GetFEM  5.4.4
getfem_contact_and_friction_common.cc
1 /*===========================================================================
2 
3  Copyright (C) 2013-2020 Yves Renard, Konstantinos Poulios.
4 
5  This file is a part of GetFEM
6 
7  GetFEM is free software; you can redistribute it and/or modify it
8  under the terms of the GNU Lesser General Public License as published
9  by the Free Software Foundation; either version 3 of the License, or
10  (at your option) any later version along with the GCC Runtime Library
11  Exception either version 3.1 or (at your option) any later version.
12  This program is distributed in the hope that it will be useful, but
13  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
15  License and GCC Runtime Library Exception for more details.
16  You should have received a copy of the GNU Lesser General Public License
17  along with this program; if not, write to the Free Software Foundation,
18  Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
19 
20 ===========================================================================*/
21 
24 #ifndef _WIN32
25 #include <unistd.h>
26 #endif
27 
28 namespace getfem {
29 
30  bool boundary_has_fem_nodes(bool slave_flag, int nodes_mode) {
31  return (slave_flag && nodes_mode) ||
32  (!slave_flag && nodes_mode == 2);
33  }
34 
35  void compute_normal(const fem_interpolation_context &ctx,
36  size_type face, bool in_reference_conf,
37  const model_real_plain_vector &coeff,
38  base_node &n0, base_node &n,
39  base_matrix &grad) {
40  n0 = bgeot::compute_normal(ctx, face);
41  if (in_reference_conf) {
42  n = n0;
43  } else {
44  ctx.pf()->interpolation_grad(ctx, coeff, grad, dim_type(ctx.N()));
45  gmm::add(gmm::identity_matrix(), grad);
46  scalar_type J = bgeot::lu_inverse(&(*(grad.begin())), ctx.N());
47  if (J <= scalar_type(0)) {GMM_WARNING1("Inverted element !" << J);
48  gmm::mult(gmm::transposed(grad), n0, n);
49  gmm::scale(n, gmm::sgn(J));
50  //cout<< "n0 =" << n0 << "n =" <<n<< endl;
51  //cout<< "x0=" << ctx.xref() << "x =" <<ctx.xreal()<< endl;
52  }
53  else {
54  gmm::mult(gmm::transposed(grad), n0, n);
55  gmm::scale(n, gmm::sgn(J));} // Test
56  }
57  }
58 
59  //=========================================================================
60  //
61  // Structure which store the contact boundaries, rigid obstacles and
62  // computes the contact pairs in large sliding/large deformation.
63  //
64  //=========================================================================
65 
66  size_type multi_contact_frame::add_U
67  (const model_real_plain_vector *U, const std::string &name,
68  const model_real_plain_vector *w, const std::string &wname) {
69  if (!U) return size_type(-1);
70  size_type i = 0;
71  for (; i < Us.size(); ++i) if (Us[i] == U) return i;
72  Us.push_back(U);
73  Ws.push_back(w);
74  Unames.push_back(name);
75  Wnames.push_back(wname);
76  ext_Us.resize(Us.size());
77  ext_Ws.resize(Us.size());
78  return i;
79  }
80 
81  size_type multi_contact_frame::add_lambda
82  (const model_real_plain_vector *lambda, const std::string &name) {
83  if (!lambda) return size_type(-1);
84  size_type i = 0;
85  for (; i < lambdas.size(); ++i) if (lambdas[i] == lambda) return i;
86  lambdas.push_back(lambda);
87  lambdanames.push_back(name);
88  ext_lambdas.resize(lambdas.size());
89  return i;
90  }
91 
92  void multi_contact_frame::extend_vectors() {
93  dal::bit_vector iU, ilambda;
94  for (size_type i = 0; i < contact_boundaries.size(); ++i) {
95  size_type ind_U = contact_boundaries[i].ind_U;
96  if (!(iU[ind_U])) {
97  const mesh_fem &mf = *(contact_boundaries[i].mfu);
98  gmm::resize(ext_Us[ind_U], mf.nb_basic_dof());
99  mf.extend_vector(*(Us[ind_U]), ext_Us[ind_U]);
100  if (Ws[ind_U]) {
101  gmm::resize(ext_Ws[ind_U], mf.nb_basic_dof());
102  mf.extend_vector(*(Ws[ind_U]), ext_Ws[ind_U]);
103  } else gmm::resize(ext_Ws[ind_U], 0);
104  iU.add(ind_U);
105  }
106  size_type ind_lambda = contact_boundaries[i].ind_lambda;
107  if (ind_lambda != size_type(-1) && !(ilambda[ind_lambda])) {
108  const mesh_fem &mf = *(contact_boundaries[i].mflambda);
109  gmm::resize(ext_lambdas[ind_lambda], mf.nb_basic_dof());
110  mf.extend_vector(*(lambdas[ind_lambda]), ext_lambdas[ind_lambda]);
111  ilambda.add(ind_lambda);
112  }
113  }
114  }
115 
116  void multi_contact_frame::normal_cone_simplification() {
117  if (nodes_mode) {
118  scalar_type threshold = ::cos(cut_angle);
119  for (size_type i = 0; i < boundary_points_info.size(); ++i) {
120  normal_cone &nc = boundary_points_info[i].normals;
121  if (nc.size() > 1) {
122  base_small_vector n_mean = nc[0];
123  for (size_type j = 1; j < nc.size(); ++j) n_mean += nc[j];
124  scalar_type nn_mean = gmm::vect_norm2(n_mean);
125  GMM_ASSERT1(nn_mean != scalar_type(0), "oupssss");
126  if (nn_mean != scalar_type(0)) {
127  gmm::scale(n_mean, scalar_type(1)/nn_mean);
128  bool reduce = true;
129  for (size_type j = 0; j < nc.size(); ++j)
130  if (gmm::vect_sp(n_mean, nc[j]) < threshold)
131  { reduce = false; break; }
132  if (reduce) {
133  boundary_points_info[i].normals = normal_cone(n_mean);
134  }
135  }
136  }
137  }
138  }
139  }
140 
141  bool multi_contact_frame::test_normal_cones_compatibility
142  (const normal_cone &nc1, const normal_cone &nc2) {
143  for (size_type i = 0; i < nc1.size(); ++i)
144  for (size_type j = 0; j < nc2.size(); ++j)
145  if (gmm::vect_sp(nc1[i], nc2[j]) < scalar_type(0))
146  return true;
147  return false;
148  }
149 
150  bool multi_contact_frame::test_normal_cones_compatibility
151  (const base_small_vector &n, const normal_cone &nc2) {
152  for (size_type j = 0; j < nc2.size(); ++j)
153  if (gmm::vect_sp(n, nc2[j]) < scalar_type(0))
154  return true;
155  return false;
156  }
157 
158  bool multi_contact_frame::are_dof_linked(size_type ib1, size_type idof1,
159  size_type ib2, size_type idof2) {
160  const mesh_fem &mf1 = mfdisp_of_boundary(ib1);
161  const mesh_fem &mf2 = mfdisp_of_boundary(ib2);
162  if ( &(mf1.linked_mesh()) != &(mf2.linked_mesh())) return false;
163  GMM_ASSERT1(!(mf1.is_reduced()) && !(mf2.is_reduced()),
164  "Nodal strategy can only be applied for non reduced fems");
165  const mesh::ind_cv_ct &ic1 = mf1.convex_to_basic_dof(idof1);
166  const mesh::ind_cv_ct &ic2 = mf2.convex_to_basic_dof(idof2);
167  bool lk = false;
168  for (size_type i = 0; i < ic1.size(); ++i) aux_dof_cv.add(ic1[i]);
169  for (size_type i = 0; i < ic2.size(); ++i)
170  if (aux_dof_cv.is_in(ic2[i])) { lk = true; break; }
171  for (size_type i = 0; i < ic1.size(); ++i) aux_dof_cv.sup(ic1[i]);
172  return lk;
173  }
174 
175  bool multi_contact_frame::is_dof_linked(size_type ib1, size_type idof1,
176  size_type ib2, size_type cv) {
177  const mesh_fem &mf1 = mfdisp_of_boundary(ib1);
178  const mesh_fem &mf2 = mfdisp_of_boundary(ib2);
179  if ( &(mf1.linked_mesh()) != &(mf2.linked_mesh())) return false;
180  GMM_ASSERT1(!(mf1.is_reduced()) && !(mf2.is_reduced()),
181  "Nodal strategy can only be applied for non reduced fems");
182  const mesh::ind_cv_ct &ic1 = mf1.convex_to_basic_dof(idof1);
183  for (size_type i = 0; i < ic1.size(); ++i)
184  if (cv == ic1[i]) return true;
185  return false;
186  }
187 
188  void multi_contact_frame::add_potential_contact_face
189  (size_type ip, size_type ib, size_type ie, short_type iff) {
190  bool found = false;
191  std::vector<face_info> &sfi = potential_pairs[ip];
192  for (size_type k = 0; k < sfi.size(); ++k)
193  if (sfi[k].ind_boundary == ib &&
194  sfi[k].ind_element == ie &&
195  sfi[k].ind_face == iff) found = true;
196 
197  if (!found) sfi.push_back(face_info(ib, ie, iff));
198  }
199 
200  void multi_contact_frame::clear_aux_info() {
201  boundary_points = std::vector<base_node>();
202  boundary_points_info = std::vector<boundary_point>();
203  element_boxes.clear();
204  element_boxes_info = std::vector<influence_box>();
205  potential_pairs = std::vector<std::vector<face_info> >();
206  }
207 
208  multi_contact_frame::multi_contact_frame(size_type NN, scalar_type r_dist,
209  bool dela, bool selfc,
210  scalar_type cut_a,
211  bool rayt, int nmode, bool refc)
212  : N(NN), self_contact(selfc), ref_conf(refc), use_delaunay(dela),
213  nodes_mode(nmode), raytrace(rayt), release_distance(r_dist),
214  cut_angle(cut_a), EPS(1E-8), md(0), coordinates(N), pt(N) {
215  if (N > 0) coordinates[0] = "x";
216  if (N > 1) coordinates[1] = "y";
217  if (N > 2) coordinates[2] = "z";
218  if (N > 3) coordinates[3] = "w";
219  GMM_ASSERT1(N <= 4, "Complete the definition for contact in "
220  "dimension greater than 4");
221  }
222 
223  multi_contact_frame::multi_contact_frame(const model &mdd, size_type NN,
224  scalar_type r_dist,
225  bool dela, bool selfc,
226  scalar_type cut_a,
227  bool rayt, int nmode, bool refc)
228  : N(NN), self_contact(selfc), ref_conf(refc),
229  use_delaunay(dela), nodes_mode(nmode), raytrace(rayt),
230  release_distance(r_dist), cut_angle(cut_a), EPS(1E-8), md(&mdd),
231  coordinates(N), pt(N) {
232  if (N > 0) coordinates[0] = "x";
233  if (N > 1) coordinates[1] = "y";
234  if (N > 2) coordinates[2] = "z";
235  if (N > 3) coordinates[3] = "w";
236  GMM_ASSERT1(N <= 4, "Complete the definition for contact in "
237  "dimension greater than 4");
238  }
239 
240  size_type multi_contact_frame::add_obstacle(const std::string &obs) {
241  size_type ind = obstacles.size();
242  obstacles.push_back(obs);
243  obstacles_velocities.push_back("");
244  obstacles_gw.push_back(ga_workspace());
245  pt.resize(N); ptx.resize(1); pty.resize(1); ptz.resize(1); ptw.resize(1);
246  obstacles_gw.back().add_fixed_size_constant("X", pt);
247  if (N >= 4) obstacles_gw.back().add_fixed_size_constant("w", ptw);
248  if (N >= 3) obstacles_gw.back().add_fixed_size_constant("z", ptz);
249  if (N >= 2) obstacles_gw.back().add_fixed_size_constant("y", pty);
250  if (N >= 1) obstacles_gw.back().add_fixed_size_constant("x", ptx);
251  obstacles_f.push_back(ga_function(obstacles_gw.back(), obs));
252  obstacles_f.back().compile();
253  return ind;
254  }
255 
256 
257 
258  size_type multi_contact_frame::add_master_boundary
259  (const mesh_im &mim, const mesh_fem *mfu,
260  const model_real_plain_vector *U, size_type reg,
261  const mesh_fem *mflambda, const model_real_plain_vector *lambda,
262  const model_real_plain_vector *w,
263  const std::string &vvarname,
264  const std::string &mmultname, const std::string &wname) {
265  GMM_ASSERT1(mfu->linked_mesh().dim() == N,
266  "Mesh dimension is " << mfu->linked_mesh().dim()
267  << "should be " << N << ".");
268  GMM_ASSERT1(&(mfu->linked_mesh()) == &(mim.linked_mesh()),
269  "Integration and finite element are not on the same mesh !");
270  if (mflambda)
271  GMM_ASSERT1(&(mflambda->linked_mesh()) == &(mim.linked_mesh()),
272  "Integration and finite element are not on the same mesh !");
273  contact_boundary cb(reg, mfu, mim, add_U(U, vvarname, w, wname),
274  mflambda, add_lambda(lambda, mmultname));
275  contact_boundaries.push_back(cb);
276  return size_type(contact_boundaries.size() - 1);
277  }
278 
279  size_type multi_contact_frame::add_slave_boundary
280  (const mesh_im &mim, const mesh_fem *mfu,
281  const model_real_plain_vector *U, size_type reg,
282  const mesh_fem *mflambda, const model_real_plain_vector *lambda,
283  const model_real_plain_vector *w,
284  const std::string &vvarname,
285  const std::string &mmultname, const std::string &wname) {
286  size_type ind
287  = add_master_boundary(mim, mfu, U, reg, mflambda, lambda, w,
288  vvarname, mmultname, wname);
289  contact_boundaries[ind].slave = true;
290  return ind;
291  }
292 
293 
294  size_type multi_contact_frame::add_master_boundary
295  (const mesh_im &mim, size_type reg, const std::string &vvarname,
296  const std::string &mmultname, const std::string &wname) {
297  GMM_ASSERT1(md, "This multi contact frame object is not linked "
298  "to a model");
299  const mesh_fem *mfl(0);
300  const model_real_plain_vector *l(0);
301  if (mmultname.size()) {
302  mfl = &(md->mesh_fem_of_variable(mmultname));
303  l = &(md->real_variable(mmultname));
304  }
305  const model_real_plain_vector *w(0);
306  if (wname.compare(vvarname) == 0) {
307  GMM_ASSERT1(md->n_iter_of_variable(vvarname) > 1, "More than one "
308  "versions of the displacement variable were expected here");
309  w = &(md->real_variable(vvarname,1));
310  }
311  else if (wname.size()) {
312  GMM_ASSERT1(&(md->mesh_fem_of_variable(wname))
313  == &(md->mesh_fem_of_variable(vvarname)), "The previous "
314  "displacement should be defined on the same mesh_fem as the "
315  "current one");
316  w = &(md->real_variable(wname));
317  }
318  return add_master_boundary(mim, &(md->mesh_fem_of_variable(vvarname)),
319  &(md->real_variable(vvarname)), reg, mfl, l, w,
320  vvarname, mmultname, wname);
321  }
322 
323  size_type multi_contact_frame::add_slave_boundary
324  (const mesh_im &mim, size_type reg, const std::string &vvarname,
325  const std::string &mmultname, const std::string &wname) {
326  GMM_ASSERT1(md, "This multi contact frame object is not linked "
327  "to a model");
328  const mesh_fem *mfl(0);
329  const model_real_plain_vector *l(0);
330  if (mmultname.size()) {
331  mfl = &(md->mesh_fem_of_variable(mmultname));
332  l = &(md->real_variable(mmultname));
333  }
334  const model_real_plain_vector *w(0);
335  if (wname.compare(vvarname) == 0) {
336  GMM_ASSERT1(md->n_iter_of_variable(vvarname) > 1, "More than one "
337  "versions of the displacement variable were expected here");
338  w = &(md->real_variable(vvarname,1));
339  }
340  else if (wname.size()) {
341  GMM_ASSERT1(&(md->mesh_fem_of_variable(wname))
342  == &(md->mesh_fem_of_variable(vvarname)), "The previous "
343  "displacement should be defined on the same mesh_fem as the "
344  "current one");
345  w = &(md->real_variable(wname));
346  }
347  return add_slave_boundary(mim, &(md->mesh_fem_of_variable(vvarname)),
348  &(md->real_variable(vvarname)), reg, mfl, l, w,
349  vvarname, mmultname, wname);
350  }
351 
352 
353  void multi_contact_frame::compute_boundary_points(bool slave_only) {
354  fem_precomp_pool fppool;
355  base_matrix G;
356  model_real_plain_vector coeff;
357 
358  for (size_type i = 0; i < contact_boundaries.size(); ++i)
359  if (!slave_only || is_slave_boundary(i)) {
360  size_type bnum = region_of_boundary(i);
361  const mesh_fem &mfu = mfdisp_of_boundary(i);
362  const mesh_im &mim = mim_of_boundary(i);
363  const model_real_plain_vector &U = disp_of_boundary(i);
364  const mesh &m = mfu.linked_mesh();
365  bool on_fem_nodes =
366  boundary_has_fem_nodes(is_slave_boundary(i), nodes_mode);
367 
368  base_node val(N), bmin(N), bmax(N);
369  base_small_vector n0(N), n(N), n_mean(N);
370  base_matrix grad(N,N);
371  mesh_region region = m.region(bnum);
372  GMM_ASSERT1(mfu.get_qdim() == N, "Wrong mesh_fem qdim");
373 
374 
375  dal::bit_vector dof_already_interpolated;
376  std::vector<size_type> dof_ind(mfu.nb_basic_dof());
377  for (getfem::mr_visitor v(region,m); !v.finished(); ++v) {
378  size_type cv = v.cv();
379  bgeot::pgeometric_trans pgt = m.trans_of_convex(cv);
380  pfem pf_s = mfu.fem_of_element(cv);
381 
382  if (!ref_conf)
383  slice_vector_on_basic_dof_of_element(mfu, U, cv, coeff);
384  mfu.linked_mesh().points_of_convex(cv, G);
385 
386  pfem_precomp pfp(0);
387  size_type nbptf(0);
388  std::vector<size_type> indpt, indpfp;
389  if (on_fem_nodes) {
390  dim_type qqdim = mfu.get_qdim() / pf_s->target_dim();
391  pfp = fppool(pf_s, pf_s->node_tab(cv));
392  nbptf = pf_s->node_convex(cv).structure()->nb_points_of_face(v.f());
393  indpt.resize(nbptf); indpfp.resize(nbptf);
394  for (short_type ip = 0; ip < nbptf; ++ip) {
395  indpt[ip] =
396  mfu.ind_basic_dof_of_face_of_element(cv,v.f())[ip*qqdim];
397  indpfp[ip] =
398  pf_s->node_convex(cv).structure()->ind_points_of_face(v.f())[ip];
399  }
400  }
401  else {
402  pintegration_method pim = mim.int_method_of_element(cv);
403  GMM_ASSERT1(pim, "Integration method should be defined");
404  pfp = fppool(pf_s, pim->approx_method()->pintegration_points());
405  nbptf = pim->approx_method()->nb_points_on_face(v.f());
406  indpt.resize(nbptf); indpfp.resize(nbptf);
407  for (short_type ip = 0; ip < nbptf; ++ip)
408  indpt[ip] = indpfp[ip] =
409  pim->approx_method()->ind_first_point_on_face(v.f())+ip;
410  }
411  fem_interpolation_context ctx(pgt,pfp,size_type(-1),G,cv,v.f());
412 
413  for (short_type ip = 0; ip < nbptf; ++ip) {
414  ctx.set_ii(indpfp[ip]);
415 
416  size_type ind = indpt[ip];
417  if (!(on_fem_nodes && dof_already_interpolated[ind])) {
418  if (!ref_conf) {
419  pf_s->interpolation(ctx, coeff, val, dim_type(N));
420  val += ctx.xreal();
421  } else {
422  val = ctx.xreal();
423  }
424  if (on_fem_nodes) dof_ind[ind] = boundary_points.size();
425 
426  }
427 
428  // unit normal vector computation
429  compute_normal(ctx, v.f(), ref_conf, coeff, n0, n, grad);
430  n /= gmm::vect_norm2(n);
431 
432  if (on_fem_nodes && dof_already_interpolated[ind]) {
433  boundary_points_info[dof_ind[ind]].normals.add_normal(n);
434  } else {
435  boundary_points.push_back(val);
436  boundary_points_info.push_back(boundary_point(ctx.xreal(), i, cv,
437  v.f(), ind, n));
438  }
439 
440  if (on_fem_nodes) dof_already_interpolated.add(ind);
441  }
442  }
443  }
444  }
445 
446  void multi_contact_frame::compute_potential_contact_pairs_delaunay() {
447 
448  compute_boundary_points();
449  normal_cone_simplification();
450  potential_pairs = std::vector<std::vector<face_info> >();
451  potential_pairs.resize(boundary_points.size());
452 
453  gmm::dense_matrix<size_type> simplexes;
454  base_small_vector rr(N);
455  // Necessary ?
456  // for (size_type i = 0; i < boundary_points.size(); ++i) {
457  // gmm::fill_random(rr);
458  // boundary_points[i] += 1E-9*rr;
459  // }
460  bgeot::qhull_delaunay(boundary_points, simplexes);
461 
462  // connectivity analysis
463  for (size_type is = 0; is < gmm::mat_ncols(simplexes); ++is) {
464 
465  for (size_type i = 1; i <= N; ++i)
466  for (size_type j = 0; j < i; ++j) {
467  size_type ipt1 = simplexes(i, is), ipt2 = simplexes(j, is);
468  boundary_point *pt_info1 = &(boundary_points_info[ipt1]);
469  boundary_point *pt_info2 = &(boundary_points_info[ipt2]);
470  size_type ib1 = pt_info1->ind_boundary;
471  size_type ib2 = pt_info2->ind_boundary;
472  bool sl1 = is_slave_boundary(ib1);
473  bool sl2 = is_slave_boundary(ib2);
474  if (!sl1 && sl2) { // The slave in first if any
475  std::swap(ipt1, ipt2);
476  std::swap(pt_info1, pt_info2);
477  std::swap(ib1, ib2);
478  std::swap(sl1, sl2);
479  }
480  size_type ir1 = region_of_boundary(ib1);
481  size_type ir2 = region_of_boundary(ib2);
482  const mesh_fem &mf1 = mfdisp_of_boundary(ib1);
483  const mesh_fem &mf2 = mfdisp_of_boundary(ib2);
484 
485  // CRITERION 1 : The unit normal cone / vector are compatible
486  // and the two points are not in the same element.
487  if (
488  // slave-master case
489  ((sl1 && !sl2)
490  // master-master self-contact case
491  || (self_contact && !sl1 && !sl2))
492  // test of unit normal vectors or cones
493  && test_normal_cones_compatibility(pt_info1->normals,
494  pt_info2->normals)
495  // In case of self-contact, test if the two points share the
496  // same element.
497  && (sl1
498  || ((nodes_mode < 2)
499  && (( &(mf1.linked_mesh()) != &(mf2.linked_mesh()))
500  || (pt_info1->ind_element != pt_info2->ind_element)))
501  || ((nodes_mode == 2)
502  && !(are_dof_linked(ib1, pt_info1->ind_pt,
503  ib2, pt_info2->ind_pt)))
504  )
505  ) {
506 
507  // Store the potential contact pairs
508 
509  if (boundary_has_fem_nodes(sl2, nodes_mode)) {
510  const mesh::ind_cv_ct &ic2
511  = mf2.convex_to_basic_dof(pt_info2->ind_pt);
512  for (size_type k = 0; k < ic2.size(); ++k) {
513  mesh_region::face_bitset fbs
514  = mf2.linked_mesh().region(ir2).faces_of_convex(ic2[k]);
515  short_type nbf = mf2.linked_mesh().nb_faces_of_convex(ic2[k]);
516  for (short_type f = 0; f < nbf; ++f)
517  if (fbs.test(f))
518  add_potential_contact_face(ipt1,
519  pt_info2->ind_boundary,
520  ic2[k], f);
521  }
522  } else
523  add_potential_contact_face(ipt1, pt_info2->ind_boundary,
524  pt_info2->ind_element,
525  pt_info2->ind_face);
526 
527  if (self_contact && !sl1 && !sl2) {
528  if (boundary_has_fem_nodes(sl2, nodes_mode)) {
529  const mesh::ind_cv_ct &ic1
530  = mf1.convex_to_basic_dof(pt_info1->ind_pt);
531  for (size_type k = 0; k < ic1.size(); ++k) {
532  mesh_region::face_bitset fbs
533  = mf1.linked_mesh().region(ir1).faces_of_convex(ic1[k]);
534  short_type nbf = mf1.linked_mesh().nb_faces_of_convex(ic1[k]);
535  for (short_type f = 0; f < nbf; ++f)
536  if (fbs.test(f))
537  add_potential_contact_face(ipt2,
538  pt_info1->ind_boundary,
539  ic1[k], f);
540  }
541  } else
542  add_potential_contact_face(ipt2, pt_info1->ind_boundary,
543  pt_info1->ind_element,
544  pt_info1->ind_face);
545  }
546 
547  }
548 
549  }
550  }
551  }
552 
553 
554  void multi_contact_frame::compute_influence_boxes() {
555  fem_precomp_pool fppool;
556  bool avert = false;
557  base_matrix G;
558  model_real_plain_vector coeff;
559 
560  for (size_type i = 0; i < contact_boundaries.size(); ++i)
561  if (!is_slave_boundary(i)) {
562  size_type bnum = region_of_boundary(i);
563  const mesh_fem &mfu = mfdisp_of_boundary(i);
564  const model_real_plain_vector &U = disp_of_boundary(i);
565  const mesh &m = mfu.linked_mesh();
566 
567  base_node val(N), bmin(N), bmax(N);
568  base_small_vector n0(N), n(N), n_mean(N);
569  base_matrix grad(N,N);
570  mesh_region region = m.region(bnum);
571  GMM_ASSERT1(mfu.get_qdim() == N, "Wrong mesh_fem qdim");
572 
573  dal::bit_vector points_already_interpolated;
574  std::vector<base_node> transformed_points(m.nb_max_points());
575  for (getfem::mr_visitor v(region,m); !v.finished(); ++v) {
576  size_type cv = v.cv();
577  bgeot::pgeometric_trans pgt = m.trans_of_convex(cv);
578  pfem pf_s = mfu.fem_of_element(cv);
579  pfem_precomp pfp = fppool(pf_s, pgt->pgeometric_nodes());
580  if (!ref_conf)
581  slice_vector_on_basic_dof_of_element(mfu, U, cv, coeff);
582  mfu.linked_mesh().points_of_convex(cv, G);
583  fem_interpolation_context ctx(pgt,pfp,size_type(-1), G, cv);
584 
585  size_type nb_pt_on_face = 0;
586  dal::bit_vector points_on_face;
587  bgeot::pconvex_structure cvs = pgt->structure();
588  for (size_type k = 0; k < cvs->nb_points_of_face(v.f()); ++k)
589  points_on_face.add(cvs->ind_points_of_face(v.f())[k]);
590 
591  gmm::clear(n_mean);
592  size_type nbd_t = pgt->nb_points();
593  for (short_type ip = 0; ip < nbd_t; ++ip) {
594  size_type ind = m.ind_points_of_convex(cv)[ip];
595 
596  // computation of transformed vertex
597  ctx.set_ii(ip);
598  if (!(points_already_interpolated.is_in(ind))) {
599  if (!ref_conf) {
600  pf_s->interpolation(ctx, coeff, val, dim_type(N));
601  val += ctx.xreal();
602  transformed_points[ind] = val;
603  } else {
604  transformed_points[ind] = ctx.xreal();
605  }
606  points_already_interpolated.add(ind);
607  } else {
608  val = transformed_points[ind];
609  }
610  // computation of unit normal vector if the vertex is on the face
611  if (points_on_face[ip]) {
612  compute_normal(ctx, v.f(), ref_conf, coeff, n0, n, grad);
613  n /= gmm::vect_norm2(n);
614  n_mean += n;
615  ++nb_pt_on_face;
616  }
617 
618  if (ip == 0) // computation of bounding box
619  bmin = bmax = val;
620  else {
621  for (size_type k = 0; k < N; ++k) {
622  bmin[k] = std::min(bmin[k], val[k]);
623  bmax[k] = std::max(bmax[k], val[k]);
624  }
625  }
626 
627  }
628 
629  // is nb_pt_on_face really necessary, is this possible to occur?
630  GMM_ASSERT1(nb_pt_on_face,
631  "This element has no vertex on considered face !");
632 
633  // Computation of influence box :
634  // offset of the bounding box relatively to the release distance
635  scalar_type h = bmax[0] - bmin[0];
636  for (size_type k = 1; k < N; ++k) h = std::max(h, bmax[k]-bmin[k]);
637  if (h < release_distance/scalar_type(40) && !avert) {
638  GMM_WARNING1("Found an element whose size is smaller than 1/40 "
639  "of the release distance. You should probably "
640  "adapt the release distance.");
641  avert = true;
642  }
643  for (size_type k = 0; k < N; ++k)
644  { bmin[k] -= release_distance; bmax[k] += release_distance; }
645 
646  // Store the influence box and additional information.
647  element_boxes.add_box(bmin, bmax, element_boxes_info.size());
648  n_mean /= gmm::vect_norm2(n_mean);
649  element_boxes_info.push_back(influence_box(i, cv, v.f(), n_mean));
650  }
651  }
652  element_boxes.build_tree();
653  }
654 
655  void multi_contact_frame::compute_potential_contact_pairs_influence_boxes() {
656  compute_influence_boxes();
657  compute_boundary_points(!self_contact); // vraiment necessaire ?
658  normal_cone_simplification();
659  potential_pairs = std::vector<std::vector<face_info> >();
660  potential_pairs.resize(boundary_points.size());
661 
662  for (size_type ip = 0; ip < boundary_points.size(); ++ip) {
663 
664  bgeot::rtree::pbox_set bset;
665  element_boxes.find_boxes_at_point(boundary_points[ip], bset);
666  boundary_point *pt_info = &(boundary_points_info[ip]);
667  const mesh_fem &mf1 = mfdisp_of_boundary(pt_info->ind_boundary);
668  size_type ib1 = pt_info->ind_boundary;
669 
670  bgeot::rtree::pbox_set::iterator it = bset.begin();
671  for (; it != bset.end(); ++it) {
672  influence_box &ibx = element_boxes_info[(*it)->id];
673  size_type ib2 = ibx.ind_boundary;
674  const mesh_fem &mf2 = mfdisp_of_boundary(ib2);
675 
676  // CRITERION 1 : The unit normal cone / vector are compatible
677  // and the two points are not in the same element.
678  if (
679  test_normal_cones_compatibility(ibx.mean_normal,
680  pt_info->normals)
681  // In case of self-contact, test if the points and the face
682  // share the same element.
683  && (((nodes_mode < 2)
684  && (( &(mf1.linked_mesh()) != &(mf2.linked_mesh()))
685  || (pt_info->ind_element != ibx.ind_element)))
686  || ((nodes_mode == 2)
687  && !(is_dof_linked(ib1, pt_info->ind_pt,
688  ibx.ind_boundary, ibx.ind_element)))
689  )
690  ) {
691 
692  add_potential_contact_face(ip, ibx.ind_boundary, ibx.ind_element,
693  ibx.ind_face);
694  }
695  }
696 
697  }
698  }
699 
700  struct proj_pt_surf_cost_function_object {
701  size_type N;
702  scalar_type EPS;
703  const base_node &x0, &x;
704  fem_interpolation_context &ctx;
705  const model_real_plain_vector &coeff;
706  const std::vector<base_small_vector> &ti;
707  bool ref_conf;
708  mutable base_node dxy;
709  mutable base_matrix grad, gradtot;
710 
711  scalar_type operator()(const base_small_vector& a) const {
712  base_node xx = x0;
713  for (size_type i= 0; i < N-1; ++i) xx += a[i] * ti[i];
714  ctx.set_xref(xx);
715  if (!ref_conf) {
716  ctx.pf()->interpolation(ctx, coeff, dxy, dim_type(N));
717  dxy += ctx.xreal() - x;
718  } else
719  dxy = ctx.xreal() - x;
720  return gmm::vect_norm2(dxy)/scalar_type(2);
721  }
722 
723  scalar_type operator()(const base_small_vector& a,
724  base_small_vector &grada) const {
725  base_node xx = x0;
726  for (size_type i = 0; i < N-1; ++i) xx += a[i] * ti[i];
727  ctx.set_xref(xx);
728  if (!ref_conf) {
729  ctx.pf()->interpolation(ctx, coeff, dxy, dim_type(N));
730  dxy += ctx.xreal() - x;
731  ctx.pf()->interpolation_grad(ctx, coeff, grad, dim_type(N));
732  gmm::add(gmm::identity_matrix(), grad);
733  gmm::mult(grad, ctx.K(), gradtot);
734  } else {
735  dxy = ctx.xreal() - x;
736  gmm::copy(ctx.K(), gradtot);
737  }
738  for (size_type i = 0; i < N-1; ++i)
739  grada[i] = gmm::vect_sp(gradtot, ti[i], dxy);
740  return gmm::vect_norm2(dxy)/scalar_type(2);
741  }
742  void operator()(const base_small_vector& a,
743  base_matrix &hessa) const {
744  base_small_vector b = a;
745  base_small_vector grada(N-1), gradb(N-1);
746  (*this)(b, grada);
747  for (size_type i = 0; i < N-1; ++i) {
748  b[i] += EPS;
749  (*this)(b, gradb);
750  for (size_type j = 0; j < N-1; ++j)
751  hessa(j, i) = (gradb[j] - grada[j])/EPS;
752  b[i] -= EPS;
753  }
754  }
755 
756  proj_pt_surf_cost_function_object
757  (const base_node &x00, const base_node &xx,
758  fem_interpolation_context &ctxx,
759  const model_real_plain_vector &coefff,
760  const std::vector<base_small_vector> &tii,
761  scalar_type EPSS, bool rc)
762  : N(gmm::vect_size(x00)), EPS(EPSS), x0(x00), x(xx),
763  ctx(ctxx), coeff(coefff), ti(tii), ref_conf(rc),
764  dxy(N), grad(N,N), gradtot(N,N) {}
765 
766  };
767 
768  struct raytrace_pt_surf_cost_function_object {
769  size_type N;
770  const base_node &x0, &x;
771  fem_interpolation_context &ctx;
772  const model_real_plain_vector &coeff;
773  const std::vector<base_small_vector> &ti;
774  const std::vector<base_small_vector> &Ti;
775  bool ref_conf;
776  mutable base_node dxy;
777  mutable base_matrix grad, gradtot;
778 
779  void operator()(const base_small_vector& a,
780  base_small_vector &res) const {
781  base_node xx = x0;
782  for (size_type i = 0; i < N-1; ++i) xx += a[i] * ti[i];
783  ctx.set_xref(xx);
784  if (!ref_conf) {
785  ctx.pf()->interpolation(ctx, coeff, dxy, dim_type(N));
786  dxy += ctx.xreal() - x;
787  } else
788  dxy = ctx.xreal() - x;
789  for (size_type i = 0; i < N-1; ++i)
790  res[i] = gmm::vect_sp(dxy, Ti[i]);
791  }
792 
793  void operator()(const base_small_vector& a,
794  base_matrix &hessa) const {
795  base_node xx = x0;
796  for (size_type i = 0; i < N-1; ++i) xx += a[i] * ti[i];
797  ctx.set_xref(xx);
798  if (!ref_conf) {
799  ctx.pf()->interpolation_grad(ctx, coeff, grad, dim_type(N));
800  gmm::add(gmm::identity_matrix(), grad);
801  gmm::mult(grad, ctx.K(), gradtot);
802  } else {
803  gmm::copy(ctx.K(), gradtot);
804  }
805  for (size_type i = 0; i < N-1; ++i)
806  for (size_type j = 0; j < N-1; ++j)
807  hessa(j, i) = gmm::vect_sp(gradtot, ti[i], Ti[j]);
808  }
809 
810 
811  raytrace_pt_surf_cost_function_object
812  (const base_node &x00, const base_node &xx,
813  fem_interpolation_context &ctxx,
814  const model_real_plain_vector &coefff,
815  const std::vector<base_small_vector> &tii,
816  const std::vector<base_small_vector> &Tii,
817  bool rc)
818  : N(gmm::vect_size(x00)), x0(x00), x(xx),
819  ctx(ctxx), coeff(coefff), ti(tii), Ti(Tii), ref_conf(rc),
820  dxy(N), grad(N,N), gradtot(N,N) {}
821 
822  };
823 
824  // Ideas to improve efficiency :
825  // - From an iteration to another, is it possible to simplify the
826  // computation ? For instance in testing the old contact pairs ...
827  // But how to detect new contact situations ?
828  // - A pre-test before projection (for Delaunay) : if the distance to a
829  // node is greater than the release distance + h then give up.
830  // - Case J3 of valid/invalid contact situations is not really taken into
831  // account. How to take it into account in a cheap way ?
832 
833  void multi_contact_frame::compute_contact_pairs() {
834  base_matrix G, grad(N,N);
835  model_real_plain_vector coeff;
836  base_small_vector a(N-1), ny(N);
837  base_node y(N);
838  std::vector<base_small_vector> ti(N-1), Ti(N-1);
839  size_type nbwarn(0);
840 
841  // double time = dal::uclock_sec();
842 
843  clear_aux_info();
844  contact_pairs = std::vector<contact_pair>();
845 
846  if (!ref_conf) extend_vectors();
847 
848  bool only_slave(true), only_master(true);
849  for (size_type i = 0; i < contact_boundaries.size(); ++i)
850  if (is_slave_boundary(i)) only_master = false;
851  else only_slave = false;
852 
853  if (only_master && !self_contact) {
854  GMM_WARNING1("There is only master boundary and no self-contact to detect. Exiting");
855  return;
856  }
857 
858  if (only_slave) {
859  compute_boundary_points();
860  potential_pairs.resize(boundary_points.size());
861  }
862  else if (use_delaunay)
863  compute_potential_contact_pairs_delaunay();
864  else
865  compute_potential_contact_pairs_influence_boxes();
866 
867  // cout << "Time for computing potential pairs: " << dal::uclock_sec() - time << endl; time = dal::uclock_sec();
868 
869 
870  // Scan of potential pairs
871  for (size_type ip = 0; ip < potential_pairs.size(); ++ip) {
872  bool first_pair_found = false;
873  const base_node &x = boundary_points[ip];
874  boundary_point &bpinfo = boundary_points_info[ip];
875  size_type ibx = bpinfo.ind_boundary;
876  bool slx = is_slave_boundary(ibx);
877  scalar_type d0 = 1E300, d1, d2;
878 
879  base_small_vector nx = bpinfo.normals[0];
880  if (raytrace) {
881  if (bpinfo.normals.size() > 1) { // take the mean normal vector
882  for (size_type i = 1; i < bpinfo.normals.size(); ++i)
883  gmm::add(bpinfo.normals[i], nx);
884  scalar_type nnx = gmm::vect_norm2(nx);
885  GMM_ASSERT1(nnx != scalar_type(0), "Invalid normal cone");
886  gmm::scale(nx, scalar_type(1)/nnx);
887  }
888  }
889 
890  if (self_contact || slx) {
891  // Detect here the nearest rigid obstacle (taking into account
892  // the release distance)
893  size_type irigid_obstacle(-1);
894  gmm::copy(x, pt);
895  if (N >= 4) ptw[0] = pt[3];
896  if (N >= 3) ptz[0] = pt[2];
897  if (N >= 2) pty[0] = pt[1];
898  if (N >= 1) ptx[0] = pt[0];
899  for (size_type i = 0; i < obstacles.size(); ++i) {
900  d1 = (obstacles_f[i].eval())[0];
901  if (gmm::abs(d1) < release_distance && d1 < d0) {
902 
903  for (size_type j=0; j < bpinfo.normals.size(); ++j) {
904  gmm::add(gmm::scaled(bpinfo.normals[j], EPS), pt);
905  if (N >= 4) ptw[0] = pt[3];
906  if (N >= 3) ptz[0] = pt[2];
907  if (N >= 2) pty[0] = pt[1];
908  if (N >= 1) ptx[0] = pt[0];
909  d2 = (obstacles_f[i].eval())[0];
910  if (d2 < d1) { d0 = d1; irigid_obstacle = i; break; }
911  gmm::copy(x, pt);
912  if (N >= 4) ptw[0] = pt[3];
913  if (N >= 3) ptz[0] = pt[2];
914  if (N >= 2) pty[0] = pt[1];
915  if (N >= 1) ptx[0] = pt[0];
916  }
917  }
918  }
919 
920  if (irigid_obstacle != size_type(-1)) {
921 
922  gmm::copy(x, pt);
923  if (N >= 4) ptw[0] = pt[3];
924  if (N >= 3) ptz[0] = pt[2];
925  if (N >= 2) pty[0] = pt[1];
926  if (N >= 1) ptx[0] = pt[0];
927  gmm::copy(x, y);
928  size_type nit = 0, nb_fail = 0;
929  scalar_type alpha(0), beta(0);
930  d1 = d0;
931 
932  while (++nit < 50 && nb_fail < 3) {
933  for (size_type k = 0; k < N; ++k) {
934  pt[k] += EPS;
935  switch(N) {
936  case 4: ptw[0] += EPS; break;
937  case 3: ptz[0] += EPS; break;
938  case 2: pty[0] += EPS; break;
939  case 1: ptx[0] += EPS; break;
940  }
941  d2 = (obstacles_f[irigid_obstacle].eval())[0];
942  ny[k] = (d2 - d1) / EPS;
943  pt[k] -= EPS;
944  switch(N) {
945  case 4: ptw[0] -= EPS; break;
946  case 3: ptz[0] -= EPS; break;
947  case 2: pty[0] -= EPS; break;
948  case 1: ptx[0] -= EPS; break;
949  }
950  }
951 
952  if (gmm::abs(d1) < 1E-13)
953  break; // point already lies on the rigid obstacle surface
954 
955  // ajouter un test de divergence ...
956  for (scalar_type lambda(1); lambda >= 1E-3; lambda /= scalar_type(2)) {
957  if (raytrace) {
958  alpha = beta - lambda * d1 / gmm::vect_sp(ny, nx);
959  gmm::add(x, gmm::scaled(nx, alpha), pt);
960  } else {
961  gmm::add(gmm::scaled(ny, -d1/gmm::vect_norm2_sqr(ny)), y, pt);
962  }
963  if (N >= 4) ptw[0] = pt[3];
964  if (N >= 3) ptz[0] = pt[2];
965  if (N >= 2) pty[0] = pt[1];
966  if (N >= 1) ptx[0] = pt[0];
967  d2 = (obstacles_f[irigid_obstacle].eval())[0];
968 // if (nit > 10)
969 // cout << "nit = " << nit << " lambda = " << lambda
970 // << " alpha = " << alpha << " d2 = " << d2
971 // << " d1 = " << d1 << endl;
972  if (gmm::abs(d2) < gmm::abs(d1)) break;
973  }
974  if (raytrace &&
975  gmm::abs(beta - d1 / gmm::vect_sp(ny, nx)) > scalar_type(500))
976  nb_fail++;
977  gmm::copy(pt, y); beta = alpha; d1 = d2;
978  }
979 
980  if (gmm::abs(d1) > 1E-8) {
981  GMM_WARNING1("Projection/raytrace on rigid obstacle failed");
982  continue;
983  }
984 
985  // CRITERION 4 for rigid bodies : Apply the release distance
986  if (gmm::vect_dist2(y, x) > release_distance)
987  continue;
988 
989  gmm::copy(pt, y);
990  ny /= gmm::vect_norm2(ny);
991 
992  d0 = gmm::vect_dist2(y, x) * gmm::sgn(d0);
993  contact_pair ct(x, nx, bpinfo, y, ny, irigid_obstacle, d0);
994 
995  contact_pairs.push_back(ct);
996  first_pair_found = true;
997  }
998  }
999 
1000  // if (potential_pairs[ip].size())
1001  // cout << "number of potential pairs for point " << ip << " : " << potential_pairs[ip].size() << endl;
1002  for (size_type ipf = 0; ipf < potential_pairs[ip].size(); ++ipf) {
1003  // Point to surface projection. Principle :
1004  // - One parametrizes first the face on the reference element by
1005  // obtaining a point x_0 on that face and t_i, i=1..d-1 some
1006  // orthonormals tangent vectors to the face.
1007  // - Let y_0 be the point to be projected and y the searched
1008  // projected point. Then one searches for the minimum of
1009  // J = (1/2)|| y - x ||
1010  // with
1011  // y = \phi(x0 + a_i t_i)
1012  // (with a summation on i), where \phi = I+u(\tau(x)), and \tau
1013  // the geometric transformation between reference and real
1014  // elements.
1015  // - The gradient of J with respect to a_i is
1016  // \partial_{a_j} J = (\phi(x0 + a_i t_i) - x)
1017  // . (\nabla \phi(x0 + a_i t_i) t_j
1018  // - A Newton algorithm is applied.
1019  // - If it fails, a BFGS is called.
1020 
1021  const face_info &fi = potential_pairs[ip][ipf];
1022  size_type ib = fi.ind_boundary;
1023  size_type cv = fi.ind_element;
1024  short_type iff = fi.ind_face;
1025 
1026  const mesh_fem &mfu = mfdisp_of_boundary(ib);
1027  const mesh &m = mfu.linked_mesh();
1028  pfem pf_s = mfu.fem_of_element(cv);
1029  bgeot::pgeometric_trans pgt = m.trans_of_convex(cv);
1030 
1031  if (!ref_conf)
1032  slice_vector_on_basic_dof_of_element(mfu, disp_of_boundary(ib),
1033  cv, coeff);
1034  m.points_of_convex(cv, G);
1035  // face_pts is of type bgeot::convex<...>::ref_convex_pt_ct
1036  const auto face_pts = pf_s->ref_convex(cv)->points_of_face(iff);
1037  const base_node &x0 = face_pts[0];
1038  fem_interpolation_context ctx(pgt, pf_s, x0, G, cv, iff);
1039 
1040  const base_small_vector &n0 = pf_s->ref_convex(cv)->normals()[iff];
1041  for (size_type k = 0; k < N-1; ++k) { // A basis for the face
1042  gmm::resize(ti[k], N);
1043  scalar_type norm(0);
1044  while(norm < 1E-5) {
1045  gmm::fill_random(ti[k]);
1046  ti[k] -= gmm::vect_sp(ti[k], n0) * n0;
1047  for (size_type l = 0; l < k; ++l)
1048  ti[k] -= gmm::vect_sp(ti[k], ti[l]) * ti[l];
1049  norm = gmm::vect_norm2(ti[k]);
1050  }
1051  ti[k] /= norm;
1052  }
1053 
1054  bool converged = false;
1055  scalar_type residual(0);
1056 
1057 
1058  if (raytrace) { // Raytrace search for y by a Newton algorithm
1059 
1060  base_small_vector res(N-1), res2(N-1), dir(N-1), b(N-1);
1061 
1062  base_matrix hessa(N-1, N-1);
1063  gmm::clear(a);
1064 
1065  for (size_type k = 0; k < N-1; ++k) {
1066  gmm::resize(Ti[k], N);
1067  scalar_type norm(0);
1068  while (norm < 1E-5) {
1069  gmm::fill_random(Ti[k]);
1070  Ti[k] -= gmm::vect_sp(Ti[k], nx) * nx;
1071  for (size_type l = 0; l < k; ++l)
1072  Ti[k] -= gmm::vect_sp(Ti[k], Ti[l]) * Ti[l];
1073  norm = gmm::vect_norm2(Ti[k]);
1074  }
1075  Ti[k] /= norm;
1076  }
1077 
1078  raytrace_pt_surf_cost_function_object pps(x0, x, ctx, coeff, ti, Ti,
1079  ref_conf);
1080 
1081  pps(a, res);
1082  residual = gmm::vect_norm2(res);
1083  scalar_type residual2(0), det(0);
1084  bool exited = false;
1085  size_type nbfail = 0, niter = 0;
1086  for (;residual > 2E-12 && niter <= 30; ++niter) {
1087 
1088  for (size_type subiter(0);;) {
1089  pps(a, hessa);
1090  det = gmm::abs(bgeot::lu_inverse(&(*(hessa.begin())),N-1, false));
1091  if (det > 1E-15) break;
1092  for (size_type i = 0; i < N-1; ++i)
1093  a[i] += gmm::random() * 1E-7;
1094  if (++subiter > 4) break;
1095  }
1096  if (det <= 1E-15) break;
1097  // Computation of the descent direction
1098  gmm::mult(hessa, gmm::scaled(res, scalar_type(-1)), dir);
1099 
1100  if (gmm::vect_norm2(dir) > scalar_type(10)) nbfail++;
1101  if (nbfail >= 4) break;
1102 
1103  // Line search
1104  scalar_type lambda(1);
1105  for (size_type j = 0; j < 5; ++j) {
1106  gmm::add(a, gmm::scaled(dir, lambda), b);
1107  pps(b, res2);
1108  residual2 = gmm::vect_norm2(res2);
1109  if (residual2 < residual) break;
1110  lambda /= ((j < 3) ? scalar_type(2) : scalar_type(5));
1111  }
1112 
1113  residual = residual2;
1114  gmm::copy(res2, res);
1115  gmm::copy(b, a);
1116  scalar_type dist_ref = gmm::vect_norm2(a);
1117 // if (niter == 15)
1118 // cout << "more than 15 iterations " << a
1119 // << " dir " << dir << " nbfail : " << nbfail << endl;
1120  if (niter > 1 && dist_ref > 15) break;
1121  if (niter > 5 && dist_ref > 8) break;
1122  if ((niter > 1 && dist_ref > 7) || nbfail == 3) exited = true;
1123  }
1124  converged = (gmm::vect_norm2(res) < 2E-6);
1125  GMM_ASSERT1(!((exited && converged &&
1126  pf_s->ref_convex(cv)->is_in(ctx.xref()) < 1E-6)),
1127  "A non conformal case !! " << gmm::vect_norm2(res)
1128  << " : " << nbfail << " : " << niter);
1129 
1130  } else { // Classical projection for y
1131 
1132  proj_pt_surf_cost_function_object pps(x0, x, ctx, coeff, ti,
1133  EPS, ref_conf);
1134 
1135  // Projection could be ameliorated by finding a starting point near
1136  // x (with respect to the integration method, for instance).
1137 
1138  // A specific (Quasi) Newton algorithm for computing the projection
1139  base_small_vector grada(N-1), dir(N-1), b(N-1);
1140  gmm::clear(a);
1141  base_matrix hessa(N-1, N-1);
1142  scalar_type det(0);
1143 
1144  scalar_type dist = pps(a, grada);
1145  for (size_type niter = 0;
1146  gmm::vect_norm2(grada) > 1E-12 && niter <= 50; ++niter) {
1147 
1148  for (size_type subiter(0);;) {
1149  pps(a, hessa);
1150  det = gmm::abs(bgeot::lu_inverse(&(*(hessa.begin())),N-1, false));
1151  if (det > 1E-15) break;
1152  for (size_type i = 0; i < N-1; ++i)
1153  a[i] += gmm::random() * 1E-7;
1154  if (++subiter > 4) break;
1155  }
1156  if (det <= 1E-15) break;
1157  // Computation of the descent direction
1158  gmm::mult(hessa, gmm::scaled(grada, scalar_type(-1)), dir);
1159 
1160  // Line search
1161  for (scalar_type lambda(1);
1162  lambda >= 1E-3; lambda /= scalar_type(2)) {
1163  gmm::add(a, gmm::scaled(dir, lambda), b);
1164  if (pps(b) < dist) break;
1165  gmm::add(a, gmm::scaled(dir, -lambda), b);
1166  if (pps(b) < dist) break;
1167  }
1168  gmm::copy(b, a);
1169  dist = pps(a, grada);
1170  }
1171 
1172  converged = (gmm::vect_norm2(grada) < 2E-6);
1173 
1174  if (!converged) { // Try with BFGS
1175  gmm::iteration iter(1E-12, 0 /* noisy*/, 100 /*maxiter*/);
1176  gmm::clear(a);
1177  gmm::bfgs(pps, pps, a, 10, iter, 0, 0.5);
1178  residual = gmm::abs(iter.get_res());
1179  converged = (residual < 2E-5);
1180  }
1181  }
1182 
1183  bool is_in = (pf_s->ref_convex(cv)->is_in(ctx.xref()) < 1E-6);
1184 
1185  if (is_in || (!converged && !raytrace)) {
1186  if (!ref_conf) {
1187  ctx.pf()->interpolation(ctx, coeff, y, dim_type(N));
1188  y += ctx.xreal();
1189  } else {
1190  y = ctx.xreal();
1191  }
1192  }
1193 
1194  // CRITERION 2 : The contact pair is eliminated when
1195  // projection/raytrace do not converge.
1196  if (!converged) {
1197  if (!raytrace && nbwarn < 4) {
1198  GMM_WARNING3("Projection or raytrace algorithm did not converge "
1199  "for point " << x << " residual " << residual
1200  << " projection computed " << y);
1201  ++nbwarn;
1202  }
1203  continue;
1204  }
1205 
1206  // CRITERION 3 : The projected point is inside the element
1207  // The test should be completed: If the point is outside
1208  // the element, a rapid reprojection on the face
1209  // (on the reference element, with a linear algorithm)
1210  // can be applied and a test with a neigbhour element
1211  // to decide if the point is in fact ok ...
1212  // (to be done only if there is no projection on other
1213  // element which coincides and with a test on the
1214  // distance ... ?) To be specified (in this case,
1215  // change xref).
1216  if (!is_in) continue;
1217 
1218  // CRITERION 4 : Apply the release distance
1219  scalar_type signed_dist = gmm::vect_dist2(y, x);
1220  if (signed_dist > release_distance) continue;
1221 
1222  // compute the unit normal vector at y and the signed distance.
1223  base_small_vector ny0(N);
1224  compute_normal(ctx, iff, ref_conf, coeff, ny0, ny, grad);
1225  // ny /= gmm::vect_norm2(ny); // Useful only if the unit normal is kept
1226  signed_dist *= gmm::sgn(gmm::vect_sp(x - y, ny));
1227 
1228  // CRITERION 5 : comparison with rigid obstacles
1229  // CRITERION 7 : smallest signed distance on contact pairs
1230  if (first_pair_found && contact_pairs.back().signed_dist < signed_dist)
1231  continue;
1232 
1233  // CRITERION 1 : again on found unit normal vector
1234  if (!(test_normal_cones_compatibility(ny, bpinfo.normals)))
1235  continue;
1236 
1237  // CRITERION 6 : for self-contact only : apply a test on
1238  // unit normals in reference configuration.
1239  if (&m == &(mfdisp_of_boundary(ibx).linked_mesh())) {
1240 
1241  base_small_vector diff = bpinfo.ref_point - ctx.xreal();
1242  scalar_type ref_dist = gmm::vect_norm2(diff);
1243 
1244  if ( (ref_dist < scalar_type(4) * release_distance)
1245  && (gmm::vect_sp(diff, ny0) < - 0.01 * ref_dist) )
1246  continue;
1247  }
1248 
1249  contact_pair ct(x, nx, bpinfo, ctx.xref(), y, ny, fi, signed_dist);
1250  if (first_pair_found) {
1251  contact_pairs.back() = ct;
1252  } else {
1253  contact_pairs.push_back(ct);
1254  first_pair_found = true;
1255  }
1256 
1257  }
1258  }
1259 
1260  // cout << "Time for computing pairs: " << dal::uclock_sec() - time << endl; time = dal::uclock_sec();
1261 
1262  clear_aux_info();
1263  }
1264 
1265  //=========================================================================
1266  //
1267  // Raytracing interpolate transformation for generic assembly
1268  //
1269  //=========================================================================
1270 
1271  class raytracing_interpolate_transformation
1272  : public virtual_interpolate_transformation {
1273  protected:
1274  // Structure describing a contact boundary
1275  struct contact_boundary {
1276  size_type region; // Boundary number
1277  const getfem::mesh_fem *mfu; // F.e.m. for the displacement.
1278  std::string dispname; // Variable name for the displacement
1279  mutable const model_real_plain_vector *U; // Displacement
1280  mutable model_real_plain_vector U_unred; // Unreduced displacement
1281  bool slave;
1282 
1283  contact_boundary()
1284  : region(-1), mfu(0), dispname(""), U(0), U_unred(0), slave(false) {}
1285  contact_boundary(size_type r, const mesh_fem *mf, const std::string &dn,
1286  bool sl)
1287  : region(r), mfu(mf), dispname(dn), slave(sl) {}
1288  };
1289 
1290  struct face_box_info { // Additional information for a face box
1291  size_type ind_boundary; // Boundary number
1292  size_type ind_element; // Element number
1293  short_type ind_face; // Face number in element
1294  base_small_vector mean_normal; // Mean outward normal unit vector
1295  face_box_info()
1296  : ind_boundary(-1), ind_element(-1), ind_face(-1), mean_normal(0) {}
1297  face_box_info(size_type ib, size_type ie,
1298  short_type iff, const base_small_vector &n)
1299  : ind_boundary(ib), ind_element(ie), ind_face(iff), mean_normal(n) {}
1300  };
1301 
1302  scalar_type release_distance; // Limit distance beyond which the contact
1303  // will not be considered.
1304 
1305  std::vector<contact_boundary> contact_boundaries;
1306  typedef std::map<const mesh *, std::vector<size_type> > mesh_boundary_cor;
1307  mesh_boundary_cor boundary_for_mesh;
1308 
1309  class obstacle {
1310  const model *md;
1311  const ga_workspace *parent_workspace;
1312  std::string expr;
1313 
1314  mutable base_vector X;
1315  mutable ga_function f, der_f;
1316  mutable bool compiled;
1317 
1318  void compile() const {
1319  if (md)
1320  f = ga_function(*md, expr);
1321  else if (parent_workspace)
1322  f = ga_function(*parent_workspace, expr);
1323  else
1324  f = ga_function(expr);
1325  size_type N = gmm::vect_size(X);
1326  f.workspace().add_fixed_size_variable("X", gmm::sub_interval(0, N), X);
1327  if (N >= 1) f.workspace().add_macro("x", "X(1)");
1328  if (N >= 2) f.workspace().add_macro("y", "X(2)");
1329  if (N >= 3) f.workspace().add_macro("z", "X(3)");
1330  if (N >= 4) f.workspace().add_macro("w", "X(4)");
1331  f.compile();
1332  der_f = f;
1333  der_f.derivative("X");
1334  compiled = true;
1335  }
1336 
1337  public:
1338 
1339  base_vector &point() const { return X; }
1340 
1341  const base_tensor &eval() const {
1342  if (!compiled) compile();
1343  return f.eval();
1344  }
1345  const base_tensor &eval_derivative() const {
1346  if (!compiled) compile();
1347  return der_f.eval();
1348  }
1349 
1350  obstacle()
1351  : md(0), parent_workspace(0), expr(""), X(0), f(), der_f() {}
1352  obstacle(const model &md_, const std::string &expr_, size_type N)
1353  : md(&md_), parent_workspace(0), expr(expr_), X(N),
1354  f(), der_f(), compiled(false) {}
1355  obstacle(const ga_workspace &parent_workspace_,
1356  const std::string &expr_, size_type N)
1357  : md(0), parent_workspace(&parent_workspace_), expr(expr_), X(N),
1358  f(), der_f(), compiled(false) {}
1359  obstacle(const obstacle &obs)
1360  : md(obs.md), parent_workspace(obs.parent_workspace), expr(obs.expr),
1361  X(obs.X), f(), der_f(), compiled(false) {}
1362  obstacle &operator =(const obstacle& obs) {
1363  md = obs.md;
1364  parent_workspace = obs.parent_workspace;
1365  expr = obs.expr;
1366  X = obs.X;
1367  f = ga_function();
1368  der_f = ga_function();
1369  compiled = false;
1370  return *this;
1371  }
1372  ~obstacle() {}
1373  };
1374 
1375  std::vector<obstacle> obstacles;
1376 
1377  mutable bgeot::rtree face_boxes;
1378  mutable std::vector<face_box_info> face_boxes_info;
1379 
1380 
1381  void compute_face_boxes() const { // called by init
1382  fem_precomp_pool fppool;
1383  base_matrix G;
1384  model_real_plain_vector coeff;
1385  face_boxes.clear();
1386  face_boxes_info.resize(0);
1387 
1388  for (size_type i = 0; i < contact_boundaries.size(); ++i) {
1389  const contact_boundary &cb = contact_boundaries[i];
1390  if (! cb.slave) {
1391  size_type bnum = cb.region;
1392  const mesh_fem &mfu = *(cb.mfu);
1393  const model_real_plain_vector &U = *(cb.U);
1394  const mesh &m = mfu.linked_mesh();
1395  size_type N = m.dim();
1396 
1397  base_node val(N), bmin(N), bmax(N);
1398  base_small_vector n0_x(N), n_x(N), n0_y(N), n_y(N), n_mean(N);
1399  base_matrix grad(N,N);
1400  mesh_region region = m.region(bnum);
1401  GMM_ASSERT1(mfu.get_qdim() == N, "Wrong mesh_fem qdim");
1402 
1403  dal::bit_vector points_already_interpolated;
1404  std::vector<base_node> transformed_points(m.nb_max_points());
1405  for (getfem::mr_visitor v(region,m); !v.finished(); ++v) {
1406  size_type cv = v.cv();
1407  bgeot::pgeometric_trans pgt = m.trans_of_convex(cv);
1408  pfem pf_s = mfu.fem_of_element(cv);
1409  pfem_precomp pfp = fppool(pf_s, pgt->pgeometric_nodes());
1410  slice_vector_on_basic_dof_of_element(mfu, U, cv, coeff);
1411  mfu.linked_mesh().points_of_convex(cv, G);
1412  fem_interpolation_context ctx(pgt, pfp, size_type(-1), G, cv);
1413 
1414  bgeot::pconvex_structure cvs = pgt->structure();
1415  size_type nb_pt_on_face = cvs->nb_points_of_face(v.f());
1416  GMM_ASSERT1(nb_pt_on_face >= 2, "This element has less than two "
1417  "vertices on considered face !");
1418  gmm::clear(n_mean);
1419 
1420  for (size_type k = 0; k < nb_pt_on_face; ++k) {
1421  size_type ip = cvs->ind_points_of_face(v.f())[k];
1422  size_type ind = m.ind_points_of_convex(cv)[ip];
1423 
1424  // computation of transformed vertex
1425  ctx.set_ii(ip);
1426  if (!(points_already_interpolated.is_in(ind))) {
1427  pf_s->interpolation(ctx, coeff, val, dim_type(N));
1428  val += ctx.xreal();
1429  transformed_points[ind] = val;
1430  points_already_interpolated.add(ind);
1431  } else {
1432  val = transformed_points[ind];
1433  }
1434  // computation of unit normal vector if the vertex is on the face
1435  compute_normal(ctx, v.f(), false, coeff, n0_x, n_x, grad);
1436  n_x /= gmm::vect_norm2(n_x);
1437  n_mean += n_x;
1438 
1439  if (k == 0) // computation of bounding box
1440  bmin = bmax = val;
1441  else {
1442  for (size_type l = 0; l < N; ++l) {
1443  bmin[l] = std::min(bmin[l], val[l]);
1444  bmax[l] = std::max(bmax[l], val[l]);
1445  }
1446  }
1447  }
1448 
1449  // Security coefficient of 1.3 (for nonlinear transformations)
1450  scalar_type h = bmax[0] - bmin[0];
1451  for (size_type k = 1; k < N; ++k) h = std::max(h, bmax[k]-bmin[k]);
1452  for (size_type k = 0; k < N; ++k)
1453  { bmin[k] -= h * 0.15; bmax[k] += h * 0.15; }
1454 
1455  // Store the bounding box and additional information.
1456  face_boxes.add_box(bmin, bmax, face_boxes_info.size());
1457  n_mean /= gmm::vect_norm2(n_mean);
1458  face_boxes_info.push_back(face_box_info(i, cv, v.f(), n_mean));
1459  }
1460  }
1461  }
1462  face_boxes.build_tree();
1463  }
1464 
1465  public:
1466 
1467  void add_rigid_obstacle(const model &md, const std::string &expr,
1468  size_type N) {
1469  obstacles.push_back(obstacle(md, expr, N));
1470  }
1471 
1472  void add_rigid_obstacle(const ga_workspace &parent_workspace,
1473  const std::string &expr, size_type N) {
1474  obstacles.push_back(obstacle(parent_workspace, expr, N));
1475  }
1476 
1477  void add_contact_boundary(const model &md, const mesh &m,
1478  const std::string dispname,
1479  size_type region, bool slave) {
1480  const mesh_fem *mf = 0;
1481  if (md.variable_group_exists(dispname)) {
1482  for (const std::string &t : md.variable_group(dispname)) {
1483  const mesh_fem *mf2 = md.pmesh_fem_of_variable(t);
1484  if (mf2 && &(mf2->linked_mesh()) == &m)
1485  { mf = mf2; break; }
1486  }
1487  } else
1488  mf = md.pmesh_fem_of_variable(dispname);
1489 
1490  GMM_ASSERT1(mf, "Displacement should be a fem variable");
1491  contact_boundary cb(region, mf, dispname, slave);
1492  boundary_for_mesh[&(mf->linked_mesh())]
1493  .push_back(contact_boundaries.size());
1494  contact_boundaries.push_back(cb);
1495  }
1496 
1497  void add_contact_boundary(const ga_workspace &workspace, const mesh &m,
1498  const std::string dispname,
1499  size_type region, bool slave) {
1500  const mesh_fem *mf = 0;
1501  if (workspace.variable_group_exists(dispname)) {
1502  for (const std::string &t : workspace.variable_group(dispname)) {
1503  const mesh_fem *mf2 = workspace.associated_mf(t);
1504  if (mf2 && &(mf2->linked_mesh()) == &m)
1505  { mf = mf2; break; }
1506  }
1507  } else
1508  mf = workspace.associated_mf(dispname);
1509 
1510  GMM_ASSERT1(mf, "Displacement should be a fem variable");
1511  contact_boundary cb(region, mf, dispname, slave);
1512  boundary_for_mesh[&(mf->linked_mesh())]
1513  .push_back(contact_boundaries.size());
1514  contact_boundaries.push_back(cb);
1515  }
1516 
1517  void extract_variables(const ga_workspace &workspace,
1518  std::set<var_trans_pair> &vars,
1519  bool ignore_data, const mesh &m_x,
1520  const std::string &interpolate_name) const {
1521 
1522  bool expand_groups = !ignore_data;
1523  // const mesh_fem *mf = workspace.associated_mf(name);
1524  // GMM_ASSERT1(mf, "Internal error");
1525  // const mesh &m_x = mf->linked_mesh();
1526 
1527  mesh_boundary_cor::const_iterator it = boundary_for_mesh.find(&m_x);
1528  GMM_ASSERT1(it != boundary_for_mesh.end(), "Raytracing interpolate "
1529  "transformation: Mesh with no declared contact boundary");
1530  for (const size_type &boundary_ind : it->second) {
1531  const contact_boundary &cb = contact_boundaries[boundary_ind];
1532  const std::string &dispname_x
1533  = workspace.variable_in_group(cb.dispname, m_x);
1534  if (!ignore_data || !(workspace.is_constant(dispname_x)))
1535  vars.insert(var_trans_pair(dispname_x, ""));
1536  }
1537 
1538  for (const contact_boundary &cb : contact_boundaries) {
1539  if (!(cb.slave)) {
1540  if (expand_groups && workspace.variable_group_exists(cb.dispname)
1541  && (!ignore_data || !(workspace.is_constant(cb.dispname)))) {
1542  for (const std::string &t : workspace.variable_group(cb.dispname))
1543  vars.insert(var_trans_pair(t, interpolate_name));
1544  } else {
1545  if (!ignore_data || !(workspace.is_constant(cb.dispname)))
1546  vars.insert(var_trans_pair(cb.dispname, interpolate_name));
1547  }
1548  }
1549  }
1550  }
1551 
1552  void init(const ga_workspace &workspace) const {
1553  for (const contact_boundary &cb : contact_boundaries) {
1554  const mesh_fem &mfu = *(cb.mfu);
1555  const std::string dispname_x
1556  = workspace.variable_in_group(cb.dispname, mfu.linked_mesh());
1557 
1558  if (mfu.is_reduced()) {
1559  gmm::resize(cb.U_unred, mfu.nb_basic_dof());
1560  mfu.extend_vector(workspace.value(dispname_x), cb.U_unred);
1561  cb.U = &(cb.U_unred);
1562  } else {
1563  cb.U = &(workspace.value(dispname_x));
1564  }
1565  }
1566  compute_face_boxes();
1567  };
1568 
1569  void finalize() const {
1570  face_boxes.clear();
1571  face_boxes_info = std::vector<face_box_info>();
1572  for (const contact_boundary &cb : contact_boundaries)
1573  cb.U_unred = model_real_plain_vector();
1574  }
1575 
1576  int transform(const ga_workspace &workspace, const mesh &m_x,
1577  fem_interpolation_context &ctx_x,
1578  const base_small_vector &/*Normal*/,
1579  const mesh **m_t,
1580  size_type &cv, short_type &face_num, base_node &P_ref,
1581  base_small_vector &N_y,
1582  std::map<var_trans_pair, base_tensor> &derivatives,
1583  bool compute_derivatives) const {
1584  size_type cv_x = ctx_x.convex_num();
1585  short_type face_x = ctx_x.face_num();
1586  GMM_ASSERT1(face_x != short_type(-1), "The contact transformation can "
1587  "only be applied to a boundary");
1588 
1589  //
1590  // Find the right (slave) contact boundary
1591  //
1592  mesh_boundary_cor::const_iterator it = boundary_for_mesh.find(&m_x);
1593  GMM_ASSERT1(it != boundary_for_mesh.end(),
1594  "Mesh with no declared contact boundary");
1595  size_type ib_x = size_type(-1);
1596  for (const size_type &boundary_ind : it->second) {
1597  const contact_boundary &cb = contact_boundaries[boundary_ind];
1598  if (m_x.region(cb.region).is_in(cv_x, face_x))
1599  { ib_x = boundary_ind; break; }
1600  }
1601  GMM_ASSERT1(ib_x != size_type(-1),
1602  "No contact region found for this point");
1603  const contact_boundary &cb_x = contact_boundaries[ib_x];
1604  const mesh_fem &mfu_x = *(cb_x.mfu);
1605  pfem pfu_x = mfu_x.fem_of_element(cv_x);
1606  size_type N = mfu_x.linked_mesh().dim();
1607  GMM_ASSERT1(mfu_x.get_qdim() == N,
1608  "Displacment field with wrong dimension");
1609 
1610  model_real_plain_vector coeff_x, coeff_y, stored_coeff_y;
1611  base_small_vector a(N-1), b(N-1), pt_x(N), pt_y(N), n_x(N);
1612  base_small_vector stored_pt_y(N), stored_n_y(N), stored_pt_y_ref(N);
1613  base_small_vector n0_x, n_y(N), n0_y, res(N-1), res2(N-1), dir(N-1);
1614  base_matrix G_x, G_y, grad(N,N), hessa(N-1, N-1);
1615  std::vector<base_small_vector> ti(N-1), Ti(N-1);
1616  scalar_type stored_signed_distance(0);
1617  std::string stored_dispname;
1618  scalar_type d0 = 1E300, d1, d2;
1619  const mesh *stored_m_y(0);
1620  size_type stored_cv_y(-1);
1621  short_type stored_face_y(-1);
1622  fem_interpolation_context stored_ctx_y;
1623 
1624  //
1625  // Computation of the deformed point and unit normal vectors
1626  //
1627  slice_vector_on_basic_dof_of_element(mfu_x, *(cb_x.U), cv_x, coeff_x);
1628  m_x.points_of_convex(cv_x, G_x);
1629  ctx_x.set_pf(pfu_x);
1630  pfu_x->interpolation(ctx_x, coeff_x, pt_x, dim_type(N));
1631  pt_x += ctx_x.xreal();
1632  compute_normal(ctx_x, face_x, false, coeff_x, n0_x, n_x, grad);
1633  n_x /= gmm::vect_norm2(n_x);
1634 
1635  //
1636  // Determine the nearest rigid obstacle, taking into account
1637  // the release distance.
1638  //
1639 
1640  bool first_pair_found = false;
1641  size_type irigid_obstacle(-1);
1642  for (size_type i = 0; i < obstacles.size(); ++i) {
1643  const obstacle &obs = obstacles[i];
1644  gmm::copy(pt_x, obs.point());
1645  const base_tensor &t = obs.eval();
1646 
1647  GMM_ASSERT1(t.size() == 1, "Obstacle level set function as to be "
1648  "a scalar valued one");
1649  d1 = t[0];
1650  // cout << "d1 = " << d1 << endl;
1651  if (gmm::abs(d1) < release_distance && d1 < d0) {
1652  const base_tensor &t_der = obs.eval_derivative();
1653  GMM_ASSERT1(t_der.size() == n_x.size(), "Bad derivative size");
1654  if (gmm::vect_sp(t_der.as_vector(), n_x) < scalar_type(0)) {
1655  d0 = d1;
1656  irigid_obstacle = i;
1657  gmm::copy(t_der.as_vector(), n_y);
1658  }
1659  }
1660  }
1661 
1662  if (irigid_obstacle != size_type(-1)) {
1663  // cout << "Testing obstacle " << irigid_obstacle << endl;
1664  const obstacle &obs = obstacles[irigid_obstacle];
1665  gmm::copy(pt_x, obs.point());
1666  gmm::copy(pt_x, pt_y);
1667  size_type nit = 0, nb_fail = 0;
1668  scalar_type alpha(0), beta(0);
1669  d1 = d0;
1670 
1671  while (gmm::abs(d1) > 1E-13 && ++nit < 50 && nb_fail < 3) {
1672  if (nit != 1) gmm::copy(obs.eval_derivative().as_vector(), n_y);
1673 
1674  for (scalar_type lambda(1); lambda >= 1E-3; lambda/=scalar_type(2)) {
1675  alpha = beta - lambda * d1 / gmm::vect_sp(n_y, n_x);
1676  gmm::add(pt_x, gmm::scaled(n_x, alpha), obs.point());
1677  d2 = obs.eval()[0];
1678  if (gmm::abs(d2) < gmm::abs(d1)) break;
1679  }
1680  if (gmm::abs(beta - d1 / gmm::vect_sp(n_y, n_x)) > scalar_type(500))
1681  nb_fail++;
1682  beta = alpha; d1 = d2;
1683  }
1684  gmm::copy(obs.point(), pt_y);
1685 
1686  if (gmm::abs(d1) > 1E-8) {
1687  GMM_WARNING1("Raytrace on rigid obstacle failed");
1688  } // CRITERION 4 for rigid bodies : Apply the release distance
1689  else if (gmm::vect_dist2(pt_y, pt_x) <= release_distance) {
1690  n_y /= gmm::vect_norm2(n_y);
1691  d0 = gmm::vect_dist2(pt_y, pt_x) * gmm::sgn(d0);
1692  stored_pt_y = stored_pt_y_ref = pt_y;
1693  stored_n_y = n_y;
1694  stored_signed_distance = d0;
1695  first_pair_found = true;
1696  } else
1697  irigid_obstacle = size_type(-1);
1698  }
1699 
1700  //
1701  // Determine the potential contact pairs with deformable bodies
1702  //
1703  bgeot::rtree::pbox_set bset;
1704  base_node bmin(pt_x), bmax(pt_x);
1705  for (size_type i = 0; i < N; ++i)
1706  { bmin[i] -= release_distance; bmax[i] += release_distance; }
1707 
1708  face_boxes.find_line_intersecting_boxes(pt_x, n_x, bmin, bmax, bset);
1709 
1710  //
1711  // Iteration on potential contact pairs and application
1712  // of selection criteria
1713  //
1714  for (const auto &pbox : bset) {
1715  face_box_info &fbox_y = face_boxes_info[pbox->id];
1716  size_type ib_y = fbox_y.ind_boundary;
1717  const contact_boundary &cb_y = contact_boundaries[ib_y];
1718  const mesh_fem &mfu_y = *(cb_y.mfu);
1719  const mesh &m_y = mfu_y.linked_mesh();
1720  size_type cv_y = fbox_y.ind_element;
1721  pfem pfu_y = mfu_y.fem_of_element(cv_y);
1722  short_type face_y = fbox_y.ind_face;
1723  bgeot::pgeometric_trans pgt_y= m_y.trans_of_convex(cv_y);
1724 
1725  // CRITERION 1 : The unit normal vector are compatible
1726  // and the two points are not in the same element.
1727  if (gmm::vect_sp(fbox_y.mean_normal, n_x) >= scalar_type(0) ||
1728  (cv_x == cv_y && &m_x == &m_y))
1729  continue;
1730 
1731  //
1732  // Raytrace search for y by Newton's algorithm
1733  //
1734 
1735  m_y.points_of_convex(cv_y, G_y);
1736  // face_pts is of type bgeot::convex<...>::ref_convex_pt_ct
1737  const auto face_pts = pfu_y->ref_convex(cv_y)->points_of_face(face_y);
1738  const base_node &Y0 = face_pts[0];
1739  fem_interpolation_context ctx_y(pgt_y, pfu_y, Y0, G_y, cv_y, face_y);
1740 
1741  const base_small_vector &NY0
1742  = pfu_y->ref_convex(cv_y)->normals()[face_y];
1743  for (size_type k = 0; k < N-1; ++k) { // A basis for the face
1744  gmm::resize(ti[k], N);
1745  scalar_type norm(0);
1746  while(norm < 1E-5) {
1747  gmm::fill_random(ti[k]);
1748  ti[k] -= gmm::vect_sp(ti[k], NY0) * NY0;
1749  for (size_type l = 0; l < k; ++l)
1750  ti[k] -= gmm::vect_sp(ti[k], ti[l]) * ti[l];
1751  norm = gmm::vect_norm2(ti[k]);
1752  }
1753  ti[k] /= norm;
1754  }
1755 
1756  gmm::clear(a);
1757 
1758  for (size_type k = 0; k < N-1; ++k) {
1759  gmm::resize(Ti[k], N);
1760  scalar_type norm(0);
1761  while (norm < 1E-5) {
1762  gmm::fill_random(Ti[k]);
1763  Ti[k] -= gmm::vect_sp(Ti[k], n_x) * n_x;
1764  for (size_type l = 0; l < k; ++l)
1765  Ti[k] -= gmm::vect_sp(Ti[k], Ti[l]) * Ti[l];
1766  norm = gmm::vect_norm2(Ti[k]);
1767  }
1768  Ti[k] /= norm;
1769  }
1770 
1771  slice_vector_on_basic_dof_of_element(mfu_y, *(cb_y.U), cv_y, coeff_y);
1772 
1773  raytrace_pt_surf_cost_function_object pps(Y0, pt_x, ctx_y, coeff_y,
1774  ti, Ti, false);
1775  pps(a, res);
1776  scalar_type residual = gmm::vect_norm2(res);
1777  scalar_type residual2(0), det(0);
1778  bool exited = false;
1779  size_type nbfail = 0, niter = 0;
1780  for (;residual > 2E-12 && niter <= 30; ++niter) {
1781 
1782  for (size_type subiter(0); subiter <= 4; ++subiter) {
1783  pps(a, hessa);
1784  det = gmm::abs(bgeot::lu_inverse(&(*(hessa.begin())), N-1, false));
1785  if (det > 1E-15) break;
1786  for (size_type i = 0; i < N-1; ++i)
1787  a[i] += gmm::random() * 1E-7;
1788  }
1789  if (det <= 1E-15) break;
1790  // Computation of the descent direction
1791  gmm::mult(hessa, gmm::scaled(res, scalar_type(-1)), dir);
1792 
1793  if (gmm::vect_norm2(dir) > scalar_type(10)) nbfail++;
1794  if (nbfail >= 4) break;
1795 
1796  // Line search
1797  scalar_type lambda(1);
1798  for (size_type j = 0; j < 5; ++j) {
1799  gmm::add(a, gmm::scaled(dir, lambda), b);
1800  pps(b, res2);
1801  residual2 = gmm::vect_norm2(res2);
1802  if (residual2 < residual) break;
1803  lambda /= ((j < 3) ? scalar_type(2) : scalar_type(5));
1804  }
1805 
1806  residual = residual2;
1807  gmm::copy(res2, res);
1808  gmm::copy(b, a);
1809  scalar_type dist_ref = gmm::vect_norm2(a);
1810 
1811  if (niter > 1 && dist_ref > 15) break;
1812  if (niter > 5 && dist_ref > 8) break;
1813  if (/*(niter > 1 && dist_ref > 7) ||*/ nbfail == 3) exited = true;
1814  }
1815  bool converged = (gmm::vect_norm2(res) < 2E-6);
1816  bool is_in = (pfu_y->ref_convex(cv_y)->is_in(ctx_y.xref()) < 1E-6);
1817  // GMM_ASSERT1(!(exited && converged && is_in),
1818  // "A non conformal case !! " << gmm::vect_norm2(res)
1819  // << " : " << nbfail << " : " << niter);
1820  if (is_in) {
1821  ctx_y.pf()->interpolation(ctx_y, coeff_y, pt_y, dim_type(N));
1822  pt_y += ctx_y.xreal();
1823  }
1824 
1825  // CRITERION 2 : The contact pair is eliminated when
1826  // raytrace do not converge.
1827  if (!converged) continue;
1828 
1829  // CRITERION 3 : The raytraced point is inside the element
1830  if (!is_in) continue;
1831 
1832  // CRITERION 4 : Apply the release distance
1833  scalar_type signed_dist = gmm::vect_dist2(pt_y, pt_x);
1834  if (signed_dist > release_distance) continue;
1835 
1836  // compute the unit normal vector at y and the signed distance.
1837  compute_normal(ctx_y, face_y, false, coeff_y, n0_y, n_y, grad);
1838  n_y /= gmm::vect_norm2(n_y);
1839  signed_dist *= gmm::sgn(gmm::vect_sp(pt_x - pt_y, n_y));
1840 
1841  // CRITERION 5 : comparison with rigid obstacles
1842  // CRITERION 7 : smallest signed distance on contact pairs
1843  if (first_pair_found && stored_signed_distance < signed_dist)
1844  continue;
1845 
1846  // CRITERION 1 : again on found unit normal vector
1847  if (gmm::vect_sp(n_y, n_x) >= scalar_type(0)) continue;
1848 
1849  // CRITERION 6 : for self-contact only : apply a test on
1850  // unit normals in reference configuration.
1851  if (&m_x == &m_y) {
1852  base_small_vector diff = ctx_x.xreal() - ctx_y.xreal();
1853  scalar_type ref_dist = gmm::vect_norm2(diff);
1854  if ( (ref_dist < scalar_type(4) * release_distance)
1855  && (gmm::vect_sp(diff, n0_y) < - 0.01 * ref_dist) )
1856  continue;
1857  }
1858 
1859  stored_pt_y = pt_y; stored_pt_y_ref = ctx_y.xref();
1860  stored_m_y = &m_y; stored_cv_y = cv_y; stored_face_y = face_y;
1861  stored_n_y = n_y;
1862  stored_ctx_y = ctx_y;
1863  stored_coeff_y = coeff_y;
1864  stored_signed_distance = signed_dist;
1865  stored_dispname = cb_y.dispname;
1866  first_pair_found = true;
1867  irigid_obstacle = size_type(-1);
1868  }
1869 
1870  int ret_type = 0;
1871  *m_t = 0;
1872  cv = size_type(-1);
1873  face_num = short_type(-1);
1874  if (irigid_obstacle != size_type(-1)) {
1875  P_ref = stored_pt_y; N_y = stored_n_y;
1876  ret_type = 2;
1877  } else if (first_pair_found) {
1878  *m_t = stored_m_y; cv = stored_cv_y; face_num = stored_face_y;
1879  P_ref = stored_pt_y_ref; N_y = stored_n_y;
1880  ret_type = 1;
1881  }
1882 
1883  // Note on derivatives of the transformation : for efficiency and
1884  // simplicity reasons, the derivative should be computed with
1885  // the value of corresponding test functions. This means that
1886  // for a transformation F(u) the conputed derivative is F'(u).Test_u
1887  // including the Test_u.
1888  if (compute_derivatives) {
1889  if (ret_type >= 1) {
1890  fem_interpolation_context &ctx_y = stored_ctx_y;
1891  size_type cv_y = 0;
1892  if (ret_type == 1) cv_y = ctx_y.convex_num();
1893 
1894  base_matrix I_nxny(N,N); // I - nx@ny/nx.ny
1895  gmm::copy(gmm::identity_matrix(), I_nxny);
1896  gmm::rank_one_update(I_nxny, n_x,
1897  gmm::scaled(stored_n_y,scalar_type(-1)
1898  / gmm::vect_sp(n_x, stored_n_y)));
1899 
1900  // Computation of F_y
1901  base_matrix F_y(N,N), F_y_inv(N,N), M1(N, N), M2(N, N);
1902  pfem pfu_y = 0;
1903  if (ret_type == 1) {
1904  pfu_y = ctx_y.pf();
1905  pfu_y->interpolation_grad(ctx_y, stored_coeff_y, F_y, dim_type(N));
1906  gmm::add(gmm::identity_matrix(), F_y);
1907  gmm::copy(F_y, F_y_inv);
1908  bgeot::lu_inverse(&(*(F_y_inv.begin())), N);
1909  } else {
1910  gmm::copy(gmm::identity_matrix(), F_y);
1911  gmm::copy(gmm::identity_matrix(), F_y_inv);
1912  }
1913 
1914  // Computation of F_x
1915  base_matrix F_x(N,N), F_x_inv(N,N);
1916  pfu_x->interpolation_grad(ctx_x, coeff_x, F_x, dim_type(N));
1917  gmm::add(gmm::identity_matrix(), F_x);
1918  gmm::copy(F_x, F_x_inv);
1919  bgeot::lu_inverse(&(*(F_x_inv.begin())), N);
1920 
1921 
1922  base_tensor base_ux;
1923  base_matrix vbase_ux;
1924  ctx_x.base_value(base_ux);
1925  size_type qdim_ux = pfu_x->target_dim();
1926  size_type ndof_ux = pfu_x->nb_dof(cv_x) * N / qdim_ux;
1927  vectorize_base_tensor(base_ux, vbase_ux, ndof_ux, qdim_ux, N);
1928 
1929  base_tensor base_uy;
1930  base_matrix vbase_uy;
1931  size_type ndof_uy = 0;
1932  if (ret_type == 1) {
1933  ctx_y.base_value(base_uy);
1934  size_type qdim_uy = pfu_y->target_dim();
1935  ndof_uy = pfu_y->nb_dof(cv_y) * N / qdim_uy;
1936  vectorize_base_tensor(base_uy, vbase_uy, ndof_uy, qdim_uy, N);
1937  }
1938 
1939  base_tensor grad_base_ux, vgrad_base_ux;
1940  ctx_x.grad_base_value(grad_base_ux);
1941  vectorize_grad_base_tensor(grad_base_ux, vgrad_base_ux, ndof_ux,
1942  qdim_ux, N);
1943 
1944  // Derivative : F_y^{-1}*I_nxny*(Test_u(X)-Test_u(Y)+gDn_x[Test_u])
1945  // with Dn_x[Test_u] =-(I-nx@nx)*F_x^{-T}*Grad_Test_u^{T}*n_x
1946  // and I_nxny*(I - nx@nx) = I_nxny
1947 
1948  // F_y^{-1}*I_nxny*Test_u(X)
1949  gmm::mult(F_y_inv, I_nxny, M1);
1950  base_matrix der_x(ndof_ux, N);
1951  gmm::mult(vbase_ux, gmm::transposed(M1), der_x);
1952 
1953  // -F_y^{-1}*I_nxny*Test_u(Y)
1954  base_matrix der_y(ndof_uy, N);
1955  if (ret_type == 1) {
1956  gmm::mult(vbase_uy, gmm::transposed(M1), der_y);
1957  gmm::scale(der_y, scalar_type(-1));
1958  }
1959 
1960  // F_y^{-1}*I_nxny*gDn_x[Test_u]
1961  gmm::mult(M1, gmm::transposed(F_x_inv), M2);
1962  for (size_type i = 0; i < ndof_ux; ++i)
1963  for (size_type j = 0; j < N; ++j)
1964  for (size_type k = 0; k < N; ++k)
1965  for (size_type l = 0; l < N; ++l)
1966  der_x(i, j) -= M2(j, k) * vgrad_base_ux(i, l, k)
1967  * n_x[l] * stored_signed_distance;
1968 
1969  const std::string &dispname_x
1970  = workspace.variable_in_group(cb_x.dispname, m_x);
1971 
1972  for (auto&& d : derivatives) {
1973  if (dispname_x.compare(d.first.varname) == 0 &&
1974  d.first.transname.size() == 0) {
1975  d.second.adjust_sizes(ndof_ux, N);
1976  gmm::copy(der_x.as_vector(), d.second.as_vector());
1977  } else if (ret_type == 1 &&
1978  stored_dispname.compare(d.first.varname) == 0 &&
1979  d.first.transname.size() != 0) {
1980  d.second.adjust_sizes(ndof_uy, N);
1981  gmm::copy(der_y.as_vector(), d.second.as_vector());
1982  } else
1983  d.second.adjust_sizes(0, 0);
1984  }
1985  } else {
1986  for (auto&& d : derivatives)
1987  d.second.adjust_sizes(0, 0);
1988  }
1989  }
1990  return ret_type;
1991  }
1992 
1993  raytracing_interpolate_transformation(scalar_type d)
1994  : release_distance(d) {}
1995  };
1996 
1997 
1998  //=========================================================================
1999  //
2000  // Projection interpolate transformation for generic assembly
2001  //
2002  //=========================================================================
2003 
2004  class projection_interpolate_transformation
2005  : public raytracing_interpolate_transformation {
2006 
2007  scalar_type release_distance; // Limit distance beyond which the contact
2008  // will not be considered.
2009  public:
2010  int transform(const ga_workspace &workspace, const mesh &m_x,
2011  fem_interpolation_context &ctx_x,
2012  const base_small_vector &/*Normal*/,
2013  const mesh **m_t,
2014  size_type &cv, short_type &face_num, base_node &P_ref,
2015  base_small_vector &N_y,
2016  std::map<var_trans_pair, base_tensor> &derivatives,
2017  bool compute_derivatives) const {
2018  size_type cv_x = ctx_x.convex_num();
2019  short_type face_x = ctx_x.face_num();
2020  GMM_ASSERT1(face_x != short_type(-1), "The contact transformation can "
2021  "only be applied to a boundary");
2022 
2023  //
2024  // Find the right (slave) contact boundary
2025  //
2026  mesh_boundary_cor::const_iterator it = boundary_for_mesh.find(&m_x);
2027  GMM_ASSERT1(it != boundary_for_mesh.end(),
2028  "Mesh with no declared contact boundary");
2029  size_type ib_x = size_type(-1);
2030  for (const auto &boundary_ind : it->second) {
2031  const contact_boundary &cb = contact_boundaries[boundary_ind];
2032  if (m_x.region(cb.region).is_in(cv_x, face_x))
2033  { ib_x = boundary_ind; break; }
2034  }
2035  GMM_ASSERT1(ib_x != size_type(-1),
2036  "No contact region found for this point");
2037  const contact_boundary &cb_x = contact_boundaries[ib_x];
2038  const mesh_fem &mfu_x = *(cb_x.mfu);
2039  pfem pfu_x = mfu_x.fem_of_element(cv_x);
2040  size_type N = mfu_x.linked_mesh().dim();
2041  GMM_ASSERT1(mfu_x.get_qdim() == N,
2042  "Displacment field with wrong dimension");
2043 
2044  model_real_plain_vector coeff_x, coeff_y, stored_coeff_y;
2045  base_small_vector a(N-1), b(N-1), pt_x(N), pt_y(N), n_x(N);
2046  base_small_vector stored_pt_y(N), stored_n_y(N), stored_pt_y_ref(N);
2047  base_small_vector n0_x, n_y(N), n0_y, res(N-1), res2(N-1), dir(N-1);
2048  base_matrix G_x, G_y, grad(N,N), hessa(N-1, N-1);
2049  std::vector<base_small_vector> ti(N-1);
2050  scalar_type stored_signed_distance(0);
2051  std::string stored_dispname;
2052  scalar_type d0 = 1E300, d1, d2(0);
2053  const mesh *stored_m_y(0);
2054  size_type stored_cv_y(-1);
2055  short_type stored_face_y(-1);
2056  fem_interpolation_context stored_ctx_y;
2057  size_type nbwarn(0);
2058 
2059 
2060  //
2061  // Computation of the deformed point and unit normal vectors
2062  //
2063  slice_vector_on_basic_dof_of_element(mfu_x, *(cb_x.U), cv_x, coeff_x);
2064  bgeot::vectors_to_base_matrix(G_x, m_x.points_of_convex(cv_x));
2065  ctx_x.set_pf(pfu_x);
2066  pfu_x->interpolation(ctx_x, coeff_x, pt_x, dim_type(N));
2067  pt_x += ctx_x.xreal();
2068  compute_normal(ctx_x, face_x, false, coeff_x, n0_x, n_x, grad);
2069  n_x /= gmm::vect_norm2(n_x);
2070 
2071  //
2072  // Determine the nearest rigid obstacle, taking into account
2073  // the release distance.
2074  //
2075 
2076  bool first_pair_found = false;
2077  size_type irigid_obstacle(-1);
2078  for (size_type i = 0; i < obstacles.size(); ++i) {
2079  const obstacle &obs = obstacles[i];
2080  gmm::copy(pt_x, obs.point());
2081  const base_tensor &t = obs.eval();
2082 
2083  GMM_ASSERT1(t.size() == 1, "Obstacle level set function as to be "
2084  "a scalar valued one");
2085  d1 = t[0];
2086  // cout << "d1 = " << d1 << endl;
2087  if (gmm::abs(d1) < release_distance && d1 < d0) {
2088  const base_tensor &t_der = obs.eval_derivative();
2089  GMM_ASSERT1(t_der.size() == n_x.size(), "Bad derivative size");
2090  if (gmm::vect_sp(t_der.as_vector(), n_x) < scalar_type(0))
2091  { d0 = d1; irigid_obstacle = i; gmm::copy(t_der.as_vector(),n_y); }
2092  }
2093  }
2094 
2095  if (irigid_obstacle != size_type(-1)) {
2096  // cout << "Testing obstacle " << irigid_obstacle << endl;
2097  const obstacle &obs = obstacles[irigid_obstacle];
2098  gmm::copy(pt_x, obs.point());
2099  gmm::copy(pt_x, pt_y);
2100  size_type nit = 0, nb_fail = 0;
2101  scalar_type alpha(0), beta(0);
2102  d1 = d0;
2103 
2104  while (gmm::abs(d1) > 1E-13 && ++nit < 50 && nb_fail < 3) {
2105  if (nit != 1) gmm::copy(obs.eval_derivative().as_vector(), n_y);
2106 
2107  for (scalar_type lambda(1); lambda >= 1E-3; lambda/=scalar_type(2)) {
2108  gmm::add(gmm::scaled(n_y, -d1/gmm::vect_norm2_sqr(n_y)), pt_y, pt_x);
2109 
2110  if (gmm::abs(d2) < gmm::abs(d1)) break;
2111  }
2112  if (gmm::abs(beta - d1 / gmm::vect_sp(n_y, n_x)) > scalar_type(500))
2113  nb_fail++;
2114  beta = alpha; d1 = d2;
2115  }
2116  gmm::copy(obs.point(), pt_y);
2117 
2118  if (gmm::abs(d1) > 1E-8) {
2119  GMM_WARNING1("Raytrace on rigid obstacle failed");
2120  } // CRITERION 4 for rigid bodies : Apply the release distance
2121  else if (gmm::vect_dist2(pt_y, pt_x) <= release_distance) {
2122  n_y /= gmm::vect_norm2(n_y);
2123  d0 = gmm::vect_dist2(pt_y, pt_x) * gmm::sgn(d0);
2124  stored_pt_y = stored_pt_y_ref = pt_y; stored_n_y = n_y,
2125  stored_signed_distance = d0;
2126  first_pair_found = true;
2127  } else
2128  irigid_obstacle = size_type(-1);
2129  }
2130 
2131  //
2132  // Determine the potential contact pairs with deformable bodies
2133  //
2134  bgeot::rtree::pbox_set bset;
2135  base_node bmin(pt_x), bmax(pt_x);
2136  for (size_type i = 0; i < N; ++i)
2137  { bmin[i] -= release_distance; bmax[i] += release_distance; }
2138 
2139  face_boxes.find_line_intersecting_boxes(pt_x, n_x, bmin, bmax, bset);
2140  //
2141  // Iteration on potential contact pairs and application
2142  // of selection criteria
2143  //
2144  for (const auto &pbox : bset) {
2145  face_box_info &fbox_y = face_boxes_info[pbox->id];
2146  size_type ib_y = fbox_y.ind_boundary;
2147  const contact_boundary &cb_y = contact_boundaries[ib_y];
2148  const mesh_fem &mfu_y = *(cb_y.mfu);
2149  const mesh &m_y = mfu_y.linked_mesh();
2150  bool ref_conf=false;
2151  size_type cv_y = fbox_y.ind_element;
2152  pfem pfu_y = mfu_y.fem_of_element(cv_y);
2153  short_type face_y = fbox_y.ind_face;
2154  bgeot::pgeometric_trans pgt_y= m_y.trans_of_convex(cv_y);
2155 
2156  // CRITERION 1 : The unit normal vectors are compatible
2157  // and the two points are not in the same element.
2158  if (gmm::vect_sp(fbox_y.mean_normal, n_x) >= scalar_type(0) ||
2159  (cv_x == cv_y && &m_x == &m_y))
2160  continue;
2161 
2162  //
2163  // Classical projection for y by quasi Newton algorithm
2164  //
2165  bgeot::vectors_to_base_matrix(G_y, m_y.points_of_convex(cv_y));
2166  // face_pts is of type bgeot::convex<...>::ref_convex_pt_ct
2167  const auto face_pts = pfu_y->ref_convex(cv_y)->points_of_face(face_y);
2168  const base_node &Y0 = face_pts[0];
2169  fem_interpolation_context ctx_y(pgt_y, pfu_y, Y0, G_y, cv_y, face_y);
2170 
2171  const base_small_vector &NY0
2172  = pfu_y->ref_convex(cv_y)->normals()[face_y];
2173 
2174  gmm::clear(a);
2175 
2176  for (size_type k = 0; k < N-1; ++k) { // A basis for the face
2177  gmm::resize(ti[k], N);
2178  scalar_type norm(0);
2179  while(norm < 1E-5) {
2180  gmm::fill_random(ti[k]);
2181  ti[k] -= gmm::vect_sp(ti[k], NY0) * NY0;
2182  for (size_type l = 0; l < k; ++l)
2183  ti[k] -= gmm::vect_sp(ti[k], ti[l]) * ti[l];
2184  norm = gmm::vect_norm2(ti[k]);
2185  }
2186  ti[k] /= norm;
2187  }
2188  slice_vector_on_basic_dof_of_element(mfu_y, *(cb_y.U), cv_y, coeff_y);
2189  proj_pt_surf_cost_function_object pps(Y0, pt_x, ctx_y, coeff_y, ti,
2190  1E-10, ref_conf);
2191  base_small_vector grada(N-1);
2192  scalar_type det(0);
2193  scalar_type residual = gmm::vect_norm2(res);
2194  scalar_type dist = pps(a, grada);
2195  pps(a, res);
2196  for (size_type niter = 0;
2197  gmm::vect_norm2(grada) > 1E-7 && niter <= 50; ++niter) {
2198 
2199  for (size_type subiter(0);;) {
2200  pps(a, hessa);
2201  det = gmm::abs(gmm::lu_inverse(hessa, false));
2202  if (det > 1E-15) break;
2203  for (size_type i = 0; i < N-1; ++i)
2204  a[i] += gmm::random() * 1E-7;
2205  if (++subiter > 4) break;
2206  }
2207  if (det <= 1E-15) break;
2208  // Computation of the descent direction
2209  gmm::mult(hessa, gmm::scaled(grada, scalar_type(-1)), dir);
2210 
2211  // Line search
2212  for (scalar_type lambda(1);
2213  lambda >= 1E-3; lambda /= scalar_type(2)) {
2214  gmm::add(a, gmm::scaled(dir, lambda), b);
2215  if (pps(b) < dist) break;
2216  gmm::add(a, gmm::scaled(dir, -lambda), b);
2217  if (pps(b) < dist) break;
2218  }
2219  //cout<< "b =" << b <<endl;
2220  gmm::copy(b, a);
2221  dist = pps(a, grada);
2222  }
2223 
2224  bool converged = (gmm::vect_norm2(grada) < 2E-6);
2225  if (!converged) { // Try with BFGS
2226  gmm::iteration iter(1E-10, 0 /* noisy*/, 100 /*maxiter*/);
2227  gmm::clear(a);
2228  gmm::bfgs(pps, pps, a, 10, iter, 0, 0.5);
2229  residual = gmm::abs(iter.get_res());
2230  converged = (residual < 2E-5);
2231  }
2232 
2233  bool is_in = (pfu_y->ref_convex(cv_y)->is_in(ctx_y.xref()) < 1E-6);
2234 
2235  //cout<< "y_ref =" << ctx_y.xref() <<endl;
2236  //cout<< "x_ref =" << ctx_x.xref() <<endl;
2237  // cout<< "y =" << ctx_y.xreal() <<endl;
2238  // cout<< "x =" << ctx_x.xreal() <<endl;
2239  // cout<< "is_in =" << is_in <<endl;
2240 
2241  if (is_in || (!converged )) {
2242  if (!ref_conf) {
2243  ctx_y.pf()->interpolation(ctx_y, coeff_y, pt_y, dim_type(N));
2244  pt_y += ctx_y.xreal();
2245  } else {
2246  pt_y = ctx_y.xreal();
2247  }
2248  }
2249  // CRITERION 2 : The contact pair is eliminated when
2250  // projection/raytrace do not converge.
2251  if (!converged) {
2252  if ( nbwarn < 4) {
2253  GMM_WARNING3("Projection algorithm did not converge "
2254  "for point " << pt_x << " residual " << residual
2255  << " projection computed " << pt_y);
2256  ++nbwarn;
2257  }
2258  continue;
2259  }
2260 
2261  // CRITERION 3 : The projected point is inside the element
2262  // The test should be completed: If the point is outside
2263  // the element, a rapid reprojection on the face
2264  // (on the reference element, with a linear algorithm)
2265  // can be applied and a test with a neigbhour element
2266  // to decide if the point is in fact ok ...
2267  // (to be done only if there is no projection on other
2268  // element which coincides and with a test on the
2269  // distance ... ?) To be specified (in this case,
2270  // change xref).
2271  if (!is_in) continue;
2272 
2273  // CRITERION 4 : Apply the release distance
2274 
2275  scalar_type signed_dist = gmm::vect_dist2(pt_y, pt_x);
2276  //cout<< "signd_dist="<< signed_dist << "relaese_dist="<< release_distance <<endl;
2277  if (signed_dist > release_distance) continue;
2278 
2279  // compute the unit normal vector at y and the signed distance.
2280  base_small_vector ny0(N);
2281  compute_normal(ctx_y, face_y, ref_conf, coeff_y, ny0, n_y, grad);
2282  // ny /= gmm::vect_norm2(ny); // Useful only if the unit normal is kept
2283  signed_dist *= gmm::sgn(gmm::vect_sp(pt_x - pt_y, n_y));
2284 
2285  // CRITERION 5 : comparison with rigid obstacles
2286  // CRITERION 7 : smallest signed distance on contact pairs
2287  if (first_pair_found && stored_signed_distance < signed_dist)
2288  continue;
2289 
2290  // CRITERION 1 : again on found unit normal vector
2291  if (gmm::vect_sp(n_y, n_x) >= scalar_type(0)) continue;
2292 
2293  // CRITERION 6 : for self-contact only : apply a test on
2294  // unit normals in reference configuration.
2295  if (&m_x == &m_y) {
2296 
2297  base_small_vector diff = ctx_x.xreal() - ctx_y.xreal();
2298  scalar_type ref_dist = gmm::vect_norm2(diff);
2299 
2300  if ( (ref_dist < scalar_type(4) * release_distance)
2301  && (gmm::vect_sp(diff, ny0) < - 0.01 * ref_dist) )
2302  continue;
2303  }
2304 
2305  stored_pt_y = pt_y; stored_pt_y_ref = ctx_y.xref();
2306  stored_m_y = &m_y; stored_cv_y = cv_y; stored_face_y = face_y;
2307  stored_n_y = n_y;
2308  stored_ctx_y = ctx_y;
2309  stored_coeff_y = coeff_y;
2310  stored_signed_distance = signed_dist;
2311  stored_dispname = cb_y.dispname;
2312  first_pair_found = true;
2313  irigid_obstacle = size_type(-1);
2314 
2315  // Projection could be ameliorated by finding a starting point near
2316  // x (with respect to the integration method, for instance).
2317 
2318  // A specific (Quasi) Newton algorithm for computing the projection
2319  }
2320 
2321  int ret_type = 0;
2322  *m_t = 0; cv = size_type(-1); face_num = short_type(-1);
2323  if (irigid_obstacle != size_type(-1)) {
2324  P_ref = stored_pt_y; N_y = stored_n_y;
2325  ret_type = 2;
2326  } else if (first_pair_found) {
2327  *m_t = stored_m_y; cv = stored_cv_y; face_num = stored_face_y;
2328  P_ref = stored_pt_y_ref;
2329  ret_type = 1;
2330  }
2331  // Note on derivatives of the transformation : for efficiency and
2332  // simplicity reasons, the derivative should be computed with
2333  // the value of corresponding test functions. This means that
2334  // for a transformation F(u) the conputed derivative is F'(u).Test_u
2335  // including the Test_u.
2336 
2337  if (compute_derivatives) {
2338  if (ret_type >= 1) {
2339  fem_interpolation_context &ctx_y = stored_ctx_y;
2340  size_type cv_y = 0;
2341  if (ret_type == 1) cv_y = ctx_y.convex_num();
2342 
2343 
2344  base_matrix I_nyny(N,N); // I - ny@ny
2345  gmm::copy(gmm::identity_matrix(), I_nyny);
2346  gmm::rank_one_update(I_nyny, stored_n_y,
2347  gmm::scaled(stored_n_y,scalar_type(-1)));
2348 
2349  // Computation of F_y
2350  base_matrix F_y(N,N), F_y_inv(N,N), M1(N, N), M2(N, N);
2351  pfem pfu_y = 0;
2352  if (ret_type == 1) {
2353  pfu_y = ctx_y.pf();
2354  pfu_y->interpolation_grad(ctx_y, stored_coeff_y, F_y, dim_type(N));
2355  gmm::add(gmm::identity_matrix(), F_y);
2356  gmm::copy(F_y, F_y_inv);
2357  gmm::lu_inverse(F_y_inv);
2358  } else {
2359  gmm::copy(gmm::identity_matrix(), F_y);
2360  gmm::copy(gmm::identity_matrix(), F_y_inv);
2361  }
2362 
2363 
2364  base_tensor base_ux;
2365  base_matrix vbase_ux;
2366  ctx_x.base_value(base_ux);
2367  size_type qdim_ux = pfu_x->target_dim();
2368  size_type ndof_ux = pfu_x->nb_dof(cv_x) * N / qdim_ux;
2369  vectorize_base_tensor(base_ux, vbase_ux, ndof_ux, qdim_ux, N);
2370 
2371  base_tensor base_uy;
2372  base_matrix vbase_uy;
2373  size_type ndof_uy = 0;
2374  if (ret_type == 1) {
2375  ctx_y.base_value(base_uy);
2376  size_type qdim_uy = pfu_y->target_dim();
2377  ndof_uy = pfu_y->nb_dof(cv_y) * N / qdim_uy;
2378  vectorize_base_tensor(base_uy, vbase_uy, ndof_uy, qdim_uy, N);
2379  }
2380 
2381  base_tensor grad_base_ux, vgrad_base_ux;
2382  ctx_x.grad_base_value(grad_base_ux);
2383  vectorize_grad_base_tensor(grad_base_ux, vgrad_base_ux, ndof_ux,
2384  qdim_ux, N);
2385 
2386  // Derivative : F_y^{-1}*I_nyny*(Test_u(X)-Test_u(Y))
2387  // and I_nyny*(I - ny@ny) = I_nyny
2388 
2389  // F_y^{-1}*I_nyny*Test_u(X)
2390  gmm::mult(F_y_inv, I_nyny, M1);
2391  base_matrix der_x(ndof_ux, N);
2392  gmm::mult(vbase_ux, gmm::transposed(M1), der_x);
2393 
2394  // -F_y^{-1}*I_nyny*Test_u(Y)
2395  base_matrix der_y(ndof_uy, N);
2396  if (ret_type == 1) {
2397  gmm::mult(vbase_uy, gmm::transposed(M1), der_y);
2398  gmm::scale(der_y, scalar_type(-1));
2399  }
2400 
2401  const std::string &dispname_x
2402  = workspace.variable_in_group(cb_x.dispname, m_x);
2403 
2404  for (auto&& d : derivatives) {
2405  if (dispname_x.compare(d.first.varname) == 0 &&
2406  d.first.transname.size() == 0) {
2407  d.second.adjust_sizes(ndof_ux, N);
2408  gmm::copy(der_x.as_vector(), d.second.as_vector());
2409  } else if (ret_type == 1 &&
2410  stored_dispname.compare(d.first.varname) == 0 &&
2411  d.first.transname.size() != 0) {
2412  d.second.adjust_sizes(ndof_uy, N);
2413  gmm::copy(der_y.as_vector(), d.second.as_vector());
2414  } else
2415  d.second.adjust_sizes(0, 0);
2416  }
2417  } else {
2418  for (auto&& d : derivatives)
2419  d.second.adjust_sizes(0, 0);
2420  }
2421  }
2422  return ret_type;
2423  }
2424  projection_interpolate_transformation(const scalar_type &d)
2425  :raytracing_interpolate_transformation(d), release_distance(d) {}
2426  };
2428  (model &md, const std::string &transname, scalar_type d) {
2429  pinterpolate_transformation
2430  p = std::make_shared<raytracing_interpolate_transformation>(d);
2431  md.add_interpolate_transformation(transname, p);
2432  }
2433 
2435  (ga_workspace &workspace, const std::string &transname, scalar_type d) {
2436  pinterpolate_transformation
2437  p = std::make_shared<raytracing_interpolate_transformation>(d);
2438  workspace.add_interpolate_transformation(transname, p);
2439  }
2440 
2442  (model &md, const std::string &transname, const mesh &m,
2443  const std::string &dispname, size_type region) {
2444  raytracing_interpolate_transformation *p
2445  = dynamic_cast<raytracing_interpolate_transformation *>
2446  (const_cast<virtual_interpolate_transformation *>
2447  (&(*(md.interpolate_transformation(transname)))));
2448  p->add_contact_boundary(md, m, dispname, region, false);
2449  }
2450 
2452  (model &md, const std::string &transname, const mesh &m,
2453  const std::string &dispname, size_type region) {
2454  raytracing_interpolate_transformation *p
2455  = dynamic_cast<raytracing_interpolate_transformation *>
2456  (const_cast<virtual_interpolate_transformation *>
2457  (&(*(md.interpolate_transformation(transname)))));
2458  p->add_contact_boundary(md, m, dispname, region, true);
2459  }
2460 
2462  (ga_workspace &workspace, const std::string &transname, const mesh &m,
2463  const std::string &dispname, size_type region) {
2464  raytracing_interpolate_transformation *p
2465  = dynamic_cast<raytracing_interpolate_transformation *>
2466  (const_cast<virtual_interpolate_transformation *>
2467  (&(*(workspace.interpolate_transformation(transname)))));
2468  p->add_contact_boundary(workspace, m, dispname, region, false);
2469  }
2470 
2472  (ga_workspace &workspace, const std::string &transname, const mesh &m,
2473  const std::string &dispname, size_type region) {
2474  raytracing_interpolate_transformation *p
2475  = dynamic_cast<raytracing_interpolate_transformation *>
2476  (const_cast<virtual_interpolate_transformation *>
2477  (&(*(workspace.interpolate_transformation(transname)))));
2478  p->add_contact_boundary(workspace, m, dispname, region, true);
2479  }
2480 
2482  (model &md, const std::string &transname,
2483  const std::string &expr, size_type N) {
2484  raytracing_interpolate_transformation *p
2485  = dynamic_cast<raytracing_interpolate_transformation *>
2486  (const_cast<virtual_interpolate_transformation *>
2487  (&(*(md.interpolate_transformation(transname)))));
2488  p->add_rigid_obstacle(md, expr, N);
2489  }
2490 
2492  (ga_workspace &workspace, const std::string &transname,
2493  const std::string &expr, size_type N) {
2494  raytracing_interpolate_transformation *p
2495  = dynamic_cast<raytracing_interpolate_transformation *>
2496  (const_cast<virtual_interpolate_transformation *>
2497  (&(*(workspace.interpolate_transformation(transname)))));
2498  p->add_rigid_obstacle(workspace, expr, N);
2499  }
2500 
2502  (model &md, const std::string &transname, scalar_type d) {
2503  pinterpolate_transformation
2504  p = std::make_shared<projection_interpolate_transformation>(d);
2505  md.add_interpolate_transformation(transname, p);
2506  }
2507 
2509  (ga_workspace &workspace, const std::string &transname, scalar_type d) {
2510  pinterpolate_transformation
2511  p = std::make_shared<projection_interpolate_transformation>(d);
2512  workspace.add_interpolate_transformation(transname, p);
2513  }
2514 
2516  (model &md, const std::string &transname, const mesh &m,
2517  const std::string &dispname, size_type region) {
2518  projection_interpolate_transformation *p
2519  = dynamic_cast<projection_interpolate_transformation *>
2520  (const_cast<virtual_interpolate_transformation *>
2521  (&(*(md.interpolate_transformation(transname)))));
2522  p->add_contact_boundary(md, m, dispname, region, false);
2523  }
2524 
2526  (model &md, const std::string &transname, const mesh &m,
2527  const std::string &dispname, size_type region) {
2528  projection_interpolate_transformation *p
2529  = dynamic_cast<projection_interpolate_transformation *>
2530  (const_cast<virtual_interpolate_transformation *>
2531  (&(*(md.interpolate_transformation(transname)))));
2532  p->add_contact_boundary(md, m, dispname, region, true);
2533  }
2534 
2536  (ga_workspace &workspace, const std::string &transname, const mesh &m,
2537  const std::string &dispname, size_type region) {
2538  projection_interpolate_transformation *p
2539  = dynamic_cast<projection_interpolate_transformation *>
2540  (const_cast<virtual_interpolate_transformation *>
2541  (&(*(workspace.interpolate_transformation(transname)))));
2542  p->add_contact_boundary(workspace, m, dispname, region, false);
2543  }
2544 
2546  (ga_workspace &workspace, const std::string &transname, const mesh &m,
2547  const std::string &dispname, size_type region) {
2548  projection_interpolate_transformation *p
2549  = dynamic_cast<projection_interpolate_transformation *>
2550  (const_cast<virtual_interpolate_transformation *>
2551  (&(*(workspace.interpolate_transformation(transname)))));
2552  p->add_contact_boundary(workspace, m, dispname, region, true);
2553  }
2554 
2556  (model &md, const std::string &transname,
2557  const std::string &expr, size_type N) {
2558  projection_interpolate_transformation *p
2559  = dynamic_cast<projection_interpolate_transformation *>
2560  (const_cast<virtual_interpolate_transformation *>
2561  (&(*(md.interpolate_transformation(transname)))));
2562  p->add_rigid_obstacle(md, expr, N);
2563  }
2564 
2566  (ga_workspace &workspace, const std::string &transname,
2567  const std::string &expr, size_type N) {
2568  projection_interpolate_transformation *p
2569  = dynamic_cast<projection_interpolate_transformation *>
2570  (const_cast<virtual_interpolate_transformation *>
2571  (&(*(workspace.interpolate_transformation(transname)))));
2572  p->add_rigid_obstacle(workspace, expr, N);
2573  }
2574 
2575 
2576 
2577  //=========================================================================
2578  //
2579  // Specific nonlinear operator of the high-level generic assembly language
2580  // dedicated to contact/friction
2581  //
2582  //=========================================================================
2583 
2584  // static void ga_init_scalar(bgeot::multi_index &mi) { mi.resize(0); }
2585  static void ga_init_vector(bgeot::multi_index &mi, size_type N)
2586  { mi.resize(1); mi[0] = N; }
2587  // static void ga_init_square_matrix(bgeot::multi_index &mi, size_type N)
2588  // { mi.resize(2); mi[0] = mi[1] = N; }
2589 
2590 
2591  // Transformed_unit_vector(Grad_u, n) = (I+Grad_u)^{-T}n / ||(I+Grad_u)^{-T}n||
2592  struct Transformed_unit_vector : public ga_nonlinear_operator {
2593  bool result_size(const arg_list &args, bgeot::multi_index &sizes) const {
2594  if (args.size() != 2 || args[0]->sizes().size() != 2
2595  || args[1]->size() != args[0]->sizes()[0]
2596  || args[0]->sizes()[0] != args[0]->sizes()[1]) return false;
2597  ga_init_vector(sizes, args[0]->sizes()[0]);
2598  return true;
2599  }
2600 
2601  // Value : (I+Grad_u)^{-T}n / ||(I+Grad_u)^{-T}n||
2602  void value(const arg_list &args, base_tensor &result) const {
2603  size_type N = args[0]->sizes()[0];
2604  base_matrix F(N, N);
2605  gmm::copy(args[0]->as_vector(), F.as_vector());
2606  gmm::add(gmm::identity_matrix(), F);
2607  bgeot::lu_inverse(&(*(F.begin())), N);
2608  gmm::mult(gmm::transposed(F), args[1]->as_vector(), result.as_vector());
2609  gmm::scale(result.as_vector(),
2610  scalar_type(1)/gmm::vect_norm2(result.as_vector()));
2611  }
2612 
2613  // Derivative / Grad_u: -(I - n@n)(I+Grad_u)^{-T}Test_Grad_u n
2614  // Implementation: A{ijk} = -G{ik}ndef{j}
2615  // with G = (I - n@n)(I+Grad_u)^{-T}
2616  // and ndef the transformed normal
2617  // Derivative / n: ((I+Grad_u)^{-T}Test_n
2618  // - ndef(ndef.Test_n))/||(I+Grad_u)^{-T}n||
2619  // Implementation: A{ij} = (F{ij} - ndef{i}ndef{j})/norm_ndef
2620  // with F = (I+Grad_u)^{-1}
2621  void derivative(const arg_list &args, size_type nder,
2622  base_tensor &result) const {
2623  size_type N = args[0]->sizes()[0];
2624  base_matrix F(N, N), G(N, N);
2625  base_small_vector ndef(N), aux(N);
2626  gmm::copy(args[0]->as_vector(), F.as_vector());
2627  gmm::add(gmm::identity_matrix(), F);
2628  bgeot::lu_inverse(&(*(F.begin())), N);
2629  gmm::mult(gmm::transposed(F), args[1]->as_vector(), ndef);
2630  scalar_type norm_ndef = gmm::vect_norm2(ndef);
2631  gmm::scale(ndef, scalar_type(1)/norm_ndef);
2632  gmm::copy(gmm::transposed(F), G);
2633  gmm::mult(F, ndef, aux);
2634  gmm::rank_one_update(G, gmm::scaled(ndef, scalar_type(-1)), aux);
2635  base_tensor::iterator it = result.begin();
2636  switch (nder) {
2637  case 1:
2638  for (size_type k = 0; k < N; ++k)
2639  for (size_type j = 0; j < N; ++j)
2640  for (size_type i = 0; i < N; ++i, ++it)
2641  *it = -G(i, k) * ndef[j];
2642  break;
2643  case 2:
2644  for (size_type j = 0; j < N; ++j)
2645  for (size_type i = 0; i < N; ++i, ++it)
2646  *it = (F(j,i) - ndef[i]*ndef[j])/norm_ndef;
2647  break;
2648  default: GMM_ASSERT1(false, "Internal error");
2649  }
2650  GMM_ASSERT1(it == result.end(), "Internal error");
2651  }
2652 
2653  // Second derivative : not implemented
2654  void second_derivative(const arg_list &, size_type, size_type,
2655  base_tensor &) const {
2656  GMM_ASSERT1(false, "Sorry, second derivative not implemented");
2657  }
2658  };
2659 
2660 
2661  // Coulomb_friction_coupled_projection(lambda, n, Vs, g, f, r)
2662  struct Coulomb_friction_coupled_projection : public ga_nonlinear_operator {
2663  bool result_size(const arg_list &args, bgeot::multi_index &sizes) const {
2664  if (args.size() != 6) return false;
2665  size_type N = args[0]->size();
2666  if (N == 0 || args[1]->size() != N || args[2]->size() != N
2667  || args[3]->size() != 1 || args[4]->size() > 3
2668  || args[4]->size() == 0 || args[5]->size() != 1 ) return false;
2669  ga_init_vector(sizes, N);
2670  return true;
2671  }
2672 
2673  // Value : (lambda.n+rg)_- n - P_B(n, f(lambda.n+rg)_-)(lambda-r Vs)
2674  void value(const arg_list &args, base_tensor &result) const {
2675  const base_vector &lambda = *(args[0]);
2676  const base_vector &n = *(args[1]);
2677  const base_vector &Vs = *(args[2]);
2678  base_vector &F = result;
2679  scalar_type g = (*(args[3]))[0];
2680  const base_vector &f = *(args[4]);
2681  scalar_type r = (*(args[5]))[0];
2682 
2683 
2684  scalar_type nn = gmm::vect_norm2(n);
2685  scalar_type lambdan = gmm::vect_sp(lambda, n)/nn;
2686  scalar_type lambdan_aug = gmm::neg(lambdan + r * g);
2687  size_type s_f = gmm::vect_size(f);
2688  scalar_type tau = ((s_f >= 3) ? f[2] : scalar_type(0)) + f[0]*lambdan_aug;
2689  if (s_f >= 2) tau = std::min(tau, f[1]);
2690 
2691  if (tau > scalar_type(0)) {
2692  gmm::add(lambda, gmm::scaled(Vs, -r), F);
2693  scalar_type mu = gmm::vect_sp(F, n)/nn;
2694  gmm::add(gmm::scaled(n, -mu/nn), F);
2695  scalar_type norm = gmm::vect_norm2(F);
2696  if (norm > tau) gmm::scale(F, tau / norm);
2697  } else { gmm::clear(F); }
2698 
2699  gmm::add(gmm::scaled(n, -lambdan_aug/nn), F);
2700  }
2701 
2702  // Derivative / Grad_u: -(I - n@n)(I+Grad_u)^{-T}Test_Grad_u n
2703  // Implementation: A{ijk} = -G{kj}ndef{i}
2704  // with G = (I - n@n)(I+Grad_u)^{-T}
2705  // and ndef the transformed normal
2706  // Derivative / n: ((I+Grad_u)^{-T}Test_n
2707  // - ndef(ndef.Test_n))/||(I+Grad_u)^{-T}n||
2708  // Implementation: A{ij} = (F{ij} - ndef{i}ndef{j})/norm_ndef
2709  // with F = (I+Grad_u)^{-1}
2710  void derivative(const arg_list &args, size_type nder,
2711  base_tensor &result) const { // Can be optimized ?
2712  size_type N = args[0]->size();
2713  const base_vector &lambda = *(args[0]);
2714  const base_vector &n = *(args[1]);
2715  const base_vector &Vs = *(args[2]);
2716  base_vector F(N), dg(N);
2717  base_matrix dVs(N,N), dn(N,N);
2718  scalar_type g = (*(args[3]))[0];
2719  const base_vector &f = *(args[4]);
2720  scalar_type r = (*(args[5]))[0];
2721 
2722  scalar_type nn = gmm::vect_norm2(n);
2723  scalar_type lambdan = gmm::vect_sp(lambda, n)/nn;
2724  scalar_type lambdan_aug = gmm::neg(lambdan + r * g);
2725  size_type s_f = gmm::vect_size(f);
2726  scalar_type tau = ((s_f >= 3) ? f[2] : scalar_type(0))+f[0]*lambdan_aug;
2727  if (s_f >= 2) tau = std::min(tau, f[1]);
2728  scalar_type norm(0);
2729 
2730  if (tau > scalar_type(0)) {
2731  gmm::add(lambda, gmm::scaled(Vs, -r), F); // F <-- lambda -r*Vs
2732  scalar_type mu = gmm::vect_sp(F, n)/nn; // mu <-- (lambda -r*Vs).n/|n|
2733  gmm::add(gmm::scaled(n, -mu/nn), F); // F <-- (lambda -r*Vs)*(I-n x n / |n|²)
2734  norm = gmm::vect_norm2(F);
2735  gmm::copy(gmm::identity_matrix(), dn); // dn <-- I
2736  gmm::scale(dn, -mu/nn); // dn <-- -(lambda -r*Vs).n/|n|² I
2737  gmm::rank_one_update(dn, gmm::scaled(n, mu/(nn*nn*nn)), n); // dn <-- -(lambda -r*Vs).n/|n|² (I - n x n/|n|²)
2738  gmm::rank_one_update(dn, gmm::scaled(n, scalar_type(-1)/(nn*nn)), F); // dn <-- -(lambda -r*Vs).n/|n|² (I - n x n/|n|²) + n x ((lambda -r*Vs)*(I-n x n / |n|²)) /|n|²
2739  gmm::copy(gmm::identity_matrix(), dVs); // dVs <-- I
2740  gmm::rank_one_update(dVs, n, gmm::scaled(n, scalar_type(-1)/(nn*nn))); // dVs <-- I - n x n/|n|²
2741 
2742  if (norm > tau) { // slip
2743  gmm::rank_one_update(dVs, F,
2744  gmm::scaled(F, scalar_type(-1)/(norm*norm)));
2745  gmm::scale(dVs, tau / norm);
2746  gmm::copy(gmm::scaled(F, scalar_type(1)/norm), dg); // dg <-- Normalized((lambda -r*Vs)*(I-n x n / |n|²))
2747  gmm::rank_one_update(dn, gmm::scaled(F, mu/(norm*norm*nn)), F);
2748  gmm::scale(dn, tau / norm);
2749  gmm::scale(F, tau / norm);
2750  } // else gmm::clear(dg);
2751 
2752  } // else { gmm::clear(dg); gmm::clear(dVs); gmm::clear(F); gmm::clear(dn); }
2753  // At this stage, F = P_{B_T}, dVs = d_q P_{B_T}, dn = d_n P_{B_T}
2754  // and dg = d_tau P_{B_T}.
2755 
2756 
2757  base_tensor::iterator it = result.begin();
2758  switch (nder) {
2759  case 1: // Derivative with respect to lambda
2760  if (norm > tau && ((s_f <= 1) || tau < f[1]) &&
2761  ((s_f <= 2) || tau > f[2]))
2762  gmm::rank_one_update(dVs, dg, gmm::scaled(n, -f[0]/nn));
2763  if (lambdan_aug > scalar_type(0))
2764  gmm::rank_one_update(dVs, n, gmm::scaled(n, scalar_type(1)/(nn*nn)));
2765  for (size_type j = 0; j < N; ++j)
2766  for (size_type i = 0; i < N; ++i, ++it)
2767  *it = dVs(i, j);
2768  break;
2769  case 2: // Derivative with respect to n
2770  if (norm > tau && ((s_f <= 1) || tau < f[1])
2771  && ((s_f <= 2) || tau > f[2])) {
2772  gmm::rank_one_update(dn, dg, gmm::scaled(lambda, -f[0]/nn));
2773  gmm::rank_one_update(dn, dg, gmm::scaled(n, f[0]*lambdan/(nn*nn)));
2774  }
2775  if (lambdan_aug > scalar_type(0)) {
2776  gmm::rank_one_update(dn, gmm::scaled(n, scalar_type(1)/(nn*nn)),
2777  lambda);
2778  gmm::rank_one_update(dn,
2779  gmm::scaled(n,(lambdan_aug-lambdan)/(nn*nn*nn)), n);
2780  for (size_type j = 0; j < N; ++j) dn(j,j) -= lambdan_aug/nn;
2781  }
2782  for (size_type j = 0; j < N; ++j)
2783  for (size_type i = 0; i < N; ++i, ++it)
2784  *it = dn(i, j);
2785  break;
2786  case 3:
2787  gmm::scale(dVs, -r);
2788  for (size_type j = 0; j < N; ++j)
2789  for (size_type i = 0; i < N; ++i, ++it)
2790  *it = dVs(i, j);
2791  break;
2792  case 4:
2793  if (norm > tau && ((s_f <= 1) || tau < f[1])
2794  && ((s_f <= 2) || tau > f[2]))
2795  gmm::scale(dg, -f[0]*r);
2796  else
2797  gmm::clear(dg);
2798  if (lambdan_aug > scalar_type(0))
2799  gmm::add(gmm::scaled(n, r/nn), dg);
2800  for (size_type i = 0; i < N; ++i, ++it)
2801  *it = dg[i];
2802  break;
2803  case 5:
2804  if (norm > tau && ((s_f <= 1) || tau < f[1])
2805  && ((s_f <= 2) || tau > f[2]))
2806  gmm::scale(dg, -f[0]*g);
2807  else
2808  gmm::clear(dg);
2809  gmm::mult_add(dVs, gmm::scaled(Vs, scalar_type(-1)), dg);
2810  if (lambdan_aug > scalar_type(0))
2811  gmm::add(gmm::scaled(n, g/nn), dg);
2812  for (size_type i = 0; i < N; ++i, ++it)
2813  *it = dg[i];
2814  it = result.end();
2815  break;
2816  case 6:
2817  base_small_vector dtau_df(s_f);
2818  if ((s_f <= 1) || tau < f[1]) dtau_df[0] = lambdan_aug;
2819  if (s_f >= 2 && tau == f[1]) dtau_df[1] = 1;
2820  if (s_f >= 3 && tau < f[1]) dtau_df[2] = 1;
2821  for (size_type j = 0; j < s_f; ++j)
2822  for (size_type i = 0; i < N; ++i, ++it)
2823  *it = dg[i] * dtau_df[j];
2824  break;
2825  }
2826  GMM_ASSERT1(it == result.end(), "Internal error");
2827  }
2828 
2829  // Second derivative : not implemented
2830  void second_derivative(const arg_list &, size_type, size_type,
2831  base_tensor &) const {
2832  GMM_ASSERT1(false, "Sorry, second derivative not implemented");
2833  }
2834  };
2835 
2836  static bool init_predef_operators() {
2837 
2838  ga_predef_operator_tab &PREDEF_OPERATORS
2840 
2841  PREDEF_OPERATORS.add_method("Transformed_unit_vector",
2842  std::make_shared<Transformed_unit_vector>());
2843  PREDEF_OPERATORS.add_method("Coulomb_friction_coupled_projection",
2844  std::make_shared<Coulomb_friction_coupled_projection>());
2845 
2846  return true;
2847  }
2848 
2849  // declared in getfem_generic_assembly.cc
2850  bool predef_operators_contact_initialized
2851  = init_predef_operators();
2852 
2853 } /* end of namespace getfem. */
Balanced tree of n-dimensional rectangles.
Definition: bgeot_rtree.h:98
static T & instance()
Instance from the current thread.
Describe a finite element method linked to a mesh.
"iterator" class for regions.
Describe a mesh (collection of convexes (elements) and points).
Definition: getfem_mesh.h:99
`‘Model’' variables store the variables, the data and the description of a model.
void add_interpolate_transformation(const std::string &name, pinterpolate_transformation ptrans)
Add an interpolate transformation to the model to be used with the generic assembly.
pinterpolate_transformation interpolate_transformation(const std::string &name) const
Get a pointer to the interpolate transformation name.
The Iteration object calculates whether the solution has reached the desired accuracy,...
Definition: gmm_iter.h:53
Comomon tools for unilateral contact and Coulomb friction bricks.
A language for generic assembly of pde boundary value problems.
void mult_add(const L1 &l1, const L2 &l2, L3 &l3)
*‍/
Definition: gmm_blas.h:1791
void copy(const L1 &l1, L2 &l2)
*‍/
Definition: gmm_blas.h:977
number_traits< typename linalg_traits< V >::value_type >::magnitude_type vect_norm2(const V &v)
Euclidean norm of a vector.
Definition: gmm_blas.h:557
void fill_random(L &l)
fill a vector or matrix with random value (uniform [-1,1]).
Definition: gmm_blas.h:130
void clear(L &l)
clear (fill with zeros) a vector or matrix.
Definition: gmm_blas.h:59
number_traits< typename linalg_traits< V1 >::value_type >::magnitude_type vect_dist2(const V1 &v1, const V2 &v2)
Euclidean distance between two vectors.
Definition: gmm_blas.h:597
void resize(V &v, size_type n)
*‍/
Definition: gmm_blas.h:210
void mult(const L1 &l1, const L2 &l2, L3 &l3)
*‍/
Definition: gmm_blas.h:1664
strongest_value_type< V1, V2 >::value_type vect_sp(const V1 &v1, const V2 &v2)
*‍/
Definition: gmm_blas.h:264
void add(const L1 &l1, L2 &l2)
*‍/
Definition: gmm_blas.h:1276
void lu_inverse(const DenseMatrixLU &LU, const Pvector &pvector, const DenseMatrix &AInv_)
Given an LU factored matrix, build the inverse of the matrix.
Definition: gmm_dense_lu.h:212
std::shared_ptr< const getfem::virtual_fem > pfem
type of pointer on a fem description
Definition: getfem_fem.h:244
gmm::uint16_type short_type
used as the common short type integer in the library
Definition: bgeot_config.h:73
std::shared_ptr< const convex_structure > pconvex_structure
Pointer on a convex structure description.
base_small_vector compute_normal(const geotrans_interpolation_context &c, size_type face)
norm of returned vector is the ratio between the face surface on the real element and the face surfac...
size_t size_type
used as the common size type in the library
Definition: bgeot_poly.h:49
std::shared_ptr< const bgeot::geometric_trans > pgeometric_trans
pointer type for a geometric transformation
size_type alpha(short_type n, short_type d)
Return the value of which is the number of monomials of a polynomial of variables and degree .
Definition: bgeot_poly.cc:47
GEneric Tool for Finite Element Methods.
void add_rigid_obstacle_to_raytracing_transformation(model &md, const std::string &transname, const std::string &expr, size_type N)
Add a rigid obstacle whose geometry corresponds to the zero level-set of the high-level generic assem...
void add_master_contact_boundary_to_projection_transformation(model &md, const std::string &transname, const mesh &m, const std::string &dispname, size_type region)
Add a master boundary with corresponding displacement variable 'dispname' on a specific boundary 'reg...
void add_raytracing_transformation(model &md, const std::string &transname, scalar_type release_distance)
Add a raytracing interpolate transformation called 'transname' to a model to be used by the generic a...
void add_rigid_obstacle_to_projection_transformation(model &md, const std::string &transname, const std::string &expr, size_type N)
Add a rigid obstacle whose geometry corresponds to the zero level-set of the high-level generic assem...
void add_master_contact_boundary_to_raytracing_transformation(model &md, const std::string &transname, const mesh &m, const std::string &dispname, size_type region)
Add a master boundary with corresponding displacement variable 'dispname' on a specific boundary 'reg...
void slice_vector_on_basic_dof_of_element(const mesh_fem &mf, const VEC1 &vec, size_type cv, VEC2 &coeff, size_type qmult1=size_type(-1), size_type qmult2=size_type(-1))
Given a mesh_fem.
void add_projection_transformation(model &md, const std::string &transname, scalar_type release_distance)
Add a projection interpolate transformation called 'transname' to a model to be used by the generic a...
void add_slave_contact_boundary_to_projection_transformation(model &md, const std::string &transname, const mesh &m, const std::string &dispname, size_type region)
Add a slave boundary with corresponding displacement variable 'dispname' on a specific boundary 'regi...
void add_slave_contact_boundary_to_raytracing_transformation(model &md, const std::string &transname, const mesh &m, const std::string &dispname, size_type region)
Add a slave boundary with corresponding displacement variable 'dispname' on a specific boundary 'regi...