports), 591
update() (in module salt.modules.gem), 595
update() (in module salt.modules.hg), 619
update() (in module salt.modules.mine), 678
update() (in module salt.modules.pecl), 726
update() (in module salt.modules.pyenv), 766
update() (in module salt.modules.rbenv), 774
update() (in module salt.modules.saltutil), 794
update() (in module salt.modules.serverdensity_device),

799
update() (in module salt.modules.supervisord), 832
update() (in module salt.modules.svn), 835
update() (in module salt.pillar.git_pillar), 955
update() (in module salt.runners.fileserver), 1011
update() (in module salt.runners.git_pillar), 1012
update() (in module salt.states.composer), 1111
update() (salt.pillar.git_pillar.GitPillar method), 955
update() (salt.pillar.svn_pillar.SvnPillar method), 963
update_git_repos() (in module salt.modules.win_repo),

883
update_git_repos() (in module salt.runners.winrepo),

1024
update_installed() (in module

salt.modules.smartos_imgadm), 802

1522 Index

Salt Documentation, Release 2014.7.6

update_jail() (in module salt.modules.poudriere), 755
update_lxc_conf() (in module salt.modules.lxc), 659
update_package_site() (in module salt.modules.pkgng),

744
update_packaging_site() (in module salt.states.pkgng),

1198
update_ports_tree() (in module salt.modules.poudriere),

755
update_record() (in module salt.modules.boto_route53),

501
update_restart_services

conf/minion, 442
update_system() (in module salt.modules.gem), 595
update_url

conf/minion, 442
updatedb() (in module salt.modules.locate), 648
updating() (in module salt.modules.pkgng), 744
upgrade() (in module salt.modules.aptpkg), 480
upgrade() (in module salt.modules.brew), 506
upgrade() (in module salt.modules.ebuild), 557
upgrade() (in module salt.modules.freebsdpkg), 589
upgrade() (in module salt.modules.macports), 664
upgrade() (in module salt.modules.pacman), 720
upgrade() (in module salt.modules.pkgin), 734
upgrade() (in module salt.modules.pkgng), 744
upgrade() (in module salt.modules.pkgutil), 747
upgrade() (in module salt.modules.sowareupdate), 808
upgrade() (in module salt.modules.win_pkg), 882
upgrade() (in module salt.modules.yumpkg), 906
upgrade() (in module salt.modules.zypper), 914
upgrade_available() (in module salt.modules.aptpkg), 480
upgrade_available() (in module salt.modules.brew), 506
upgrade_available() (in module salt.modules.ebuild), 557
upgrade_available() (in module salt.modules.macports),

664
upgrade_available() (in module salt.modules.pacman),

720
upgrade_available() (in module salt.modules.pkgutil),

748
upgrade_available() (in module

salt.modules.sowareupdate), 809
upgrade_available() (in module salt.modules.solarispkg),

815
upgrade_available() (in module salt.modules.win_pkg),

882
upgrade_available() (in module salt.modules.yumpkg),

907
upgrade_available() (in module salt.modules.zypper), 914
upgrade_bootstrap() (in module

salt.modules.zcbuildout), 909
uptime() (in module salt.modules.status), 829
uptodate() (in module salt.states.pkg), 1198
usage() (in module salt.modules.disk), 539
usage() (in module salt.modules.win_disk), 868

user
conf/master, 402
conf/minion, 431

user_absent() (in module salt.states.keystone), 1163
user_chpass() (in module salt.modules.influx), 624
user_chpass() (in module salt.modules.mysql), 691
user_create() (in module salt.modules.influx), 624
user_create() (in module salt.modules.keystone), 639
user_create() (in module salt.modules.mongodb), 683
user_create() (in module salt.modules.mysql), 692
user_create() (in module salt.modules.postgres), 753
user_delete() (in module salt.modules.keystone), 639
user_exists() (in module salt.modules.influx), 625
user_exists() (in module salt.modules.mongodb), 683
user_exists() (in module salt.modules.mysql), 692
user_exists() (in module salt.modules.postgres), 753
user_exists() (in module salt.modules.rabbitmq), 771
user_exists() (in module salt.states.htpasswd), 1151
user_get() (in module salt.modules.keystone), 639
user_grants() (in module salt.modules.mysql), 693
user_info() (in module salt.modules.mysql), 693
user_keys() (in module salt.modules.ssh), 824
user_list() (in module salt.modules.influx), 625
user_list() (in module salt.modules.keystone), 639
user_list() (in module salt.modules.mongodb), 683
user_list() (in module salt.modules.mysql), 693
user_list() (in module salt.modules.postgres), 754
user_password_update() (in module

salt.modules.keystone), 640
user_present() (in module salt.states.keystone), 1163
user_remove() (in module salt.modules.influx), 626
user_remove() (in module salt.modules.mongodb), 683
user_remove() (in module salt.modules.mysql), 693
user_remove() (in module salt.modules.postgres), 754
user_role_add() (in module salt.modules.keystone), 640
user_role_list() (in module salt.modules.keystone), 640
user_role_remove() (in module salt.modules.keystone),

640
user_to_uid() (in module salt.modules.file), 584
user_to_uid() (in module salt.modules.win_file), 874
user_update() (in module salt.modules.keystone), 640
user_update() (in module salt.modules.postgres), 754
user_verify_password() (in module

salt.modules.keystone), 640
useradd() (in module salt.modules.apache), 474
useradd() (in module salt.modules.htpasswd), 620
useradd_all() (in module salt.modules.htpasswd), 620
userdel() (in module salt.modules.apache), 474
userdel() (in module salt.modules.htpasswd), 620
ustring() (salt.output.nested.NestDisplay method), 944

V
valid_fileproto() (in module salt.modules.config), 523
values() (in module salt.wheel.config), 1253

Index 1523

Salt Documentation, Release 2014.7.6

var_contains() (in module salt.modules.makecon), 672
vcpu_pin() (in module salt.modules.xapi), 896
verify() (in module salt.modules.rpm), 785
verify() (in module salt.modules.yumpkg), 907
verify_env

conf/master, 403
conf/minion, 432

verify_master_pubkey_sign
conf/minion, 439

version() (in module salt.modules.apache), 474
version() (in module salt.modules.aptpkg), 480
version() (in module salt.modules.bluez), 489
version() (in module salt.modules.brew), 506
version() (in module salt.modules.cassandra), 509
version() (in module salt.modules.chocolatey), 513
version() (in module salt.modules.dnsmasq), 540
version() (in module salt.modules.dockerio), 552
version() (in module salt.modules.ebuild), 557
version() (in module salt.modules.freebsdpkg), 590
version() (in module salt.modules.grub_legacy), 614
version() (in module salt.modules.hadoop), 615
version() (in module salt.modules.ipset), 630
version() (in module salt.modules.iptables), 634
version() (in module salt.modules.linux_acl), 645
version() (in module salt.modules.linux_lvm), 646
version() (in module salt.modules.locate), 649
version() (in module salt.modules.macports), 665
version() (in module salt.modules.modjk), 681
version() (in module salt.modules.mysql), 693
version() (in module salt.modules.nables), 704
version() (in module salt.modules.nginx), 705
version() (in module salt.modules.openbsdpkg), 713
version() (in module salt.modules.oracle), 717
version() (in module salt.modules.pacman), 720
version() (in module salt.modules.pip), 731
version() (in module salt.modules.pkg_resource), 732
version() (in module salt.modules.pkgin), 735
version() (in module salt.modules.pkgng), 745
version() (in module salt.modules.pkgutil), 748
version() (in module salt.modules.postgres), 754
version() (in module salt.modules.poudriere), 756
version() (in module salt.modules.rest_package), 779
version() (in module salt.modules.rsync), 786
version() (in module salt.modules.smartos_imgadm), 803
version() (in module salt.modules.solarispkg), 815
version() (in module salt.modules.solr), 821
version() (in module salt.modules.sqlite3), 822
version() (in module salt.modules.status), 829
version() (in module salt.modules.test), 845
version() (in module salt.modules.tomcat), 855
version() (in module salt.modules.varnish), 860
version() (in module salt.modules.win_pkg), 882
version() (in module salt.modules.yumpkg), 907
version() (in module salt.modules.znc), 910

version() (in module salt.modules.zypper), 914
version_clean() (in module salt.modules.ebuild), 557
version_clean() (in module salt.modules.pkg_resource),

732
version_cmp() (in module salt.modules.aptpkg), 480
version_cmp() (in module salt.modules.ebuild), 557
versions() (in module salt.modules.pyenv), 766
versions() (in module salt.modules.rbenv), 774
versions() (in module salt.runners.manage), 1016
versions_information() (in module salt.modules.test), 846
versions_report() (in module salt.modules.test), 846
vg_absent() (in module salt.states.lvm), 1166
vg_present() (in module salt.states.lvm), 1166
vgcreate() (in module salt.modules.linux_lvm), 646
vgdisplay() (in module salt.modules.linux_lvm), 646
vgremove() (in module salt.modules.linux_lvm), 646
vhost_exists() (in module salt.modules.rabbitmq), 771
vhosts() (in module salt.modules.apache), 474
virt_type() (in module salt.modules.virt), 866
virtual_interface_create() (in module

salt.cloud.clouds.nova), 363
virtual_interface_create() (in module

salt.modules.cloud), 515
virtual_interface_list() (in module

salt.cloud.clouds.nova), 363
virtual_interface_list() (in module salt.modules.cloud),

515
virtual_memory() (in module salt.modules.ps), 759
vm_cputime() (in module salt.modules.virt), 866
vm_cputime() (in module salt.modules.xapi), 897
vm_diskstats() (in module salt.modules.virt), 866
vm_diskstats() (in module salt.modules.xapi), 897
vm_info() (in module salt.modules.smartos_vmadm), 804
vm_info() (in module salt.modules.virt), 866
vm_info() (in module salt.modules.xapi), 897
vm_info() (in module salt.runners.virt), 1024
vm_netstats() (in module salt.modules.virt), 867
vm_netstats() (in module salt.modules.xapi), 897
vm_state() (in module salt.modules.virt), 867
vm_state() (in module salt.modules.xapi), 898
vm_virt_type() (in module

salt.modules.smartos_vmadm), 804
vmstats() (in module salt.modules.status), 829
volume_absent() (in module salt.states.cloud), 1103
volume_aach() (in module salt.cloud.clouds.nova), 363
volume_aach() (in module salt.modules.cloud), 515
volume_aach() (in module salt.modules.nova), 709
volume_aached() (in module salt.states.cloud), 1103
volume_create() (in module salt.cloud.clouds.nova), 363
volume_create() (in module salt.modules.cloud), 516
volume_create() (in module salt.modules.nova), 709
volume_create_aach() (in module

salt.cloud.clouds.nova), 363
volume_delete() (in module salt.cloud.clouds.nova), 363

1524 Index

Salt Documentation, Release 2014.7.6

volume_delete() (in module salt.modules.cloud), 516
volume_delete() (in module salt.modules.nova), 709
volume_detach() (in module salt.cloud.clouds.nova), 363
volume_detach() (in module salt.modules.cloud), 516
volume_detach() (in module salt.modules.nova), 710
volume_detached() (in module salt.states.cloud), 1103
volume_list() (in module salt.cloud.clouds.nova), 363
volume_list() (in module salt.modules.cloud), 516
volume_list() (in module salt.modules.nova), 710
volume_present() (in module salt.states.cloud), 1103
volume_show() (in module salt.modules.nova), 710

W
w() (in module salt.modules.status), 829
wait() (in module salt.modules.dockerio), 552
wait() (in module salt.states.cmd), 1108
wait() (in module salt.states.event), 1122
wait() (in module salt.states.module), 1174
wait() (in module salt.states.tomcat), 1233
wait_call() (in module salt.states.cmd), 1109
wait_for_created() (in module

salt.cloud.clouds.proxmox), 370
wait_for_event() (in module salt.states.saltmod), 1219
wait_for_instance() (inmodule salt.cloud.clouds.ec2), 345
wait_for_state() (in module salt.cloud.clouds.proxmox),

370
wait_script() (in module salt.states.cmd), 1109
wait_until() (in module salt.cloud.clouds.parallels), 368
waitfor_job() (in module salt.cloud.clouds.linode), 358
waitfor_status() (in module salt.cloud.clouds.linode), 358
war_deployed() (in module salt.states.tomcat), 1233
warn() (in module salt.modules.quota), 768
Webhook (class in salt.netapi.rest_cherrypy.app), 926
WebhookSaltAPIHandler (in module

salt.netapi.rest_tornado.saltnado), 939
WebsocketEndpoint (class in

salt.netapi.rest_cherrypy.app), 930
wheel() (in module salt.modules.saltutil), 794
wheel() (in module salt.runners.doc), 1008
wheel() (in module salt.states.saltmod), 1219
wheel() (salt.netapi.NetapiClient method), 281
WheelClient (class in salt.wheel), 331
which() (in module salt.modules.cmdmod), 520
which() (in module salt.modules.pkgng), 745
which_bin() (in module salt.modules.cmdmod), 520
win_gitrepos

conf/master, 429
win_repo

conf/master, 428
win_repo_mastercachefile

conf/master, 428
wipe() (in module salt.modules.blockdev), 487
wipefacls() (in module salt.modules.linux_acl), 645
with_lists (salt.pillar.mysql.merger aribute), 959

wm_preferences() (in module salt.states.gnomedesktop),
1147

wol() (in module salt.runners.network), 1016
wollist() (in module salt.runners.network), 1016
Worker, 1463
worker_activate() (in module salt.modules.modjk), 681
worker_activated() (in module salt.states.modjk), 1171
worker_disable() (in module salt.modules.modjk), 681
worker_disabled() (in module salt.states.modjk), 1172
worker_edit() (in module salt.modules.modjk), 681
worker_recover() (in module salt.modules.modjk), 681
worker_recover() (in module salt.states.modjk), 1172
worker_status() (in module salt.modules.modjk), 682
worker_stop() (in module salt.modules.modjk), 682
worker_stopped() (in module salt.states.modjk), 1172
worker_threads

conf/master, 402
workers() (in module salt.modules.modjk), 682
wrapper() (in module salt.modules.rvm), 788
write() (in module salt.modules.file), 584
write() (in module salt.wheel.file_roots), 1253
write() (in module salt.wheel.pillar_roots), 1254
write_conf() (in module salt.modules.lxc), 659
write_cron_file() (in module salt.modules.cron), 528
write_cron_file_verbose() (in module salt.modules.cron),

528
write_cron_file_verbose() (in module

salt.modules.incron), 622
write_incron_file() (in module salt.modules.incron), 622
write_launchd_plist() (in module salt.runners.launchd),

1012

X
xorg() (in module salt.states.keyboard), 1161

Y
yaml_utf8

conf/master, 411

Z
zcard() (in module salt.modules.redismod), 778
zero() (in module salt.modules.lvs), 652
zip_() (in module salt.modules.archive), 483
zone_compare() (in module salt.modules.timezone), 847
zone_compare() (in module salt.modules.win_timezone),

890
zpool_list() (in module salt.modules.zpool), 911
zrange() (in module salt.modules.redismod), 778

Index 1525

	Introduction to Salt
	The 30 second summary
	Simplicity
	Parallel execution
	Building on proven technology
	Python client interface
	Fast, flexible, scalable
	Open
	Salt Community
	Mailing List
	IRC
	Follow on Github
	Blogs
	Example Salt States
	Follow on ohloh
	Other community links
	Hack the Source

	Installation
	Quick Install
	Platform-specific Installation Instructions
	Dependencies
	Optional Dependencies
	Upgrading Salt

	Tutorials
	Introduction
	Basics
	States
	Advanced Topics
	Salt Virt
	Halite
	Using Salt at scale

	Targeting Minions
	Matching the minion id
	Grains
	Subnet/IP Address Matching
	Compound matchers
	Node groups
	Batch Size
	SECO Range

	Storing Static Data in the Pillar
	Declaring the Master Pillar
	Pillar namespace flattened
	Pillar Namespace Merges
	Including Other Pillars
	Viewing Minion Pillar
	Pillar ``get'' Function
	Refreshing Pillar Data
	Targeting with Pillar
	Set Pillar Data at the Command Line
	Master Config In Pillar

	Reactor System
	Event System
	Mapping Events to Reactor SLS Files
	Fire an event
	Knowing what event is being fired
	Debugging the Reactor
	Understanding the Structure of Reactor Formulas
	A Complete Example
	Syncing Custom Types on Minion Start

	The Salt Mine
	Mine Functions
	Mine Interval
	Example

	External Authentication System
	Access Control System
	Tokens
	LDAP and Active Directory

	Job Management
	The Minion proc System
	Functions in the saltutil Module
	The jobs Runner
	Scheduling Jobs
	States
	Highstates
	Runners
	Scheduler With Returner

	Salt Event System
	Event types
	Listening for Events
	Firing Events
	Firing Events from Python

	Salt Syndic
	Configuring the Syndic
	Running the Syndic
	Topology
	Syndic and the CLI

	Salt Proxy Minion Documentation
	Getting Started
	The __proxyenabled__ directive

	Windows Software Repository
	Operation
	Usage
	Generate Repo Cache File
	Install Windows Software
	Uninstall Windows Software
	Standalone Minion Salt Windows Repo Module
	Git Hosted Repo
	Troubleshooting

	Windows-specific Behaviour
	Group parameter for files
	Dealing with case-insensitive but case-preserving names
	Dealing with various username forms
	Specifying the None group
	Symbolic link loops
	Modifying security properties (ACLs) on files

	Salt Cloud
	Getting Started
	Using Salt Cloud
	Core Configuration
	Windows Configuration
	Cloud Provider Specifics
	Miscellaneous Options
	Troubleshooting Steps
	Extending Salt Cloud
	Using Salt Cloud from Salt
	Feature Comparison

	netapi modules
	Writing netapi modules
	Introduction to netapi modules
	Client interfaces

	Salt Virt
	Salt Virt Tutorial
	The Salt Virt Runner
	Based on Live State Data
	Deploy from Network or Disk

	Understanding YAML
	Rule One: Indentation
	Rule Two: Colons
	Rule Three: Dashes
	Learning More

	Master Tops System
	Salt SSH
	Salt SSH Roster
	Calling Salt SSH
	States Via Salt SSH
	Targeting with Salt SSH
	Configuring Salt SSH
	Running Salt SSH as non-root user
	Define CLI Options with Saltfile

	Salt Rosters
	How Rosters Work

	Reference
	Full list of builtin auth modules
	Command Line Reference
	Client ACL system
	Python client API
	Full list of Salt Cloud modules
	Configuration file examples
	Configuring Salt
	Configuring the Salt Master
	Configuring the Salt Minion
	Running the Salt Master/Minion as an Unprivileged User
	Logging
	External Logging Handlers
	Salt File Server
	Full list of builtin fileserver modules
	Salt code and internals
	Full list of builtin execution modules
	Full list of netapi modules
	Full list of builtin output modules
	Peer Communication
	Pillars
	Full list of builtin pillar modules
	Renderers
	Returners
	Full list of builtin roster modules
	Salt Runners
	State Enforcement
	Full list of builtin state modules
	Execution Modules
	Master Tops
	Full list of builtin master tops modules
	Full list of builtin wheel modules

	Salt Best Practices
	General rules
	Structuring States and Formulas
	Structuring Pillar Files
	Variable Flexibility
	Modularity Within States
	Storing Secure Data

	Troubleshooting
	Troubleshooting the Salt Master
	Troubleshooting the Salt Minion
	Running in the Foreground
	What Ports do the Master and Minion Need Open?
	Using salt-call
	Too many open files
	Salt Master Stops Responding
	Salt and SELinux
	Red Hat Enterprise Linux 5
	Common YAML Gotchas
	Live Python Debug Output
	Salt 0.16.x minions cannot communicate with a 0.17.x master
	Debugging the Master and Minion

	Developing Salt
	Overview
	Salt Client
	Salt Master
	Salt Minion
	A Note on ClearFuncs vs. AESFuncs
	Contributing
	Deprecating Code
	Dunder Dictionaries
	External Pillars
	Installing Salt for development
	Logging Internals
	Modular Systems
	Package Providers
	Community Projects That Use Salt
	Salt Topology
	Translating Documentation
	Running The Tests
	Automated Test Runs
	Writing Tests
	raet
	SaltStack Git Policy
	Salt Conventions

	Release notes
	Latest Stable Release
	Previous Releases

	Salt Based Projects
	Salt Sandbox

	Security disclosure policy
	Security response procedure
	Receiving security announcemnts

	Frequently Asked Questions
	Is Salt open-core?
	What ports should I open on my firewall?
	I'm seeing weird behavior (including but not limited to packages not installing their users properly)
	My script runs every time I run a state.highstate. Why?
	When I run test.ping, why don't the Minions that aren't responding return anything? Returning False would be helpful.
	How does Salt determine the Minion's id?
	I'm trying to manage packages/services but I get an error saying that the state is not available. Why?
	I'm using gitfs and my custom modules/states/etc are not syncing. Why?
	Why aren't my custom modules/states/etc. available on my Minions?
	Module X isn't available, even though the shell command it uses is installed. Why?
	Can I run different versions of Salt on my Master and Minion?
	Does Salt support backing up managed files?
	What is the best way to restart a Salt daemon using Salt?
	Salting the Salt Master

	Glossary
	Salt Module Index
	Index

