@ SALTSTACK

Salt Documentation
Release 2018.3.0

SaltStack, Inc.

Jun 04, 2018

Contents

CHAPTER 1

Installation

This section contains instructions to install Salt. If you are setting up your environment for the first time, you should
install a Salt master on a dedicated management server or VM, and then install a Salt minion on each system that you
want to manage using Salt. For now you don't need to worry about your architecture, you can easily add components
and modify your configuration later without needing to reinstall anything.

The general installation process is as follows:

1. Install a Salt master using the instructions for your platform or by running the Salt bootstrap script. If you use
the bootstrap script, be sure to include the =M option to install the Salt master.

2. Make sure that your Salt minions can find the Salt master.
3. Install the Salt minion on each system that you want to manage.
4. Accept the Salt minion keys after the Salt minion connects.

After this, you should be able to run a simple command and receive returns from all connected Salt minions.

’salt 'x' test.ping

1.1 Quick Install

On most distributions, you can set up a Salt Minion with the Salt bootstrap.

1.2 Platform-specific Installation Instructions
These guides go into detail how to install Salt on a given platform.

1.2.1 Arch Linux

Installation

Salt (stable) is currently available via the Arch Linux Official repositories. There are currently -git packages available
in the Arch User repositories (AUR) as well.

Salt Documentation, Release 2018.3.0

Stable Release

Install Salt stable releases from the Arch Linux Official repositories as follows:

pacman -S salt

Tracking develop

To install the bleeding edge version of Salt (may include bugs!), use the -git package. Installing the -git package as
follows:

wget https://aur.archlinux.org/packages/sa/salt-git/salt-git.tar.gz
tar xf salt-git.tar.gz

cd salt-git/

makepkg -is

Note: yaourt
If a tool such as Yaourt is used, the dependencies will be gathered and built automatically.

The command to install salt using the yaourt tool is:

yaourt salt-git

Post-installation tasks

systemd

Activate the Salt Master and/or Minion via systemct as follows:

systemctl enable salt-master.service
systemctl enable salt-minion.service

Start the Master

Once you've completed all of these steps you're ready to start your Salt Master. You should be able to start your Salt
Master now using the command seen here:

systemctl start salt-master

Now go to the Configuring Salt page.

1.2.2 Debian GNU/Linux / Raspbian

Debian GNU/Linux distribution and some derivatives such as Raspbian already have included Salt packages to their
repositories. However, current stable Debian release contains old outdated Salt releases. It is recommended to use
SaltStack repository for Debian as described below.

Installation from official Debian and Raspbian repositories is described here.

2 Chapter 1. Installation

https://aur.archlinux.org/packages.php?ID=5863

Salt Documentation, Release 2018.3.0

Installation from the Official SaltStack Repository

Packages for Debian 9 (Stretch) and Debian 8 (Jessie) are available in the Official SaltStack repository.

Instructions are at https://repo.saltstack.com/#debian.

Note: Regular security support for Debian 7 ended on April 25th 2016. As a result, 2016.3.1 and 2015.8.10 will be
the last Salt releases for which Debian 7 packages are created.

Installation from the Debian / Raspbian Official Repository

The Debian distributions contain mostly old Salt packages built by the Debian Salt Team. You can install Salt com-
ponents directly from Debian but it is recommended to use the instructions above for the packages from the official
Salt repository.

On Jessie there is an option to install Salt minion from Stretch with python-tornado dependency from jessie-backports
repositories.

To install fresh release of Salt minion on Jessie:
1. Add jessie-backports and stretch repositories:

Debian:

echo 'deb http://httpredir.debian.org/debian jessie-backports main' >> /etc/apt/
—.sources.list
echo 'deb http://httpredir.debian.org/debian stretch main' >> /etc/apt/sources.list

Raspbian:

echo 'deb http://archive.raspbian.org/raspbian/ stretch main' >> /etc/apt/sources.
~list

2. Make Jessie a default release:

echo 'APT::Default-Release "jessie";' > /Jetc/apt/apt.conf.d/1l0apt

3. Install Salt dependencies:
Debian:

apt-get update
apt-get install python-zmq python-systemd/jessie-backports python-tornado/jessie-
—backports salt-common/stretch

Raspbian:

apt-get update
apt-get install python-zmq python-tornado/stretch salt-common/stretch

4. Install Salt minion package from Latest Debian Release:

apt-get install salt-minion/stretch

1.2. Platform-specific Installation Instructions 3

https://repo.saltstack.com/#debian

Salt Documentation, Release 2018.3.0

Install Packages
Install the Salt master, minion or other packages from the repository with the apt-get command. These examples
each install one of Salt components, but more than one package name may be given at a time:

. apt-get install salt-api

. apt-get install salt-cloud

. apt-get install salt-master

. apt-get install salt-minion

. apt-get install salt-ssh

. apt-get dinstall salt-syndic

Post-installation tasks

Now, go to the Configuring Salt page.

1.2.3 Arista EOS Salt minion installation guide

The Salt minion for Arista EOS is distributed as a SWIX extension and can be installed directly on the switch. The EOS
network operating system is based on old Fedora distributions and the installation of the salt-minion requires
backports. This SWIX extension contains the necessary backports, together with the Salt basecode.

Note: This SWIX extension has been tested on Arista DCS-7280SE-68-R, running EOS 4.17.5M and vEOS 4.18.3F.

Important Notes

This package is in beta, make sure to test it carefully before running it in production.
If confirmed working correctly, please report and add a note on this page with the platform model and EOS version.
If you want to uninstall this package, please refer to the uninstalling section.

Installation from the Official SaltStack Repository

Download the swix package and save it to flash.

veos#copy https://salt-eos.netops.life/salt-eos-latest.swix flash:
veos#copy https://salt-eos.netops.life/startup.sh flash:

Install the Extension

Copy the Salt package to extension

veos#copy flash:salt-eos-latest.swix extension:

Install the SWIX

4 Chapter 1. Installation

Salt Documentation, Release 2018.3.0

veos#extension salt-eos-latest.swix force

Verify the installation

veos#show extensions | include salt-eos
salt-eo0s-2017-07-19.swix 1.0.11/1.fc25 A, F 27

Change the Salt master IP address or FQDN, by edit the variable (SALT_MASTER)

veos#bash vi /mnt/flash/startup.sh

Make sure you enable the eAPI with unix-socket

veos (config)#management api http-commands
protocol unix-socket
no shutdown

Post-installation tasks

Generate Keys and host record and start Salt minion

veos#bash
#sudo /mnt/flash/startup.sh

salt-minion should be running

Copy the installed extensions to boot-extensions

veos#copy installed-extensions boot-extensions

Apply event-handler to let EOS start salt-minion during boot-up

veos (config)#event-handler boot-up-script
trigger on-boot
action bash sudo /mnt/flash/startup.sh

For more specific installation details of the salt—-min-ion, please refer to Configuring Salt.

Uninstalling

If you decide to uninstall this package, the following steps are recommended for safety:

1. Remove the extension from boot-extensions

’veos#bash rm /mnt/flash/boot-extensions

2. Remove the extension from extensions folder

’veos#bash rm /mnt/flash/.extensions/salt-eos-latest.swix

2. Remove boot-up script

’veos(conf‘ig)#no event-handler boot-up-script

1.2. Platform-specific Installation Instructions 5

Salt Documentation, Release 2018.3.0

Additional Information

This SWIX extension contains the following RPM packages:

libsodium-1.0.11-1.fc25.7686.rpm
libstdc++-6.2.1-2.fc25.7686.rpm
openpgm-5.2.122-6.fc24.i686.rpm
python-Jinja2-2.8-0.1686.rpm
python-PyYAML-3.12-0.7686.rpm
python-babel-0.9.6-5.fcl8.noarch.rpm
python-backports-1.0-3.fc18.i686.rpm
python-backports-ssl_match_hostname-3.4.0.2-1.fcl8.noarch.rpm
python-backports_abc-0.5-0.i686.rpm
python-certifi-2016.9.26-0.1686.rpm
python-chardet-2.0.1-5.fcl8.noarch.rpm
python-crypto-1.4.1-1.noarch.rpm
python-crypto-2.6.1-1.fc18.1686.rpm
python-futures-3.1.1-1.noarch.rpm
python-jtextfsm-0.3.1-0.noarch.rpm
python-kitchen-1.1.1-2.fcl8.noarch.rpm
python-markupsafe-0.18-1.fc18.7686.rpm
python-msgpack-python-0.4.8-0.7686.rpm
python-napalm-base-0.24.3-1.noarch.rpm
python-napalm-eos-0.6.0-1.noarch.rpm
python-netaddr-0.7.18-0.noarch.rpm
python-pyeapi-0.7.0-0.noarch.rpm
python-salt-2017.7.0_1414_g2fb986f-1.noarch.rpm
python-singledispatch-3.4.0.3-0.1686.rpm
python-six-1.10.0-0.1686.rpm
python-tornado-4.4.2-0.7686.rpm
python-urllib3-1.5-7.fcl8.noarch.rpm
python2-zmg-15.3.0-2.fc25.i686.rpm
zeromg-4.1.4-5.fc25.1686.rpm

1.2.4 Fedora

Beginning with version 0.9.4, Salt has been available in the primary Fedora repositories and EPEL. It is installable
using yum or dnf, depending on your version of Fedora.

Note: Released versions of Salt starting with 2015.5. 2 through 2016. 3. 2 do not have Fedora packages available
though EPEL. To install a version of Salt within this release array, please use SaltStack's Bootstrap Script and use the
git method of installing Salt using the version's associated release tag.

Release 2016 . 3. 3 and onward will have packaged versions available via EPEL.

WARNING: Fedora 19 comes with systemd 204. Systemd has known bugs fixed in later revisions that prevent the
salt-master from starting reliably or opening the network connections that it needs to. It's not likely that a salt-
master will start or run reliably on any distribution that uses systemd version 204 or earlier. Running salt-minions
should be OK.

Installation

Salt can be installed using yum and is available in the standard Fedora repositories.

6 Chapter 1. Installation

http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
https://github.com/saltstack/salt-bootstrap
http://fedoraproject.org/wiki/EPEL

Salt Documentation, Release 2018.3.0

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

yum install salt-master
yum install salt-minion

Installing from updates-testing

When a new Salt release is packaged, it is first admitted into the updates—-testing repository, before being
moved to the stable repo.

To install from updates-testing, use the enablerepo argument for yum:

yum -—enablerepo=updates-testing install salt-master
yum --enablerepo=updates-testing install salt-minion

Installation Using pip

Since Salt is on PyPI, it can be installed using pip, though most users prefer to install using a package manager.
Installing from pip has a few additional requirements:

« Install the group "Development Tools', dnf groupinstall 'Development Tools'

« Install the "zeromq-devel' package if it fails on linking against that afterwards as well.

A pip install does not make the init scripts or the /etc/salt directory, and you will need to provide your own systemd
service unit.

Installation from pip:

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

Post-installation tasks

Master

To have the Master start automatically at boot time:

’systemctl enable salt-master.service

To start the Master:

’systemctl start salt-master.service

1.2. Platform-specific Installation Instructions 7

https://pypi.python.org/pypi/salt

Salt Documentation, Release 2018.3.0

Minion

To have the Minion start automatically at boot time:

’systemctl enable salt-minion.service

To start the Minion:

’systemctl start salt-minion.service

Now go to the Configuring Salt page.

1.2.5 FreeBSD

Installation

Salt is available in binary package form from both the FreeBSD pkgng repository or directly from SaltStack. The
instructions below outline installation via both methods:

FreeBSD repo

The FreeBSD pkgng repository is preconfigured on systems 10.x and above. No configuration is needed to pull from
these repositories.

pkg install py27-salt

These packages are usually available within a few days of upstream release.

SaltStack repo

SaltStack also hosts internal binary builds of the Salt package, available from https://repo.saltstack.com/freebsd/. To
make use of this repository, add the following file to your system:

/usr/local/etc/pkg/repos/saltstack.conf:

saltstack: {
url: "https://repo.saltstack.com/freebsd/${ABI}/",
enabled: yes

}

You should now be able to install Salt from this new repository:

pkg install py27-salt

These packages are usually available earlier than upstream FreeBSD. Also available are release candidates and de-
velopment releases. Use these pre-release packages with caution.

Post-installation tasks

Master

Copy the sample configuration file:

8 Chapter 1. Installation

https://repo.saltstack.com/freebsd/

Salt Documentation, Release 2018.3.0

’cp Jusr/local/etc/salt/master.sample /usr/local/etc/salt/master

rc.conf

Activate the Salt Master in /etc/rc.conf:

’ sysrc salt_master_enable="YES"

Start the Master

Start the Salt Master as follows:

’service salt_master start

Minion

Copy the sample configuration file:

’cp /usr/local/etc/salt/minion.sample /usr/local/etc/salt/minion

rc.conf

Activate the Salt Minion in /etc/rc.conf:

’ sysrc salt_minion_enable="YES"

Start the Minion

Start the Salt Minion as follows:

’service salt_minion start

Now go to the Configuring Salt page.

1.2.6 Gentoo

Salt can be easily installed on Gentoo via Portage:

emerge app-admin/salt

Post-installation tasks

Now go to the Configuring Salt page.

1.2.7 OpenBSD

Salt was added to the OpenBSD ports tree on Aug 10th 2013. It has been tested on OpenBSD 5.5 onwards.

Salt is dependent on the following additional ports. These will be installed as dependencies of the sysutils/salt
port:

devel/py-futures
devel/py-progressbar
net/py-msgpack
net/py-zmq
security/py-crypto

1.2. Platform-specific Installation Instructions 9

Salt Documentation, Release 2018.3.0

security/py-M2Crypto
textproc/py-MarkupSafe
textproc/py-yaml
www/py-jinja2
www/py-requests

www /py-tornado

Installation

To install Salt from the OpenBSD pkg repo, use the command:

pkg_add salt

Post-installation tasks

Master

To have the Master start automatically at boot time:

’rcctl enable salt_master

To start the Master:

’rcctl start salt_master

Minion

To have the Minion start automatically at boot time:

’rcctl enable salt_minion

To start the Minion:

’rcctl start salt_minion

Now go to the Configuring Salt page.

1.2.8 macOS
Installation from the Official SaltStack Repository

Latest stable build from the selected branch:
The output of md5 <sa'lt pkg> should match the contents of the corresponding md5 file.
Earlier builds from supported branches

Archived builds from unsupported branches

Installation from Homebrew

brew install saltstack

10 Chapter 1. Installation

https://repo.saltstack.com/osx/
https://repo.saltstack.com/osx/archive/

Salt Documentation, Release 2018.3.0

It should be noted that Homebrew explicitly discourages the use of sudo:

Homebrew is designed to work without using sudo. You can decide to use it but we strongly recommend
not to do so. If you have used sudo and run into a bug then it is likely to be the cause. Please don’t file
a bug report unless you can reproduce it after reinstalling Homebrew from scratch without using sudo

Installation from MacPorts

sudo port 1install salt

Installation from Pip

When only using the macOS system's pip, install this way:

sudo pip install salt

Salt-Master Customizations

Note: Salt master on macOS is not tested or supported by SaltStack. See SaltStack Platform Support for more
information.

To run salt-master on macOS, sudo add this configuration option to the /etc/salt/master file:

’ max_open_files: 8192

On versions previous to macOS 10.10 (Yosemite), increase the root user maxfiles limit:

’sudo launchctl limit maxfiles 4096 8192

Note: On macOS 10.10 (Yosemite) and higher, maxfiles should not be adjusted. The default limits are sufficient in
all but the most extreme scenarios. Overriding these values with the setting below will cause system instability!

Now the salt-master should run without errors:

sudo salt-master --log-level=all

Post-installation tasks

Now go to the Configuring Salt page.

1.2.9 RHEL / CentOS / Scientific Linux / Amazon Linux / Oracle Linux

Salt should work properly with all mainstream derivatives of Red Hat Enterprise Linux, including CentOS, Scientific
Linux, Oracle Linux, and Amazon Linux. Report any bugs or issues on the issue tracker.

1.2. Platform-specific Installation Instructions 11

https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/FAQ.md#sudo
https://saltstack.com/product-support-lifecycle/
https://github.com/saltstack/salt/issues

Salt Documentation, Release 2018.3.0

Installation from the Official SaltStack Repository

Packages for Redhat, CentOS, and Amazon Linux are available in the SaltStack Repository.
» Red Hat / CentOS

« Amazon Linux

Note: As of 2015.8.0, EPEL repository is no longer required for installing on RHEL systems. SaltStack repository
provides all needed dependencies.

Warning: If installing on Red Hat Enterprise Linux 7 with disabled (not subscribed on) "RHEL Server Releases'
or "RHEL Server Optional Channel' repositories, append CentOS 7 GPG key URL to SaltStack yum repository
configuration to install required base packages:

[saltstack-repo]

name=SaltStack repo for Red Hat Enterprise Linux S$releasever
baseurl=https://repo.saltstack.com/yum/redhat/$releasever/Sbasearch/latest

enabled=1

gpgcheck=1
gpgkey=https://repo.saltstack.com/yum/redhat/$releasever/Sbasearch/latest/SALTSTACK-
—GPG-KEY . pub

https://repo.saltstack.com/yum/redhat/$releasever/$bhasearch/latest/base/RPM-
—GPG-KEY-Cent0S-7

Note: systemd and systemd-python are required by Salt, but are not installed by the Red Hat 7 @base
installation or by the Salt installation. These dependencies might need to be installed before Salt.

Installation from the Community-Maintained Repository

Beginning with version 0.9.4, Salt has been available in EPEL.

Note: Packages in this repository are built by community, and it can take a little while until the latest stable SaltStack
release become available.

RHEL/CentOS 6 and 7, Scientific Linux, etc.

Warning: Salt 2015.8 is currently not available in EPEL due to unsatisfied dependencies: python-crypto
2.6.1 or higher, and python-tornado version 4.2.1 or higher. These packages are not currently available in
EPEL for Red Hat Enterprise Linux 6 and 7.

Enabling EPEL

If the EPEL repository is not installed on your system, you can download the RPM for RHEL/CentOS 6 or for
RHEL/CentOS 7 and install it using the following command:

12 Chapter 1. Installation

https://repo.saltstack.com/#rhel
https://repo.saltstack.com/#amzn
http://fedoraproject.org/wiki/EPEL
http://download.fedoraproject.org/pub/epel/6/i386/repoview/epel-release.html
http://download.fedoraproject.org/pub/epel/7/x86_64/repoview/epel-release.html

Salt Documentation, Release 2018.3.0

rpm -Uvh epel-release-X-Y.rpm

Replace epel-release-X-Y. rpm with the appropriate filename.

Installing Stable Release

Salt is packaged separately for the minion and the master. It is necessary to install only the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

« yum install salt-master
« yum install salt-minion
« yum install salt-ssh

« yum install salt-syndic

« yum 1install salt-cloud

Installing from epel-testing

When a new Salt release is packaged, it is first admitted into the epel-testing repository, before being moved
to the stable EPEL repository.

To install from epel-testing, use the enablerepo argument for yum:

yum --enablerepo=epel-testing install salt-minion

Installation Using pip
Since Salt is on PyPI, it can be installed using pip, though most users prefer to install using RPM packages (which
can be installed from EPEL).
Installing from pip has a few additional requirements:
« Install the group ‘Development Tools', yum groupinstall 'Development Tools'
« Install the "zeromq-devel' package if it fails on linking against that afterwards as well.

A pip install does not make the init scripts or the /etc/salt directory, and you will need to provide your own systemd
service unit.

Installation from pip:

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

1.2. Platform-specific Installation Instructions 13

https://pypi.python.org/pypi/salt
http://fedoraproject.org/wiki/EPEL

Salt Documentation, Release 2018.3.0

ZeroMQ 4

We recommend using ZeroMQ 4 where available. SaltStack provides ZeroMQ 4.0.5 and pyzmq 14.5.0 in the SaltStack

Repository.

If this repository is added before Salt is installed, then installing either salt-master or salt-minion will
automatically pull in ZeroMQ 4.0.5, and additional steps to upgrade ZeroMQ and pyzmgq are unnecessary.

Package Management

Salt's interface to yum makes heavy use of the repoquery utility, from the yum-utils package. This package will
be installed as a dependency if salt is installed via EPEL. However, if salt has been installed using pip, or a host is
being managed using salt-ssh, then as of version 2014.7.0 yum-utils will be installed automatically to satisfy this

dependency.

Post-installation tasks

Master

To have the Master start automatically at boot time:

RHEL/CentOS 5 and 6

’chkconﬁg salt-master on

RHEL/CentOS 7

’systemctl enable salt-master.service

To start the Master:
RHEL/CentOS 5 and 6

’service salt-master start

RHEL/CentOS 7

’systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

RHEL/CentOS 5 and 6

’chkconf'ig salt-minion on

RHEL/CentOS 7

’systemctl enable salt-minion.service

To start the Minion:
RHEL/CentOS 5 and 6

14

Chapter 1. Installation

http://yum.baseurl.org/wiki/YumUtils
http://yum.baseurl.org/wiki/YumUtils

Salt Documentation, Release 2018.3.0

’service salt-minion start

RHEL/CentOS 7

’systemctl start salt-minion.service

Now go to the Configuring Salt page.

1.2.10 Solaris

Salt is known to work on Solaris but community packages are unmaintained.

It is possible to install Salt on Solaris by using setuptools.

For example, to install the develop version of salt:

git clone https://github.com/saltstack/salt
cd salt
sudo python setup.py install --force

Note: SaltStack does offer commercial support for Solaris which includes packages.

1.2.11 Ubuntu

Installation from the Official SaltStack Repository

Packages for Ubuntu 16 (Xenial), Ubuntu 14 (Trusty), and Ubuntu 12 (Precise) are available in the SaltStack repository.

Instructions are at https://repo.saltstack.com/#ubuntu.

Install Packages

Install the Salt master, minion or other packages from the repository with the apt-get command. These examples
each install one of Salt components, but more than one package name may be given at a time:

apt-get
apt-get
apt-get
apt-get
apt-get
apt-get

install
install
install
install
install
install

Post-installation tasks

salt-api
salt-cloud
salt-master
salt-minion
salt-ssh

salt-syndic

Now go to the Configuring Salt page.

1.2. Platform-specific Installation Instructions

15

https://repo.saltstack.com/#ubuntu

Salt Documentation, Release 2018.3.0

1.2.12 Windows
Salt has full support for running the Salt minion on Windows. You must connect Windows Salt minions to a Salt
master on a supported operating system to control your Salt Minions.

Many of the standard Salt modules have been ported to work on Windows and many of the Salt States currently
work on Windows as well.

Installation from the Official SaltStack Repository

Latest stable build from the selected branch:
The output of md5sum <salt minion exe> should match the contents of the corresponding md5 file.
Earlier builds from supported branches

Archived builds from unsupported branches

Note: The installation executable installs dependencies that the Salt minion requires.

The 64bit installer has been tested on Windows 7 64bit and Windows Server 2008R2 64bit. The 32bit installer has
been tested on Windows 2008 Server 32bit. Please file a bug report on our GitHub repo if issues for other platforms
are found.

There are installers available for Python 2 and Python 3.

The installer will detect previous installations of Salt and ask if you would like to remove them. Clicking OK will
remove the Salt binaries and related files but leave any existing config, cache, and PKI information.

Salt Minion Installation

If the system is missing the appropriate version of the Visual C++ Redistributable (vcredist) the user will be prompted
to install it. Click OK to install the vcredist. Click Cance'l to abort the installation without making modifications
to the system.

If Salt is already installed on the system the user will be prompted to remove the previous installation. Click OK
to uninstall Salt without removing the configuration, PKI information, or cached files. Click Cance'l to abort the
installation before making any modifications to the system.

After the Welcome and the License Agreement, the installer asks for two bits of information to configure the minion;
the master hostname and the minion name. The installer will update the minion config with these options.

If the installer finds an existing minion config file, these fields will be populated with values from the existing config,
but they will be grayed out. There will also be a checkbox to use the existing config. If you continue, the existing
config will be used. If the checkbox is unchecked, default values are displayed and can be changed. If you continue,
the existing config file in c:\salt\conf will be removed along with the *"c:saltconfminion.d” directory. The
values entered will be used with the default config.

The final page allows you to start the minion service and optionally change its startup type. By default, the minion
is set to Automatic. You can change the minion start type to Automatic (Delayed Start) by checking
the 'Delayed Start' checkbox.

Note: Highstates that require a reboot may fail after reboot because salt continues the highstate before Windows
has finished the booting process. This can be fixed by changing the startup type to *Automatic (Delayed Start)'. The
drawback is that it may increase the time it takes for the ‘salt-minion' service to actually start.

16 Chapter 1. Installation

https://repo.saltstack.com/windows/
https://repo.saltstack.com/windows/archive/

Salt Documentation, Release 2018.3.0

The salt-minion service will appear in the Windows Service Manager and can be managed there or from the
command line like any other Windows service.

sc start salt-minion
net start salt-minion

Installation Prerequisites

Most Salt functionality should work just fine right out of the box. A few Salt modules rely on PowerShell. The
minimum version of PowerShell required for Salt is version 3. If you intend to work with DSC then Powershell
version 5 is the minimum.

Silent Installer Options

The installer can be run silently by providing the /S option at the command line. The installer also accepts the
following options for configuring the Salt Minion silently:

Option Description

/master= A string value to set the IP address or hostname of the master. Default value is “salt’. You
can pass a single master or a comma-separated list of masters. Setting the master will cause
the installer to use the default config or a custom config if defined.

/minion- A string value to set the minion name. Default value is "hostname'. Setting the minion

name= name causes the installer to use the default config or a custom config if defined.

/start- Either a 1 or 0. "'1' will start the salt-minion service, '0' will not. Default is to start the

minion= service after installation.

/start- Set the minion start type to Automatic (Delayed Start).

minion-

delayed

/default- Overwrite the existing config if present with the default config for salt. Default is to use the

config existing config if present. If /master and/or /minion-name is passed, those values will
be used to update the new default config.

/custom- A string value specifying the name of a custom config file in the same path as the installer

config= of the full path to a custom config file. If /master and/or /minion-name is passed,
those values will be used to update the new custom config.

/S Runs the installation silently. Uses the above settings or the defaults.

/? Displays command line help.

Note: /start-service hasbeen deprecated but will continue to function as expected for the time being.

Note: /default-configand /custom-config= will backup an existing config if found. A timestamp and a
. bak extension will be added. That includes the minion file and the minion.d directory.

Here are some examples of using the silent installer:

Install the Salt Minion
Configure the minion and start the service

Salt-Minion-2017.7.1-Py2-AMD64-Setup.exe /S /master=yoursaltmaster /minion-
—name=yourminionname

1.2. Platform-specific Installation Instructions 17

Salt Documentation, Release 2018.3.0

Install the Salt Minion
Configure the minion but don't start the minion service

Salt-Minion-2017.7.1-Py3-AMD64-Setup.exe /S /master=yoursaltmaster /minion-
—»name=yourminionname /start-minion=0

Install the Salt Minion
Configure the minion using a custom config and configuring multimaster

Salt-Minion-2017.7.1-Py3-AMD64-Setup.exe /S /custom-config=windows_minion /master=prod_
—masterl,prod_master2

Running the Salt Minion on Windows as an Unprivileged User

Notes:

« These instructions were tested with Windows Server 2008 R2

« They are generalizable to any version of Windows that supports a salt-minion

Create the Unprivileged User that the Salt Minion will Run As

10.
11.
12.

NeRE e R =N) B - O L W)

. Click Start > Control Panel > User Accounts.

. Click Add or remove user accounts.

. Click Create new account.

. Enter salt-user (or a name of your preference) in the New account name field.
. Select the Standard user radio button.

. Click the Create Account button.

. Click on the newly created user account.

. Click the Create a password link.

. In the New password and Confirm new password fields, provide a password (e.g **SuperSecretMin-

ionPassword4Me!").
In the Type a password hint field, provide appropriate text (e.g. My Salt Password").
Click the Create password button.

Close the Change an Account window.

Add the New User to the Access Control List for the Salt Folder

A s W

. In a File Explorer window, browse to the path where Salt is installed (the default path is C:\Salt).
. Right-click on the Sa'lt folder and select Properties.

. Click on the Security tab.

. Click the Ed1t button.

. Click the Add button.

. Type the name of your designated Salt user and click the OK button.

18

Chapter 1. Installation

Salt Documentation, Release 2018.3.0

7. Check the box to Allow the Mod1i fy permission.
8. Click the OK button.
9. Click the OK button to close the Salt Properties window.

Update the Windows Service User for the salt-minion Service

1. Click Start > Administrative Tools > Services.

. In the Services list, right-click on salt-minion and select Properties.
. Click the Log On tab.

. Click the This account radio button.

. Provide the account credentials created in section A.

. Click the OK button.

NN g W

. Click the OK button to the prompt confirming that the user has been granted the Log On As A
Service right.

8. Click the OK button to the prompt confirming that The new logon name will not take effect
until you stop and restart the service

9. Right-Click on salt-minion and select Stop.
10. Right-Click on salt-minion and select Start.

Building and Developing on Windows

This document will explain how to set up a development environment for Salt on Windows. The development
environment allows you to work with the source code to customize or fix bugs. It will also allow you to build your
own installation.

There are several scripts to automate creating a Windows installer as well as setting up an environment that facilitates
developing and troubleshooting Salt code. They are located in the pkg\windows directory in the Salt repo (here).

Scripts:

Script Description

build_env_2.ps1 A PowerShell script that sets up a Python 2 build environment

build_env_3.ps1 A PowerShell script that sets up a Python 3 build environment

build_pkg.bat | A batch file that builds a Windows installer based on the contents of the C: \Python27
directory

build.bat A batch file that fully automates the building of the Windows installer using the above
two scripts

Note: The build.bat and build_pkg.bat scripts both accept a parameter to specify the version of Salt that
will be displayed in the Windows installer. If no version is passed, the version will be determined using git.

Both scripts also accept an additional parameter to specify the version of Python to use. The default is 2.

1.2. Platform-specific Installation Instructions 19

https://github.com/saltstack/salt/tree/develop/pkg/windows

Salt Documentation, Release 2018.3.0

Prerequisite Software

The only prerequisite is Git for Windows.

Create a Build Environment
1. Working Directory

Create a Salt-Dev directory on the root of C:. This will be our working directory. Navigate to Salt-Dev and
clone the Salt repo from GitHub.

Open a command line and type:

cd \

md Salt-Dev

cd Salt-Dev

git clone https://github.com/saltstack/salt

Go into the salt directory and checkout the version of salt to work with (2016.3 or higher).

cd salt
git checkout 2017.7.2

2. Setup the Python Environment

Navigate to the pkg\windows directory and execute the build_env.ps1 PowerShell script.

cd pkg\windows
powershell -file build_env_2.psl

Note: You can also do this from Explorer by navigating to the pkg\windows directory, right clicking the
build_env_2.ps1 powershell script and selecting Run with PowerShell

This will download and install Python 2 with all the dependencies needed to develop and build Salt.

Note: If you get an error or the script fails to run you may need to change the execution policy. Open a powershell
window and type the following command:

Set-ExecutionPolicy RemoteSigned

3. Salt in Editable Mode

Editable mode allows you to more easily modify and test the source code. For more information see the Pip docu-
mentation.

Navigate to the root of the salt directory and install Salt in editable mode with pip

cd \Salt-Dev\salt
pip install -e .

20 Chapter 1. Installation

https://git-scm.com/download/win/
https://github.com/saltstack/salt/
https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs
https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs

Salt Documentation, Release 2018.3.0

Note: The . is important

Note: If pip is not recognized, you may need to restart your shell to get the updated path

Note: If pip is still not recognized make sure that the Python Scripts folder is in the System %PATH%.
(C:\Python2\Scripts)

4. Setup Salt Configuration

Salt requires a minion configuration file and a few other directories. The default config file is named minion located
inC:\salt\conf. The easiest way to set this up is to copy the contents of the salt\pkg\windows\buildenv
directory to C:\salt.

cd \
md salt
xcopy /s /e \Salt-Dev\salt\pkg\windows\buildenv* \salt)\

Now go into the C:\salt\conf directory and edit the minion config file named minion (no extension). You
need to configure the master and id parameters in this file. Edit the following lines:

master: <ip or name of your master>
id: <name of your minion>

Create a Windows Installer

To create a Windows installer, follow steps 1 and 2 from Create a Build Environment above. Then proceed to 3 below:

3. Install Salt

To create the installer for Window we install Salt using Python instead of pip. Navigate to the root sa'lt directory
and install Salt.

cd \Salt-Dev\salt
python setup.py install

4. Create the Windows Installer

Navigate to the pkg\windows directory and run the build_pkg.bat with the build version (2017.7.2) and the
Python version as parameters.

cd pkg\windows
build_pkg.bat 2017.7.2 2

AAAAAAAN A
build version -- |
python version ------

1.2. Platform-specific Installation Instructions 21

Salt Documentation, Release 2018.3.0

Note: If no version is passed, the build_pkg.bat will guess the version number using git. If the python version
is not passed, the default is 2.

Creating a Windows Installer: Alternate Method (Easier)

Clone the Salt repo from GitHub into the directory of your choice. We're going to use Salt-Dev.

cd \

md Salt-Dev

cd Salt-Dev

git clone https://github.com/saltstack/salt

Go into the salt directory and checkout the version of Salt you want to build.

cd salt
git checkout 2017.7.2

Then navigate to pkg\windows and run the build.bat script with the version you're building.

cd pkg\windows
build.bat 2017.7.2 3

AAAAAAAN A

build version |
python version --

This will install everything needed to build a Windows installer for Salt using Python 3. The binary will be in the
salt\pkg\windows\installer directory.

Testing the Salt minion

1. Create the directory C: \salt (if it doesn't exist already)
2. Copy the example conf and var directories from pkg\windows\buildenv into C:\salt

3. Edit C:\salt\conf\minion

master: +ipaddress or hostname of your salt-master

4. Start the salt-minion

cd C:\Python27\Scripts
python salt-minion -1 debug

5. On the salt-master accept the new minion's key

sudo salt-key -A

This accepts all unaccepted keys. If you're concerned about security just accept the key for this
specific minion.

6. Test that your minion is responding

On the salt-master run:

22 Chapter 1. Installation

https://github.com/saltstack/salt/

Salt Documentation, Release 2018.3.0

sudo salt 'x' test.ping

You should get the following response: {'your minion hostname': True}

Packages Management Under Windows 2003

Windows Server 2003 and Windows XP have both reached End of Support. Though Salt is not officially supported
on operating systems that are EoL, some functionality may continue to work.

On Windows Server 2003, you need to install optional component **WMI Windows Installer Provider" to get a full
list of installed packages. If you don't have this, salt-minion can't report some installed software.

1.2.13 SUSE
Installation from the Official SaltStack Repository

Packages for SUSE 12 SP1, SUSE 12, SUSE 11, openSUSE 13 and openSUSE Leap 42.1 are available in the SaltStack
Repository.

Instructions are at https://repo.saltstack.com/#suse.

Installation from the SUSE Repository

Since openSUSE 13.2, Salt 2014.1.11 is available in the primary repositories. With the release of SUSE manager 3 a
new repository setup has been created. The new repo will by systemsmanagement:saltstack, which is the source for
newer stable packages. For backward compatibility a linkpackage will be created to the old devel:language:python

repo. All development of suse packages will be done in systemsmanagement:saltstack:testing. This will ensure that
salt will be in mainline suse repo's, a stable release repo and a testing repo for further enhancements.

Installation
Salt can be installed using zypper and is available in the standard openSUSE/SLES repositories.
Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

zypper install salt-master
zypper install salt-minion

Post-installation tasks openSUSE

Master

To have the Master start automatically at boot time:

systemctl enable salt-master.service

To start the Master:

1.2. Platform-specific Installation Instructions 23

https://repo.saltstack.com/#suse

Salt Documentation, Release 2018.3.0

’systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

’systemctl enable salt-minion.service

To start the Minion:

’systemctl start salt-minion.service

Post-installation tasks SLES

Master

To have the Master start automatically at boot time:

’chkconf‘ig salt-master on

To start the Master:

’ rcsalt-master start

Minion

To have the Minion start automatically at boot time:

’Chkconf'ig salt-minion on

To start the Minion:

’ rcsalt-minion start

Unstable Release
openSUSE

For openSUSE Tumbleweed run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—openSUSE_Tumbleweed/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

For openSUSE 42.1 Leap run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—openSUSE_Leap_42.1/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

For openSUSE 13.2 run the following as root:

24 Chapter 1. Installation

Salt Documentation, Release 2018.3.0

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—openSUSE_13.2/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

SUSE Linux Enterprise

For SLE 12 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—SLE_12/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

For SLE 11 SP4 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—SLE_11_SP4/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

Now go to the Configuring Salt page.

1.3 Initial Configuration

1.3.1 Configuring Salt

Salt configuration is very simple. The default configuration for the master will work for most installations and the
only requirement for setting up a minion is to set the location of the master in the minion configuration file.

The configuration files will be installed to /etc/salt and are named after the respective components,
/etc/salt/master,and /etc/salt/minion.

Master Configuration

By default the Salt master listens on ports 4505 and 4506 on all interfaces (0.0.0.0). To bind Salt to a specific IP,
redefine the “interface" directive in the master configuration file, typically /etc/salt/master, as follows:

- #interface: 0.0.0.0
+ 1dinterface: 10.0.0.1

After updating the configuration file, restart the Salt master. See the master configuration reference for more details
about other configurable options.

Minion Configuration

Although there are many Salt Minion configuration options, configuring a Salt Minion is very simple. By default
a Salt Minion will try to connect to the DNS name " salt"; if the Minion is able to resolve that name correctly, no
configuration is needed.

1.3. Initial Configuration 25

Salt Documentation, Release 2018.3.0

If the DNS name " “salt" does not resolve to point to the correct location of the Master, redefine the * “master" directive
in the minion configuration file, typically /etc/salt/minion, as follows:

- #master: salt
+ master: 10.0.0.1

After updating the configuration file, restart the Salt minion. See the minion configuration reference for more details
about other configurable options.

Proxy Minion Configuration

A proxy minion emulates the behaviour of a regular minion and inherits their options.
Similarly, the configuration file is /etc/salt/proxy and the proxy tries to connect to the DNS name " “salt".

In addition to the regular minion options, there are several proxy-specific - see the proxy minion configuration refer-
ence.

Running Salt

1. Start the master in the foreground (to daemonize the process, pass the -d flag):

’salt—master

2. Start the minion in the foreground (to daemonize the process, pass the -d flag):

’ salt-minion

Having trouble?

The simplest way to troubleshoot Salt is to run the master and minion in the foreground with log level set to
debug:

salt-master --log-level=debug

For information on salt's logging system please see the logging document.

Run as an unprivileged (non-root) user
To run Salt as another user, set the user parameter in the master config file.

Additionally, ownership, and permissions need to be set such that the desired user can read from and write to the
following directories (and their subdirectories, where applicable):

« /etc/salt

« /var/cache/salt
» /var/log/salt

« /var/run/salt

More information about running salt as a non-privileged user can be found here.

There is also a full troubleshooting guide available.

26 Chapter 1. Installation

Salt Documentation, Release 2018.3.0

Key Identity

Salt provides commands to validate the identity of your Salt master and Salt minions before the initial key exchange.
Validating key identity helps avoid inadvertently connecting to the wrong Salt master, and helps prevent a potential
MiTM attack when establishing the initial connection.

Master Key Fingerprint

Print the master key fingerprint by running the following command on the Salt master:

salt-key -F master

Copy the master . pub fingerprint from the Local Keys section, and then set this value as the master_finger
in the minion configuration file. Save the configuration file and then restart the Salt minion.

Minion Key Fingerprint

Run the following command on each Salt minion to view the minion key fingerprint:

salt-call --local key.finger

Compare this value to the value that is displayed when you run the salt-key --finger <MINION_ID>
command on the Salt master.

Key Management

Salt uses AES encryption for all communication between the Master and the Minion. This ensures that the commands
sent to the Minions cannot be tampered with, and that communication between Master and Minion is authenticated
through trusted, accepted keys.

Before commands can be sent to a Minion, its key must be accepted on the Master. Run the salt-key command
to list the keys known to the Salt Master:

[root@master ~]# salt-key -L
Unaccepted Keys:

alpha

bravo

charlie

delta

Accepted Keys:

This example shows that the Salt Master is aware of four Minions, but none of the keys has been accepted. To accept
the keys and allow the Minions to be controlled by the Master, again use the salt-key command:

[root@master ~]# salt-key -A
[root@master ~]# salt-key -L
Unaccepted Keys:

Accepted Keys:

alpha

bravo

charlie

delta

1.3. Initial Configuration 27

Salt Documentation, Release 2018.3.0

The sa'lt-key command allows for signing keys individually or in bulk. The example above, using —A bulk-accepts
all pending keys. To accept keys individually use the lowercase of the same option, —a keyname.

See also:
salt-key manpage
Sending Commands

Communication between the Master and a Minion may be verified by running the test.ping command:

[root@master ~]# salt alpha test.ping
alpha:
True

Communication between the Master and all Minions may be tested in a similar way:

[root@master ~]# salt 'x' test.ping
alpha:
True
bravo:
True
charlie:
True
delta:
True

Each of the Minions should send a True response as shown above.

What's Next?

Understanding targeting is important. From there, depending on the way you wish to use Salt, you should also
proceed to learn about Remote Execution and Configuration Management.

1.4 Additional Installation Guides

1.4.1 Salt Bootstrap

The Salt Bootstrap script allows for a user to install the Salt Minion or Master on a variety of system distributions
and versions. This shell script known as bootstrap-salt.sh runs through a series of checks to determine
the operating system type and version. It then installs the Salt binaries using the appropriate methods. The Salt
Bootstrap script installs the minimum number of packages required to run Salt. This means that in the event you
run the bootstrap to install via package, Git will not be installed. Installing the minimum number of packages helps
ensure the script stays as lightweight as possible, assuming the user will install any other required packages after
the Salt binaries are present on the system. The script source is available on GitHub: https://github.com/saltstack/
salt-bootstrap

Supported Operating Systems

28 Chapter 1. Installation

https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap

Salt Documentation, Release 2018.3.0

Note: In the event you do not see your distribution or version available please review the develop branch on GitHub
as it may contain updates that are not present in the stable release: https://github.com/saltstack/salt-bootstrap/tree/
develop

Debian and derivatives

« Debian GNU/Linux 7/8
« Linux Mint Debian Edition 1 (based on Debian 8)
« Kali Linux 1.0 (based on Debian 7)

Red Hat family

« Amazon Linux 2012.09/2013.03/2013.09/2014.03/2014.09

CentOS 5/6/7
Fedora 17/18/20/21/22

Oracle Linux 5/6/7

- Red Hat Enterprise Linux 5/6/7

« Scientific Linux 5/6/7

SUSE family

« openSUSE 12/13

openSUSE Leap 42
« openSUSE Tumbleweed 2015
» SUSE Linux Enterprise Server 11 SP1/11 SP2/11 SP3/12

Ubuntu and derivatives

Elementary OS 0.2 (based on Ubuntu 12.04)
Linaro 12.04

o Linux Mint 13/14/16/17

Trisquel GNU/Linux 6 (based on Ubuntu 12.04)

Ubuntu 10.x/11.x/12.x/13.x/14.x/15.%/16.x

Other Linux distro

« Arch Linux

« Gentoo

1.4. Additional Installation Guides 29

https://github.com/saltstack/salt-bootstrap/tree/develop
https://github.com/saltstack/salt-bootstrap/tree/develop

Salt Documentation, Release 2018.3.0

UNIX systems

BSD:

« OpenBSD

« FreeBSD 9/10/11
SunOS:

« SmartOS

Example Usage

If you're looking for the one-liner to install Salt, please scroll to the bottom and use the instructions for Installing via
an Insecure One-Liner

Note: In every two-step example, you would be well-served to examine the downloaded file and examine it to
ensure that it does what you expect.

The Salt Bootstrap script has a wide variety of options that can be passed as well as several ways of obtaining the
bootstrap script itself.

Note: These examples below show how to bootstrap Salt directly from GitHub or other Git repository. Run the
script without any parameters to get latest stable Salt packages for your system from SaltStack corporate repository.
See first example in the Install using wget section.

Install using curl

Using curl to install latest development version from GitHub:

curl -o bootstrap-salt.sh -L https://bootstrap.saltstack.com
sudo sh bootstrap-salt.sh git develop

If you want to install a specific release version (based on the Git tags):

curl -o bootstrap-salt.sh -L https://bootstrap.saltstack.com
sudo sh bootstrap-salt.sh git v2015.8.8

To install a specific branch from a Git fork:

curl -o bootstrap-salt.sh -L https://bootstrap.saltstack.com
sudo sh bootstrap-salt.sh -g https://github.com/myuser/salt.git git mybranch

If all you want is to install a salt-master using latest Git:

curl -o bootstrap-salt.sh -L https://bootstrap.saltstack.com
sudo sh bootstrap-salt.sh -M -N git develop

If your host has Internet access only via HTTP proxy:

30 Chapter 1. Installation

https://repo.saltstack.com/

Salt Documentation, Release 2018.3.0

PROXY="http://user:password@myproxy.example.com:3128"'
curl -o bootstrap-salt.sh -L -x "$SPROXY" https://bootstrap.saltstack.com
sudo sh bootstrap-salt.sh -G -H "$PROXY" git

Install using wget

Using wget to install your distribution's stable packages:

wget -0 bootstrap-salt.sh https://bootstrap.saltstack.com
sudo sh bootstrap-salt.sh

Downloading the script from develop branch:

wget -0 bootstrap-salt.sh https://bootstrap.saltstack.com/develop
sudo sh bootstrap-salt.sh

Installing a specific version from git using wget:

wget -0 bootstrap-salt.sh https://bootstrap.saltstack.com
sudo sh bootstrap-salt.sh -P git v2015.8.8

Note: On the above example we added -P which will allow PIP packages to be installed if required but it's not a
necessary flag for Git based bootstraps.

Install using Python

If you already have Python installed, python 2.6, then it's as easy as:

python -m urllib "https://bootstrap.saltstack.com" > bootstrap-salt.sh
sudo sh bootstrap-salt.sh git develop

All Python versions should support the following in-line code:

python -c 'import urllib; print urllib.urlopen("https://bootstrap.saltstack.com").
—read()' > bootstrap-salt.sh
sudo sh bootstrap-salt.sh git develop

Install using fetch

On a FreeBSD base system you usually don't have either of the above binaries available. You do have fetch available
though:

fetch -o bootstrap-salt.sh https://bootstrap.saltstack.com
sudo sh bootstrap-salt.sh

If you have any SSL issues install ca_root_nssp:

pkg install ca_root_nssp

And either copy the certificates to the place where fetch can find them:

1.4. Additional Installation Guides 31

Salt Documentation, Release 2018.3.0

’ cp /usr/local/share/certs/ca-root-nss.crt /etc/ssl/cert.pem

Or link them to the right place:

’1n -s /usr/local/share/certs/ca-root-nss.crt /etc/ssl/cert.pem

Installing via an Insecure One-Liner

The following examples illustrate how to install Salt via a one-liner.

Note: Warning! These methods do not involve a verification step and assume that the delivered file is trustworthy.

Any of the example above which use two-lines can be made to run in a single-line configuration with minor modi-
fications.

For example, using curl to install your distribution's stable packages:

’curl -L https://bootstrap.saltstack.com | sudo sh

Using wget to install your distribution's stable packages:

’wget -0 - https://bootstrap.saltstack.com | sudo sh

Installing the latest develop branch of Salt:

’curl -L https://bootstrap.saltstack.com | sudo sh -s -- git develop

Command Line Options

Here's a summary of the command line options:

$ sh bootstrap-salt.sh -h

Installation types:

- stable Install latest stable release. This is the default
install type

- stable [branch] Install latest version on a branch. Only supported
for packages available at repo.saltstack.com

- stable [version] Install a specific version. Only supported for
packages available at repo.saltstack.com

- daily Ubuntu specific: configure SaltStack Daily PPA

- testing RHEL-family specific: configure EPEL testing repo

- git Install from the head of the develop branch

- git [ref] Install from any git ref (such as a branch, tag, or
commit)

Examples:

- bootstrap-salt.sh

- bootstrap-salt.sh stable

- bootstrap-salt.sh stable 2017.7

- bootstrap-salt.sh stable 2017.7.2
- bootstrap-salt.sh daily

- bootstrap-salt.sh testing

- bootstrap-salt.sh git

32 Chapter 1. Installation

Salt Documentation, Release 2018.3.0

- bootstrap-salt.sh git 2017.7
- bootstrap-salt.sh git v2017.7.2
- bootstrap-salt.sh git 06f249901a2e2fled310d58ea3921a129f214358

Options:

-h Display this message

-v Display script version

-n No colours

-D Show debug output

-c Temporary configuration directory

-g Salt Git repository URL. Default: https://github.com/saltstack/salt.git

-w Install packages from downstream package repository rather than
upstream, saltstack package repository. This 1is currently only
implemented for SUSE.

-k Temporary directory holding the minion keys which will pre-seed
the master.

-s Sleep time used when waiting for daemons to start, restart and when
checking for the services running. Default: 3

-L Also install salt-cloud and required python-libcloud package

-M Also install salt-master

-S Also install salt-syndic

-N Do not install salt-minion

-X Do not start daemons after dinstallation

-d Disables checking if Salt services are enabled to start on system boot.
You can also do this by touching /tmp/disable_salt_checks on the target
host. Default: ${BS_FALSE}

-P Allow pip based installations. On some distributions the required salt
packages or its dependencies are not available as a package for that
distribution. Using this flag allows the script to use pip as a last
resort method. NOTE: This only works for functions which actually
implement pip based installations.

-U If set, fully upgrade the system prior to bootstrapping Salt

-I If set, allow insecure connections while downloading any files. For
example, pass '--no-check-certificate' to 'wget' or '--insecure' to
'curl'. On Debian and Ubuntu, using this option with -U allows one to obtain
GnuPG archive keys insecurely if distro has changed release signatures.

-F Allow copied files to overwrite existing (config, init.d, etc)

-K If set, keep the temporary files 1in the temporary directories specified
with -c and -k

-C Only run the configuration function. Implies -F (forced overwrite).

To overwrite Master or Syndic configs, -M or -S, respectively, must
also be specified. Salt installation will be omitted, but some of the
dependencies could be installed to write configuration with -j or -3J.

-A Pass the salt-master DNS name or IP. This will be stored under
${BS_SALT_ETC_DIR}/minion.d/99-master-address.conf

-i Pass the salt-minion id. This will be stored under
${BS_SALT_ETC_DIR}/minion_id

-p Extra-package to install while installing Salt dependencies. One package
per -p flag. You're responsible for providing the proper package name.

-H Use the specified HTTP proxy for all download URLs (including https://).
For example: http://myproxy.example.com:3128

-Z Enable additional package repository for newer ZeroMQ
(only available for RHEL/Cent0S/Fedora/Ubuntu based distributions)

-b Assume that dependencies are already installed and software sources are
set up. If git is selected, git tree is still checked out as dependency
step.

-f Force shallow cloning for git installations.

This may result in an "n/a" in the version number.

1.4. Additional Installation Guides 33

Salt Documentation, Release 2018.3.0

-1 Disable ssl checks. When passed, switches "https" calls to "http" where
possible.

-V Install Salt into virtualenv
(only available for Ubuntu based distributions)

-a Pip install all Python pkg dependencies for Salt. Requires -V to install
all pip pkgs 1into the virtualenv.

(Only available for Ubuntu based distributions)

-r Disable all repository configuration performed by this script. This
option assumes all necessary repository configuration is already present
on the system.

-R Specify a custom repository URL. Assumes the custom repository URL
points to a repository that mirrors Salt packages located at
repo.saltstack.com. The option passed with -R replaces the
"repo.saltstack.com". If -R is passed, -r is also set. Currently only
works on CentOS/RHEL and Debian based distributions.

-J Replace the Master config file with data passed in as a JSON string. If
a Master config file is found, a reasonable effort will be made to save
the file with a ".bak" extension. If used in conjunction with -C or -F,
no ".bak" file will be created as either of those options will force
a complete overwrite of the file.

-j Replace the Minion config file with data passed in as a JSON string. If
a Minion config file 1is found, a reasonable effort will be made to save
the file with a ".bak" extension. If used in conjunction with -C or -F,
no ".bak" file will be created as either of those options will force
a complete overwrite of the file.

-g Quiet salt 1installation from git (setup.py install -q)

-x Changes the python version used to install a git version of salt. Currently
this is considered experimental and has only been tested on Centos 6. This
only works for git installations.

-y Installs a different python version on host. Currently this has only been
tested with Centos 6 and 1is considered experimental. This will install the
jus repo on the box if disable repo is false. This must be used in conjunction
with -x <pythonversion>. For example:

sh bootstrap.sh -P -y -x python2.7 git v2016.11.3
The above will install python27 and install the git version of salt using the
python2.7 executable. This only works for git and pip installations.

1.4.2 Opening the Firewall up for Salt

The Salt master communicates with the minions using an AES-encrypted ZeroMQ connection. These communi-
cations are done over TCP ports 4505 and 4506, which need to be accessible on the master only. This document
outlines suggested firewall rules for allowing these incoming connections to the master.

Note: No firewall configuration needs to be done on Salt minions. These changes refer to the master only.

Fedora 18 and beyond / RHEL 7 / CentOS 7

Starting with Fedora 18 FirewallD is the tool that is used to dynamically manage the firewall rules on a host. It has
support for IPv4/6 settings and the separation of runtime and permanent configurations. To interact with FirewallD
use the command line client firewall-cmd.

firewall-cmd example:

34 Chapter 1. Installation

https://fedoraproject.org/wiki/FirewallD

Salt Documentation, Release 2018.3.0

’f'irewall-cmd --permanent --zone=<zone> --add-port=4505-4506/tcp

Please choose the desired zone according to your setup. Don't forget to reload after you made your changes.

’ firewall-cmd --reload

RHEL 6 / CentOS 6

The lokkit command packaged with some Linux distributions makes opening iptables firewall ports very simple
via the command line. Just be careful to not lock out access to the server by neglecting to open the ssh port.

lokkit example:

llokkit -p 22:tcp -p 4505:tcp -p 4506:tcp

The system-config-firewall-tui command provides a text-based interface to modifying the firewall.

system-config-firewall-tui:

’ system-config-firewall-tui

openSUSE

Salt installs firewall rules in /etc/sysconfig/SuSEfirewall2.d/services/salt. Enable with:

SuSEfirewall2 open
SuSEfirewall2 start

If you have an older package of Salt where the above configuration file is not included, the SUSEfirewall2
command makes opening iptables firewall ports very simple via the command line.

SuSEfirewall example:

SuSEfirewall2 open EXT TCP 4505
SuSEfirewall2 open EXT TCP 4506

The firewall module in YaST2 provides a text-based interface to modifying the firewall.

YaST?2:

yast2 firewall

Windows

Windows Firewall is the default component of Microsoft Windows that provides firewalling and packet filtering.
There are many 3rd party firewalls available for Windows, some of which use rules from the Windows Firewall. If
you are experiencing problems see the vendor's specific documentation for opening the required ports.

The Windows Firewall can be configured using the Windows Interface or from the command line.
Windows Firewall (interface):

1. Open the Windows Firewall Interface by typing wf . msc at the command prompt or in a run dialog (Windows
Key + R)

2. Navigate to Inbound Rules in the console tree

1.4. Additional Installation Guides 35

https://github.com/saltstack/salt/blob/develop/pkg/suse/salt.SuSEfirewall2

Salt Documentation, Release 2018.3.0

3. Add a new rule by clicking New Rule... in the Actions area

4. Change the Rule Type to Port. Click Next

5. Set the Protocol to TCP and specify local ports 4505-4506. Click Next

6. Set the Action to Allow the connection. Click Next

7. Apply the rule to Domain, Private, and Public. Click Next

8. Give the new rule a Name, ie: Salt. You may also add a description. Click Finish
Windows Firewall (command line):

The Windows Firewall rule can be created by issuing a single command. Run the following command from the
command line or a run prompt:

netsh advfirewall firewall add rule name="Salt" dir=in action=allow protocol=TCPK
—localport=4505-4506

iptables

Different Linux distributions store their iptables (also known as netfilter) rules in different places, which makes it
difficult to standardize firewall documentation. Included are some of the more common locations, but your mileage
may vary.

Fedora / RHEL / CentOS:

’ /etc/sysconfig/iptables

Arch Linux:

’ /etc/iptables/iptables.rules

Debian
Follow these instructions: https://wiki.debian.org/iptables

Once you've found your firewall rules, you'll need to add the two lines below to allow traffic on tcp/4505 and
tcp/4506:

-A INPUT -m state --state new -m tcp -p tcp --dport 4505 -j ACCEPT
-A INPUT -m state --state new -m tcp -p tcp --dport 4506 -j ACCEPT

Ubuntu

Salt installs firewall rules in /etc/ufw/applications.d/salt.ufw. Enable with:

ufw allow salt

pf.conf

The BSD-family of operating systems uses packet filter (pf). The following example describes the additions to
pf.conf needed to access the Salt master.

pass 1in on S$int_if proto tcp from any to $int_if port 4505
pass 1in on $int_if proto tcp from any to $int_if port 4506

36 Chapter 1. Installation

http://www.netfilter.org/
https://wiki.debian.org/iptables
https://github.com/saltstack/salt/blob/develop/pkg/salt.ufw
http://openbsd.org/faq/pf/

Salt Documentation, Release 2018.3.0

Once these additions have been made to the pf.conf the rules will need to be reloaded. This can be done using
the pfctl command.

pfctl -vf /etc/pf.conf

1.4.3 Whitelist communication to Master

There are situations where you want to selectively allow Minion traffic from specific hosts or networks into your Salt
Master. The first scenario which comes to mind is to prevent unwanted traffic to your Master out of security concerns,
but another scenario is to handle Minion upgrades when there are backwards incompatible changes between the
installed Salt versions in your environment.

Here is an example Linux iptables ruleset to be set on the Master:

Allow Minions from these networks

-I INPUT -s 10.1.2.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
-I INPUT -s 10.1.3.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
Allow Salt to communicate with Master on the loopback interface

-A INPUT -i lo -p tcp -m multiport --dports 4505,4506 -j ACCEPT

Reject everything else

-A INPUT -p tcp -m multiport --dports 4505,4506 -j REJECT

Note: The important thing to note here is that the salt command needs to communicate with the listening
network socket of salt-master on the loopback interface. Without this you will see no outgoing Salt traffic from
the master, even for a simple salt '*' test.ping, because the salt client never reached the salt-master
to tell it to carry out the execution.

1.4.4 Preseed Minion with Accepted Key

In some situations, it is not convenient to wait for a minion to start before accepting its key on the master. For
instance, you may want the minion to bootstrap itself as soon as it comes online. You may also want to let your
developers provision new development machines on the fly.

See also:

Many ways to preseed minion keys

Salt has other ways to generate and pre-accept minion keys in addition to the manual steps outlined below.
salt-cloud performs these same steps automatically when new cloud VMs are created (unless instructed not to).

salt-api exposes an HTTP call to Salt's REST APl to generate and download the new minion keys as
a tarball.

There is a general four step process to do this:

1. Generate the keys on the master:

’root@saltmaster# salt-key --gen-keys=[key_name]

Pick a name for the key, such as the minion's id.

2. Add the public key to the accepted minion folder:

’root@saltmaster# cp key_name.pub /etc/salt/pki/master/minions/[minion_id]

1.4. Additional Installation Guides 37

Salt Documentation, Release 2018.3.0

It is necessary that the public key file has the same name as your minion id. This is how Salt matches minions with
their keys. Also note that the pki folder could be in a different location, depending on your OS or if specified in the
master config file.

3. Distribute the minion keys.

There is no single method to get the keypair to your minion. The difficulty is finding a dis-
tribution method which is secure. For Amazon EC2 only, an AWS best practice is to use IAM
Roles to pass credentials. (See blog post, http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/
Using-IAM-roles-to-distribute-non- AWS-credentials-to-your-EC2-instances)

Security Warning

Since the minion key is already accepted on the master, distributing the private key poses a potential security risk.
A malicious party will have access to your entire state tree and other sensitive data if they gain access to a preseeded
minion key.

4. Preseed the Minion with the keys

You will want to place the minion keys before starting the salt-minion daemon:

/etc/salt/pki/minion/minion.pem
/etc/salt/pki/minion/minion.pub

Once in place, you should be able to start salt-minion and run salt-call state.apply or any other salt
commands that require master authentication.

1.4.5 The macOS (Maverick) Developer Step By Step Guide To Salt Installation

This document provides a step-by-step guide to installing a Salt cluster consisting of one master, and one minion
running on a local VM hosted on macOS.

Note: This guide is aimed at developers who wish to run Salt in a virtual machine. The official (Linux) walkthrough
can be found here.

The 5 Cent Salt Intro

Since you're here you've probably already heard about Salt, so you already know Salt lets you configure and run
commands on hordes of servers easily. Here's a brief overview of a Salt cluster:

« Salt works by having a *'master" server sending commands to one or multiple ' “minion" servers '. The mas-
ter server is the *“command center". It is going to be the place where you store your configuration files, aka:
““which server is the db, which is the web server, and what libraries and software they should have installed".
The minions receive orders from the master. Minions are the servers actually performing work for your busi-
ness.

« Salt has two types of configuration files:

1. the "“salt communication channels” or *“meta" or " "config" configuration files (not official names): one for
the master (usually is /etc/salt/master , on the master server), and one for minions (default is /etc/salt/minion
or /etc/salt/minion.conf, on the minion servers). Those files are used to determine things like the Salt Master

! Salt also works with *“masterless" configuration where a minion is autonomous (in which case salt can be seen as a local configuration tool),
or in " “multiple master" configuration. See the documentation for more on that.

38 Chapter 1. Installation

http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances
http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances
http://docs.saltstack.com/topics/tutorials/walkthrough.html

Salt Documentation, Release 2018.3.0

IP, port, Salt folder locations, etc.. If these are configured incorrectly, your minions will probably be unable to
receive orders from the master, or the master will not know which software a given minion should install.

2. the "“business" or "“service" configuration files (once again, not an official name): these are configuration
files, ending with ".sls" extension, that describe which software should run on which server, along with par-
ticular configuration properties for the software that is being installed. These files should be created in the
/srv/salt folder by default, but their location can be changed using ... /etc/salt/master configuration file!

Note: This tutorial contains a third important configuration file, not to be confused with the previous two: the
virtual machine provisioning configuration file. This in itself is not specifically tied to Salt, but it also contains some
Salt configuration. More on that in step 3. Also note that all configuration files are YAML files. So indentation
matters.

Before Digging In, The Architecture Of The Salt Cluster

Salt Master

The " "Salt master" server is going to be the Mac OS machine, directly. Commands will be run from a terminal app, so
Salt will need to be installed on the Mac. This is going to be more convenient for toying around with configuration
files.

Salt Minion

We'll only have one " "Salt minion" server. It is going to be running on a Virtual Machine running on the Mac, using
VirtualBox. It will run an Ubuntu distribution.

Step 1 - Configuring The Salt Master On Your Mac

official documentation

Because Salt has a lot of dependencies that are not built in macOS, we will use Homebrew to install Salt. Homebrew
is a package manager for Mac, it's great, use it (for this tutorial at least!). Some people spend a lot of time installing
libs by hand to better understand dependencies, and then realize how useful a package manager is once they're
configuring a brand new machine and have to do it all over again. It also lets you uninstall things easily.

Note: Brew is a Ruby program (Ruby is installed by default with your Mac). Brew downloads, compiles, and links
software. The linking phase is when compiled software is deployed on your machine. It may conflict with manually
installed software, especially in the /usr/local directory. It's ok, remove the manually installed version then refresh
the link by typing brew 1link 'packageName'. Brew has a brew doctor command that can help you
troubleshoot. It's a great command, use it often. Brew requires xcode command line tools. When you run brew the
first time it asks you to install them if they're not already on your system. Brew installs software in /usr/local/bin
(system bins are in /usr/bin). In order to use those bins you need your $PATH to search there first. Brew tells you if
your $PATH needs to be fixed.

Tip: Use the keyboard shortcut cmd + shift + period inthe “open" macOS dialog box to display hidden
files and folders, such as .profile.

1.4. Additional Installation Guides 39

http://docs.saltstack.com/topics/installation/osx.html

Salt Documentation, Release 2018.3.0

Install Homebrew

Install Homebrew here http://brew.sh/ Or just type

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
—install)"

Now type the following commands in your terminal (you may want to type brew doctor after each to make sure
everything's fine):

brew install python
brew install swig
brew install zmq

Note: zmgq is ZeroMQ. It's a fantastic library used for server to server network communication and is at the core of
Salt efficiency.

Install Salt

You should now have everything ready to launch this command:

pip install salt

Note: There should be noneed for sudo pip install salt. Brew installed Python for your user, so you should
have all the access. In case you would like to check, type which python to ensure that it's /usr/local/bin/python,
and which pip which should be /usr/local/bin/pip.

Now type python in a terminal then, import sa'lt. There should be no errors. Now exit the Python terminal
using exit ().

Create The Master Configuration

If the default /etc/salt/master configuration file was not created, copy-paste it from here: http://docs.saltstack.com/
ref/configuration/examples.html#configuration-examples-master

Note: /etc/salt/master is afile, not a folder.

Salt Master configuration changes. The Salt master needs a few customization to be able to run on macOS:

sudo launchctl limit maxfiles 4096 8192

In the /etc/salt/master file, change max_open_files to 8192 (or just add the line: max_open_files: 8192 (no
quote) if it doesn't already exists).

You should now be able to launch the Salt master:

sudo salt-master --log-level=all

There should be no errors when running the above command.

40 Chapter 1. Installation

http://brew.sh/
http://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master
http://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master

Salt Documentation, Release 2018.3.0

Note: This command is supposed to be a daemon, but for toying around, we'll keep it running on a terminal to
monitor the activity.

Now that the master is set, let's configure a minion on a VM.

The Salt minion is going to run on a Virtual Machine. There are a lot of software options that let you run virtual
machines on a mac, But for this tutorial we're going to use VirtualBox. In addition to virtualBox, we will use Vagrant,
which allows you to create the base VM configuration.

Vagrant lets you build ready to use VM images, starting from an OS image and customizing it using *provisioners".
In our case, we'll use it to:

« Download the base Ubuntu image

Install salt on that Ubuntu image (Salt is going to be the *"provisioner" for the VM).
Launch the VM

SSH into the VM to debug
« Stop the VM once you're done.
Install VirtualBox

Go get it here: https://www.virtualBox.org/wiki/Downloads (click on VirtualBox for macOS hosts => x86/amd64)

Install Vagrant
Go get it here: http://downloads.vagrantup.com/ and choose the latest version (1.3.5 at time of writing), then the

.dmg file. Double-click to install it. Make sure the vagrant command is found when run in the terminal. Type
vagrant. It should display a list of commands.

Create The Minion VM Folder

Create a folder in which you will store your minion's VM. In this tutorial, it's going to be a minion folder in the
$home directory.

cd Shome
mkdir minion

Initialize Vagrant

From the minion folder, type

vagrant init

This command creates a default Vagrantfile configuration file. This configuration file will be used to pass configura-
tion parameters to the Salt provisioner in Step 3.

1.4. Additional Installation Guides 41

https://www.virtualBox.org/wiki/Downloads
http://downloads.vagrantup.com/

Salt Documentation, Release 2018.3.0

Import Precise64 Ubuntu Box

vagrant box add precise64 http://files.vagrantup.com/precise64.box

Note: This box is added at the global Vagrant level. You only need to do it once as each VM will use this same file.

Modify the Vagrantfile

Modify ./minion/Vagrantfile to use th precise64 box. Change the config.vm.box line to:

’conf‘ig.vm.box = "precise64" ‘

Uncomment the line creating a host-only IP. This is the ip of your minion (you can change it to something else if
that IP is already in use):

’conf‘ig.vm.network :private_network, ip: "192.168.33.10" ‘

At this point you should have a VM that can run, although there won't be much in it. Let's check that.

Checking The VM

From the $home/minion folder type:

’vagrant up ‘

A log showing the VM booting should be present. Once it's done you'll be back to the terminal:

’p'ing 192.168.33.10 ‘

The VM should respond to your ping request.

Now log into the VM in ssh using Vagrant again:

’vagrant ssh ‘

You should see the shell prompt change to something similar to vagrant@precise64: ~$ meaning you're inside
the VM. From there, enter the following:

’p'ing 10.0.2.2 ‘

Note: That ip is the ip of your VM host (the macOS host). The number is a VirtualBox default and is displayed in
the log after the Vagrant ssh command. We'll use that IP to tell the minion where the Salt master is. Once you're
done, end the ssh session by typing exi t.

It's now time to connect the VM to the salt master

Creating The Minion Configuration File

Create the /etc/salt/minion file. In that file, put the following lines, giving the ID for this minion, and the IP
of the master:

42 Chapter 1. Installation

Salt Documentation, Release 2018.3.0

master: 10.0.2.2
id: 'minionl'
file_client: remote

Minions authenticate with the master using keys. Keys are generated automatically if you don't provide one and
can accept them later on. However, this requires accepting the minion key every time the minion is destroyed or
created (which could be quite often). A better way is to create those keys in advance, feed them to the minion, and
authorize them once.

Preseed minion keys

From the minion folder on your Mac run:

sudo salt-key --gen-keys=minionl

This should create two files: minion1.pem, and minion1.pub. Since those files have been created using sudo, but will
be used by vagrant, you need to change ownership:

sudo chown youruser:yourgroup minionl.pem
sudo chown youruser:yourgroup minionl.pub

Then copy the .pub file into the list of accepted minions:

sudo cp minionl.pub /etc/salt/pki/master/minions/minionl

Modify Vagrantfile to Use Salt Provisioner

Let's now modify the Vagrantfile used to provision the Salt VM. Add the following section in the Vagrantfile (note:
it should be at the same indentation level as the other properties):

salt-vagrant config
config.vm.provision :salt do |salt]
salt.run_highstate = true

salt.minion_config = "/etc/salt/minion"
salt.minion_key = "./minionl.pem"
salt.minion_pub = "./minionl.pub"

end

Now destroy the vim and recreate it from the /minion folder:

vagrant destroy
vagrant up

If everything is fine you should see the following message:

"Bootstrapping Salt... (this may take a while)
Salt successfully configured and installed!"

Checking Master-Minion Communication

To make sure the master and minion are talking to each other, enter the following:

1.4. Additional Installation Guides 43

Salt Documentation, Release 2018.3.0

sudo salt 'x' test.ping

You should see your minion answering the ping. It's now time to do some configuration.

In this step we'll use the Salt master to instruct our minion to install Nginx.

Checking the system's original state

First, make sure that an HTTP server is not installed on our minion. When opening a browser directed at
http://192.168.33.10/ You should get an error saying the site cannot be reached.

Initialize the top.sls file

System configuration is done in /srv/salt/top.sls (and subfiles/folders), and then applied by running the
state.apply function to have the Salt master order its minions to update their instructions and run the associated
commands.

First Create an empty file on your Salt master (macOS machine):

’ touch /srv/salt/top.sls

When the file is empty, or if no configuration is found for our minion an error is reported:

’sudo salt 'minionl' state.apply

This should return an error stating: No Top file or external nodes data matches found.

Create The Nginx Configuration

Now is finally the time to enter the real meat of our server's configuration. For this tutorial our minion will be treated
as a web server that needs to have Nginx installed.

Insert the following lines into /srv/salt/top.sls (which should current be empty).

base:
'minionl’':
- bin.nginx

Now create /srv/salt/bin/nginx.sls containing the following:

nginx:
pkg.installed:
- name: nginx
service.running:
- enable: True
- reload: True

Check Minion State

Finally, run the state.apply function again:

sudo salt 'minionl' state.apply

44 Chapter 1. Installation

Salt Documentation, Release 2018.3.0

You should see a log showing that the Nginx package has been installed and the service configured. To prove it,
open your browser and navigate to http://192.168.33.10/, you should see the standard Nginx welcome page.

Congratulations!
Where To Go From Here

A full description of configuration management within Salt (sls files among other things) is available here: http:
//docs.saltstack.com/en/latest/index.html#configuration-management

1.4.6 running salt as normal user tutorial

Before continuing make sure you have a working Salt installation by following the Installation and the configuration
instructions.

Stuck?

There are many ways to get help from the Salt community including our mailing list and our IRC channel #salt.

Running Salt functions as non root user

If you don't want to run salt cloud as root or even install it you can configure it to have a virtual root in your working
directory.

The salt system uses the salt.syspath module to find the variables

If you run the salt-build, it will generated in:

’ ./build/1lib.linux-x86_64-2.7/salt/_syspaths.py

To generate it, run the command:

’python setup.py build

Copy the generated module into your salt directory

’cp ./build/lib.linux-x86_64-2.7/salt/_syspaths.py salt/_syspaths.py

Edit it to include needed variables and your new paths

you need to edit this
ROOT_DIR = *your current dir* + '/salt/root'

you need to edit this
INSTALL_DIR = xlocation of source codex

CONFIG_DIR = ROOT_DIR + '/etc/salt'

CACHE_DIR = ROOT_DIR + '/var/cache/salt'

SOCK_DIR = ROOT_DIR + '/var/run/salt'

SRV_ROOT_DIR= ROOT_DIR + '/srv'

BASE_FILE_ROOTS_DIR = ROOT_DIR + '/srv/salt'
BASE_PILLAR_ROOTS_DIR = ROOT_DIR + '/srv/pillar'
BASE_MASTER_ROOTS_DIR = ROOT_DIR + '/srv/salt-master'
LOGS_DIR = ROOT_DIR + '/var/log/salt'

1.4. Additional Installation Guides 45

http://192.168.33.10/
http://docs.saltstack.com/en/latest/index.html#configuration-management
http://docs.saltstack.com/en/latest/index.html#configuration-management
https://groups.google.com/forum/#!forum/salt-users
http://webchat.freenode.net/?channels=salt

Salt Documentation, Release 2018.3.0

PIDFILE_DIR = ROOT_DIR + '/var/run'
CLOUD_DIR = INSTALL_DIR + '/cloud'
BOOTSTRAP = CLOUD_DIR + '/deploy/bootstrap-salt.sh'

Create the directory structure

mkdir -p root/etc/salt root/var/cache/run root/run/salt root/srv
root/srv/salt root/srv/pillar root/srv/salt-master root/var/log/salt root/var/run

Populate the configuration files:

’cp -r conf/x root/etc/salt/

Edit your root/etc/salt/master configuration that is used by salt-cloud:

’USGI": kyour user namex

Run like this:

’ PYTHONPATH="pwd" scripts/salt-cloud

1.4.7 Standalone Minion
Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

« Use salt-call commands on a system without connectivity to a master

« Masterless States, run states entirely from files local to the minion

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to
connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Minion Configuration

Throughout this document there are several references to setting different options to configure a masterless Minion.
Salt Minions are easy to configure via a configuration file that is located, by default, in /etc/salt/minion. Note,
however, that on FreeBSD systems, the minion configuration file is locatedin /usr/local/etc/salt/minion.

You can learn more about minion configuration options in the Configuring the Salt Minion docs.

Telling Salt Call to Run Masterless

The salt-call command is used to run module functions locally on a minion instead of executing them from the
master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data. To instruct the minion to
not look for a master when running salt-call the file_client configuration option needs to be set. By default
the file_client is set to remote so that the minion knows that file server and pillar data are to be gathered
from the master. When setting the file_client option to Local the minion is configured to not gather this
data from the master.

46 Chapter 1. Installation

Salt Documentation, Release 2018.3.0

file_client: local

Now the salt-call command will not look for a master and will assume that the local system has all of the file and
pillar resources.

Running States Masterless

The state system can be easily run without a Salt master, with all needed files local to the minion. To do this the
minion configuration file needs to be set up to know how to return file_roots information like the master. The
file_roots setting defaults to /srv/salt for the base environment just like on the master:

file_roots:
base:
- /srv/salt

Now set up the Salt State Tree, top file, and SLS modules in the same way that they would be set up on a master.
Now, with the file_client option set to Llocal and an available state tree then calls to functions in the state
module will use the information in the file_roots on the minion instead of checking in with the master.

Remember that when creating a state tree on a minion there are no syntax or path changes needed, SLS modules
written to be used from a master do not need to be modified in any way to work with a minion.

This makes it easy to " “script" deployments with Salt states without having to set up a master, and allows for these
SLS modules to be easily moved into a Salt master as the deployment grows.

The declared state can now be executed with:

’ salt-call state.apply

Or the salt-call command can be executed with the ——local flag, this makes it unnecessary to change the config-
uration file:

’salt—call state.apply --local

External Pillars

External pillars are supported when running in masterless mode.

1.4.8 Salt Masterless Quickstart
Running a masterless salt-minion lets you use Salt's configuration management for a single machine without calling
out to a Salt master on another machine.

Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

- Stand up a master server via States (Salting a Salt Master)
« Use salt-call commands on a system without connectivity to a master
+ Masterless States, run states entirely from files local to the minion

It is also useful for testing out state trees before deploying to a production setup.

1.4. Additional Installation Guides 47

Salt Documentation, Release 2018.3.0

Bootstrap Salt Minion

The salt-bootstrap script makes bootstrapping a server with Salt simple for any OS with a Bourne shell:

curl -L https://bootstrap.saltstack.com -o bootstrap_salt.sh
sudo sh bootstrap_salt.sh

See the salt-bootstrap documentation for other one liners. When using Vagrant to test out salt, the Vagrant salt
provisioner will provision the VM for you.

Telling Salt to Run Masterless

To instruct the minion to not look for a master, the file_client configuration option needs to be set in the
minion configuration file. By default the file_client is set to remote so that the minion gathers file server
and pillar data from the salt master. When setting the file_client option to Local the minion is configured to
not gather this data from the master.

file_client: local

Now the salt minion will not look for a master and will assume that the local system has all of the file and pillar
resources.

Configuration which resided in the master configuration (e.g. /etc/salt/master)should be moved to the minion
configuration since the minion does not read the master configuration.

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to
connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Create State Tree
Following the successful installation of a salt-minion, the next step is to create a state tree, which is where the SLS
files that comprise the possible states of the minion are stored.

The following example walks through the steps necessary to create a state tree that ensures that the server has the
Apache webserver installed.

Note: For a complete explanation on Salt States, see the tutorial.

1. Create the top.sls file:
/srv/salt/top.sls:

base:
I*I:

- webserver

2. Create the webserver state tree:

/srv/salt/webserver.sls:

apache: # ID declaration
pkg: # state declaration
- 1dinstalled # function declaration

48 Chapter 1. Installation

https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap
http://www.vagrantup.com/
http://docs.vagrantup.com/v2/provisioning/salt.html
http://docs.vagrantup.com/v2/provisioning/salt.html
http://docs.saltstack.com/en/latest/topics/tutorials/states_pt1.html

Salt Documentation, Release 2018.3.0

Note: The apache package has different names on different platforms, for instance on Debian/Ubuntu it is apache2,
on Fedora/RHEL it is httpd and on Arch it is apache

The only thing left is to provision our minion using salt-call.

Salt-call

The salt-call command is used to run remote execution functions locally on a minion instead of executing them from
the master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data:

salt-call --local state.apply

The --local flag tells the salt-minion to look for the state tree in the local file system and not to contact a Salt
Master for instructions.

To provide verbose output, use -1 debug:

salt-call --local state.apply -1 debug

The minion first examines the top . ss file and determines that it is a part of the group matched by * glob and that
the webserver SLS should be applied.

It then examines the webserver . s'ls file and finds the apache state, which installs the Apache package.

The minion should now have Apache installed, and the next step is to begin learning how to write more complex
states.

1.5 Dependencies

Salt should run on any Unix-like platform so long as the dependencies are met.
« 'Python 2.7°_ >=2.7 <3.0
« msgpack-python - High-performance message interchange format
« YAML - Python YAML bindings
« Jinja2 - parsing Salt States (configurable in the master settings)
« MarkupSafe - Implements a XML/HTML/XHTML Markup safe string for Python

« apache-libcloud - Python lib for interacting with many of the popular cloud service providers using a unified
API

« Requests - HTTP library
« Tornado - Web framework and asynchronous networking library
« futures - Backport of the concurrent.futures package from Python 3.2
Depending on the chosen Salt transport, ZeroMQ or RAET, dependencies vary:
« ZeroMQ:
— ZeroMQ >=3.2.0

- pyzmgq >= 2.2.0 - ZeroMQ Python bindings

1.5. Dependencies 49

https://pypi.python.org/pypi/msgpack-python/
http://pyyaml.org/
http://jinja.pocoo.org/
https://pypi.python.org/pypi/MarkupSafe
http://libcloud.apache.org
http://docs.python-requests.org/en/latest
http://www.tornadoweb.org/en/stable/
https://github.com/agronholm/pythonfutures
http://ze