@ SALTSTACK

Salt Documentation
Release 2015.5.1

SaltStack, Inc.

June 05, 2015

Contents

1

Introduction to Salt

1.1 The 30 second SUMMATIY v v v vt it ettt e e et e e e e e e e
1.2 SImplicity o e e
1.3 Parallel execution e
1.4 Building on proven technology
1.5 Python clientinterface
1.6 Fast, flexible, scalable
1.7 0pen e e
1.8 SaltCommunity o .o e e
1.9 Mailing List e
110 IRC .. e e e
1.11 Followon Github e
112 Blogs . . o o e e
1.13 Example Salt States L
1.14 Followonohloh o
1.15 Other community links
1.16 HacktheSource.
Installation

21 QuickInstall. e
2.2 Platform-specific Installation Instructions L L
23 Dependencies e
24 Optional Dependencies i e
2.5 Upgrading Salt
Tutorials

3.1 Introduction L
3.2 Basics ... e
33 States e e e e
3.4 Advanced TOPICS Lo e
3.5 Salt VIrto e
3.6 Halite e
3.7 LXC o
3.8 UsingSaltatscale. e e
Targeting Minions

4.1 Matching theminion id
4.2 Grains v e e e e e

26
27
27

29
29
31
40
69
124
128
131
139

145
145
146

9

11

4.3 Subnet/IP Address Matching e
44 Compound matchers L
45 NOde Groups . . . o v v v it e e e
46 BatchSize e
47 SECORange e
Storing Static Data in the Pillar
5.1 Declaring the Master Pillar e
5.2 Pillar namespace flattened
5.3 Pillar Namespace Merges. ittt e e
54 Including Other Pillars e
55 Viewing Minion Pillar L
5.6 Pillar “"get" Function e e
5.7 Refreshing Pillar Data e e
5.8 Targeting with Pillar e
5.9 Set Pillar Data at the Command Line
5.10 Master ConfigInPillar L e
5.11 Master Provided Pillar Error e
Reactor System
6.1 EventSystem
6.2 Mapping Events to Reactor SLSFiles e
6.3 Fireanevent L e e e
6.4 Knowing what eventisbeing fired L
6.5 Debugging the Reactor e
6.6 Understanding the Structure of Reactor Formulas
6.7 A Complete Example
6.8 Syncing Custom Types on Minion Start
The Salt Mine
7.1 Mine Functions
7.2 MineInterval L
7.3 Minein Salt-SSH L e
74 Example e
External Authentication System
8.1 AccessControl System e
8.2 Tokens
8.3 LDAP and Active Directory i i e e
Access Control System

10 Job Management
10.1 The Minion proc System e e e
10.2 Functions in the saltutilModule L
103 Thejobs RUNNEr. o o i e e e e e e e e e
10.4 Scheduling Jobs L e
10.5 States o e e e
10.6 Highstates L o e e
10.7 Runmers e e e
10.8 Scheduler With Returner e
Managing the Job Cache
11.1 Default Job Cache e e
11.2 External Job Cache Options it

155
155
156
157
158
158
158
159
159
159
159
160

161
161
161
162
162
163
163
166
167

169
169
170
170
170

173
173
174
174

177

179
179
179
179
180
182
182
183
183

12

13

14

15

16

17

18

19

20

11.3 Master Job Cache e
11.4 External Job Cache e
Storing Data in Other Databases

12.1 SDB Configuration o e
122 SDBURIS oo e
123 Writing SDB Modules oL
Salt Event System

13.1 Eventtypes e e e e e
13.2 Listening for Events
13.3 FiringEvents e
13.4 Firing Events from Python L
Beacons

14.1 Configuring The Beacons e
14.2 Writing Beacon Plugins L
Running Custom Master Processes

15.1 Example Configuration L
15.2 Example Process Class
Salt Syndic

16.1 Configuringthe Syndic. L
16.2 Running the Syndic
163 Topology . . . o
16.4 Syndicandthe CLI L e
Salt Proxy Minion Documentation

17.1 Getting Started
17.2 The __proxyenabled__directive L L
The RAET Transport

18.1 Using RAET in Salt o
18.2 Limitations
183 WRY? o ot ot e
18.4 RAET Reliability
18.5 RAET and ZeroMQ 0 e e e e e e e e e
18.6 Encryption e e e e e e e e e
18.7 Programming Intro L
Windows Software Repository

19.1 Operation e e e e e e e e
19.2 Usage e
19.3 Generate Repo Cache File e
19.4 Install Windows Software
19.5 Uninstall Windows Software L
19.6 Standalone Minion Salt Windows Repo Module
19.7 GitHosted Repo o o o o e e
19.8 Troubleshooting e

Windows-specific Behaviour
20.1 Group parameter for files .
20.2 Dealing with case-insensitive

but case-preservingnames L

20.3 Dealing with various username forms L L L L e

189
189
189
190

191
191
194
196
197

199
199
200

201
201
201

203
203
203
204
204

205
205
209

211
211
212
212
212
212
213
213

215
215
216
217
218
218
218
218
219

221
221
221
222

21

22

23

24

25

26

27

28

20.4
20.5
20.6

Specifying the None group o e
Symbolic link loops L o
Modifying security properties (ACLs) onfiles

Salt Cloud

21.1
21.2
213
214
21.5
21.6
21.7
21.8
21.9

Getting Started e
Using Salt Cloud L o e
Core Conflguration it e e
Windows Configuration e
Cloud Provider Specifics o e e
Miscellaneous Options o oot i
Troubleshooting Steps L
Extending Salt Cloud e
Using Salt Cloud from Salt e

21.10 Feature Comparison i i e e e e e e e e e
21.11 Tutorials L

netapi modules

22.1
22.2
22.3

Writing netapi modules L
Introduction to netapi modules
Clientinterfaces e

Salt Virt

23.1
23.2
233
234

Understanding YAML

24.1
24.2
24.3
244

Rule One: Indentation e
Rule Two: Colons e
Rule Three: Dashes e e
Learning More e e

Master Tops System

Salt SSH

26.1
26.2
26.3
26.4
26.5
26.6
26.7

Salt SSHRoOSter o o e
Calling Salt SSH L e
States ViaSalt SSH o
Targeting with Salt SSH o e
Configuring Salt SSH
Running Salt SSH as non-root user o ittt e
Define CLI Options with Saltfile

Salt Rosters

271

How Rosters Work o o e e

Reference

28.1
28.2
28.3
28.4
28.5
28.6

Full list of builtin auth modules
Command Line Reference e
Client ACL syStem i it e e e e e e e e e e e
Pythonclient APT L e
Full list of Salt Cloud modules
Configuration file examples L

223
223
225
233
243
245
304
308
311
319
324
327

331
331
332
332

335
335
335
336
336

339
339
339
340
340

341

343
343
344
344
344
344
345
345

347
347

29

30

31

28.7 Configuring Salt L 459

28.8 Configuring the Salt Master e 461

28.9 Configuring the Salt Minion 490

28.10 Running the Salt Master/Minion as an Unprivileged User 504

28.11 Logging e e 505

28.12 External Logging Handlers e 507

28.13 Salt File Server e e e 509

28.14 Full list of builtin fileserver modules 515

28.15 Salt code and internals 521

28.16 Full list of builtin execution modules 528

28.17 Fulllist of netapimodules 1111
28.18 Full list of builtin output modules 1138
28.19 Peer Communication e e e e e e e e e e e e e 1145
28.20 Pillars e 1147
28.21 Fulllist of builtin pillarmodules o L 1147
28.22 Renderers e 1169
28.23 Returners o i i i e 1194
28.24 Full list of builtin roster modules e 1227
2825 Salt RUNNETIS o o o 1230
28.26 State Enforcement e 1257
28.27 Full list of builtin state modules 1306
28.28 Execution Modules L e e 1514
2829 Master TOPS o o e e e e e e e e 1519
28.30 Full list of builtin master topsmodules L L 1519
28.31 Full list of builtin wheel modules e 1522
28.32 Full list of builtin beaconmodules 1525
28.33 Fulllist of builtin sdbmodules 1529
Salt Best Practices 1533

29.1 Generalrules 1533
29.2 Structuring States and Formulas L 1533
29.3 Structuring Pillar Files L o e 1534
29.4 Variable Flexibility o 1535
29.5 Modularity Within States L 1536
29.6 Storing SecureData. 1539
Troubleshooting 1541

30.1 Troubleshooting the Salt Master. e 1541
30.2 Troubleshooting the Salt Minion e 1544
30.3 Running in the Foreground 1546
30.4 What Ports do the Master and Minion Need Open? 1547
30.5 Usingsalt-call L e 1547
30.6 Toomanyopenfiles 1547
30.7 Salt Master Stops Responding L e 1548
30.8 Saltand SELINUX o i e e e 1548
30.9 Red Hat Enterprise LINnUX 5 o0 e e e 1549
30.10 Common YAML Gotchas 1549
30.11 Live Python Debug Output 1554
30.12 Salt 0.16.x minions cannot communicate with a 0.17.xmaster 1554
30.13 Debugging the Master and Minion L L e 1555
Developing Salt 1557

311 OVEIVIEW . . o o v it e e e e e e e e e e e e e e e e e e 1557
31.2 SaltClient e 1557

31.3 Salt Master e 1557
314 Salt Minion 1559
31.5 ANote on ClearFuncs vs. AESFuncs 1560
31.6 Contributing 1561
31.7 Deprecating Code e e 1565
31.8 Dunder Dictionaries e e 1566
31.9 External Pillars e 1568
31.10 Installing Salt for development L 1571
31.11 GitHub Labels and Milestones e 1575
31.12 Logging Internals e e 1580
31.13 Modular Systems e e e 1580
31.14 Package Providers e 1582
31.15 Community Projects That Use Salt 1587
31.16 Salt Topology . . . o o o e e e 1587
31.17 Translating Documentation 0 e e e 1588
31.18 Running The Tests e e 1589
31.19 Automated TestRuns L e 1591
31.20 Writing Tests o o o o e e e 1592
3121 raet L 1605
31.22 SaltStack GitPolicy 1608
31.23 Salt Conventions o . it i i e e e e e e 1610
32 Release notes 1645
32.1 LatestStable Release e 1645
32.2 PreviousReleases L e 1645
33 Salt Based Projects 1809
33.1 SaltSandbox e e 1809
34 Security disclosure policy 1811
34.1 Security response procedure 1812
34.2 Receiving security announcemntsl e e 1812
35 Frequently Asked Questions 1813
35.1 IsSaltopen-core? 1813
35.2 What ports should I open on my firewall? o 1813
35.3 I'm seeing weird behavior (including but not limited to packages not installing their users properly) 1814
35.4 My script runs every time I run a state.highstate. Why? L o o 1814
35.5 When I run test.ping, why don't the Minions that aren't responding return anything? Returning
Falsewouldbe helpful. 1814
35.6 How does Salt determine the Minion'sid? L o e 1815
35.7 I'mtrying to manage packages/services but I get an error saying that the state is not available. Why?1815
35.8 I'm using gitfs and my custom modules/states/etc are not syncing. Why? 1815
35.9 Why aren't my custom modules/states/etc. available on my Minions? 1815
35.10 Module X isn't available, even though the shell command it uses is installed. Why? 1815
35.11 Can Irun different versions of Salt on my Master and Minion? 1816
35.12 Does Salt support backing up managed files? L Lo oo 1816
35.13 What is the best way to restart a Salt daemon using Salt? 1816
35.14 Salting the Salt Master 1817
36 Glossary 1819
Salt Module Index 1823
Index 1831

vi

CHAPTER 1

Introduction to Salt

We’re not just talking about NaCl.

1.1 The 30 second summary

Salt is:

- a configuration management system, capable of maintaining remote nodes in defined states (for example,
ensuring that specific packages are installed and specific services are running)

« a distributed remote execution system used to execute commands and query data on remote nodes, either
individually or by arbitrary selection criteria

It was developed in order to bring the best solutions found in the world of remote execution together and make them
better, faster, and more malleable. Salt accomplishes this through its ability to handle large loads of information, and
not just dozens but hundreds and even thousands of individual servers quickly through a simple and manageable
interface.

1.2 Simplicity

Providing versatility between massive scale deployments and smaller systems may seem daunting, but Salt is very
simple to set up and maintain, regardless of the size of the project. The architecture of Salt is designed to work with
any number of servers, from a handful of local network systems to international deployments across different data
centers. The topology is a simple server/client model with the needed functionality built into a single set of daemons.
While the default configuration will work with little to no modification, Salt can be fine tuned to meet specific needs.

1.3 Parallel execution

The core functions of Salt:
« enable commands to remote systems to be called in parallel rather than serially
« use a secure and encrypted protocol
« use the smallest and fastest network payloads possible
« provide a simple programming interface

Salt also introduces more granular controls to the realm of remote execution, allowing systems to be targeted not
just by hostname, but also by system properties.

Salt Documentation, Release 2015.5.1

1.4 Building on proven technology

Salt takes advantage of a number of technologies and techniques. The networking layer is built with the excellent
ZeroMQ networking library, so the Salt daemon includes a viable and transparent AMQ broker. Salt uses public
keys for authentication with the master daemon, then uses faster AES encryption for payload communication; au-
thentication and encryption are integral to Salt. Salt takes advantage of communication via msgpack, enabling fast
and light network traffic.

1.5 Python client interface

In order to allow for simple expansion, Salt execution routines can be written as plain Python modules. The data
collected from Salt executions can be sent back to the master server, or to any arbitrary program. Salt can be called
from a simple Python API, or from the command line, so that Salt can be used to execute one-off commands as well
as operate as an integral part of a larger application.

1.6 Fast, flexible, scalable

The result is a system that can execute commands at high speed on target server groups ranging from one to very
many servers. Salt is very fast, easy to set up, amazingly malleable and provides a single remote execution architec-
ture that can manage the diverse requirements of any number of servers. The Salt infrastructure brings together the
best of the remote execution world, amplifies its capabilities and expands its range, resulting in a system that is as
versatile as it is practical, suitable for any network.

1.7 Open

Salt is developed under the Apache 2.0 license, and can be used for open and proprietary projects. Please submit
your expansions back to the Salt project so that we can all benefit together as Salt grows. Please feel free to sprinkle
Salt around your systems and let the deliciousness come forth.

1.8 Salt Community

Join the Salt!
There are many ways to participate in and communicate with the Salt community.

Salt has an active IRC channel and a mailing list.

1.9 Mailing List

Join the salt-users mailing list. It is the best place to ask questions about Salt and see whats going on with Salt
development! The Salt mailing list is hosted by Google Groups. It is open to new members.

https://groups.google.com/forum/#!forum/salt-users

2 Chapter 1. Introduction to Salt

http://zeromq.org/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://msgpack.org/
http://www.apache.org/licenses/LICENSE-2.0.html
https://groups.google.com/forum/#!forum/salt-users
https://groups.google.com/forum/#!forum/salt-users

Salt Documentation, Release 2015.5.1

1.10 IRC

The #salt IRC channel is hosted on the popular Freenode network. You can use the Freenode webchat client right
from your browser.

Logs of the IRC channel activity are being collected courtesy of Moritz Lenz.

If you wish to discuss the development of Salt itself join us in #salt-deve'l.

1.11 Follow on Github

The Salt code is developed via Github. Follow Salt for constant updates on what is happening in Salt development:

https://github.com/saltstack/salt

1.12 Blogs

SaltStack Inc. keeps a blog with recent news and advancements:
http://www.saltstack.com/blog/
Thomas Hatch also shares news and thoughts on Salt and related projects in his personal blog The Red45:

http://red45.wordpress.com/

1.13 Example Salt States

The official salt-states repository is: https://github.com/saltstack/salt-states
A few examples of salt states from the community:

« https://github.com/blast-hardcheese/blast-salt-states

https://github.com/kevingranade/kevingranade-salt-state

https://github.com/uggedal/states

https://github.com/mattmcclean/salt-openstack/tree/master/salt

https://github.com/rentalita/ubuntu-setup/

https://github.com/brutasse/states

https://github.com/bclermont/states

https://github.com/pcrews/salt-data

1.14 Follow on ohloh

https://www.ohloh.net/p/salt

1.10. IRC 3

http://freenode.net/irc_servers.shtml
http://webchat.freenode.net/?channels=salt&uio=Mj10cnVlJjk9dHJ1ZSYxMD10cnVl83
http://irclog.perlgeek.de/salt/
https://github.com/saltstack/salt
http://www.saltstack.com/blog/
http://www.saltstack.com/blog/
http://red45.wordpress.com/
http://red45.wordpress.com/
https://github.com/saltstack/salt-states
https://github.com/blast-hardcheese/blast-salt-states
https://github.com/kevingranade/kevingranade-salt-state
https://github.com/uggedal/states
https://github.com/mattmcclean/salt-openstack/tree/master/salt
https://github.com/rentalita/ubuntu-setup/
https://github.com/brutasse/states
https://github.com/bclermont/states
https://github.com/pcrews/salt-data
https://www.ohloh.net/p/salt

Salt Documentation, Release 2015.5.1

1.15 Other community links

Salt Stack Inc.
Subreddit

« Google+
« YouTube
« Facebook

o Twitter

Wikipedia page

1.16 Hack the Source

If you want to get involved with the development of source code or the documentation efforts, please review the
hacking section!

4 Chapter 1. Introduction to Salt

http://www.saltstack.com
http://www.reddit.com/r/saltstack
https://plus.google.com/114449193225626631691/posts
http://www.youtube.com/user/SaltStack
https://www.facebook.com/SaltStack
https://twitter.com/SaltStackInc
http://en.wikipedia.org/wiki/Salt_(software)

CHAPTER 2

Installation

See also:

Installing Salt for development and contributing to the project.

2.1 Quick Install

On most distributions, you can set up a Salt Minion with the Salt Bootstrap.

2.2 Platform-specific Installation Instructions

These guides go into detail how to install Salt on a given platform.

2.2.1 Arch Linux

Installation

Salt (stable) is currently available via the Arch Linux Official repositories. There are currently -git packages available
in the Arch User repositories (AUR) as well.

Stable Release

Install Salt stable releases from the Arch Linux Official repositories as follows:

‘pacman -S salt-zmq

To install Salt stable releases using the RAET protocol, use the following:

’pacman -S salt-raet

Tracking develop

To install the bleeding edge version of Salt (may include bugs!), use the -git package. Installing the -git package as
follows:

https://github.com/saltstack/salt-bootstrap

Salt Documentation, Release 2015.5.1

wget https://aur.archlinux.org/packages/sa/salt-git/salt-git.tar.gz
tar xf salt-git.tar.gz

cd salt-git/

makepkg -is

Note: yaourt

If a tool such as Yaourt is used, the dependencies will be gathered and built automatically.

The command to install salt using the yaourt tool is:

yaourt salt-git

Post-installation tasks

systemd

Activate the Salt Master and/or Minion via systemct1 as follows:

systemctl enable salt-master.service
systemctl enable salt-minion.service

Start the Master

Once you've completed all of these steps you're ready to start your Salt Master. You should be able to start your Salt
Master now using the command seen here:

systemctl start salt-master

Now go to the Configuring Salt page.

2.2.2 Debian Installation

Currently the latest packages for Debian Old Stable, Stable, and Unstable (Squeeze, Wheezy, and Sid) are published
in our (saltstack.com) Debian repository.

Configure Apt
Squeeze (Old Stable)

For squeeze, you will need to enable the Debian backports repository as well as the debian.saltstack.com repository.
To do so, add the following to /etc/apt/sources.listorafilein /etc/apt/sources.list.d:

deb http://debian.saltstack.com/debian squeeze-saltstack main
deb http://backports.debian.org/debian-backports squeeze-backports main contrib non-free

Wheezy (Stable)

For wheezy, the following line is needed in either /etc/apt/sources.list or a file in
/etc/apt/sources.list.d:

‘deb http://debian.saltstack.com/debian wheezy-saltstack main

6 Chapter 2. Installation

https://aur.archlinux.org/packages.php?ID=5863

Salt Documentation, Release 2015.5.1

Jessie (Testing)

For jessie, the following line is needed in either /etc/apt/sources.list or a file in
/etc/apt/sources.list.d

‘deb http://debian.saltstack.com/debian jessie-saltstack main

Sid (Unstable)

For sid, the following line is needed in either /etc/apt/sources.list or a file in
/etc/apt/sources.list.d

’deb http://debian.saltstack.com/debian unstable main

Import the repository key.

You will need to import the key used for signing.

‘wget -g -0- "http://debian.saltstack.com/debian-salt-team-joehealy.gpg.key" | apt-key a(#d -

Note: You can optionally verify the key integrity with sha512sum using the public key signature shown here. E.g:

’ echo "b702969447l40d5553e3le97®lbel3callCCOa7ed5erb30aCb84915675608662f834772b5®95d735(#fcecb2384a5c.'

Update the package database

apt-get update

Install packages

Install the Salt master, minion, or syndic from the repository with the apt-get command. These examples each install
one daemon, but more than one package name may be given at a time:

’apt—get install salt-master ‘

‘apt—get install salt-minion ‘

’apt—get install salt-syndic ‘

Post-installation tasks

Now, go to the Configuring Salt page.

Notes

1. These packages will be backported from the packages intended to be uploaded into Debian unstable. This means
that the packages will be built for unstable first and then backported over the next day or so.

2.2. Platform-specific Installation Instructions 7

Salt Documentation, Release 2015.5.1

2. These packages will be tracking the released versions of salt rather than maintaining a stable fixed feature set. If
a fixed version is what you desire, then either pinning or manual installation may be more appropriate for you.

3. The version numbering and backporting process should provide clean upgrade paths between Debian versions.

If you have any questions regarding these, please email the mailing list or look for joehh on IRC.

2.2.3 Fedora

Beginning with version 0.9.4, Salt has been available in the primary Fedora repositories and EPEL. It is installable
using yum. Fedora will have more up to date versions of Salt than other members of the Red Hat family, which
makes it a great place to help improve Salt!

WARNING: Fedora 19 comes with systemd 204. Systemd has known bugs fixed in later revisions that prevent the
salt-master from starting reliably or opening the network connections that it needs to. It's not likely that a salt-
master will start or run reliably on any distribution that uses systemd version 204 or earlier. Running salt-minions
should be OK.

Installation

Salt can be installed using yum and is available in the standard Fedora repositories.

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

yum install salt-master
yum install salt-minion

Installing from updates-testing

When a new Salt release is packaged, it is first admitted into the updates—-testing repository, before being
moved to the stable repo.

To install from updates-testing, use the enablerepo argument for yum:

yum -—enablerepo=updates-testing install salt-master
yum --enablerepo=updates-testing install salt-minion

Post-installation tasks

Master

To have the Master start automatically at boot time:

‘systemctl enable salt-master.service

To start the Master:

’systemctl start salt-master.service

8 Chapter 2. Installation

http://fedoraproject.org/wiki/EPEL

Salt Documentation, Release 2015.5.1

Minion

To have the Minion start automatically at boot time:

’systemctl enable salt-minion.service

To start the Minion:

’systemctl start salt-minion.service

Now go to the Configuring Salt page.

2.2.4 FreeBSD

Salt was added to the FreeBSD ports tree Dec 26th, 2011 by Christer Edwards <christer.edwards@gmail.com>. It has
been tested on FreeBSD 7.4, 8.2, 9.0, and 9.1 releases.

Salt is dependent on the following additional ports. These will be installed as dependencies of the sysutils/py-
salt port:

/devel/py-yaml
/devel/py-pyzmq
/devel/py-Jinja2
/devel/py-msgpack
/security/py-pycrypto
/security/py-m2crypto

Installation

On FreeBSD 10 and later, to install Salt from the FreeBSD pkgng repo, use the command:

’pkg install py27-salt

On older versions of FreeBSD, to install Salt from the FreeBSD ports tree, use the command:

‘make -C /usr/ports/sysutils/py-salt install clean

Post-installation tasks

Master

Copy the sample configuration file:

cp /usr/local/etc/salt/master.sample /usr/local/etc/salt/master

rc.conf

Activate the Salt Master in /etc/rc.conf or /etc/rc.conf.local and add:

+ salt_master_enable="YES"

Start the Master

Start the Salt Master as follows:

service salt_master start

2.2. Platform-specific Installation Instructions 9

mailto:christer.edwards@gmail.com

Salt Documentation, Release 2015.5.1

Minion

Copy the sample configuration file:

cp /usr/local/etc/salt/minion.sample /usr/local/etc/salt/minion

rc.conf

Activate the Salt Minion in /etc/rc.confor /etc/rc.conf.local and add:

+ salt_minion_enable="YES"
+ salt_minion_paths="/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin"

Start the Minion

Start the Salt Minion as follows:

service salt_minion start

Now go to the Configuring Salt page.

2.2.5 Gentoo

Salt can be easily installed on Gentoo via Portage:

emerge app-admin/salt

Post-installation tasks

Now go to the Configuring Salt page.

2.2.6 OS X

Dependency Installation

It should be noted that Homebrew explicitly discourages the use of sudo:

Homebrew is designed to work without using sudo. You can decide to use it but we strongly recommend
not to do so. If you have used sudo and run into a bug then it is likely to be the cause. Please don'’t file
a bug report unless you can reproduce it after reinstalling Homebrew from scratch without using sudo

So when using Homebrew, if you want support from the Homebrew community, install this way:

‘brew install saltstack

When using MacPorts, install this way:

’sudo port install salt

When only using the OS X system's pip, install this way:

’sudo pip install salt

10 Chapter 2. Installation

https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/FAQ.md#sudo

Salt Documentation, Release 2015.5.1

Salt-Master Customizations

To run salt-master on OS X, the root user maxfiles limit must be increased:

’sudo launchctl limit maxfiles 4096 8192

And sudo add this configuration option to the /etc/salt/master file:

‘ max_open_files: 8192

Now the salt-master should run without errors:

‘sudo salt-master --log-level=all

Post-installation tasks

Now go to the Configuring Salt page.

2.2.7 RHEL / CentOS / Scientific Linux / Amazon Linux / Oracle Linux

Installation Using pip

Since Salt is on PyPI, it can be installed using pip, though most users prefer to install using RPMs (which can be
installed from EPEL). Installation from pip is easy:

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

Installation from Repository

RHEL/CentOS 5

Due to the removal of some of Salt's dependencies from EPEL5, we have created a repository on Fedora COPR.
Moving forward, this will be the official means of installing Salt on RHEL5-based systems. Information on how to
enable this repository can be found here.

RHEL/CentOS 6 and 7, Scientific Linux, etc.

Beginning with version 0.9.4, Salt has been available in EPEL. It is installable using yum. Salt should work prop-
erly with all mainstream derivatives of RHEL, including CentOS, Scientific Linux, Oracle Linux and Amazon Linux.
Report any bugs or issues on the issue tracker.

On RHELS, the proper Jinja package ‘python-jinja2' was moved from EPEL to the *'RHEL Server Optional Channel".
Verify this repository is enabled before installing salt on RHEL®.

2.2. Platform-specific Installation Instructions 11

https://pypi.python.org/pypi/salt
http://fedoraproject.org/wiki/EPEL
https://copr.fedoraproject.org/
https://copr.fedoraproject.org/coprs/saltstack/salt-el5/
http://fedoraproject.org/wiki/EPEL
https://github.com/saltstack/salt/issues

Salt Documentation, Release 2015.5.1

Enabling EPEL If the EPEL repository is not installed on your system, you can download the RPM from here for
RHEL/CentOS 6 (or here for RHEL/CentOS 7) and install it using the following command:

rpm -Uvh epel-release-X-Y.rpm

Replace epel-release-X-Y. rpm with the appropriate filename.

Installing Stable Release Salt is packaged separately for the minion and the master. It is necessary only to install
the appropriate package for the role the machine will play. Typically, there will be one master and multiple minions.

On the salt-master, run this:

’yum install salt-master

On each salt-minion, run this:

‘ yum 1install salt-minion

Installing from epel-testing When a new Salt release is packaged, it is first admitted into the epel-
testing repository, before being moved to the stable repo.

To install from epel-testing, use the enablerepo argument for yum:

yum -—enablerepo=epel-testing install salt-minion

ZeroMQ 4

We recommend using ZeroMQ 4 where available. SaltStack provides ZeroMQ 4.0.4 and pyzmq 14.3.1 in a COPR
repository. Instructions for adding this repository (as well as for upgrading ZeroMQ and pyzmq on existing minions)
can be found here.

If this repo is added before Salt is installed, then installing either salt-master or salt-minion will automati-
cally pull in ZeroMQ 4.0.4, and additional states to upgrade ZeroMQ and pyzmq are unnecessary.

Warning: RHEL/CentOS 5 Users Using COPR repos on RHEL/CentOS 5 requires that the python-hashlib
package be installed. Not having it present will result in checksum errors because YUM will not be able to process
the SHA256 checksums used by COPR.

Note: For RHEL/CentOS 5 installations, if using the new repository to install Salt (as detailed above), then it is not
necessary to enable the zeromq4 COPR, as the new EL5 repository includes ZeroMQ 4.

Package Management

Salt's interface to yum makes heavy use of the repoquery utility, from the yum-utils package. This package will
be installed as a dependency if salt is installed via EPEL. However, if salt has been installed using pip, or a host is
being managed using salt-ssh, then as of version 2014.7.0 yum-utils will be installed automatically to satisfy this
dependency.

12 Chapter 2. Installation

http://download.fedoraproject.org/pub/epel/6/i386/repoview/epel-release.html
http://download.fedoraproject.org/pub/epel/7/x86_64/repoview/epel-release.html
http://copr.fedoraproject.org/
http://copr.fedoraproject.org/coprs/saltstack/zeromq4/
http://yum.baseurl.org/wiki/YumUtils
http://yum.baseurl.org/wiki/YumUtils

Salt Documentation, Release 2015.5.1

Post-installation tasks

Master

To have the Master start automatically at boot time:

‘chkconf‘ig salt-master on

To start the Master:

’service salt-master start

Minion

To have the Minion start automatically at boot time:

‘chkconf'ig salt-minion on

To start the Minion:

’service salt-minion start

Now go to the Configuring Salt page.

2.2.8 Solaris

Salt was added to the OpenCSW package repository in September of 2012 by Romeo Theriault <romeot@hawaii.edu>
at version 0.10.2 of Salt. It has mainly been tested on Solaris 10 (sparc), though it is built for and has been tested
minimally on Solaris 10 (x86), Solaris 9 (sparc/x86) and 11 (sparc/x86). (Please let me know if you're using it on these
platforms!) Most of the testing has also just focused on the minion, though it has verified that the master starts up
successfully on Solaris 10.

Comments and patches for better support on these platforms is very welcome.
As of version 0.10.4, Solaris is well supported under salt, with all of the following working well:
1. remote execution
grain detection

. service control with SMF

2.
3
4. “pkg' states with "pkgadd' and “pkgutil' modules
5. cron modules/states

6. user and group modules/states

7. shadow password management modules/states

Salt is dependent on the following additional packages. These will automatically be installed as dependencies of the
py_sa'lt package:

+ py_yaml

* Py_pyzmq

+ py_jinja2

« py_msgpack_python
e py_m2crypto

* py_crypto

2.2. Platform-specific Installation Instructions 13

mailto:romeot@hawaii.edu

Salt Documentation, Release 2015.5.1

+ python

Installation

To install Salt from the OpenCSW package repository you first need to install pkgutil assuming you don't already
have it installed:

On Solaris 10:

pkgadd -d http://get.opencsw.org/now

On Solaris 9:

wget http://mirror.opencsw.org/opencsw/pkgutil.pkg
pkgadd -d pkgutil.pkg all

Once pkgutil is installed you'll need to edit it's config file /etc/opt/csw/pkgutil.conf to point it at the
unstable catalog:

- #mirror=http://mirror.opencsw.org/opencsw/testing
+ mirror=http://mirror.opencsw.org/opencsw/unstable

OK, time to install salt.

Update the catalog

root> /opt/csw/bin/pkgutil -U

Install salt

root> /opt/csw/bin/pkgutil -i -y py_salt

Minion Configuration

Now that salt is installed you can find it's configuration files in /etc/opt/csw/salt/.

You'll want to edit the minion config file to set the name of your salt master server:

- #master: salt
+ master: your-salt-server

If you would like to use pkgutil as the default package provider for your Solaris minions, you can do so using the
providers option in the minion config file.

You can now start the salt minion like so:

On Solaris 10:

’svcadm enable salt-minion

On Solaris 9:

‘ /etc/init.d/salt-minion start

You should now be able to log onto the salt master and check to see if the salt-minion key is awaiting acceptance:

‘salt—key -1 un

Accept the key:

‘salt—key -a <your-salt-minion>

14 Chapter 2. Installation

http://www.opencsw.org/manual/for-administrators/getting-started.html
http://www.opencsw.org/manual/for-administrators/getting-started.html

Salt Documentation, Release 2015.5.1

Run a simple test against the minion:

salt '<your-salt-minion>' test.ping

Troubleshooting

Logs arein /var/log/salt

2.2.9 Ubuntu Installation

Add repository

The latest packages for Ubuntu are published in the saltstack PPA. If you have the add-apt-repository utility,
you can add the repository and import the key in one step:

sudo add-apt-repository ppa:saltstack/salt

add-apt-repository: command not found?

The add-apt-repository command is not always present on Ubuntu systems. This can be fixed by installing
python-software-properties:

’sudo apt-get install python-software-properties ‘

The following may be required as well:

’sudo apt-get install software-properties-common ‘

Note that since Ubuntu 12.10 (Raring Ringtail), add-apt-repository is found in the software-properties-common
package, and is part of the base install. Thus, add—apt-repository should be able to be used out-of-the-box to
add the PPA.

Alternately, manually add the repository and import the PPA key with these commands:

echo deb http://ppa.launchpad.net/saltstack/salt/ubuntu "1lsb_release -sc’ main | sudo tee /etc/apt/s
wget -q -0- "http://keyserver.ubuntu.com:11371/pks/lookup?op=get&search=0x4759FA960E27CQA6" | sudo aj

After adding the repository, update the package management database:

sudo apt-get update ‘

Install packages

Install the Salt master, minion, or syndic from the repository with the apt-get command. These examples each install
one daemon, but more than one package name may be given at a time:

‘sudo apt-get install salt-master ‘

’sudo apt-get install salt-minion ‘

‘sudo apt-get install salt-syndic ‘

2.2. Platform-specific Installation Instructions 15

Salt Documentation, Release 2015.5.1

ZeroMQ 4
ZeroMQ 4 is available by default for Ubuntu 14.04 and newer. However, for Ubuntu 12.04 LTS, starting with Salt

version 2014.7.5, ZeroMQ 4 is included with the Salt installation package and nothing additional needs to be
done.

Post-installation tasks

Now go to the Configuring Salt page.

2.2.10 Windows

Salt has full support for running the Salt Minion on Windows.

There are no plans for the foreseeable future to develop a Salt Master on Windows. For now you must run your Salt
Master on a supported operating system to control your Salt Minions on Windows.

Many of the standard Salt modules have been ported to work on Windows and many of the Salt States currently
work on Windows, as well.

Windows Installer

Salt Minion Windows installers can be found here. The output of md5sum <salt minion exe> should match the contents
of the corresponding md5 file.

Download here

« 2015.5.0-2

« Salt-Minion-2015.5.0-2-x86-Setup.exe | md5

« Salt-Minion-2015.5.0-2-AMD64-Setup.exe | md5
e 2014.7.5-2

« Salt-Minion-2014.7.5-2-x86-Setup.exe | md5

« Salt-Minion-2014.7.5-2-AMD64-Setup.exe | md5
- 2014.7.4

+ Salt-Minion-2014.7.4-x86-Setup.exe | md5

« Salt-Minion-2014.7.4-AMD64-Setup.exe | md5

- 2014.7.2

+ Salt-Minion-2014.7.2-x86-Setup.exe | md5

« Salt-Minion-2014.7.2-AMD64-Setup.exe | md5

« 2014.7.1

« Salt-Minion-2014.7.1-x86-Setup.exe | md5

+ Salt-Minion-2014.7.1-AMD64-Setup.exe | md5

« 2014.7.0

« Salt-Minion-2014.7.0-1-win32-Setup.exe | md5

16 Chapter 2. Installation

http://docs.saltstack.com/downloads/Salt-Minion-2015.5.0-2-x86-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2015.5.0-2-x86-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2015.5.0-2-AMD64-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2015.5.0-2-AMD64-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.5-2-x86-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.5-2-x86-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.5-2-AMD64-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.5-2-AMD64-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.4-x86-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.4-x86-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.4-AMD64-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.4-AMD64-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.2-x86-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.2-x86-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.2-AMD64-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.2-AMD64-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.1-x86-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.1-x86-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.1-AMD64-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.7.1-AMD64-Setup.exe.md5

Salt Documentation, Release 2015.5.1

« Salt-Minion-2014.7.0-AMD64-Setup.exe | md5

Note: The 2014.7.0 installers have been removed because of a regression. Please use the 2014.7.1 release
instead.

« 2014.1.13

« Salt-Minion-2014.1.13-x86-Setup.exe | md5

+ Salt-Minion-2014.1.13-AMD64-Setup.exe | md5
« 2014.1.11

« Salt-Minion-2014.1.11-win32-Setup.exe | md5

+ Salt-Minion-2014.1.11-AMD64-Setup.exe | md5
» 2014.1.10

« Salt-Minion-2014.1.10-win32-Setup.exe | md5

+ Salt-Minion-2014.1.10-AMD64-Setup.exe | md5
« 2014.1.7

« Salt-Minion-2014.1.7-win32-Setup.exe | md5

« Salt-Minion-2014.1.7-AMD64-Setup.exe | md5
- 2014.1.5

« Salt-Minion-2014.1.5-win32-Setup.exe | md5

« Salt-Minion-2014.1.5-AMD64-Setup.exe | md5
- 2014.14

« Salt-Minion-2014.1.4-win32-Setup.exe | md5

« Salt-Minion-2014.1.4-AMD64-Setup.exe | md5
+ 2014.1.3-1 (packaging bugfix)

+ Salt-Minion-2014.1.3-1-win32-Setup.exe | md5
« Salt-Minion-2014.1.3-1-AMD64-Setup.exe | md5
« 2014.13

« Salt-Minion-2014.1.3-win32-Setup.exe | md5

+ Salt-Minion-2014.1.3-AMD64-Setup.exe | md5
« 2014.1.1

« Salt-Minion-2014.1.1-win32-Setup.exe | md5

+ Salt-Minion-2014.1.1-AMD64-Setup.exe | md5
» 2014.1.0

« Salt-Minion-2014.1.0-win32-Setup.exe | md5

« Salt-Minion-2014.1.0-AMD64-Setup.exe | md5
« 0.17.5-2 (bugfix release)

« https://docs.saltstack.com/downloads/Salt-Minion-0.17.5-2-win32-Setup.exe
» https://docs.saltstack.com/downloads/Salt-Minion-0.17.5-2-AMD64-Setup.exe

2.2. Platform-specific Installation Instructions 17

http://docs.saltstack.com/downloads/Salt-Minion-2014.1.13-x86-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.1.13-x86-Setup.exe.md5
http://docs.saltstack.com/downloads/Salt-Minion-2014.1.13-AMD64-Setup.exe
http://docs.saltstack.com/downloads/Salt-Minion-2014.1.13-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.11-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.11-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.11-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.11-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.10-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.10-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.10-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.10-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.7-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.7-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.7-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.7-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.5-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.5-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.5-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.5-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.4-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.4-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.4-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.4-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-1-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-1-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-1-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-1-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.3-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.1-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.1-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.1-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.1-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.0-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.0-win32-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.0-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-2014.1.0-AMD64-Setup.exe.md5
https://docs.saltstack.com/downloads/Salt-Minion-0.17.5-2-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.5-2-AMD64-Setup.exe

Salt Documentation, Release 2015.5.1

0.17.5
https://docs.saltstack.com/downloads/Salt-Minion-0.17.5-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.5-AMD64-Setup.exe
0.17.4
https://docs.saltstack.com/downloads/Salt-Minion-0.17.4-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.4-AMD64-Setup.exe
0.17.2
https://docs.saltstack.com/downloads/Salt-Minion-0.17.2-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.2-AMD64-Setup.exe
0.17.1.1 - Windows Installer bugfix release
https://docs.saltstack.com/downloads/Salt-Minion-0.17.1.1-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.1.1-AMD64-Setup.exe
0.17.1
https://docs.saltstack.com/downloads/Salt-Minion-0.17.1-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.1-AMD64-Setup.exe
0.17.0
https://docs.saltstack.com/downloads/Salt-Minion-0.17.0-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.0-AMD64-Setup.exe
0.16.3
https://docs.saltstack.com/downloads/Salt-Minion-0.16.3-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.3-AMD64-Setup.exe
0.16.2
https://docs.saltstack.com/downloads/Salt-Minion-0.16.2-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.2-AMD64-Setup.exe
0.16.0
https://docs.saltstack.com/downloads/Salt-Minion-0.16.0-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.0-AMD64-Setup.exe
0.15.3
https://docs.saltstack.com/downloads/Salt-Minion-0.15.3-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.15.3-AMD64-Setup.exe
0.14.1
https://docs.saltstack.com/downloads/Salt-Minion-0.14.1-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.14.1-AMD64-Setup.exe
0.14.0
https://docs.saltstack.com/downloads/Salt-Minion-0.14.0-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.14.0-AMD64-Setup.exe

18

Chapter 2.

Installation

https://docs.saltstack.com/downloads/Salt-Minion-0.17.5-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.5-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.4-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.4-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.2-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.2-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.1.1-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.1.1-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.1-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.1-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.0-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.17.0-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.3-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.3-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.2-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.2-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.0-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.16.0-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.15.3-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.15.3-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.14.1-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.14.1-AMD64-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.14.0-win32-Setup.exe
https://docs.saltstack.com/downloads/Salt-Minion-0.14.0-AMD64-Setup.exe

Salt Documentation, Release 2015.5.1

Note: The executables above will install dependencies that the Salt minion requires.

The 64bit installer has been tested on Windows 7 64bit and Windows Server 2008R2 64bit. The 32bit installer has
been tested on Windows 2003 Server 32bit. Please file a bug report on our GitHub repo if issues for other platforms
are found.

The installer asks for 2 bits of information; the master hostname and the minion name. The installer will update the
minion config with these options and then start the minion.

The salt-minion service will appear in the Windows Service Manager and can be started and stopped there or with
the command line program sc like any other Windows service.

If the minion won't start, try installing the Microsoft Visual C++ 2008 x64 SP1 redistributable. Allow all Windows
updates to run salt-minion smoothly.

Silent Installer option

The installer can be run silently by providing the /S option at the command line. The options /master and /minion-
name allow for configuring the master hostname and minion name, respectively. Here's an example of using the
silent installer:

Salt-Minion-0.17.0-Setup-amd64.exe /S /master=yoursaltmaster /m'in'ion—name:yourm'in-ionnam%

Setting up a Windows build environment
This document will explain how to set up a development environment for salt on Windows. The development

environment allows you to work with the source code to customize or fix bugs. It will also allow you to build
your own installation.

The Easy Way

Prerequisite Software To do this the easy way you only need to install Git for Windows.

Create the Build Environment
1. Clone the Salt-Windows-Dev repo from github.

Open a command line and type:

git clone https://github.com/saltstack/salt-windows-dev

2. Build the Python Environment

Go into the salt-windows-dev directory. Right-click the file named dev_env.ps1 and select Run with Power-
Shell

If you get an error, you may need to change the execution policy.

Open a powershell window and type the following:

Set-ExecutionPolicy RemoteSigned

This will download and install Python with all the dependencies needed to develop and build salt.

2.2. Platform-specific Installation Instructions 19

https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20150319/Git-1.9.5-preview20150319.exe/
https://github.com/saltstack/salt-windows-dev/

Salt Documentation, Release 2015.5.1

3. Build the Salt Environment
Right-click on the file named dev_env_salt.ps1 and select Run with Powershell

This will clone salt into C: \Salt-Dev\salt and set it to the 2015.5 branch. You could optionally run the
command from a powershell window with a —~Version switch to pull a different version. For example:

dev_env_salt.psl -Version '2014.7'

To view a list of available branches and tags, open a command prompt in your C:Salt-Devsalt directory and
type:

git branch -a
git tag -n

The Hard Way

Prerequisite Software Install the following software:
1. Git for Windows
2. Nullsoft Installer
Download the Prerequisite zip file for your CPU architecture from the SaltStack download site:
o Salt32.zip
« Salt64.zip

These files contain all sofware required to build and develop salt. Unzip the contents of the file to C:\Salt-
Dev\temp.

Create the Build Environment
1. Build the Python Environment
« Install Python:

Browse to the C:\Salt-Dev\temp directory and find the Python installation file for your CPU Ar-
chitecture under the corresponding subfolder. Double-click the file to install python.

Make sure the following are in your PATH environment variable:

C:\Python27
C:\Python27\Scripts

« Install Pip

Open a command prompt and navigate to C: \Salt-Dev\temp Run the following command:

python get-pip.py

« Easy Install compiled binaries.

M2Crypto, PyCrypto, and PyWin32 need to be installed using Easy Install. Open a command prompt
and navigate to C: \Salt-Dev\temp\<cpuarch>. Run the following commands:

easy_install -Z <M2Crypto file name>
easy_install -Z <PyCrypto file name>
easy_install -Z <PyWin32 file name>

20 Chapter 2. Installation

https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20150319/Git-1.9.5-preview20150319.exe/
http://downloads.sourceforge.net/project/nsis/NSIS%203%20Pre-release/3.0b1/nsis-3.0b1-setup.exe/
http://docs.saltstack.com/downloads/windows-deps/Salt32.zip/
http://docs.saltstack.com/downloads/windows-deps/Salt64.zip/

Salt Documentation, Release 2015.5.1

Note: You can type the first part of the file name and then press the tab key to auto-complete the name
of the file.

« Pip Install Additional Prerequisites
All remaining prerequisites need to be pip installed. These prerequisites are as follow:

MarkupSafe

- Jinja

MsgPack
PSUtil

PyYAML
- PyZMQ
- WMI

Requests
- Certifi

Open a command prompt and navigate to C: \Salt-Dev\temp. Run the following commands:

pip install <cpuarch>\<MarkupSafe file name>
pip install <Jinja file name>

pip install <cpuarch>\<MsgPack file name>
pip install <cpuarch>\<psutil file name>

pip install <cpuarch>\<PyYAML file name>

pip install <cpuarch>\<pyzmq file name>

pip install <WMI file name>

pip install <requests file name>

pip install <certifi file name>

2. Build the Salt Environment
« Clone Salt

Open a command prompt and navigate to C:\Salt-Dev. Run the following command to clone salt:

git clone https://github.com/saltstack/salt

« Checkout Branch

Checkout the branch or tag of salt you want to work on or build. Open a command prompt and navigate
to C:\Salt-Dev\salt. Getalist of available tags and branches by running the following commands:

git fetch --all

To view a list of available branches:
git branch -a

To view a list of availabel tags:
git tag -n

Checkout the branch or tag by typing the following command:

git checkout <branch/tag name>

2.2. Platform-specific Installation Instructions 21

Salt Documentation, Release 2015.5.1

« Clean the Environment

When switching between branches residual files can be left behind that will interfere with the functional-
ity of salt. Therefore, after you check out the branch you want to work on, type the following commands
to clean the salt environment:

Developing with Salt

There are two ways to develop with salt. You can run salt's setup.py each time you make a change to source code or
you can use the setup tools develop mode.

Configure the Minion

Both methods require that the minion configuration be in the C:\salt directory. Copy the conf and var directo-
ries from C:\Salt-Dev\salt\pkg\ windows\buildenvto C:\salt. Now go into the C:\salt\conf
directory and edit the file name minion (no extension). You need to configure the master and id parameters in this
file. Edit the following lines:

master: <ip or name of your master>
id: <name of your minion>

Setup.py Method

Go into the C:\Salt-Dev\salt directory from a cmd prompt and type:

python setup.py install --force

This will install python into your python installation at C: \Python27. Everytime you make an edit to your source
code, you'll have to stop the minion, run the setup, and start the minion.

To start the salt-minion go into C: \Python27\Scripts from a cmd prompt and type:

‘ salt-minion

For debug mode type:

’salt—m‘in‘ion -1 debug

To stop the minion press Ctrl+C.

Setup Tools Develop Mode (Preferred Method)

To use the Setup Tools Develop Mode go into C: \Salt-Dev\sa'lt from a cmd prompt and type:

pip install -e .

This will install pointers to your source code that resides at C:\Salt-Dev\salt. When you edit your source
code you only have to restart the minion.

Build the windows installer

This is the method of building the installer as of version 2014.7.4.

22 Chapter 2. Installation

Salt Documentation, Release 2015.5.1

Clean the Environment

Make sure you don't have any leftover salt files from previous versions of salt in your Python directory.
1. Remove all files that start with salt in the C: \Python27\Scripts directory

2. Remove all files and directorys that start with salt in the C: \Python27\Lib\site-packages directory

Install Salt

Install salt using salt's setup.py. From the C:\Salt-Dev\sa'lt directory type the following command:

python setup.py install --force

Build the Installer

From cmd prompt go into the C: \Salt-Dev\salt\pkg\windows directory. Type the following command for
the branch or tag of salt you're building:

BuildSalt.bat <branch or tag>

This will copy python with salt installed to the buildenv\b-in directory, make it portable, and then create the
windows installer . The .exe for the windows installer will be placed in the installer directory.

Testing the Salt minion

1. Create the directory C:\salt (if it doesn't exist already)
2. Copy the example conf and var directories from pkg/windows/buildenv/ into C:\salt

3. Edit C:\salt\conf\minion

master: +ipaddress or hostname of your salt-master

4. Start the salt-minion

cd C:\Python27\Scripts
python salt-minion

5. On the salt-master accept the new minion's key

sudo salt-key -A

This accepts all unaccepted keys. If you're concerned about security just accept the key for this specific minion.
6. Test that your minion is responding

On the salt-master run:

sudo salt 'x' test.ping

You should get the following response: {'your minion hostname': True}

2.2. Platform-specific Installation Instructions 23

Salt Documentation, Release 2015.5.1

Single command bootstrap script

On a 64 bit Windows host the following script makes an unattended install of salt, including all dependencies:

Not up to date.

This script is not up to date. Please use the installer found above

(A1l in one line.)

"PowerShell (New-Object System.Net.WebClient).DownloadFile('http://csa-net.dk/salt/bootstrap64.bat',

You can execute the above command remotely from a Linux host using winexe:

winexe -U "administrator" //fqdn "PowerShell (New-Object)"

For more info check http://csa-net.dk/salt

Packages management under Windows 2003

On windows Server 2003, you need to install optional component * wmi windows installer provider"” to have full list
of installed packages. If you don't have this, salt-minion can't report some installed softwares.

2.2.11 SUSE Installation

With openSUSE 13.1, Salt 0.16.4 has been available in the primary repositories. The devel:language:python repo will
have more up to date versions of salt, all package development will be done there.

Installation
Salt can be installed using zypper and is available in the standard openSUSE 13.1 repositories.
Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

zypper install salt-master
zypper install salt-minion

Post-installation tasks openSUSE

Master

To have the Master start automatically at boot time:

‘systemctl enable salt-master.service ‘

To start the Master:

’systemctl start salt-master.service ‘

24 Chapter 2. Installation

http://csa-net.dk/salt

Salt Documentation, Release 2015.5.1

Minion

To have the Minion start automatically at boot time:

’systemctl enable salt-minion.service ‘

To start the Minion:

’systemctl start salt-minion.service ‘

Post-installation tasks SLES

Master

To have the Master start automatically at boot time:

’chkconf‘ig salt-master on ‘

To start the Master:

’ rcsalt-master start ‘

Minion

To have the Minion start automatically at boot time:

’chkconf'ig salt-minion on ‘

To start the Minion:

’ rcsalt-minion start ‘

Unstable Release
openSUSE

For openSUSE Factory run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_Factory/dev
zypper refresh
zypper install salt salt-minion salt-master

For openSUSE 13.1 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_13.1/devel:’
zypper refresh
zypper install salt salt-minion salt-master

For openSUSE 12.3 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_12.3/devel:’
zypper refresh
zypper install salt salt-minion salt-master

For openSUSE 12.2 run the following as root:

2.2. Platform-specific Installation Instructions 25

Salt Documentation, Release 2015.5.1

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE
zypper refresh
zypper install salt salt-minion salt-master

For openSUSE 12.1 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE
zypper refresh
zypper install salt salt-minion salt-master

For bleeding edge python Factory run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/bleeding
zypper refresh
zypper install salt salt-minion salt-master

Suse Linux Enterprise

For SLE 12 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/SLE_12/d
zypper refresh
zypper install salt salt-minion salt-master

For SLE 11 SP3 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/SLE_11_§
zypper refresh
zypper install salt salt-minion salt-master

For SLE 11 SP2 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/SLE_11_4
zypper refresh
zypper install salt salt-minion salt-master

Now go to the Configuring Salt page.

2.3 Dependencies

Salt should run on any Unix-like platform so long as the dependencies are met.
« Python 2.6 >= 2.6 <3.0
« msgpack-python - High-performance message interchange format
« YAML - Python YAML bindings
« Jinja2 - parsing Salt States (configurable in the master settings)
« MarkupSafe - Implements a XML/HTML/XHTML Markup safe string for Python

« apache-libcloud - Python lib for interacting with many of the popular cloud service providers using a unified
API

« Requests - HTTP library
Depending on the chosen Salt transport, ZeroMQ or RAET, dependencies vary:

26 Chapter 2. Installation

_12.2/devel:’

_12.1/devel:’

_edge_python,

evel:languags

P3/devel: lan;

P2/devel: lan;

http://python.org/download/
https://pypi.python.org/pypi/msgpack-python/0.1.12
http://pyyaml.org/
http://jinja.pocoo.org/
https://pypi.python.org/pypi/MarkupSafe
http://libcloud.apache.org
http://docs.python-requests.org/en/latest
http://zeromq.org/
https://github.com/saltstack/raet

Salt Documentation, Release 2015.5.1

o ZeroMQ:
- ZeroMQ >=3.2.0
— pyzmgq >= 2.2.0 - ZeroMQ Python bindings
- PyCrypto - The Python cryptography toolkit
- M2Crypto - *"Me Too Crypto" - Python OpenSSL wrapper
« RAET:
— libnacl - Python bindings to libsodium
— ioflo - The flo programming interface raet and salt-raet is built on
— RAET - The worlds most awesome UDP protocol

Salt defaults to the ZeroMQ transport, and the choice can be made at install time, for example:

python setup.py install --salt-transport=raet

This way, only the required dependencies are pulled by the setup script if need be.

If installing using pip, the ——salt—transport install option can be provided like:

’p'ip install --install-option="--salt-transport=raet" salt

2.4 Optional Dependencies

« mako - an optional parser for Salt States (configurable in the master settings)

« gcc - dynamic Cython module compiling

2.5 Upgrading Salt

When upgrading Salt, the master(s) should always be upgraded first. Backward compatibility for minions running
newer versions of salt than their masters is not guaranteed.

Whenever possible, backward compatibility between new masters and old minions will be preserved. Generally, the
only exception to this policy is in case of a security vulnerability.

2.4. Optional Dependencies 27

http://zeromq.org/
https://github.com/zeromq/pyzmq
https://www.dlitz.net/software/pycrypto/
http://chandlerproject.org/Projects/MeTooCrypto
https://github.com/saltstack/libnacl
https://github.com/jedisct1/libsodium
https://github.com/ioflo/ioflo
https://github.com/saltstack/raet
http://zeromq.org/
http://www.makotemplates.org/
http://cython.org/

Salt Documentation, Release 2015.5.1

28 Chapter 2. Installation

CHAPTER 3

Tutorials

3.1 Introduction

3.1.1 Salt Masterless Quickstart
Running a masterless salt-minion lets you use Salt's configuration management for a single machine without calling
out to a Salt master on another machine.

Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

« Stand up a master server via States (Salting a Salt Master)
« Use salt-call commands on a system without connectivity to a master
« Masterless States, run states entirely from files local to the minion

It is also useful for testing out state trees before deploying to a production setup.

Bootstrap Salt Minion

The salt-bootstrap script makes bootstrapping a server with Salt simple for any OS with a Bourne shell:

wget -0 - https://bootstrap.saltstack.com | sudo sh

See the salt-bootstrap documentation for other one liners. When using Vagrant to test out salt, the Vagrant salt
provisioner will provision the VM for you.

Telling Salt to Run Masterless

To instruct the minion to not look for a master, the file_client configuration option needs to be set in the
minion configuration file. By default the file_client is set to remote so that the minion gathers file server
and pillar data from the salt master. When setting the file_client option to Local the minion is configured to
not gather this data from the master.

file_client: local

Now the salt minion will not look for a master and will assume that the local system has all of the file and pillar
resources.

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to

29

https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap
http://www.vagrantup.com/
http://docs.vagrantup.com/v2/provisioning/salt.html
http://docs.vagrantup.com/v2/provisioning/salt.html

Salt Documentation, Release 2015.5.1

connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Create State Tree
Following the successful installation of a salt-minion, the next step is to create a state tree, which is where the SLS
files that comprise the possible states of the minion are stored.

The following example walks through the steps necessary to create a state tree that ensures that the server has the
Apache webserver installed.

Note: For a complete explanation on Salt States, see the tutorial.

1. Create the top.sls file:
/srv/salt/top.sls:

base:
l*!:
- webserver

2. Create the webserver state tree:

/srv/salt/webserver.sls:

apache: # ID declaration
pkg: # state declaration
- 1installed # function declaration

Note: The apache package has different names on different platforms, for instance on Debian/Ubuntu it is apache2,
on Fedora/RHEL it is httpd and on Arch it is apache

The only thing left is to provision our minion using salt-call and the highstate command.

Salt-call

The salt-call command is used to run module functions locally on a minion instead of executing them from the
master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data:

salt-call --local state.highstate

The —-"local flag tells the salt-minion to look for the state tree in the local file system and not to contact a Salt
Master for instructions.

To provide verbose output, use -1 debug:

salt-call --local state.highstate -1 debug

The minion first examines the top . s'ls file and determines that it is a part of the group matched by * glob and that
the webserver SLS should be applied.

It then examines the webserver. sls file and finds the apache state, which installs the Apache package.

The minion should now have Apache installed, and the next step is to begin learning how to write more complex
states.

30 Chapter 3. Tutorials

http://docs.saltstack.org/en/latest/topics/tutorials/states_pt1.html

Salt Documentation, Release 2015.5.1

3.2 Basics

3.2.1 Standalone Minion
Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

« Use salt-call commands on a system without connectivity to a master

« Masterless States, run states entirely from files local to the minion

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to
connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Telling Salt Call to Run Masterless

The salt-call command is used to run module functions locally on a minion instead of executing them from the
master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data. To instruct the minion to
not look for a master when running salt-call the file_client configuration option needs to be set. By default
the file_client is set to remote so that the minion knows that file server and pillar data are to be gathered
from the master. When setting the file_client option to Local the minion is configured to not gather this
data from the master.

file_client: local

Now the salt-call command will not look for a master and will assume that the local system has all of the file and
pillar resources.

Running States Masterless

The state system can be easily run without a Salt master, with all needed files local to the minion. To do this the
minion configuration file needs to be set up to know how to return file_roots information like the master. The
file_roots setting defaults to /srv/salt for the base environment just like on the master:

file_roots:
base:
- /srv/salt

Now set up the Salt State Tree, top file, and SLS modules in the same way that they would be set up on a master.
Now, with the file_client option set to Llocal and an available state tree then calls to functions in the state
module will use the information in the file_roots on the minion instead of checking in with the master.

Remember that when creating a state tree on a minion there are no syntax or path changes needed, SLS modules
written to be used from a master do not need to be modified in any way to work with a minion.

This makes it easy to " “script" deployments with Salt states without having to set up a master, and allows for these
SLS modules to be easily moved into a Salt master as the deployment grows.

The declared state can now be executed with:

salt-call state.highstate

Or the salt-call command can be executed with the ——local flag, this makes it unnecessary to change the config-
uration file:

3.2. Basics 31

Salt Documentation, Release 2015.5.1

salt-call state.highstate —--local

External Pillars

External pillars are supported when running in masterless mode.

3.2.2 Opening the Firewall up for Salt

The Salt master communicates with the minions using an AES-encrypted ZeroMQ connection. These communi-
cations are done over TCP ports 4505 and 4506, which need to be accessible on the master only. This document
outlines suggested firewall rules for allowing these incoming connections to the master.

Note: No firewall configuration needs to be done on Salt minions. These changes refer to the master only.

Fedora 18 and beyond / RHEL 7 / CentOS 7

Starting with Fedora 18 FirewallD is the tool that is used to dynamically manage the firewall rules on a host. It has
support for IPv4/6 settings and the separation of runtime and permanent configurations. To interact with FirewallD
use the command line client firewall-cmd.

firewall-cmd example:

’f'irewall—cmd --permanent --zone=<zone> --add-port=4505-4506/tcp

Please choose the desired zone according to your setup. Don't forget to reload after you made your changes.

‘ firewall-cmd --reload

RHEL 6 / CentOS 6

The lokkit command packaged with some Linux distributions makes opening iptables firewall ports very simple
via the command line. Just be careful to not lock out access to the server by neglecting to open the ssh port.

lokkit example:

lokkit -p 22:tcp -p 4505:tcp -p 4506:tcp

The system-config-firewall-tui command provides a text-based interface to modifying the firewall.

system-config-firewall-tui:

system-config-firewall-tui

openSUSE

Salt installs firewall rules in /etc/sysconfig/SuSEfirewall2.d/services/salt. Enable with:

SuSEfirewall2 open
SuSEfirewall2 start

32 Chapter 3. Tutorials

https://fedoraproject.org/wiki/FirewallD
https://github.com/saltstack/salt/blob/develop/pkg/suse/salt.SuSEfirewall2

Salt Documentation, Release 2015.5.1

If you have an older package of Salt where the above configuration file is not included, the SUSEfirewall2
command makes opening iptables firewall ports very simple via the command line.

SuSEfirewall example:

SuSEfirewall2 open EXT TCP 4505
SuSEfirewall2 open EXT TCP 4506

The firewall module in YaST2 provides a text-based interface to modifying the firewall.

YaST2:

yast2 firewall

iptables

Different Linux distributions store their iptables (also known as netfilter) rules in different places, which makes it
difficult to standardize firewall documentation. Included are some of the more common locations, but your mileage
may vary.

Fedora / RHEL / CentOS:

‘ /etc/sysconfig/iptables

Arch Linux:

’ /etc/iptables/iptables.rules

Debian
Follow these instructions: https://wiki.debian.org/iptables

Once you've found your firewall rules, you'll need to add the two lines below to allow traffic on tcp/4505 and
tcp/4506:

-A INPUT -m state --state new -m tcp -p tcp --dport 4505 -j ACCEPT
-A INPUT -m state --state new -m tcp -p tcp --dport 4506 -j ACCEPT

Ubuntu

Salt installs firewall rules in /etc/ufw/applications.d/salt.ufw. Enable with:

ufw allow salt

pf.conf

The BSD-family of operating systems uses packet filter (pf). The following example describes the additions to
pf.conf needed to access the Salt master.

pass in on $int_if proto tcp from any to $int_if port 4505
pass 1in on $int_if proto tcp from any to $int_if port 4506

Once these additions have been made to the pf.conf the rules will need to be reloaded. This can be done using
the pfctl command.

pfctl -vf /etc/pf.conf

3.2. Basics 33

http://www.netfilter.org/
https://wiki.debian.org/iptables
https://github.com/saltstack/salt/blob/develop/pkg/salt.ufw
http://openbsd.org/faq/pf/

Salt Documentation, Release 2015.5.1

3.2.3 Whitelist communication to Master

There are situations where you want to selectively allow Minion traffic from specific hosts or networks into your Salt
Master. The first scenario which comes to mind is to prevent unwanted traffic to your Master out of security concerns,
but another scenario is to handle Minion upgrades when there are backwards incompatible changes between the
installed Salt versions in your environment.

Here is an example Linux iptables ruleset to be set on the Master:

Allow Minions from these networks

-I INPUT -s 10.1.2.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
-I INPUT -s 10.1.3.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
Allow Salt to communicate with Master on the loopback interface

-A INPUT -i lo -p tcp -m multiport --dports 4505,4506 -j ACCEPT

Reject everything else

-A INPUT -p tcp -m multiport --dports 4505,4506 -j REJECT

Note: The important thing to note here is that the salt command needs to communicate with the listening
network socket of salt—master on the loopback interface. Without this you will see no outgoing Salt traffic from

the master, even for a simple salt '*' test.ping, because the salt client never reached the salt-master
to tell it to carry out the execution.

3.2.4 Using cron with Salt

The Salt Minion can initiate its own highstate using the salt-call command.

$ salt-call state.highstate

This will cause the minion to check in with the master and ensure it is in the correct “state'.

Use cron to initiate a highstate

If you would like the Salt Minion to regularly check in with the master you can use the venerable cron to run the
salt-call command.

PATH=/bin:/sbin:/usr/bin:/usr/sbin

00 00 * * x salt-call state.highstate

The above cron entry will run a highstate every day at midnight.

Note: Be aware that you may need to ensure the PATH for cron includes any scripts or commands that need to be
executed.

3.2.5 Remote execution tutorial

Before continuing make sure you have a working Salt installation by following the installation and the configuration
instructions.

Stuck?

There are many ways to get help from the Salt community including our mailing list and our IRC channel #salt.

34 Chapter 3. Tutorials

https://groups.google.com/forum/#!forum/salt-users
http://webchat.freenode.net/?channels=salt

Salt Documentation, Release 2015.5.1

Order your minions around

Now that you have a master and at least one minion communicating with each other you can perform commands on
the minion via the salt command. Salt calls are comprised of three main components:

salt '<target>' <function> [arguments]

See also:

salt manpage

target

The target component allows you to filter which minions should run the following function. The default filter is a
glob on the minion id. For example:

salt '+x' test.ping
salt 'x.example.org' test.ping

Targets can be based on minion system information using the Grains system:

salt -G 'os:Ubuntu' test.ping

See also:
Grains system

Targets can be filtered by regular expression:

’salt -E 'virtmach[0-9]' test.ping

Targets can be explicitly specified in a list:

‘salt -L 'foo,bar,baz,quo' test.ping

Or Multiple target types can be combined in one command:

’salt -C 'GEos:Ubuntu and webserx or E@database.x' test.ping

function

A function is some functionality provided by a module. Salt ships with a large collection of available functions. List
all available functions on your minions:

salt '+x' sys.doc

Here are some examples:

Show all currently available minions:

’salt 'x' test.ping

Run an arbitrary shell command:

’salt 'x'" cmd.run 'uname -a'

See also:

the full list of modules

3.2. Basics 35

Salt Documentation, Release 2015.5.1

arguments

Space-delimited arguments to the function:

’salt 'x'" cmd.exec_code python 'import sys; print sys.version'

Optional, keyword arguments are also supported:

’salt 'x'" pip.install salt timeout=5 upgrade=True

They are always in the form of kwarg=argument.

3.2.6 Pillar Walkthrough

Note: This walkthrough assumes that the reader has already completed the initial Salt walkthrough.

Pillars are tree-like structures of data defined on the Salt Master and passed through to minions. They allow confi-
dential, targeted data to be securely sent only to the relevant minion.

Note: Grains and Pillar are sometimes confused, just remember that Grains are data about a minion which is stored
or generated from the minion. This is why information like the OS and CPU type are found in Grains. Pillar is

information about a minion or many minions stored or generated on the Salt Master.

Pillar data is useful for:

Highly Sensitive Data: Information transferred via pillar is guaranteed to only be presented to the minions that are
targeted, making Pillar suitable for managing security information, such as cryptographic keys and passwords.

Minion Configuration: Minion modules such as the execution modules, states, and returners can often be configured
via data stored in pillar.

Variables: Variables which need to be assigned to specific minions or groups of minions can be defined in pillar and
then accessed inside sls formulas and template files.

Arbitrary Data: Pillar can contain any basic data structure in dictionary format, so a key/value store can be defined
making it easy to iterate over a group of values in sls formulas.

Pillar is therefore one of the most important systems when using Salt. This walkthrough is designed to get a simple
Pillar up and running in a few minutes and then to dive into the capabilities of Pillar and where the data is available.

Setting Up Pillar

The pillar is already running in Salt by default. To see the minion's pillar data:

salt '+x' pillar.items

Note: Prior to version 0.16.2, this function is named pillar.data. This function name is still supported for
backwards compatibility.

By default the contents of the master configuration file are loaded into pillar for all minions. This enables the master
configuration file to be used for global configuration of minions.

Similar to the state tree, the pillar is comprised of sls files and has a top file. The default location for the pillar is in
/srv/pillar.

36 Chapter 3. Tutorials

Salt Documentation, Release 2015.5.1

Note: The pillar location can be configured via the pillar_roots option inside the master configuration file. It must
not be in a subdirectory of the state tree.

To start setting up the pillar, the /srv/pillar directory needs to be present:

’mkd'ir /srv/pillar

Now create a simple top file, following the same format as the top file used for states:

/srv/pillar/top.sls:

base:
l*!:
- data

This top file associates the data.sls file to all minions. Now the /srv/pillar/data.sls file needs to be popu-
lated:

/srv/pillar/data.sls:

"info: some data

To ensure that the minions have the new pillar data, issue a command to them asking that they fetch their pillars
from the master:

’salt 'x' saltutil.refresh_pillar

Now that the minions have the new pillar, it can be retrieved:

’ salt 'x' pillar.items

The key info should now appear in the returned pillar data.

More Complex Data

Unlike states, pillar files do not need to define formulas. This example sets up user data with a UID:

/srv/pillar/users/init.sls

users:
thatch: 1000
shouse: 1001
utahdave: 1002
redbeard: 1003

Note: The same directory lookups that exist in states exist in pillar, so the file users/init.sls can be referenced
with users in the top file.

The top file will need to be updated to include this sls file:
/srv/pillar/top.sls:

base:
I*I:

- data

- users

Now the data will be available to the minions. To use the pillar data in a state, you can use Jinja:

/srv/salt/users/init.sls

3.2. Basics 37

Salt Documentation, Release 2015.5.1

{% for user, uid 1in pillar.get('users', {}).items() %}
{{user}}:
user.present:
- uid: {{uid}}
{% endfor %

This approach allows for users to be safely defined in a pillar and then the user data is applied in an sls file.

Parameterizing States With Pillar

Pillar data can be accessed in state files to customise behavior for each minion. All pillar (and grain) data applicable
to each minion is substituted into the state files through templating before being run. Typical uses include setting
directories appropriate for the minion and skipping states that don't apply.

A simple example is to set up a mapping of package names in pillar for separate Linux distributions:

/srv/pillar/pkg/init.sls:

pkgs:
{% if grains['os_family'] == 'RedHat' %}
apache: httpd
vim: vim-enhanced
{% elif grains['os_family'] == 'Debian' %}
apache: apache2
vim: vim
{% elif grains['os'] == 'Arch' %}
apache: apache
vim: vim
% endif %}

The new pkg sls needs to be added to the top file:
/srv/pillar/top.sls:

base:
I*I:
- data
- users
- pkg

Now the minions will auto map values based on respective operating systems inside of the pillar, so sls files can be
safely parameterized:

/srv/salt/apache/init.sls

apache:
pkg.installed:
- name: {{ pillar['pkgs']['apache'] }}

Or, if no pillar is available a default can be set as well:

Note: The function pillar.get used in this example was added to Salt in version 0.14.0

/srv/salt/apache/init.sls

apache:
pkg.installed:
- name: {{ salt['pillar.get']('pkgs:apache', 'httpd') }}

38 Chapter 3. Tutorials

Salt Documentation, Release 2015.5.1

In the above example, if the pillar value pillar['pkgs']['apache'] isnot set in the minion's pillar, then the
default of httpd will be used.

Note: Under the hood, pillar is just a Python dict, so Python dict methods such as get and items can be used.

Pillar Makes Simple States Grow Easily

One of the design goals of pillar is to make simple sls formulas easily grow into more flexible formulas without
refactoring or complicating the states.

A simple formula:

/srv/salt/edit/vim.sls

vim:
pkg.installed: []

/etc/vimrc:
file.managed:
- source: salt://edit/vimrc
- mode: 644
- user: root
- group: root
- require:
- pkg: vim

Can be easily transformed into a powerful, parameterized formula:

/srv/salt/edit/vim.sls

vim:
pkg.installed:
- name: {{ pillar['pkgs']['vim'] }}

/etc/vimrc:

file.managed:
- source: {{ pillar['vimrc'] }}
- mode: 644
- user: root
- group: root
- require:

- pkg: vim

Where the vimrc source location can now be changed via pillar:

/srv/pillar/edit/vim.sls:

% if grains['id'].startswith('dev') %}
vimrc: salt://edit/dev_vimrc

{% elif grains['id'].startswith('qa') %}
vimrc: salt://edit/ga_vimrc

% else %}

vimrc: salt://edit/vimrc

{% endif %}

Ensuring that the right vimrc is sent out to the correct minions.

3.2. Basics 39

Salt Documentation, Release 2015.5.1

Setting Pillar Data on the Command Line

Pillar data can be set on the command line like so:

’salt 'x' state.highstate pillar='{"foo": "bar"}' ‘

The state.sls command can also be used to set pillar values via the command line:

’salt 'x' state.sls my_sls_file pillar='{"hello": "world"}' ‘

Note: If a key is passed on the command line that already exists on the minion, the key that is passed in will
overwrite the entire value of that key, rather than merging only the specified value set via the command